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Abstract—Multiple Coordinated Views (MCV) has been widely
used in visualization. This work explores Multiple Coordinated
Spaces (MCS), a 3D version of MCV, in order to integrate
various 2D displays in a large physical environment as a
unified analysis workspace. Built upon the rich background of
distributed and embodied cognition, MCS supports interactive
analysis in a connected, distributed set of subspaces. For MCS,
we have developed visualization and interactive techniques for
coordinating augmented reality devices together with classical
WIMP GUIs systems. We also demonstrate the usages of MCS
using a multivariate, geo-spatial biodiversity application. The
major advantage of MCS is a flexible coordination framework
for creating new immersive analytics methods by mixing visual-
izations from different devices, and mixing physical and virtual
operations from different environments.

Index Terms—Multiple coordinated space, distributed cogni-
tion, immersive analytics, mixed reality.

I. INTRODUCTION

WIMP GUIs (windows, icons, menus, pointer) have domi-
nated visualization designs for the past 30 years [1]. Many vi-
sualization approaches and theoretical foundations have relied
on WIMP exclusively when designing visual representations
and interaction mechanisms to support visual analytics tasks.
Unfortunately, WIMP GUIs restrict the design of visualiza-
tion and interaction to classical desktop settings that are
significantly different from the interaction that human beings
perform in everyday lives, especially our body, head and
eye movements. The effects of natural interaction, reasoning,
and cognition and their impacts on the foundation of visual
analytics have remained under explored.

We see a great opportunity at the crossing of two disciplines.
First, the existing literature in distributed and embodied cog-
nition has shown a promising potential in visual analytics by
incorporating physical environments and interactions [2]–[4].
Second, the latest technologies of Augmented Reality (AR)
and Mixed Reality (MR) have greatly improved the hardware
for mixing virtual information and real objects in a physical
environment. Collectively, these two areas should provide a
novel foundation for visualization community to explore new
types of immersive analytics that go beyond WIMP GUIs [5].

The opportunity of using AR/MR to create new possibilities
in visual analytics and sensemaking stems from key differ-
ences between conventional desktop visualization and new
frontiers of immersive analytics, such as the following.

Physical environments as the workspace: Physical en-
vironments are the primary sensemaking medium for human

beings [2], as “humans are cognitively well adapted to making
use of space to express and perceive relationships between
objects” [6]. With AR/MR techniques, we can use the physical
environments as a natural workspace through mixing virtual
information and real objects, introducing more physical inter-
actions into the sensemaking process. Such workspaces can be
applied at any location where a physical space is used.
Distributed and embodied cognition for sensemaking:

The distributed and embodied cognition theories describe the
importance of environments to support sensemaking. Visu-
alizations, as part of the environment, forms the external
representation that communicates with the internal repre-
sentation of human mind for sensemaking in the cognition
process. With the physical environment as the medium of
external representations, we can accommodate new types of
visualizations for physical spaces that can better connect
the internal and external representations and promote more
efficient sensemaking processes.
Large rendering space with unlimited pixels and cog-

nitive offloading: The large physical space provides a large
rendering canvas, potentially unlimited number of pixel with-
out the restriction of display resolutions, which is suitable
for complex tasks such as big data analysis [7], multivariate,
geo-spatial analysis. In addition, it lowers the barrier of exter-
nalization, both cognitively and pragmatically [2]. Similarly,
large, high-resolution displays create a spatial environment for
replacing virtual navigation with physical, which has demon-
strated promising cognitive advantages, such as increasing
performance and decreasing user frustration [8], [9].
New interaction methods mixing physical and virtual

operations: Physical space and physical navigation have been
studied for interaction with the system [10], [11] and sense-
making, such as spatial organization [6] and spatial hyper-
media [12]. The theory of embodied cognition also suggests
that “physical navigation engages more embodied resources,
providing a greater opportunity for users to couple with the
space, providing more meaning to locations and encouraging
a more cohesive view of the entire workspace” [13]. Since
physical workspaces combine different types of visualization
mediums, the physical and virtual interaction methods can be
performed in a mixed fashion, creating new capabilities of
interaction functions.
The challenges of creating new types of immersive analytics

are not only from the technical aspects of AR, 3D visualiza-
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Fig. 1. Example multiple coordinated spaces created for immersive analytics utilizing the physical environment. The left figure illustrates the user trace in
MCS during investigation and marks the two positions where snapshots shown on the right are taken from HoloLens. The right two figures demonstrate
visualizations from different devices are combined in the physical environment for analysis.

tion and interaction, but also from the cognitive aspects, i.e.
designing effective visual analytics workspaces. Specifically,
this work aims to study the following problem: given a large
physical space, how can we design it as an encouraging
environment for immersive analytics? Our approach integrates
the physical environment with existing 2D displays, such as
large screens and white boards, to create a flexible framework
that can be applied to different scenarios and leverage the
advantages of both WIMP and post-WIMP interactions.

