
Alpaca: AR Graphics Extensions for Web Applications
Tanner Hobson* Jeremiah Duncan* Mohammad Raji* Aidong Lu† Jian Huang*

ABSTRACT

In this work, we propose a framework to simplify the creation of
Augmented Reality (AR) extensions for web applications, with-
out modifying the original web applications. We implemented the
framework in an open source package called Alpaca. AR extensions
developed using Alpaca appear as a web-browser extension, and
automatically bridge the Document Object Model (DOM) of the web
with the SceneGraph model of AR. To transform the web application
into a multi-device, mixed-space web application, we designed a
restrictive and minimized interface for cross-device event handling.
We demonstrate our approach to develop mixed-space applications
using three examples. These applications are, respectively, for ex-
ploring Google Books, exploring biodiversity distribution hosted
by the National Park Service of the United States, and exploring
YouTube’s recommendation engine. The first two cases show how a
3rd-party developer can create AR extensions without making any
modifications to the original web applications. The last case serves
as an example of how to create AR extensions when a developer cre-
ates a web application from scratch. Alpaca works on the iPhone X,
the Google Pixel, and the Microsoft HoloLens.

Index Terms: Computing methodologies—Computer graphics—
Graphics systems and interfaces—Mixed / augmented real-
ity; Computer systems organization—Architectures—Distributed
architectures—Client-server architectures;

1 INTRODUCTION

Since inception, the web has led to a rich and diverse ecosystem for
developing applications that impact our daily lives. This ecosystem
lives in our 2D screens. With the advent of AR, researchers have
attempted marrying AR with web in custom-built applications to
leverage the rich interactions and explorability of AR.

Rewriting web applications with AR in mind can be costly. There
are few overlaps between the web development and the AR develop-
ment worlds. The near ubiquity of web browsers and the availability
of a standard executing environment contrasts sharply with the niche
and disparate ecosystems that AR applications must conform to. In
essence, adding AR to an existing application has until now meant a
costly rewrite and rearchitecture.

In this work, we have developed a bridging framework that simpli-
fies extending web applications into AR without a complete rearchi-
tecture. Our framework is called Alpaca and has two main areas
of improvement. In terms of content, it enables immersive explo-
ration of natively 3D information using an AR device, rather than
being constrained to the 2D-screen-space. In terms of architec-
ture, Alpaca provides a minimal bridging interface that reduces the
complexity and overhead of mixed-space applications.

While some web applications may have AR counterparts, mixed-
space web applications developed with Alpaca run on a desktop and

*These authors are with the Department of Electrical Engineering and

Computer Science, University of Tennessee, Knoxville, TN 37996. E-mail:

{thobson2,jdunca51,mahmadza}@vols.utk.edu and huangj@utk.edu
†This author is with the Department of Computer Science, University of

North Carolina at Charlotte, NC, 28262. E-mail: aidong.lu@uncc.edu

an AR device (if present) simultaneously, which extends the spaces
in which a user can explore the content in the web application.

We intend Alpaca to be a personalized bridging framework that
connects live web and AR contexts on a user’s laptop and AR device,
respectively. At present, the visual channel of AR is the sole focus
of this work. We design that the Alpaca Server, which implements
cross-device synchronization, runs on the user’s laptop rather than as
a publicly accessible service. By running the server locally, we can
minimize the cross-device latencies to improve the user experience
of interacting with a mixed-space application.

For AR developers, the Alpaca framework provides an abstracted,
easy-to-use interface for developers who are not experts of DOM
(Document Object Model) to effectively instrument and manage
changes to DOM elements. The resulting multi-device capability
aids AR developers in significantly lowering their barrier of entry
into the widely varied ecosystem of web applications.

For web developers, the Alpaca framework provides a simplified
interface and runtime, where code using the web graphics API (e.g.
THREE.js) can be automatically bridged to run on an AR device and
remain synchronized with the web application. Without needing to
program on the AR device, user interactions with the scene graph
can auto-update the corresponding web DOM elements in real-time.

For end users, Alpaca appears as a browser extension. When in-
voked, the Alpaca Server runs as a daemon process and transparently
manages interactions between the DOM in the browser and the scene
graph in the AR runtime. Users get a synchronized multi-device
experience and can interact with Alpaca-enhanced applications both
on their laptops and their AR devices, such as iPhone X.

