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Abstract—The wide deployment of IoT systems in smart homes
has changed the landscape of networked systems, Internet traffic,
and data communications in residential broadband networks
as well as the Internet at large. However, recent spates of
cyber attacks and threats towards IoT systems in smart homes
have revealed prevalent vulnerabilities and risks of IoT systems
ranging from data link layer protocols to application services. To
address the security challenges of IoT systems in smart homes,
this paper introduces IoTArgos, a multi-layer security moni-
toring system, which collects, analyzes, and characterizes data
communications of heterogeneous IoT devices via programmable
home routers. More importantly, this system extracts a variety of
multi-layer data communication features and develops supervised
learning methods for classifying intrusion activities at system,
network, and application layers. In light of the potential zero-day
or unknown attacks, IoTArgos also incorporates unsupervised
learning algorithms to discover unusual or suspicious behaviors
towards smart home IoT systems. Our extensive experimental
evaluations have demonstrated that IoTArgos is able to detect
anomalous activities targeting IoT devices in smart homes with
a precision of 0.9876 and a recall of 0.9763.

I. INTRODUCTION

Recent advances of embedded systems, wireless commu-
nications, cloud computing, and artificial intelligence have
successfully driven the widespread deployment of IoT devices
in millions of smart homes across the world [4, 7, 35, 36, 42].
However, the prevalent device, system, and application vul-
nerabilities and weakness of IoT systems [3, 15, 24, 27, 48]
due to security design flaws, weak password management,
vague trust management, lack of IoT security standards, and
resource constraints for cryptographic functions have enabled
cyber attacks to compromise and control millions of IoT
devices for launching large scale distributed denial of service
(DDoS) attacks, controlling all lights in a city, and breaking
into residential homes or offices with smart but insecure
locks [5, 22, 23, 32, 38, 41].

The broad attack vector across the entire IoT protocol stack
against smart home IoT systems has created challenges for
existing application-driven or device-specific security solu-
tions [12, 26, 30, 47]. Thus, securing IoT systems in smart
homes calls for security frameworks and standards that con-
sider the weakness and vulnerabilities in all IoT protocol
layers. Towards this end, this paper introduces IoTArgos, a
security monitoring system that collects, analyzes, and char-
acterizes multi-layer data communications of all IoT devices
in smart homes via programmable home routers.

IoTArgos leverages home routers powered by OpenWrt,

an embedded Linux operating system, to automatically col-
lect TCP/IP-based network flow records via softflowd and
nfcapd utilities and wireless packets captured by off-the-shelf
wireless sniffers plugged into the routers. The combination
of network flows and wireless packets offers a wide range
of multi-layer features which capture behavioral patterns of
data communications for heterogeneous IoT systems in smart
homes and explain what, when, how, if, and why IoT devices
communicate with other end systems including remote cloud
servers or local IoT hubs in the same home.

In light of prevalent security threats towards IoT devices, we
develop a two-stage machine learning (ML) based intrusion
detection module in IoTArgos. This module explores super-
vised classification algorithms for detecting known attacks in
the first stage, while relies on unsupervised anomaly detection
algorithms in the second stage for capturing emerging zero-day
attacks that are likely undetected by the classification stage.

To demonstrate the performance and benefit of the ML-
based intrusion detection method, we replay a wide range
of cyber attacks at different protocol layers against selected
IoT systems in one smart home that deploys IoTArgos on
an OpenWrt-supported Linksys WRT1900ACS home router
equipped with one 1.6GHz dual-core processor and 512MB
memory. Our extensive experimental results based on synthetic
IoT data communication traffic demonstrate the effectiveness
of the ML-based intrusion detection method in capturing
known or new attack behaviors towards smart home IoT
devices. Specifically, the two-stage method in IoTArgos, using
a combination of random forest (RF) in the classification stage
and principal component analysis (PCA) in the anomaly detec-
tion stage, achieves a high area under the curve (AUC) value
of 0.9678 and 0.9876, 0.9763, 0.9818, 0.9819 of precision,
recall, accuracy, F1 score in detecting IoT attacks.

The contributions of this paper are summarized as follows:
• We propose, design, implement, and evaluate IoTArgos, a

multi-layer security monitoring system for characterizing
data communications of heterogeneous IoT devices in
smart homes and detecting a wide range of anomalous
and intrusion activities towards IoT devices.

• We characterize the behavioral patterns of various IoT
devices deployed in real-world smart homes based on a
broad range of data communication and traffic features
from multiple layers of TCP/IP protocol and IoT com-
munication protocol.

• We develop an innovative two-stage ML-based intrusion
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detection method for detecting a wide spectrum of attacks
towards IoT devices, and run extensive experiments with
synthetic IoT data traffic to demonstrate that the method
is able to detect anomalous activities targeting IoT de-
vices in smart homes with a precision of 0.9876 and a
recall of 0.9763.

The remainder of this paper is organized as follows. Sec-
tion II describes the background of smart home IoT secu-
rity. Section III presents the system architecture and key
components of our proposed IoTArgos security monitoring
system, while Section IV describes the characterization of
IoT communication patterns. Section V introduces the two-
stage ML-based intrusion detection method, and Section VI
demonstrates its performance. Section VII discusses related
work, and Section VIII concludes this paper and outlines our
future work.

II. BACKGROUND

In this section, we first describe the rising deployment,
applications, and services of IoT devices in millions of smart
homes, and then discuss the existing vulnerabilities of hetero-
geneous and weakly-protected IoT devices and the challenges
to secure them. Finally, we shed light on multi-layer behavioral
fingerprints left by real-world IoT attacks and threats.