This paper presents an approach of MCS (multiple coordi-
nated spaces), which organizes a large physical environment
with 2D displays as multiple subspaces and provides coordi-
nated visualization and interaction for promoting immersive
analytics. Shown in Figure 1, we have developed a prototype
system with multiple visualization and interactive techniques
supporting the coordinated analysis between different spaces
and devices. A complex biodiversity application is used to
demonstrate that MCS can be used to promote the interac-
tive exploration process by making efficient comparisons of
hundreds of species and how the species depend on the many
different environmental variables.

The rest of the paper is organized as following. We first
review the previous work in Section II. We then describe how
to construct and use MCS in Section III. Section IV presents
the prototype system and section V provides case studies.
Section VI concludes the paper and presents the future work.

II. RELATED WORK

A. Distributed and Embodied Cognition

The theory of distributed cognition (DCog) expands the
unit of analysis for cognition beyond one individual human
to a distributed cognitive system that can include “a collection
of individuals and artifacts and their relations to each other
in a particular work practice” [14]. DCog emphasizes the
idea that cognition is off-loaded onto the environment through
social and technological means; which supports considering
visualizations as part of the external environment during the
reasoning and cognition process [15]. Since DCog provides a
radical reorientation of system and human-computer interac-
tion design, it has been proposed as a theoretical foundation
to study human-computer interaction [16] and information

visualization [4]. Due to the generalities of DCog theory, it
can be widely applied to various technologies, including both
classical desktop systems and beyond WIMP GUIs (graph-
ical user interfaces based on windows, icons, menus, and
a pointer) [1]. This work explores DCog on understanding
interactions among users and augmented reality technologies
and the design of immersive analytics.

Two principles of DCog are essential to the design of
immersive analytics beyond WIMP GUIs. First, cognitive pro-
cesses often involve coordination between internal and external
(material or environmental) structures. While much cognitive
science research has investigated how internal information
is stored and processed inside the brain, the environment
provides indispensable content for thinking. The theory of
mental models [3] proposes that a coupled system combining
the internal and external realms should enable seamless infor-
mation flow between the human and visualizations while min-
imizing the cognitive work that has to be performed internally
or interactively. The conventional view is that tools amplify
cognition, especially in visualization, artifacts are scaffolds
for cognition. In some instances, the external representation,
such as visualization, provide a means of accomplishing tasks
that could not be performed without the tools. Since the
external representations of immersive analytics allow designers
to layout visualizations spatially in the physical environment,
there are significant opportunities to create new tools.

Second, accomplishing each individual step or task, in and
of itself, does not amplify our cognitive abilities. It is the
combination of steps that has the potential to amplify our
cognitive abilities. According to Hutchins [17], difficult mental
tasks can be transformed into simple ones by offloading some
features of the task onto the environment. Once transformed
to the physical domain, these tasks can be handled with basic
cognitive operations, such as pattern matching, manipulation
of simple physical systems, or mental simulations of manipula-
tions of simple physical systems. Cognitive processes may be
distributed through time as well, so that previous experiences
and knowledge can assist later tasks. According to the mental
model literature [3], activated past experience and knowledge
that are relevant in the current context are an important
component of mental modeling, represented internally and
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arguably in the form of frames, schemata or propositions.
In addition, three primary functionalities of interaction are
proposed: to enable external anchoring, information foraging
and cognitive offloading [3]. Each interaction function enables
a task involved in the cognition processes between internal and
external representations.

DCog has been applied to the design of sense-making sys-
tems. For example, Andrews and North created the Analyst’s
Workspace (AW) on a large, high-resolution display by com-
bining the spatial layout of documents and other artifacts with
an entity-centric, explorative and investigative approach [2].
Badam et al. [18] presented a software framework, Munin,
for building ubiquitous analytics environments consisting of
multiple input and output surfaces. Wheat et al. examined
the role of representational artefacts in sensemaking, using
maps, charts and lists to furnish sensemakers with the ability
to perform tasks that may be difficult to do solely in their
mind [19]. The locus of control, which represents a person’s
tendency to see themselves as controlled by or in control of
external events, is used to study the importance of internal and
external representations [20]. Large tiled displays have also
been used for distributed cognition and collaboration [21].