Our design of Alpaca have been driven by three types of appli-
cation needs: scene-heavy applications have large complex scene
graph models; asset-heavy applications require Alpaca Server to
manage many assets concurrently at runtime; update-heavy appli-
cations incur a sustained high volume of synchronizations.

Our design of Alpaca has been inspired by works such as MapRe-
duce [14] and Tapestry [41, 42] that provide a minimal decoupled
interface between the framework’s components. Through this work,
we have found that it is possible to use a common infrastructure
to transparently abstract away all the cross-device communication
and synchronization functionalities that are required in event-driven
programming. Consequently, the AR device becomes an extension
of the web application and becomes application agnostic, enabling
reuse.

Our framework is composed of three parts that work in tandem:
a browser extension library, a state management server, and an AR
device runtime. Each part is in charge of mapping from one type of
data model to another. The browser extension maps the DOM to a
JSON representation of the 3D scene to be used on the AR device.
The server manages this JSON scene structure and synchronizes
this scene to the AR device. The AR runtime then takes this scene
and manages the rendering and interaction with these objects. AR-
initiated events are handled by taking the opposite route.

We demonstrate the efficacy of Alpaca as a reusable infrastructure
by building three types of applications: asset-heavy, update-heavy,
and scene-heavy applications. These correspond to the Google
Books, YouTube, and a GeoMap based application. Our results
include performance, memory footprint metrics of Alpaca, and a
demo video (in supplemental materials) that show how a user can use
the interoperable capabilities to effectively mix the 2D desktop space
together with the 3D physical space made available through the AR

174

2020 IEEE Conference on Virtual Reality and 3D User Interfaces (VR)

2642-5254/20/$31.00 ©2020 IEEE
DOI 10.1109/VR46266.2020.00036

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 12,2020 at 02:34:53 UTC from IEEE Xplore. Restrictions apply.

devices. In a way, the resulting mixed-space is a new extension of
the typical workspace of a user, which deserves much future research
by the computer graphics and the VR communities in general.

In the remainder, we cover related work in Section 2, and our
system design in Section 3. We describe the process to develop
Alpaca applications in Section 4, and then show demonstration
applications in Section 5. We conclude in Section 6.

2 RELATED WORK

2.1 Use Scenario
The distributed graphics applications in this work aim to help users
use data-intensive web apps from desktop and AR simultaneously.

As web applications have become popular and widespread, many
of the most useful web applications often have unique, valuable,
and large datasets behind them. While the amount of data and
functionality of web applications grow at compounding rates, today’s
users are also becoming more mobile than before. Oftentimes, a user
could be working away from their office or lab settings, where they
cannot make use of large displays that have been proven as extremely
valuable for tasks that require high density of information [4, 5].

We hypothesize that distributed graphics applications can help 2D
screen displays of PCs and 3D physical space seen through personal
AR devices become an integrated virtual workspace. To that end,
while porting web to AR is not a new endeavor, building distributed
graphics applications that enable web applications to stride desktop
and AR devices simultaneously is a new endeavor.

As follows, let us discuss related works of AR, web-based AR,
and cross-device graphics applications in turn.

2.2 Augmented Reality
AR devices are becoming more commonplace and are likely to be
an important part of new interfaces. Due to Augmented Reality’s
native 3D setting in the physical space around the user, 3D data
is better conveyed in an AR medium than on a 2D medium [6].
AR can more effectively show relations and trends in graphs [9].
Beyond presenting information, teaching new concepts in AR is also
promising [24]. There are many other compelling use cases of AR.

Registration has been an active area of AR research. There were
registration systems based on specially designed pictures called
markers [11] [47]. However, the required markers introduce diffi-
culties in usability and design of AR scenes [25]. With the advent
of more powerful mobile devices and higher resolution cameras
and sensors, software-based handheld AR has become popular. Mo-
bile devices now include software to handle this mapping in real
time through Google’s ARCore [30], Apple’s ARKit [22], and Mi-
crosoft’s HoloLens [13]. These libraries use sensor information from
camera images, inertial accelerometers [48], and with the HoloLens,
depth map cameras; which together allow the use of AR in complex
scenes without any prepared environments or objects. Alpaca’s AR
on-device runtime uses these software libraries for registration.