A. Internet-of-Things at Smart Homes

The recent years have witnessed the explosive deployment
of Internet-connected IoT devices in smart homes. For exam-
ple, as illustrated in Fig. 1, a smart home today can connect
a wide range of IoT devices such as IP surveillance cameras,
smart thermostats and smoke detectors, voice assistants, and
air quality monitors via different communication protocols for
home automation, home security and safety, energy efficiency,
and healthcare.
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Fig. 1. An example smart home network with heterogeneous IoT devices.

Smart home IoT devices connect to the Internet either
directly via running TCP/IP protocol stacks on themselves
or indirectly via relying on a smart home platform such
as Samsung’s SmartThings [35], Google’s Nest [18], and
Amazon’s Alexa [4]. In smart homes, the Internet-capable IoT
devices such as smart TVs, IP surveillance cameras, Amazon
Echo, and Google Home typically use wired cables or IEEE
802.11 wireless protocols (WiFi) to connect to home routers,
while many embedded IoT devices such as Philips Hue smart

bulb, Samsung multipurpose sensor, and August smart lock
use low-power wireless protocols such as Zigbee, Bluetooth
Low Energy (BLE), and Z-Wave to connect to the Internet
via a smart gateway, hub, or bridge. For ease of presentation,
we refer the Internet-capable IoT devices as ic-IoT devices,
and the gateway-supported embedded IoT devices as em-IoT
devices.

B. Security Challenges of Heterogeneous IoTs

As connected IoT devices in smart homes continue to grow
in size and complexity, the security issue has become one
of the top challenges in IoT research community. Securing
IoT systems in smart home is a daunting task due to the
heterogeneity of IoT systems, the prevalence of vulnerabilities
in IoT devices and applications, as well as the broad attack
vector across the entire IoT protocol stack. For example, the
recent Mirai botnet [5, 23], formed by hundreds of thousands
of IoT devices, launched an aggregated 600 Gbps DDoS attack
towards Brian Krebs’s security blog. Thousands of home IP
cameras, as part of Mirai botnet, are remotely exploited by
attackers via universal plug and lay (UPnP) enabled home
routers which allow IoT devices behind network address
translation (NAT) protection to automatically bind a service
port for communicating with remote networked systems [38].
Another innovative attack [27, 32] discovers and leverages the
software implementation bugs in the Zigbee light link (ZLL)
protocol [48], to potentially control all the lights in a city via
spreading IoT worms from a single infected bulb, i.e., patient
zero, to all compatible IoT lights using their built-in Zigbee
wireless connectivity and physical adjacency. Similarly, mis-
behaving and malicious smart home applications could explore
the design flaws of smart home programming platforms such
as Samsung SmartThings to gain over-privileged access and
control of IoT systems and to launch event spoofing attacks
e.g., triggering fake fire alarms [15, 47].

C. Multi-Layer Behavioral Fingerprint of IoT Attacks

Many cyber attacks towards IoT devices leave traffic and
behavioral fingerprints at different TCP/IP layers and IoT
protocol stacks. For example, the Mirai botnet employs three
stages including infiltration, infection, and operation for scan-
ning, controlling, and exploiting vulnerable IoT devices. These
steps trigger Internet data traffic between the attacking devices
and the UPnP-enabled home router as well as wireless packets
between the router and wireless IP cameras or other IoT
devices. Similarly, if an attacker with unauthorized access
to an August smart lock account via a Web interface or a
smart phone app remotely opens and closes the smart lock
via August cloud services, the events will leave IP, WiFi, and
Bluetooth data traffic between the cloud servers and the home
router, the router and the August connect bridge, the bridge
and the August smart lock, respectively. Therefore, the broad
attack vector over the entire IoT protocol stack calls for a
multi-layer security monitoring and analysis platform.
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Fig. 2. The overall system architecture of IoTArgos.

III. IOTARGOS SYSTEM OVERVIEW AND DESIGN

In this section, we first present the system overview and
architecture of IoTArgos. Subsequently, we discuss each key
component of IoTArgos for monitoring and measuring IoT
data communications via a multi-layer approach.

A. IoTArgos System Overview

IoTArgos is a multi-layer smart home security monitoring
system for monitoring and analyzing data communications of
IoT systems in smart homes and detecting and mitigating
intrusions and anomalous activities. The design and imple-
mentation of IoTArgos are router-centered. Our intuition of
developing IoTArgos on the home router originates from the
network architecture of smart homes. Specifically, consumer-
grade home routers serve as the residential gateway to route
and forward data packets between internal IoT devices in smart
homes and external cloud servers of IoT vendors or other
remote servers on the Internet. The physical connection from
IoT devices to the router is established either directly through
wired cables or WiFi, or indirectly via a hub or bridge. In
recent years, a number of research studies have explored the
computation, storage, and bandwidth resources on commodity
home routers to characterize end-to-end performance and
troubleshoot performance anomalies and mis-configurations in
home networks [2, 13, 45].

Fig. 2 illustrates the overall system architecture of IoTAr-
gos, which consists of four key components: data collection,
IoT communication characterization, ML-based intrusion de-
tection, and real-time mitigation and defense. The primary
objective of the data collection component is to configure
and setup data collection instruments on programmable home
routers, while the IoT communication characterization compo-
nent is devoted to characterizing and profiling communication
patterns of IoT devices. The ML-based intrusion detection
component first explores supervised classification algorithms
to classify known attacks of IoT data communications and then
relies on unsupervised anomaly detection algorithms to detect
unknown suspicious activities or zero-day attacks. Finally, the
real-time mitigation and defense component, beyond the scope
of this paper, is responsible for alerting home owners and
automatically configuring firewall polices or deploying other
defense mechanisms for filtering and mitigating anomalous
activities towards or from IoT devices.