Embodiment or embodied cognition is a cognitive science
theory that recognizes the primary and fundamental role the
body plays in constituting cognition [22]. It grew out of a
reaction to cognitivism [23], which posited that cognition is
an abstract manipulation of symbols in the brain, meaning
cognition can be readily implemented in a computer just as
easily as a brain. We later learned that the human body is inex-
tricably bound to the function of cognition, including concept
formation [24], language formation [25], reasoning [26], and
perception [27]. Since the human body has such an important
function in cognition, it follows that our technological designs
should take special consideration in designing interactions that
allow the user to experience a sense of agency and bodily
presence during the interaction. Therefore, technologies that
strive to augment cognition should consider embodiment and
the unique role of the body in their target application to fully
leverage how cognition currently functions.

B. Multiple Coordinated Visualization

Multiple coordinated views (MCVs), using two or more
coordinated distinct views to support investigation of a single
conceptual entity [28], is a concept emerged in late 1990s
[29]. One of the earlier works includes a high level taxonomy
on MCVs based on focus zones and data representations
[30]. Further, several papers presented guidelines regarding
design choices for when and how to use MCVs and presented
comprehensive reviews of MCV systems [28], [31]–[34].

Previously work has studied the effectiveness of MCVs and
demonstrated improvement of user performance in different
visualization and visual analytics scenarios. For instance,
selecting a group of data items in one view in coordination
with the selection of the same items in another can reveal
new relationships and dependencies which might otherwise
remain hidden [33]. North and Shneiderman also observed that

multiple window coordination offered improved user perfor-
mance, discovery of unforeseen relationships; and minimized
cognitive overhead of a single complex view of data [30].
However, if used in the wrong way, multiple views can have
quite the opposite effect [28]. Several guideline rules have
been presented for when and how MCVs should be used
[28]. While these guidelines are primarily for desktop system
design, we found them equally helpful for immersive analytics.
MCVs have been explored extensively in visualization to

support exploratory data analysis and sense-making [32],
ranging from network traffic analysis [35] to exploring spatio-
temportal data [36]. For example, the WebPrisma [37] is
an information visualization web tool that uses MCV. Sim-
ilarly, VisLink [38] used 2D visualizations and layouts to
explore relationships between visualizations. The challenges
of designing MCV visualizations include development of easy
interaction mechanisms for coordination, configuration and
organization of layouts among views [32], [39].
One of the objectives of AR as a research area is to

provide more natural and intuitive interfaces for interaction
with computational systems [39]. Meiguins et al. [39], [40]
used AR with MCV visualization and concluded that this
combination allowed better and faster data comparison and
analysis than desktop environment.

C. Immersive Analytics

A number of recent studies on immersive analytics provide
favorable results for stereoscopic techniques. For example,
Alper et al. [41] presented stereoscopic highlighting to help
answer accessibility and adjacency queries when interacting
with a node-link diagram, and the evaluation results showed
that they could significantly enhance graph visualizations
for certain use cases. Ware and Mitchell [42] studied the
perception of variations of 3D node-link diagrams and showed
that stereoscopy reduced errors and response time in a very
high resolution stereoscopic display. Similarly, Greffard et
al. compared 3D stereoscopy with 2D visualization and 3D
monoscopy, and found that stereoscopy outperforms both 2D
and 3D monoscopy [43]. The effectiveness of immersive
analytics still needs to be explored. The differences depend on
the approaches as well as the applications [44], [45]. Systems
that combine different devices have also been developed
for visualization and visual analytics [46]–[48]. Our MCS
approach is different from the previous work by focusing on
making the physical environment as an effective workspace.

III. MULTIPLE COORDINATED SPACES (MCS)

We start by introducing the main purpose of MCS; then
describe our approach to construct MCS given a physical
environment.

A. Creating Distributed Workspace with AR/MR

MCS is designed to enable users to take advantage of
many physical environments, like an office or work sites, as
a distributed analysis space. We choose to combine AR/MR
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technologies, as they are uniquely positioned to be an embod-
ied technology – giving the user full range of motion to explore
an environment that is rich with data. In particular, AR/MR
align with the embodied concept of active perception [27],
which reconceptualized perception from a passive reception
of sensory data to an active process of reaching out into the
world to understand its interactive potential.

Our design of MCS is a distributed workspace which
flexibly combines a number of 2D surfaces and 3D spaces,
such as real 2D displays and virtual 3D visualization from
AR. The 2D surfaces are important mediums for visualization
and collaboration. They can be 2D displays, such as monitor or
large screens, for integrating any existed visualization methods
and devices; as well as 2D surfaces, such as white boards
and tables, for applying traditional pen and paper methods.
The 3D spaces are the physical environments which support
physical navigation and interaction, such as moving around
and observing data from different directions. Any spaces in
MCS can also be divided to 2D or 3D subspaces and organized
according to their spatial relationships.

The MCS framework allows a flexible combination of
2D/2D, 2D/3D, and 3D/3D spaces from choices above; and the
user can focus on any subspace or region during the analysis
process. This design allows us to utilize any 2D displays and
surfaces in the physical environments and combine visualiza-
tion systems from different devices to generate a powerful data
analysis workspace.