AR enables different types of interaction that aren’t possible on
surface displays. The free control of the AR camera, for instance,
allows users to explore inherently 3D data in a natural way com-
pared to a mouse and keyboard. Novel multisensory interaction
technologies will let us interact with data in ways that are natural to
us and therefore easy to understand [36–38]. Other interactions are
still cumbersome in AR, such as text entry or precise data selection
and are arguably better with a traditional desktop.

Control of the virtual world in AR often builds on interactions
that attempt to mimic the real world. Research shows that some tasks
are better performed in AR, such as 3D object manipulation [27];
however, the same is true that some applications are better suited
for desktops, such as data filtering and querying tasks [6]. Some
tasks that seem better suited towards AR devices, like using the
touch screen of a phone for virtual buttons, are implemented in an
inflexible or imprecise manner. For example, pressing buttons on a

screen moves the camera which alters the view of the scene that was
shown.

While AR could increase the perception, cognition, and sensory
loads of users [39], studies on using these senses in different applica-
tions have shown mixed results [16,21,46,49], however. In addition,
we may not need to use all of the senses together [16].

Guidance towards areas of interest in an application is an impor-
tant aspect of AR applications and one that can build on the existing
notion of spatial locality. This area has been explored in AR [17],
and many of the insights apply to Alpaca. In desktop applications,
guidance is handled through the familiar UI/UX of scrolling and
panning through a 2D canvas. Our design philosophy is to help
developers offer both forms of guidance in their applications.

2.3 Porting Web to AR

Porting web content or the web ecosystem onto AR devices is not a
new topic. Most research so far considers a scenario where an AR
device is the sole device of the user. Few have considered building
a distributed graphics application where a user has an integrated
workspace that spans desktop screen-space and AR physical-space
simultaneously. This difference in scope is the primary difference
between this work and existing literature.

Showing web content in AR. In this regard, different approaches
have been developed for smartphone-based vs head-mounted AR.

On smartphones, due to the prevalence of general-purpose mobile
web browsers such as Chrome and Safari, two popular ways to add
AR registration capabilities are (i) to make use of AR.js [15], which
is a pure-JavaScript marker tracking AR library, or (ii) to build
native extensions (e.g. ARCore [30], ARKit [22], or Vuforia [23])
and expose them within the browser as a JavaScript interface. The
well known Argon project is a good example [31]. In both cases,
rendering still depends on WebGL or THREE.js.

For head-mounted AR, goggle vendors have not prioritized pro-
viding AR browsers, for example HoloLens does not have an AR
mobile browser capable of showing holograms. In recent years,
researchers have created prototype “browsers” of their own [26, 31],
some with recent AR-oriented optimizations, such as to improve per-
formance by offloading registration tasks into the device’s OS [28].

We have designed Alpaca device runtime to provide a univer-
sal abstraction, so that these phone-based or head-mounted device
details are transparent to application developers.

Authoring AR Content. Authoring AR content is another long-
term research priority in the field. For new AR content, some re-
searchers were inspired by web content creation and developed
markup languages for developing AR scenes [3,20,43]. Others drew
upon the design metaphor of hyper-linked web pages and turned AR
scenes into a web of connected areas [26].

For making geospatial data usable in AR, researchers have de-
veloped transcoding methods to convert geo-spatial databases into
scene graphs [35, 52, 53]. After content has been transcoded, the
AR devices treat the content no differently than if the content was
created for AR natively. The geospatial content is primarily rendered
as annotations on the 3D physical world [52].

In contrast, we have designed Alpaca to handle general web
content, which may or may not include geospatial information. In
addition, we design Alpaca’s desktop runtime as the dedicated ser-
vice for transcoding and scene graph creation.

2.4 Collaborative Devices

There are many proven distributed graphics applications that support
multi-user as well as single-user multi-device use scenarios. Mas-
sive multiplayer online games (e.g. World of Warcraft, Minecraft,
Roblox) and collaborative analytics (e.g. Munin [8]) are well known
examples. Peer-to-peer architecture has been proven as the most
robust and scalable in this field [18, 51].

175

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 12,2020 at 02:34:53 UTC from IEEE Xplore. Restrictions apply.