B. Key System Components

1) Multi-Layer IoT Data Collection: A key strength of
our proposed router-centered security monitoring system lies
in its flexibility of collecting all data communications at a
centralized location. Such simple yet effective deployment and
configuration is crucial for millions of regular home users
to adopt the system, as existing application-driven or device-
specific solutions require non-trivial skills and efforts for home
users to manage and secure IoT devices with diverse operating
systems and interfaces in smart homes. As the residential gate-
way of broadband home networks, many programmable home
routers including bare-bone Raspberry Pi models have the
computational resources and open-source packages to capture
and store raw IP data packets and aggregated network traffic
flows as well as the Ethernet and WiFi frames. Many battery-
operated IoT devices in smart homes such as smart locks
only communicate with low energy wireless protocols such as
Zigbee and Bluetooth, which have been proven to be insecure
by design. Therefore, in order to collect the entire data frames
from heterogeneous IoT devices adopting different link layer
protocols, we setup Texas Instrument CC2531 and CC2540
USB dongles for the capture of Zigbee and Bluetooth frames
respectively. In this study, IoTArgos collects both network flow
records and wireless packets of Zigbee, Bluetooth and WiFi
protocols1 at programmable home routers.

2) Characterizing IoT Data Communications: The col-
lected multi-layer data by programmable home routers allow
us to systematically characterize data communication behav-
iors of all IoT devices in smart homes, e.g., when, how, and
why IoT devices in smart homes communicate with cloud
servers, other remote networked systems, mobile applications
that control the devices, home routers, and local IoT hubs.
Specifically, IoTArgos profiles data communications of IoT
devices with a broad range of basic raw communication and
traffic features such as the IP address and domain name
of remote end hosts, inter-packet arrival time, packet size,
flow duration, source port, destination port, protocol, link
layer protocol, as well as aggregated features such as the
number and dynamics of remote hosts, and the dominant
applications. These traffic features not only characterize IoT
data communications, but also play a crucial role in the ML-
based intrusion detection component.

1We are unable to capture Z-Wave wireless packets due to the unavailability
of Z-Wave USB dongles for consumer-grade home routers.
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3) ML-based Intrusion Detection: In general, we classify
cyber attacks towards IoT systems as known and unknown
attacks. The signature and patterns of known attacks are
often public knowledge, while unknown attacks, e.g., new
or zero-day attacks are typically not discovered or reported
yet. Similar to traditional firewalls, detecting known intru-
sions and attacks often requires signature-based techniques
or supervised machine-learning based methods which are
often unable to uncover new attacks. In order to capture
both known and unknown attacks, IoTArgos adopts a two-
stage approach for ML-based intrusion detection: i) supervised
classification stage, and ii) unsupervised anomaly detection
stage. The first stage applies one supervised machine learning
algorithm on the collected multi-layer data for classifying IoT
attacks or normal IoT data communications, while the second
stage applies one unsupervised anomaly detection algorithm
to uncover anomalous behaviors that are not detectable by
the supervised classification stage due to the unavailability of
attack signatures or training data-sets.

4) Real-Time Mitigation and Defense: Once IoTArgos de-
tects and identifies intrusion activities towards or from IoT
devices in smart homes, the real-time mitigation and defense
component will be triggered to take appropriate actions such
as alerting the home owners via automated emails, disabling or
disconnecting compromised IoT devices and their respective
hubs, and configuring firewall polices on the home routers
to filter the intrusion activities based on attack behavioral
fingerprints.

IV. CHARACTERIZING IOT DATA COMMUNICATIONS

In this section, we first present how IoTArgos characterizes
IoT data communications with features from multi-layer IoT
communication protocols, and subsequently discuss the inher-
ent and distinct communication patterns of diverse IoT devices
deployed in real world smart homes.

A. Multi-Layer Feature Characterizations

We have deployed IoTArgos over 22 home networks across
United States, Hong Kong SAR, and mainland China since
August 2018. These smart homes house hundreds of IoT
devices for a variety of purposes, among which we have
observed 20 unique types of IoT devices, as summarized in
Table I.

IoT devices in smart homes often exhibit various func-
tions and diverse computation, storage, and communication
capabilities. For example, smart TVs and Amazon Echo are
often powered by electric power and have wired or wireless
connections to home routers for Internet connections, while
battery-operated motion and water leak sensors rely on low
energy wireless communication protocols such as Zigbee, Z-
Wave, or Bluetooth to connect with the specific bridges (also
called hubs or gateways) which support both TCP/IP protocols
and IoT wireless protocols and standards.

To characterize data communication for all IoT devices in
smart homes with a centralized solution, IoTArgos explores a
wide range of multi-layer features from TCP/IP-based network

TABLE I
THE LIST OF HETEROGENEOUS IOT DEVICES OBSERVED IN THE 22 SMART

HOMES RUNNING IOTARGOS.