B. Construction of MCS

The construction of MCS requires two components to start:
(i) the registration of physical environment and virtual world,
so that physical interactions such as moving around can make
sense to both worlds; (ii) the identifying of important 2D
surfaces that exist in the physical environment, specifically lo-
cations and sizes of 2D surfaces. We have explored both semi-
automatic and interactive construction methods to achieve
these two components.

• The semi-automatic approach is designed to use fixed
large displays in the physical environments. We use Vu-
foria markers [49] to represent 2D surfaces with different
sizes. The positions of the Vuforia markers are used to
obtain the physical locations of displays automatically.

• The interactive approach can accommodate unfixed set-
tings, such as a white board being moved around in the
room. We use the Air tap gesture of HoloLens to specify
the board location and apply scaling to adjust size. With
the interactive approach, users can create 2D spaces of
any size based on their needs.

After obtaining the positions of 2D surfaces in the physical
environment, the next step is to construct multiple 3D spaces
around them. This construction process can be described as
follows: given t 2D surfaces p1, ..., pt, divide a 3D space into a
set S with n sub-spaces: s1, s2, ..., sn. The following describes
the construction algorithm and the procedure is illustrated in
Figure 2.

Fig. 2. Illustration of MCS construction: multiple 2D surfaces are used to
divide the space into a connected, distributed set of subspaces. The first row
shows that each 2D surface generates a 3x3 grid and cuts the space, and the
subspaces are further adjusted and divided to similar sizes. The second row
shows the subspaces constructed from different settings.

1) It starts from one space S = s1, representing the
physical environment.

2) Sort all 2D displays according to their sizes in non-
increasing order and divide the S by applying steps 3 -
5 to each 2D display.

3) For the 2D plane embedding the 2D display pi, we first
divide it to a 3× 3 grid with pi fitted in the middle.

4) Search the processed p1, ..., pi−1 for parallel/vertical
displays. If found, use the largest sizes to adjust the
3× 3 grids so that subspaces can be merged. This may
increase the size of the center grid, but it avoids over-
cutting the subspaces that are too small to use.

5) The grid is used to divide the set S by extending each
grid on the third dimension. For example, a grid which
aligns on a x, y plane cuts on the z direction, generating
3× 3 3D subspaces on each side of the plane.

6) In the end, large subspaces are divided based on their
largest dimension of 2D surfaces.

Figure 2 demonstrates several MCS examples constructed
from physical environments. While we mainly focus on sce-
narios with parallel or orthogonal surfaces, our construction
approach can handle a variety of display settings with different
numbers of 2D surfaces.

C. Working with MCS

Working with MCS is similar to working in a real envi-
ronment, in the sense that users can physically move around,
organize data as files at different locations, and visualize data
from different directions. This section describes our design for
equipping MCS as an analytics workspace.
Organizing MCS as a connected, distributed workspace:

With the flexible organization MCS offers, a user can create
a workspace by separating a large space into connected
regions represented by subspaces and subsequently organizing
data/visualization in the workspace. Every subspace can locate
its direct neighbors and find a path of subspaces to reach any
location where the user or a specific data component is located.
The organization of MCS is important to supporting efficient
interaction functions with a set of concepts that are part of
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human’s everyday work but rare in visualization, including
“neighborhood”, “physical location”, “distance”, and “path”,
into the visual analytics process.

Embodiment for interaction: Embodied cognition de-
scribes the physical constraints of the body and how those
influence cognition. Among embodiment theorists, the concept
of an image schema emerged as a way to explain how the body
shaped early concept formation [24]. Image schemas are “di-
rectly meaningful (‘experiential’/‘embodied’)”, preconceptual
structures, which arise from, or are grounded in, human recur-
rent bodily movements through space, perceptual interactions,
and ways of manipulating objects [24]. Two image schemas
relevant to the design of AR systems are center-periphery
and front-back [24]. The center-periphery schema describes
how humans orient the center of their focus to the primary
and most interesting information while other details surround
the periphery. The front-back image schema describes how
elements in front of the body are perceptible and therefore
valuable, while those information behind the body cannot be
immediately seen and is therefore secondary.

We use these two image schemas to help organize the AR
space in a way that is intuitive to users. We automatically mea-
sure the importance weights of subspaces as w1, w2, ..., wn, so
that new pieces of information are shown at the right locations.
Specifically, we set up a user coordination system and use it
to control the MCS during user navigation in the space. As
shown in Figure 3, the space is divided to front, side, and back
according to the user location and direction. This coordination
system moves with the user and suggests the physical locations
and the data/visualization that are the main focus of the user.
Generally, the subspaces that are in front of user and closer
to the user receive higher weights and are used to visualize
important data pieces.