Figure 1: The basic workflow an individual user follows when using
Alpaca. In (a), the user interacts with the web application like normal.
In (b), the user enables Alpaca which starts up the Alpaca Server and
the DOM/Event listener setup process (see Figure 3). In (c), the user
starts the Alpaca AR Runtime to see and interact with the AR scene.

Previous works have successfully used both surface and mobile
devices [7, 8, 34, 44] together, or AR devices and surface devices
together. In particular, to use HoloLens and large-format displays to
create multiple-coordinated spaces (MCS) for one user [32] and for
collaborative teams of users [33].

In addition, due to precision limits of AR’s user interaction, re-
searchers have explored using physical, external devices to improve
user control in an AR environment. For examples, MagicBook [10]
and Personal Interaction Panel [45] have used physical objects to
represent a virtual pen or input device. While these efforts are fruit-
ful, we believe tasks such as text entry and precision selection are
still better suited for desktop or other surface screens.

Since users commonly run multiple web applications concurrently
in separate browser tabs, in order to lower initiation and application-
switching overheads on AR devices, Alpaca focuses on using peer-
to-peer state management server to manage states for all of those
applications simultaneously. In result, the Alpaca Server can be
application-agnostic.

3 ALPACA SYSTEM DESIGN

We design Alpaca to provide a personalized experience for the user
through multiple, cooperative devices on a shared local area network.
Let’s first illustrate the use case (Figure 1).

To a user, Alpaca’s bootstrapping process is as follows: (i) on
standard web pages, the user interacts with the page with no change;
(ii) on AR-enabled web pages, a notification appears informing them
that they can use an AR device for added functionality; (iii) the user
opens an app on their phone that starts Alpaca AR runtime and sees
AR contents enhanced from the web page.

The user then has two views of the application: on-desktop and
in-AR.The desktop views generally remain as they were originally to
remain familiar with the user. However, the AR view can be totally
novel and supports experimentation into the realm of cross-device
use. Some uses include: manipulating the data model of an applica-
tion for new views of the data (YouTube example); mapping natively
3D data to actual 3D (GeoMaps example); and expanding the user’s
workspace to incorporate more data (Google Books example).

The extension library exposes listeners to the DOM so that the ex-
tension can be alerted when the application state has changed. This
enables the development of reactive applications that automatically
update based on the changes the user makes in the desktop applica-
tion without modifying existing application’s JavaScript code. The
other two main APIs exposed by the extension library are: updating
the AR SceneGraph rendered and creating AR listeners on Scene-
Graph objects. Together, these form the multi-device utilities needed
for AR extensions. They will be described more in Section 3.5.

The Alpaca Server runs in the background and awaits HTTP
requests from both the browser and the AR runtime. The server
maintains an object store of stateful information and makes that
store accessible. In addition, it provides a websocket interface that
allows the server to notify clients when an object has been modified.

The AR runtime creates a websocket connection to the Alpaca
Server and waits for updates to the SceneGraph object in the store.
This object is the one created by the extension code. The runtime
repeatedly renders this SceneGraph and waits for user interaction

to trigger events that will be sent back across the object store to the
extension, triggering the callback functions it registered.

To extend a web application to AR, a developer only needs to
write the JavaScript extension using THREE.js to place objects in
the AR scene. This code is injected into the web application when
the user invokes the extension, after which, Alpaca transparently
manages cross-device communication and state management.

For performance testing, we focus on the following metrics: (i)
AR startup latency, (ii) AR frames per second (FPS), (iii) Alpaca
Server footprint (i.e. server memory usage), and (iv) application
development complexity (i.e. lines of THREE.js and Alpaca API
code). These metrics are discussed in more details in Section 5.

3.1 Overall Architecture
Figure 2 shows a more detailed view of Alpaca’s system architecture.
We have designed Alpaca using industry-wide standard technologies,
including Python’s aiohttp library for the Alpaca Server, JavaScript’s
THREE.js library for the SceneGraph implementation, and built in
HTML5 libraries. To the developer, we expose Alpaca like any other
HTML5 library for ease of integration.

Alpaca has three main components: Alpaca Server, In-Browser
Runtime, and On-Device Runtime.