IoT Device Function IoT Protocol Type
Amazon Echo Dot Voice Assistant Bluetooth & WiFi ic-IoT
Amazon Echo Voice Assistant Bluetooth & WiFi ic-IoT
August Connect Bridge Gateway WiFi & Bluetooth bridge
August Smart Lock Pro Smart Lock Bluetooth & Z-Wave em-IoT
Google Home Voice Assistant WiFi & Bluetooth ic-IoT
Philips Hue Smart Hub Gateway WiFi & Zigbee hub
Philips Hue White Smart Bulb Bluetooth & Zigbee em-IoT
Ring Video Doorbell Doorbell WiFi ic-IoT
Samsung General Sensor Sensor Zigbee em-IoT
Samsung Motion Button Smart Button Zigbee em-IoT
Samsung Motion Outlet Smart Outlet Zigbee em-IoT
Samsung Motion Sensor Sensor Zigbee em-IoT

Samsung Hub Gateway Ethernet & WiFi
Zigbee & Z-Wave hub

Samsung Water Sensor Snesor Zigbee em-IoT
Aeotec Multisensor 6 Sensor Z-Wave em-IoT
Aeotec Siren Gen5 Sensor Z-Wave em-IoT
TCL Smart TV Smart TV Ethernet & WiFi ic-IoT
LG Smart TV Smart TV Ethernet & WiFi ic-IoT
YI Home Camera Camera WiFi ic-IoT
Reolink Camera Camera Ethernet & WiFi ic-IoT

flow records extracted by softflowd and nfcapd packages
installed on programmable home routers and wireless packets
captured by wireless sniffers installed on the routers. The
majority of IoT applications and services in smart homes have
employed encryption in data communications, thus IoTArgos
focuses on behavioral features such as the size, durations,
protocols, and remote end systems of data communications.

B. Exploring Behavioral Patterns of IoT Devices

Mining and correlating multi-layer features of IoT data
communications allow us to gain a deep understanding on
behavioral patterns of these IoT devices in smart homes, which
is a critical first step for securing these devices and detecting
anomalies. For example, Fig. 3 shows the numbers of Zigbee
wireless packets exchanged between a Samsung outlet and
Samsung SmartThings hub as well as IP data packets between
the hub and Samsung servers hosted on Amazon cloud over a
24-hour time window.
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Fig. 3. The numbers of Zigbee wireless packets exchanged between a
Samsung outlet and Samsung SmartThings hub as well as IP packets between
the hub and Samsung could servers.

The objective of building behavioral patterns of IoT devices
is to understand what, when, how, if, and why the devices
communicate with other systems including their local bridges,
hubs, or gateways in the same home and remote cloud servers.
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Towards this end, IoTArgos extracts the basic traffic features
of network flows and wireless packets originating from or
destined to the IoT devices including source MAC address,
destination MAC address, source IP address, destination IP
address, source port, destination port, protocol, flow volumes
in packets and bytes, flow duration, and then derives the
advanced features such as inter-packet arrival time, average
packet size, domain and autonomous system number (ASN) of
cloud server. For example, Table II illustrates the observations
of a number of features for six typical IoT devices over
a 24-hour time window in one smart home equipped with
IoTArgos. As shown in Table II, IoT devices exhibit distinct
traffic patterns as evidenced by the behavioral fingerprints on
remote ports, remote servers, traffic volumes and intensity.

The multi-layer data communication features allow Io-
TArgos to establish a behavioral profile to summarize the
communication patterns of IoT devices over time. Such be-
havioral profiles and communication patterns, if captured in
a controlled smart home laboratory environment, can serve
as a baseline of normal IoT communications. To identify
multi-layer features of IoT data communications, we rely on
permanent physical layer addresses of IoT devices and their
hubs as well as the temporal sequences to associate network
flow records with wireless packets for generating augmented
network flow records which summarize individual conversa-
tions or events of IoT applications and services, e.g., remotely
opening an August smart lock via data communications among
the lock owner’s smart phone, August cloud server, the smart
home router, and the August connect bridge.

The monitoring and analysis on IoT behavioral patterns
and dynamics by IoTArgos have led to many interesting
observations. For example, some cloud-based IoT devices like
voice assistants and smart hubs often have long or periodical
connections for exchanging low-bandwidth heartbeat signals
with cloud servers. However, once a certain event happens,
e.g., the smart lock is opened or the voice assistant is requested
to play a Spotify song, the underlying data traffic features
exhibit dramatic changes. Such observations suggest that Io-
TArgos provides a uniform and consistent framework based on
behavioral patterns to tell what is happening to heterogeneous
IoT devices in smart homes, and more importantly to protect
these devices via proactive securing monitoring and reactive
real-time mitigation and defense.

In summary, IoTArgos characterizes and profiles IoT data
communications with a broad range of features from multi-
layer IoT protocol stacks. Mining these multi-layer features
also leads us to discover distinct communication patterns
of IoT devices in smart homes. These features and patterns
provide critical insights and valuable inputs for exploring
ML algorithms to detect intrusion activities and anomalous
behaviors towards or from IoT devices.

V. MACHINE-LEARNING BASED INTRUSION DETECTION

A number of recent studies and surveys have reported that
the prevalent and exploitable vulnerabilities of IoT systems

in smart homes have enabled the attackers to compromise
and control thousands of IoT systems for launching large
scale DDoS attacks or listening to the private conversations
in hacked smart voice assistants. Hence, detecting intrusion
activities and anomalous behaviors of IoT systems in smart
homes is an important design goal of IoTArgos.

In this section, we present our two-stage ML-based intrusion
detection design in IoTArgos, which relies on the supervised
classification algorithms in the first stage to classify known
attacks, and explores the unsupervised anomaly detection
in the second stage to detect unknown or zero-day attacks
towards IoT devices in smart homes.

A. First Stage: Supervised Classification

The intuition of our proposed two-stage intrusion detection
strategy is driven by the diversity and complexity of the
existing and potential attacks and attacks towards hetero-
geneous IoT devices in smart homes. Traditional signature-
based detection methods or emerging ML-based classifications
approaches are very efficient for classifying attacks whose
signatures are available or whose prior instances are captured
and labelled. However, such methods often have challenges in
recognizing zero-day attacks that are created by attackers via
exploiting newly discovered or exposed vulnerabilities from
one or more types of IoT devices.