Fig. 3. Embodiment for interaction. The weights of subspaces are updated
automatically with user space along the movement.

Externalizing insights: During the course of exploratory
sensemaking, it is necessary to preserve interesting entities,
discoveries and insights. These internal structures or repre-
sentations can be given stable external forms in the working
environment and by doing so we can reduce the amount in-
formation kept in working memory and thus achieve cognitive
offloading. We accomplish this by allowing user to explicitly
save a state of visualizations or the subspaces in the form of an
external representation. The state of all subspaces in the form
of external representation can be later retrieved. This way the

user can revisit and piece together the insights from previous
visualizations into an understandable and compelling whole.
Exploration and sensemaking: Some of the most funda-

mental aspects of human cognition are the ability to reason,
recognize patterns, compare results, differentiate between what
makes sense and what does not, and make decisions [50].
These tasks can be applied effectively to exploratory analysis
and sensemaking. The MCS in the environment of AR creates
an exploration workspace where users can perform classic
visual analytics on high-resolution 2D displays, immersive an-
alytics in the physical space, and combine traditional pen and
paper operations into one integrated workspace. The flexibility
to transfer data and visualizations among these three different
platforms allows users to take advantage of each platform
without the burden of copying data and interaction operations.
This new approach also supports new mixed sensemaking
actions that may offer unique cognitive benefits.
Tracing interaction history: Apart from addressing com-

mon visualization tasks and interactions and to further ease the
process of sensemaking, we expanded our design to facilitate
distributed cognition by allowing users to revisit any interac-
tions leading them to the current analysis of the data. Cognitive
constructs evolve during sensemaking when we encounter a
new situation to reason about or when we find a dead end.
One method to facilitate this aspect of sensemaking is to record
important intermediate results which can be revisited.
The idea is to augment sensemaking by allowing user to

go back and revisit the interactions made earlier. This way
the user externalizes sensemaking as part of the exploration,
which is itself integrated into the visual representations of
the data. We provide an option to save and record important
intermediate results obtained along the exploration process
so that user can later revisit and piece them back together
into an understandable and compelling whole. This process
of breaking down the results into vital components and then
putting them back together into a comprehensive whole is the
cognitively demanding task that lies at the heart of sensemak-
ing and exploratory analysis [51].

IV. MCS SYSTEM FOR BIODIVERSITY ANALYSIS

We have developed a prototype MCS system for visualizing
a complex biodiversity study from the Great Smokey Mountain
National Park (GSMNP), which is one of the most important
national parks in The United States. As a World Heritage Site
and International Biosphere Reserve, the GSMNP contains one
of the largest remnant never-cut forests in the eastern US, and
it is the most biologically diverse park in the United States
National Park system.

A. Prototype System for Biodiversity Analysis

For the biodiversity application, we have included the
following data components in the system:

• Observed habitat locations of 869 species
• Geo-distribution simulations of 869 species
• Geo-distribution of effects of 59 environmental variables
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Fig. 4. The physical environment used in the study.

Fig. 5. The history subspace is used to review previous recorded exploration
stages through interacting with miniatures from HoloLens.

• Species are further divided into 14 types, i.e: birds, plants,
insects, reptiles, fish, worm, mammal, and amphibian.

The derived information includes the following:
• Inter-dependencies of species based on habitat locations
• Inter-dependencies of environmental variables
• Correlations between species and environmental variables
Our MCS system is developed using Unity3D [52], Vuforia

library [49], and D3.js [53]. Unity3D is a common platform
for development on Microsoft HoloLens. We also use D3.js
to visualize parallel coordinate graph on one 2D display.

The MCS system starts with registering the physical envi-
ronment with the virtual world of HoloLens. The system starts
and waits for detection of 2D surfaces by Vuforia markers [49]
using the HoloLens camera. Once the markers are detected by
Vuforia, our system registers both the locations and sizes of
the corresponding 2D surfaces into the virtual world.

The system then loads all the data and directs the user to
an overview subspace, which provides a spatial organization
of the overview visualization and connects users to all the
data and visualization methods. As shown in Figure 7, the
overview subspace simulates an operating panel and organizes
the miniatures or labels for all data and visualization methods.
We use it as the starting point, following Shneiderman’s
mantra for visual data analysis “overview first, zoom and filter,
then details-on-demand” [54]. The overview also serves as an
external anchor point, a fixed subspace, where users can keep
coming back to connect information in mind and in space.

From a distributed cognition point of view, revisiting the
exploratory interactions externalizes sensemaking as part of
the investigation, which is itself integrated into the visual
representation of the data. It also reduces the cognitive load
of remembering previous observations and preliminary results.
Thus, there is a subspace reserved for keeping exploration
history. This subspace is generally placed adjacent to important
2D surfaces for convenience, as shown in Figure 5.