The Alpaca In-Browser Runtime is triggered through a Chrome
extension in the browser. It is application dependent. The Alpaca
Server runs persistently and is both application- and user-oblivious.
In fact, all demonstration applications in this work use the very same
Alpaca Server instance. The server can run on a remote machine
for many users and applications or on the user’s machine itself
for a better guarantee of performance. The On-Device Runtime is
application-oblivious. When a user’s AR device is on, the device
runtime queries the server for the scene specification, and performs
the rendering and user-interaction tasks accordingly.

Host Application. The DOM is a key underpinning of all web
applications [2]. In essence, the DOM is just an XML model that
describes all elements that a web browser renders and presents to
each user. While creating an AR extension for a web application,
we make absolutely no changes to the host web application.

Alpaca In-Browser Runtime. Alpaca’s on-desktop presence
is wrapped within a browser extension. This browser extension
has different JavaScript scripts that can be injected into the web
applications and provide the application-specific changes.

On first load, the Chrome extension contacts the Alpaca Server
to register which and how a selected set of DOM objects in the
corresponding web application should appear and behave in the on-
device AR world. These Alpaca objects are web-session specific.
For example, two users using the Google Books extension separately
may have the same kinds of objects registered, but those objects
are completely unrelated as they exist within different instances of
the Alpaca Server. The extension also includes calls to the Alpaca

Figure 2: System architecture overview. The Alpaca Server provides
the communication gateway between the web application and the On-
Device Runtime and can reside on the same machine as the Chrome
browser or a remote machine.

176

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 12,2020 at 02:34:53 UTC from IEEE Xplore. Restrictions apply.

In-Browser Runtime which manages event listeners, triggered when
an action is performed in AR.

Alpaca Server. The server handles all stateful information that
must exist between the in-browser and on-device runtimes. It also
serves as a shared information space for any content that needs to be
stored for longer periods of time. The Alpaca Server is application
oblivious. Its stateful information management is also agnostic of
content types, regardless of persisting images, canvasses, text, or
other MIME types.

One Alpaca Server can support many applications and users
concurrently. For example, all applications in this work actually
use the very same Alpaca Server.

Alpaca On-Device Runtime. The on-device runtime is a single
application that runs on the AR device to support MR content from
the Alpaca Server. This runtime performs registration and auto-
matically refreshes the AR scene when it has been updated by the
in-browser runtime. User actions that should trigger state changes
on the host application are sent through the Alpaca Server.

Alpaca’s on-device runtime is application oblivious. Upon appli-
cation start, the on-device runtime queries the Alpaca Server for AR
objects and begins to automatically set up the scene according to
the specification registered by the corresponding Chrome extension.
After first start, the on-device runtime will continue to operate, even
if the in-browser environment is closed, because all contents sent to
the AR device come from Alpaca Server.

3.2 AR Driven Design Considerations

AR helps us expand the sense of space from 2D to 3D. The physical
world then becomes the user’s native operational environment. Using
Alpaca, we want to build a bridge between the desktop-side web
world and the AR enabled human world. As a starting point, in this
work we focus on extending a user’s current workspace.

Applications on AR face many general and known challenges
of AR [40]. The main tasks on AR are: (i) accurate registration,
(ii) efficient rendering, and (iii) reliable event handling. Through
extensive experiments, we found four particular dimensions that
drove our design choices.

Performance. This limitation primarily comes from a need for
a high frame rate to decrease user sickness. Without dedicating
significant amount of resources, it is also hard to ensure uniform
quality and performance across all devices. To improve performance,
applications need to limit the number of polygons, and use image-
based rendering wherein complex geometries are replaced by low-
poly objects with textures.

Alignment. Humans can detect misalignments between virtual
and physical objects easily. Better hardware can improve accuracy,
just like how HoloLens uses depth cameras and the iPhone X and
Google Pixel all move the alignment process closer to hardware.
Application scenarios matter too. The discovery of usable surfaces is
left to the OS-level software of the AR device; for instance, ARCore
and ARKit use image-space techniques to detect surfaces.

Interaction. AR is not better than desktop on all interaction tasks.
Some interactions are really very well suited for the desktop medium,
for example, dropdown menus and precise selection. While some
researchers have been designing new hardware to bring fine-tuned
controls into the physical world to improve the precision of control
in an AR application [10], researchers have also been improving
software detection to make more usable controls [29]. In this regard,
Alpaca provides a new software approach by allowing developers to
easily integrate desktop and AR interactions in the same application.
Alpaca integrates with the device OS for native AR interaction.