Therefore, as a first step, IoTArgos explores supervised
classification algorithms to detect and filter a subset of attacks
via training a suite of classification algorithms and selecting
the desired algorithm that balances the intrusion detection
performance and system consumption such as CPU and mem-
ory cost on resource-constrained home routers. Specifically,
we choose five well-known and computationally lightweight
classification algorithms including k-nearest neighbors (k-
NN), logistic regression (LR), naı̈ve bayes (NB), RF, and
support vector machine (SVM).

B. Second Stage: Unsupervised Anomaly Detection

As several prior studies on Internet intrusion and anomaly
detection have pointed out, cyber attackers often employ new
attack techniques thanks to the newly discovered zero-day
vulnerabilities in the compromised systems, they often exhibit
similar behavioral patterns, e.g., such as port scanning, pene-
tration testing, and brute-force password attempts as existing
attacks. Given the likely new attacks that are misclassified
as “normal” in the first stage, IoTArgos develops the second-
stage with anomaly detection algorithms for identifying new
attacks from the remaining “normal” data communications.
In this stage, we also select and evaluate computationally
lightweight anomaly detection algorithms such as clustering-
based local outlier factor (CBLOF), fast angle-based outlier
detection (FastABOD), feature bagging (FB), isolation forest
(IForest), local outlier factor (LOF), and PCA.

Therefore, the goal of the second stage is to uncover
anomaly behaviors that are not detectable by the supervised
intrusion classification technique due to the unavailability of
attack signatures or training data-sets or the emerging new
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TABLE II
DISTINCT BEHAVIORAL FEATURES OF A SAMPLE SET OF IOT DEVICES OVER 24-HOUR TIME WINDOW.

Feature Amazon Echo Google Home Samsung Hub Hue Bridge August Lock Bridge Reolink Camera

Remote ports 53, 80, 123,
137, 443

53, 443, 5228,
5353 53, 443 80, 123, 443 80, 443 11004, 10995,

51097, 51223

Remote servers

352 unique IP 27 unique IP 66 unique IP 24 unique IP 8 unique IP 6 unique IP

from Amazon
and NTP servers

from Google
and DNS servers from Amazon

from Amazon,
Akamai CDN,
and Google

from Amazon
and Akamai CDN

from Amazon
and Verizon networks

ASNs

AS16509
(Amazon),
AS7806
(Binary Net)

AS15169
(Google)

AS16509
(Amazon)

AS20940
(Akamai),
AS15169
(Google),
AS16509
(Amazon)

AS20940
(Akamai),
AS16509
(Amazon)

AS14618
(Amazon),
AS22394
(Cellco)

Dominant ASN AS16509 AS15169 AS16509 AS20940 AS16509 AS22394
Dominant service HTTP HTTPS HTTPS HTTPS HTTPS UDP
Total packets 141k 151k 86k 104k 116k 94k
Packets per 5 min. 490 527 302 364 406 326
Total bytes 46MB 25MB 19MB 26MB 22MB 33MB
Bytes per 5 min. 161KB 88KB 66KB 91KB 77KB 117KB
Total flows 5,464 920 6,768 765 20 9
Flows per 5 min. 19 3 24 3 0 0

vulnerabilities or weakness of IoT systems to be discovered
by attackers. In other words, each data communication with
various multi-layer features of IoT systems in smart homes
will be initially inspected by the the first-stage classification
algorithms in IoTArgos. If the classifier reports normal, the
record will go through the second stage anomaly detection
model.

VI. PERFORMANCE EVALUATIONS

We have implemented the IOTArgos system and deployed
the system across 22 real-world smart home networks. In this
section, we present results of our extensive performance eval-
uations along with our key observations. We first describe our
experiment setup, synthetic IoT data communication genera-
tions, and evaluation metrics. Subsequently, we systematically
evaluate the performance of our proposed two-stage intrusion
detection technique.

A. Experiment Setup and Synthetic IoT Traffic Generation

To detect and classify attacks and intrusion activities to-
wards IoT devices in smart homes, we built a simple yet
effective ML-based intrusion detection component into the
IoTArgos system. To demonstrate the performance, benefit,
and feasibility of our approach, the IoTArgos system not
only collects the normal multi-layer data communications
of IoT devices in distributed smart homes in real-time, but
also captures the simulated attack traffic towards selected
IoT devices. To comprehensively simulate the existing cyber
attacks against smart home IoT systems, we referred to recent
studies [3, 5, 31, 32] on security attacks and threats towards
IoT devices and simulate and replay a wide range of cyber
attacks, as summarized in Table III, across multiple layers of
IoT communication protocol stack.

For each type of attacks, we wrote dedicated scripts and
followed the state-of-the-art penetration test procedure to
replay the attacks with varying instances and intensity towards
selected IoT devices. In order to replay link layer attacks

against devices running the Zigbee and Bluetooth proto-
cols [14, 27, 32, 34, 48], we rely on the widely-used HackRF
One transceiver, a software defined radio (SDR) device capable
of transferring and receiving radio signals ranging from 1MHz
to 6GHz, and run the open-source radio frequency monitoring
and injecting tools such as GNU Radio and Scapy-radio for
customizing the frequency or the type of the link layer frames.

For collecting the normal IoT data communication, we
built a smart home sandbox in a laboratory environment that
deploys the IoTArgos system on a OpenWrt-supported Linksys
WRT1900ACS home router equipped with 1.6GHz dual-core
processor and 512MB memory. In the smart home laboratory,
all IoT devices are configured behind the NAT-enabled router.
In addition, we disabled UPnP from the security setting on the
home router to prevent outside attackers in close proximity
from directly targeting all IoT devices in the smart home
sandbox. The smart home sandbox, consisting of a variety
of IoT devices and the programmable home router, has been
continuously running for over six months. We consider the
data collected by the router in the sandbox during these six
months as the normal IoT data communications, and combine
with the simulated attacks to generate large scale synthetic IoT
communication data-sets. We eventually built a labelled data-
set consisting of over 6 million normal network flow records
and over 300 thousand attack flows for our evaluation experi-
ment. Once acquiring the synthetic IoT data communications
consisting of normal IoT data communications and simulated
attacks, we evaluate the performance and cost of a suite of ML
models for determining the most optimal model to balance the
intrusion detection quality and the cost of computational and
memory resources.