B. Visualization Methods

Several visualization methods are provided in our system to
support the analysis of multiple data components and derived

information. Figures 1, 5, 6, provide several example results,
which are all taken from HoloLens directly. We classify the
visualization methods based on the deployed devices to the
following three categories.
Visualizations for 2D displays. As web-based visualiza-

tions are deployed on a server to support the 2D displays,
any visualization methods developed based on WIMP GUIs
can be adopted. We provide two methods for the displays as
examples: parallel coordinate for illustrating the correlation of
species and environmental variables; and a topographic map
of GSMNP for observing terrain features.
Visualizations for 3D subspaces on HoloLens. Holo-

graphic maps shown as semi-transparent layers with 3D points
are used to visualize the observed habitat locations of one
species. The holographic maps are often shown as a stack
of vertical or horizontal parallel layers in subspaces and can
be moved around for comparison. Heat maps depicts the
simulated distribution of species or of environmental variables
as images. They are constructed based on the map of GSMNP.
Edge bundle graph groups the data points of a single species
and visualizes the connection as 3D edges arching out of the
screen. It is a tool to distinguish species habitats from each
other and analyze clusters of habitat locations of a species.
3D Scatter plot are used to visualize clusters of species and
also clusters of environmental variables in the dataset. These
clusters are computed based on similarities in distribution of
species and environmental variables.
Visualizations for connecting 2D displays and 3D sub-

spaces on HoloLens. For parallel coordinates, we highlight
the data related to user selected species and environmental
variables with 3D curved lines arching out the screen. For the
topographic map, habitat locations can be flexibly overlaid
on the top of the topographic map. Each habitat location is
visualized as a data point and habitat locations of a particular
species are given a different color to distinguish between them.

C. Interactive Techniques

We integrate several interactive techniques from HoloLens,
including voice commands, gaze, and hand gestures (air tap
for selection, pinch for scaling and moving). Each interaction
is achieved by a combination of the HoloLens operations and
physical interactions. For example, selection starts with the
user gazing at an object such as a button or a subspace, and
then use the air tap gesture to confirm. Voice commands are
achieved by speech recognition of a phrase or sentence to
activate an interaction state; followed by the above selection
procedure to complete the interaction. We refer to these
techniques directly by the names such as HoloLens selection
and voice commands in the following.
Coordination between displays. While the MCS sys-

tem contains visualizations running on both web server and
HoloLens, we achieve the coordination between them through
the registered physical environment and virtual world on
HoloLens. Our approach is to overlay the HoloLens visual-
ization and interaction methods such as buttons and sliders on
the 2D displays, and ensure that the combined representations
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(a) (b) (c)

(d) (e) (f)
Fig. 6. Mixing visualization and interactions from different devices (high-resolution displays and HoloLens): (a) mixing the topographic map from 2D display
and holographs from HoloLens, where virtual buttons are provided to interact with the combined visualization; (b, c) edge bundles for highlighting selected
species types; (d, e) parallel coordinates interacted through HoloLens with virtual sliders on the bottom; (f) updated habitat locations after filtering. Our
approaches of virtual buttons and sliders can be applied to general WIMP-based visualization methods.

are consistent with the original visualization methods in both
2D and 3D subspaces. We demonstrate this technique on both
the topographic map and parallel coordinates.

For the topographic map, we add a menu of multiple choices
with spherical buttons on the bottom. As shown in Figure 6,
the buttons of selected species are colored and their observed
habitat locations are visualized on the map.

For the parallel coordinates, we use the spherical buttons to
indicate the selection of environmental variables. To represent
the filtering operation, we use a 3D slider which is restricted
to move along the axes of parallel coordinates. The 3D slider
can be moved through selection and drag, indicating the low
threshold to filter the data.

Interacting and manipulating MCS subspaces. We pro-
vide several interactive techniques for working with the 3D
subspaces. Drag-and-drop: This interaction allows placement
of visualizations in different subspaces based on user needs. It
is achieved by a HoloLens selection, choosing a source sub-
space, physical movements, and another HoloLens selection
choosing the destination subspace. 3D Manipulation: Similar
to drag-and-drop, users can scale and rotate the visualization
in a subspace. Voice commands “scale” and “rotate” activate
the interaction states and hand gestures are used to com-
plete the manipulation. Show/Hide visualizations: The user
can interactively choose to show or hide visualizations in
selected subspaces using voice commands “show” or “hide”
and HoloLens selection. Details on demand: Similar to mouse
hover, we use the head movement of user to indicate the
focus-of-interest. The text label of focused data element is
automatically shown to reveal details.