Mobility and Cost. Many AR systems are not portable due to
size, weight, and system installation needs. Some high-end AR
systems are not widely available due to cost as well. Alpaca is still a
web-first infrastructure. It is also designed to be device agnostic.

3.3 In-Browser Runtime
The Alpaca In-Browser Runtime (IBR) needs to be able to run on
any supported websites. It is made of two parts: the user-defined
code and an Alpaca-provided library of support code.

In order to avoid requiring a developer to have to modify an
existing web application, and also allow the in-browser runtime to be
packaged and easily released, we have implemented the in-browser
runtime as a Chrome extension. As a web-standard practice, each
extension, when triggered, checks whether this current webpage
matches a whitelist of applications that Alpaca manages. If there is
a match, then the in-browser runtime is injected as JavaScript code
and runs in the context of the web application.

During the setup stage, the in-browser runtime automatically
attaches listeners and hooks to the web DOM objects that the devel-
oper wants to map into the AR environment. Listeners and hooks
operate in pairs. They are executed when the corresponding DOM
elements are created, deleted, or updated (from the server). The
in-browser runtime also automatically serializes DOM objects as
Alpaca Objects and creates those on the Alpaca Server through the
RESTful API. The in-browser runtime also participates in creating
the relevant event streams.

During the operational stage, the in-browser runtime is an asyn-
chronous, event-based program that responds to changes in the DOM
or event notifications received from the server. The concurrency man-
agement of the JavaScript functions and DOM functionalities are
entirely left to the web browser. The in-browser runtime is aware
of the server, but not aware of whether the scene on the AR device
exists, because the user may not have elected to use an AR device.
The in-browser runtime is also not aware of how the AR scene looks.
Handling and rendering of the Alpaca objects on the AR device are
left to the on-device runtime.

3.4 On-Device Runtime
For ease of development and feature parity between the different
AR devices, the Alpaca On-Device Runtime (ODR) needs to be able
to run on all supported devices, currently the iPhone X and Google
Pixel. JavaScript is a common language between the two devices,
which also aids in the interoperability with the Alpaca Server. Our
In-Browser Runtime is written in HTML5 and JavaScript.

On the iPhone X and Google Pixel, the registration support comes
from Google’s WebAR project. Internally, these use OS-provided
libraries on top of Google’s Chrome browser.

The on-device runtime is application agnostic. It simply queries
and consumes Alpaca objects stored in the on-server object store.
Strict interpretation and laying out of the scene, and rendering of
the objects in the scene are all controlled by the on-device runtime,
however. The same as in the in-browser runtime, all on-device
objects have listeners and hooks attached to each object as well.

Rendering within the on-device runtime is quite efficient because
of our design choice to prioritize the use of image-based rendering
on the AR device. Each object appears as a simple texture mapped
surface. The actual content of the image to be used as the texture is
saved on the Alpaca Server in the object store. The rendering func-
tions of the on-device runtime use THREE.ar.js for scene registration
and THREE.js for rendering.

Image-based objects can be placed “on-surface,” for example to
mimic the appearance of being laid flat on top of a desk surface. The
image-based object can also be placed directly facing the viewer,
in that case, by interactively updating the image depending on the
view angle change, the user can see a responsive 3D object in the
AR scene. By limiting object complexities, we are able to further
optimize the rendering performance.

3.5 Non-Invasive Event Handling
Having described the runtimes, let us now discuss the Alpaca Server
from an operational perspective. During initialization (i.e. when a

177

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 12,2020 at 02:34:53 UTC from IEEE Xplore. Restrictions apply.

user invokes the AR extension for the first time), the Alpaca Server
holds an empty scene. The application developer updates the scene
through code in the browser extension based on the DOM element
state of the application. To react to events from the On-Device
Runtime, the developer can add listeners using the Alpaca API.

There are three kinds of listeners in the extension: the DOM
listeners update based on the changing state of the host application;
the event listeners update when the user interacts with the AR de-
vice; and the scene listeners allow the AR device to react to new
scene graphs. From a developer point of view, these are grouped as
DOM/Event listeners vs Scene/Event listeners.