B. Evaluation Metrics
In our synthetic IoT data traffic, we label the simulated

attacks as positive and normal traffic flows and wireless
packets as negative. During the performance evaluation of ML-
based algorithms, the correctly detected attacks are denoted
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TABLE III
THE LIST OF SIMULATED ATTACKS TOWARDS IOT DEVICES IN SMART

HOMES.

Category Attack Strategy Description

Scanning Attacks

host scanning [5, 43] identifying IoT devices
and scanning for
vulnerabilities

port scanning [5, 31]
nexpose scanning [3]
nessus scanning [3]

Flooding Attacks

HTTP flooding [5] application-layer
DNS flooding [5] application-layer
GRE-IP flooding [5] application-layer
UDP flooding [5] volumetric
UDP plain flooding [5] volumetric
SYN flooding [5] TCP state exhaustion
ACK flooding [5] TCP state exhaustion
IP AH flooding [5] IPSec
IP ESP flooding [5] IPSec

Brute Force Attacks SSH brute force [31] brute forcing
user credentialsTelnet brute force [5]

Data Link Layer Attacks

ACK spoofing [27, 32] fake scan response
blind attack [27] malicious identify request
DoS attack [27] junk traffic
force re-pairing [34] manipulate pairing request

by true positive (TP), while the attacks detected as normal
scenarios are considered as false negative (FN). Similarly,
true negative (TN) refers to the cases when normal IoT data
communications are recognized as normal, while false positive
(FP) represents the cases when normal IoT communications
are incorrectly detected as attacks.

In addition to the TP, FN, TN, FP measures in the widely-
used confusion matrix, we also evaluate ML algorithms with
precision, recall, accuracy and F1 score. Specifically, the
precision P is calculated as P = TP

TP+FP , while the recallR is
derived as R = TP

TP+FN . The accuracy metrics A, reflecting
the overall correct detection as attacks or normal scenarios,
is calculated as A = TP+FN

TP+FP+FN+TN , while the F1 score,
balancing the precision and recall, is derived as F1 = 2×P×RP+R .

C. Evaluation of the First Stage

In the first stage for IoT intrusion detection, we select five
widely-used classification algorithms, i.e., k-NN, LR, NB, RF,
and SVM, and apply k-fold cross validation with k set as 10 to
evaluate and compare their performance. Table IV illustrates
accuracy, precision, recall, and F1 score of the five classi-
fication algorithm. As shown in Table IV, all classification
algorithms achieve over 0.90 across all metrics except the
precision and F1 score for NB classification.

TABLE IV
THE PERFORMANCE METRICS OF DETECTING IOT INTRUSIONS WITH FIVE

CLASSIFICATION ALGORITHMS.

Model A P R F1

k-NN 0.9833 0.9878 0.9649 0.9762
LR 0.9573 0.9718 0.9076 0.9386
NB 0.9195 0.9413 0.8292 0.8817
RF 0.9858 0.9893 0.9703 0.9797
SVM 0.9707 0.9806 0.9365 0.9580

While all these classification algorithms are very effective,
the effectiveness of these algorithms depends on the complete
knowledge of the attacks. In reality, there are always the
possibility of new and unknown attacks. In order to study the
impact of new and unknown attacks, we conducted a study
in which we intentionally treat certain types of attacks as
“normal” data in the training phase. As a result, the perfor-

mance of all classification algorithms decreases significantly
due to the existence of new attacks. Table V shows the
decreased performance metrics of detecting IoT intrusions
with five classification algorithms with 25% types of IoT
attacks with the lowest instances in the synthetic data-set as
new or unknown during model training process. For example,
the accuracy, precision, recall and F1 score of RF classifica-
tion drops 0.1088, 0.1004, 0.0950, 0.0977, respectively. This
simple study demonstrates that the classification algorithm
alone, albeit efficient in detecting IoT attacks with high quality
labelled data-sets, is not sufficient enough to detect the rising
new attacks and threats towards IoT systems in smart homes.

TABLE V
THE PERFORMANCE METRICS OF DETECTING IOT INTRUSIONS WITH FIVE

CLASSIFICATION ALGORITHMS WITH 25% TYPES OF IOT ATTACKS AS
NEW OR UNKNOWN DURING MODEL TRAINING PROCESS.

Model A P R F1

k-NN 0.8945 0.8958 0.8781 0.8869
LR 0.8388 0.8620 0.8388 0.8502
NB 0.7802 0.8668 0.7636 0.8119
RF 0.8770 0.8889 0.8753 0.8820
SVM 0.8766 0.8886 0.8642 0.8762

D. The Benefits of the Second Stage
Anomaly detection algorithms have been extensively studied

to identify unknown attacks or anomalies towards networked
systems. Thus, we introduce anomaly detection algorithms in
IoTArgos as the second stage for discovering those “new”
types of IoT attacks that are incorrectly detected as normal
data communications by the classification algorithm in the first
stage. Considering the rare nature of the new or zero-day IoT
attacks, we only consider the types of IoT attacks with the
lowest instances from our labelled data-set as the “new” types
of attacks in the experiments.