Data selection: Several methods are provided to support
flexible selection of different data components or a combina-
tion of them. Different species types or derived information

can be selected using HoloLens selection on the overview
subspace. From parallel coordinates, a set of species can
be filtered with our coordination method of using HoloLens
sliders. The species or environmental variables can also be
selected from a subspace with HoloLens selection, or using
the 3D MDS scatter plot to select a data range.
Visualization selection: Users can choose a specific visu-

alization from the overview and drag-and-drop it to a desired
subspace.
Exploration history: The voice command “create history”

records the current configuration of MCS and creates an icon
representing this history instance on the history subspace.
HoloLens selection from the history subspace is used to bring
a previous record back.

D. Implementation and Performance

The prototype system is deployed in our lab with an open
space of 4 by 6 meters. As shown as in Figure 4, two 75inch
4K displays and multiple white boards are provided. The
displays in the open space can be moved around and placed
vertically or horizontally, creating different environments.
The observation data are kept and simulated density data are

reduced to fit in the HoloLens storage. The performance of the
system is interactive. Among the provided visualization meth-
ods, the total number of species and the number of transparent
images layers are the main factors affecting the performance.
We accelerate the system by hiding visualizations that are on
the back of the user. There are no obvious delay for all the
interactive operations, except the detection of Vuforia marker
generally takes around two seconds at the beginning.
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(a) (b) (c)
Fig. 7. (a) Overview visualization overlaid on the 2D subspace of a white board providing all available data components and visualization methods, which
can be activated with HoloLens selection. (b) Mixing scatter plot from HoloLens and physical interaction provides a new way to interact with data, where
users can combine virtual interaction for adjusting scatter plot and physical interaction for drawing clusters on the white board seamlessly. This figure adds
the scatter plot taken from HoloLens to the picture to illustrate the interaction. (c) Analyzing different clusters of species habitats.

V. RESULTS AND CASE STUDIES

This section presents three examples of using our MCS
system for exploratory analysis tasks.

Comparing spatial features of habitat distributions: One
of the common tasks in biodiversity analysis is to compare
habitat distributions of multiple species. The spatial features of
habitat distributions help in perceiving dependencies of species
on one another. MCS provides a large 3D space to place
multiple species around and also visualizes selected species
in parallel holographic layers for comparison.

For example, while exploring amphibian species, users can
make use of 3D space around them to spread-out individual
holographic layers, as shown in Figure 8(a). The layout allows
users to move around and inspect habitat distribution of each
species for identifying different species with completely iden-
tical habitat distribution, including Hyla chrysoscelis (Cope’s
Gray Tree frog), Eurycea longicauda longicauda (East-
ern Long-tailed Salamander), Lithobates clamitans melanota
(Green Frog) and Pseudacris crucifer (Spring Peeper). Users
can also observe species with very different habitat distribu-
tions, such as Gyrinophilus porphyriticus danielsi (Blue Ridge
Spring Salamander), Pseudacris crucifer (Spring Peeper) and
Anaxyrus americanus (Eastern American Toad).
This comparison helps us to identify spatial regions as-

sociated to species clusters. We can further classify sets of
similar species into groups and visualize them on top of each
other in separate subspaces. The regions with no observed
occurrences of any amphibian species are discovered, shown
in the Figure 8(b). This intrigues us to explore the reasons
by using parallel coordinates and heat maps of environmental
variables. We further learn that areas with high elevation and
increased frequency of precipitation are not favorable for habi-
tats of Amphibian species, explaining these regions according
to terrain features. This is confirmed by re-positioning heat
maps of relevant environmental variables onto topographic
map of GSMNP and holographic layers in separate subspaces.

Further analysis with the environmental variables reveals
that all these species have positive relationships with av-
erage yearly rainfall, available water supply above 25cm,
wetlands and soil moisture; and negative relationships with
frequency of climatic change, low temperature, and precipi-

tation frequency. We can group and visualize the heat maps
of environmental variables orthogonally or side-by-side in 3D
subspaces(Figure 8(c, d)) to confirm these results.
Identifying species clusters: Identifying species clusters is

useful to explore the combined features of species at GSMNP
while apprehending the effects of environmental variables. For
example, few plant species may depend on a number of insect
species for pollination and thus those plant species always
have habitats closer to those of insects.
While exploring clusters of bird species habitats, users can

identify major cluster consisting of Agelaius phoeniceus (Red-
winged Blackbird), Spizella passerina (chipping sparrow),
Strix varia (Barred owl), Melospiza melodia (Song Sparrow),
Meleagris gallopavo (Wild Turkey) and Catharus ustulatus
(Swainson’s Thrush), shown on the left of Figure 7(c). Parallel
coordinates provide additional clues for such habitat clusters.
They are all dependent on the variables of geology, average
yearly rainfall, seedling and soil hydric rating. These species
also show negative relationship with precipitation frequency
and elevation.
Similarly, users can identify another species cluster with