The intuition and rationale of introducing anomaly detection
algorithms lie in our observations that all outlier IoT data
communications are likely anomalous and suspicious activities
towards IoT systems since these data communications likely
deviate from common and normal IoT data communication
patterns. In this study, we select six algorithms i.e., CBLOF,
FastABOD, FB, IForest, LOF, and PCA which are widely used
for anomaly or outlier detections, and run each of these algo-
rithms against all the “normal” IoT data communications to
generate distinct clusters of various sizes for grouping similar
patterns or to assign anomaly scores for each communication
flow.

TABLE VI
PERFORMANCE METRICS OF COMBINING RF CLASSIFICATION AND THE

SECOND STAGE FOR DETECTING KNOWN AND NEW IOT ATTACKS.

Model A P R F1

CBLOF 0.9757 0.9798 0.9661 0.9729
FastABOD 0.9241 0.9365 0.9212 0.9288
FB 0.9467 0.9521 0.9353 0.9436
IForest 0.9876 0.9897 0.9750 0.9823
LOF 0.9444 0.9500 0.9342 0.9420
PCA 0.9818 0.9876 0.9763 0.9819

Table VI illustrates the performance of combining RF clas-
sification with the second-stage anomaly detection algorithms
for detecting new IoT intrusions that are misclassified as

880
Authorized licensed use limited to: ASU Library. Downloaded on September 02,2020 at 03:31:27 UTC from IEEE Xplore.  Restrictions apply. 



normal communications in the first stage. To systematically
evaluate the benefit of adding anomaly detection algorithms
in the second stage, we run all the 30 combinations of the
(classification, anomaly detection) pair on our labelled data-
set of synthetic IoT data communications. Table VII shows
the substantial improvement on AUC of combining two-stages
over the first classification stage alone, where each entry
shows the result of the corresponding (classification, anomaly
detection) pair.

We observe from Table VII that running anomaly detection
after classification improves accuracy in all cases, and the
improvement is significant except for a few combinations.
For example, applying PCA anomaly detection after running
the RF classification improves 11.36% on the AUC metric,
i.e., from an AUC of 0.8691 in the first stage to the final
AUC of 0.9678. To have a better view of the improvement,
we use Fig. 4 to illustrate both the average improvement
and maximum improvement of AUC via combining anomaly
detection stage and classification for all 30 combinations. All
of the models have significant AUC increment on average and
the isolation forest model managed to improve the raw naı̈ve
bayes model’s AUC over 16%.

In summary, these experimental results demonstrate that our
proposed two-stage intrusion detection algorithm is very effec-
tive and has significant advantages over classification alone.
In addition, we have run a series of experiments with vary-
ing ratios, e.g., 95%/5%, 90%/10%, 85%/15%, 80%/20%,
75%/25%, and 70%/30% of normal and attack traffic flows. All
the experiments show similar performances of our proposed
two-stage ML-based method in detecting simulated attacks
towards smart home IoT devices. Given the overall perfor-
mance and robustness of our proposed method, it is safe to
expect significant improvement of the two-stage algorithm
when new/better classification or anomaly detection algorithms
are designed and employed by our two-stage algorithm.

  k-NN LR NB RF SVM
First Stage Classification Models

0.7

0.75

0.8

0.85

0.9

0.95

1

A
U

C

None
Average
Best

Fig. 4. The average and best AUC improvement by combining two-stages
over the first classification stage alone.

VII. RELATED WORK

Smart home IoT security has been of recent interest to
many researchers due to the wide deployment of IoT de-
vices in home networks. Research effort has been devoted
to empirically study the current status of IoT deployment, to

discover and raise awareness of the potential vulnerabilities
and their growing security implications, to design more secure
IoT application frameworks, and to understand the behavior of
IoT components and further detect anomaly.

State of Home IoT Deployment and Security: A recent SoK
paper [3] categorizes the home IoT security research into
device, mobile application, cloud endpoint, and communica-
tion, describes the attacks and mitigation, and proposes rec-
ommendations to stakeholders for each category. In addition,
the paper evaluates the security properties of 45 home IoT
devices and their applications. Most recently, [24] carries out
a large-scale empirical analysis of IoT devices in real-world
homes, covering 83 million devices in 16 million homes, and
presents methodologies to identify the types of IoT devices in
home networks and provides their regional distributions. The
paper also analyzes the status of services and weakness in
the IoT devices and the scanning behavior of smart homes.
As the first paper investigating the security problems of
Smart Home IoT applications, [15] identifies over 50% of
the applications on Samsung’s SmartThings platform with
serious over-privilege problems. [17] discusses the similarities
and differences between IoT security research and classic IT
security research from hardware, system software, network,
and application layers. [28] provides a comprehensive survey
on security issues and defense mechanisms for various IoT
applications in smart homes, vehicles, cities and buildings.

Attack Techniques: The popularity of home IoT devices
has introduced a new spectrum of attacks towards all the
components in smart homes. [3] compiles a comprehensive
list of attacks towards different types of IoT devices, popular
services supported by the devices, weak trust management and
weak credentials, mobile application development, and com-
munication channels. With an example attack where worms au-
tomatically spread over a large area among physically adjacent
lamps in a chain reaction using only the standard Zigbee wire-
less interface, [32] investigates a new attack paradigm where
IoT devices with ad hoc networking capabilities can spread
malware to their physically adjacent neighbors bypassing the
Internet. In addition, vulnerable IoT devices have been recently
exploited to form high profile botnets. [5][23] provide a detail
insight of Mirai botnet, which is a high profile DDoS threat
sourced from hundreds of thousands of IoT devices, and how
the insecurity of IoT devices contributes to the growth of this
largest ever botnet. [20] discusses Hajime, which is the latest
botnet consisting of IoT devices managed in a peer-to-peer
fashion.

Application Security: [9] gives a thorough analysis of smart
home IoT applications’ security and privacy issues. Smar-
tAuth [39] is a framework that identifies required permissions
for IoT applications running on platforms like SmartThings
and Apple Home. SAINT [8] is a static information flow
tracking and analysis tool for evaluating privacy risks in IoT
implementation. Their results show that 60% SmartThings
market apps include sensitive data flow. Soteria [10] presents
a static analysis system for validating whether an IoT app
or environment is secure and operates correctly by automat-
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TABLE VII
THE AUC IMPROVEMENT BY COMBINING TWO-STAGES OVER THE FIRST CLASSIFICATION STAGE ALONE.

Model None CBLOF FastABOD FB IForest LOF PCA
k-NN 0.8745 0.9669(+10.57%) 0.9171(+4.87%) 0.9558(+9.30%) 0.9684 (+10.73%) 0.9517(+8.83%) 0.9687(+10.77%)
LR 0.8862 0.9648(+8.87%) 0.9123(+2.94%) 0.9389(+5.95%) 0.9677(+9.20%) 0.9591(+8.23%) 0.9548(+7.74%)
NB 0.8247 0.9160(+11.07%) 0.9049(+9.72%) 0.9183(+11.35%) 0.9615(+16.59%) 0.9238(+12.02%) 0.9239(+12.03%)
RF 0.8691 0.9688(+11.47%) 0.9212(+5.99%) 0.9457(+8.81%) 0.9676(+11.33%) 0.9558(+9.98%) 0.9678(+11.36%)
SVM 0.8753 0.9395(+7.33%) 0.9086(+3.80%) 0.9370(+7.05%) 0.9603(+9.71%) 0.9412(+7.53%) 0.9540(+8.99%)

ically extracting a state model from a SmartThings IoT app
and applying model checking to identify property violations.
IoTSan [29] uses model checking to reveal interaction level
flaws by identifying events that can lead the system to unsafe
states. FlowFence [16] proposed a framework that splits ap-
plication codes into sensitive and non-sensitive modules and
orchestrates the execution through opaque handlers. SIFT [25]
is a safety-centric programming platform which leads to more
robust and reliable IoT apps.

Behavior Modeling and Intrusion Detection: [47] proposes
a third-party defender which monitors the smart home side-
channel traffic and detects misbehavior in smart apps such
as privileged accesses and event spoofing. Their approach
leverages wireless fingerprints to detect mis-behaviors in a
resource-constraint IoT environment. [1] demonstrates a multi-
stage privacy attack to identify device types, states and ac-
tivities by passively observing the encrypted wireless traffic.
[43] investigates the current encryption status of four popular
medical devices by capturing and analyzing network traffic
and retrieving clear-text information, which reveals sensitive
medical conditions and behaviors. [46] discusses the active
learning approach for detecting intrusion targeting IoT devices.
[6, 26, 44, 45] model the device behavior at network, trans-
port and application layers, while [19, 21, 37] model device
behavior with linker layer and physical layer traffic.

A recent position paper [40] summarizes the attacks and
security functions in device, network, and service layers, and
introduces a cross layer framework to connect and bridge
the gap between different layers. Another relevant paper [12]
demonstrates smart home devices are vulnerable to attacks
from malicious mobile apps running on authorized phones
and implements and evaluates a HanGuard system where
the home router enforces role based access control between
mobile apps and IoT devices with the help of a user-space
monitoring app running on the mobile phone. Their adoption
of router for enforcing security policy is similar to our work.
[11] proposes to leverage smart home applications on activity
recognition, health monitoring, and automation for detecting
abnormal home and user behavior in the homes. In contrast to
these research effort, our proposed IoTArgos system focuses
on characterizing IoT data communications with multi-layer
behavioral features, and detecting intrusion and anomalous
activities towards IoT with a two-staged ML-based method.

VIII. CONCLUSIONS AND FUTURE WORK

The recent high-profile cyber attacks towards vulnerable and
insecure IoT devices have highlighted the prevalent security
threats towards millions of smart homes and the great risks
of data and user privacy. These attacks call for systematic

approaches for protecting IoT devices from the broad attack
vector which spans the entire IoT protocol stacks due to design
flaws of rapidly developed and deployed protocols, weak
credential management, and lack of cryptographic functions
on resource-constrained IoT devices. As a first step of securing
IoT devices in smart homes, this paper designs, develops, and
evaluates IoTArgos, a multi-layer security monitoring system
on programmable home routers. Based on data captured from
hundreds of IoT devices in real-world smart homes, IoTArgos
characterizes and models data communication behaviors of
heterogeneous IoT devices with a broad range of commu-
nication and traffic features. To detect intrusions towards
IoT devices, IoTArgos develops a two-stage method to first
explore supervised classification algorithms for identifying
known attacks based on trained labelled data-sets and then rely
on unsupervised anomaly detection algorithms for capturing
emerging attacks without prior attack labels or signatures. Our
extensive experiments based on synthetic IoT data traffic with
normal communications collected from a smart home sandbox
and simulated attacks have shown the two-stage method is very
effective in detecting a wide range of IoT attacks.

Our future work will focus on implementing and deploying
IoTArgos across a large number of smart homes and small
businesses to monitor the security of IoT systems in these
edge networks and correlating the security monitoring of
distributed homes for discovering coordinated and large scale
cyber attacks towards IoT devices with similar vulnerabilities.
We plan to further investigate the mitigation techniques for
efficiently identifying and filtering attacks. Our efforts will
be also centered on balancing the trade-off between accuracy
and false possible rate and looking deep into the data to
differentiate between the legitimate and illegitimate accesses
of the IoT devices.
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