Spinus pinus (Pine Siskin), Loxia curvirostra (Red Cross-
bill), Bonasa umbellus (Ruffed Grouse), Coccyzus ameri-
canus (Yellow-billed Cuckoo) and Setophaga pensylvanica
(Chestnut-sided Warbler), shown on the right of Figure 7(c).
We find that this cluster is located around lakes and areas
with high available water supply. These species also depend
on variables of vegetation, low elevation zones and surficial
geology. Users can drag-and-drop the two species clusters on
the top, so that their detailed information can be spread out
for further analysis in the open 3D space.
Exploring dependency on environmental variables: An

important job of biodiversity analysis is to interpret depen-
dencies and relationships between species and environmental
variables. The purpose is to understand which set of envi-
ronmental variables are indispensable for certain species and
which ones are not. It is also important to investigate the
consequences that small perturbations in these variables have
on the species. Such questions are imperative for informed
biodiversity sensemaking and by extension, decision making.
Moreover, correlation with environmental variables can be
used to classify a set of species into different groups. For
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(a) (b)

(c) (d)
Fig. 8. Comparing spatial features of habitat distributions (a) spread-out view
of holographic maps in 3D space to analyze distribution of each species,
(b) identifying spatial regions with no occurrence of species habitats, (c,d)
using heat maps of environmental variables to confirm their relationships with
groups of similar species.

example, a set of plant species can be classified into groups
based on their presence in high, middle and low elevation
zones of smokey mountains. This grouping can further help
in finding crucial climatic conditions for species in each group.

For this task, users can start from the map shown in
Figure 6(a). Focusing on environmental variables of sunlight
condition and soil surface texture, we can filter species that
depends on these variables Figure 6(e), which updates the
map visualization (Figure 6(f)). Users can save these results
as interaction history. To classify different plant species based
on their existence in high, middle and low elevation zones, we
further adjust the range of environmental variable of elevation.
Species belonging to each elevation zone can be visualized in
separate subspaces, shown in Figure 9(a), and the process can
be saved as an interaction history. Results show that each group
has varying number of species and low elevation zone has most
number of species compared to other zones. For instance, a few
species in low elevation zones are Vitis vulpina (frost grape),
Eurybia surculosa (creeping aster), Juncus effusus solutus
(Lamp Rush), Quercus stellata (Post Oak), Carex laxiflora
variety (Broad Looseflower Sedge), Verbesina occidentalis
(Yellow Crownbeard) and Salix sericea (Silky Willow).

We can further use parallel coordinates and identify that
species within each group have similar relationship with
variables including direct solar radiation, average yearly rain-
fall, soil parent material and soil drainage class shown in
Figure 9(c, d). This allows us to observe which species or
group of species are most affected by conditions like higher
or lower than usual rainfall, lack of enough direct sunlight and
aggravating soil conditions.

Finally, user can revisit each preliminary result to gain
further insights by comparing them and making final analysis
easy to verify and contemplate.

(a) (b)

(c) (d)
Fig. 9. Exploring relationships of species and environmental variables: (a)
grouping species based on elevation zones, (b) grouping by distribution
similarities, (c, d) comparing heat maps of environmental variables.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a way to create multiple coordinated
spaces for performing immersive analytics in a physical envi-
ronment. Our design of MCS builds upon the knowledge base
from two disciplines: distributed and embodied cognition, and
multiple coordinated visualization. Using MCS, we have found
a great flexibility of combining visualizations on 2D displays
and 3D visualizations through augmented reality devices. The
same approach can be applied to a variety of scenarios, ranging
from offices where displays are common to factories where
displays are rare. We have also included three case studies
to demonstrate the advantages of integrating physical environ-
ments as an important component of distributed cognition and
immersive analytics.
We believe further research of the MCS framework will be

a very fruitful area of research to study the distributed and em-
bodied cognition theories for immersive analytics, especially
because there are still many unanswered questions related
to human’s cognition and reasoning processes. For example,
what happens to the communication between internal and
external representations during the reasoning process inside
our mind? While much research has been devoted to this topic,
human cognition is still a black box to us. The answers to
these questions are crucial to designing effective visualizations
and efficient visual analytics methods to assist the reasoning
process.
Lastly, the visualization/interaction mechanisms of immer-

sive analytics are by nature novel, in comparison to con-
ventional WIMP operations. We plan to further expand our
design space to explore and create additional MCS methods
and evaluate them in a much larger variety of environments
and application settings.
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[26] G. Lakoff and R. E. Núñez, “Where mathematics comes from: How the
embodied mind brings mathematics into being,” AMC, vol. 10, p. 12,
2000.
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