The application developer writes code similar to Figure 3 (for
Google Books). In (1), the extension creates a DOM listener that
will react to changes in the application state. Each time the page
updates, (2) the developer needs to get the latest images of the pages
of the book. For each page, (3) we want to react to press events
from the On-Device Runtime by changing the current page in the
web application. Finally, once the scene graph is complete, (4) we
update the scene on the AR device.

After initialization, a scene should have been created. The de-
veloper can then set event listeners (e.g. press events) onto objects
of this scene. Once these are set, the scene is pushed to the Alpaca
Server. This process is illustrated in Figure 4 and is repeated each
time the DOM listeners are triggered. We recreate the entire scene
from scratch because we want to be able to handle highly dynamic
DOM changes in a reliable way.

4 AR EXTENSION DESIGN

As coined in [50], “an interaction is an action by a user with an
intent to change the state of an application”. Among select, explore,
reconfigure, encode, abstract/elaborate, filter, and connect, some of
these interactions are better suited as spatial-oriented while others are
better as surface-oriented. The best fit of the interaction techniques
on each platform will be task dependent.

Abstract tasks [12] that users handle on-device or on-desktop
can also vary. Search tasks such as lookup may be better suited
on desktop, and browse better suited for AR. Search tasks such as
locate and explore could fit on both environments. Query tasks such
as identify, compare, and summarize can fit on both environments.

Alpaca’s interaction mechanism allows application developers to
make flexible design choices on interaction. All application code
is in JavaScript, which is easy to prototype and iterate. All the
application code runs on-desktop, in the typical web application
setting. This is the most native programming environment for many
of today’s application developers [1].

The application code is triggered on first load, its main function
is to create the AR scene, register the scene with the server, together
with all the objects. The application developer does not have to worry
about setting up listeners, hooks, or event streams. The desktop

Alpaca.listenDOM(domElement, function() { // (1)

let domImages = domElement.getImages(); // (2)

let ARScene = new Group();

for (domImage of domImages) {

let texture = loadTexture(image.src);

let object = new TextureMappedPlane(texture);

object.position = new Vector3(x, y, z);

Alpaca.listenEvent("press", googleBooksNextPage); // (3)

ARScene.add(object);

}

Alpaca.updateScene(ARScene); // (4)

});

Figure 3: A simplified code snippet showing the DOM and event
listener setup process of the Google Books application; the elements
are images containing the contents of each page of the book. In this
example, we go to the next page on press. In the real application, we
have separate buttons that go to the previous and next pages.

Figure 4: The scene and event listener update process when there is
a DOM change in the web application, and a sample event notification
flow upon user interaction. Arrow represent HTTP requests; curved
arrows represent pairs of requests and responses.

runtime will set those up automatically. Each object is then annotated
as to whether it responds to different kinds of interaction events.

Last, after the Alpaca objects have been created and properly
tagged, the application code assembles the scene. The simplest way
is to just add all objects into the same list. However, the application
developer has the complete freedom to generate new objects, ones
that are not in the DOM at all.

The assembled scene and associated objects are serialized and
submitted to the Alpaca Server as one JSON object. The server
will parse through the JSON, register objects individually, and store
them. Scene objects are just another object of peer status as all other
Alpaca objects. Again, as shown in Figure 2, the on-server object
store is general and object-type agnostic and simply answers queries
by the URI of the objects.

Here, we show three application scenarios using Alpaca. The
first application extends a common website used by many people
(Google Books), and expands the user’s workspace to include books
in the real world (Section 4.1). The second example looks at an
educational webpage with content that can inherently benefit from
3D exposure (Section 4.2.1). The last example illustrates the creation
of an AR extension when the developer has complete control over
the application source and server (Section 4.3). Performance results
for the applications are detailed in Section 5. Footage of the user
interactions are in the supplemental video.

4.1 Google Books

Google Books is a large collection of digital books, which has
scanned over 25 million books [19]. Using Google Books, having
multiple books open and scanning through them is now a process of
switching between browser tabs and viewing one at a time, rather
than having the actual physical books open on a desk.

The Google Books Alpaca application augments Google Books’
resources with a digital, spatially-extended workspace. The user can
continue to use the web interface for doing the initial research, but
they can also pull out snippets or entire books to sit around them in
their workspace for easier referencing.

4.1.1 Book to Plane Mapping

Google Books renders books using images of each page as simple
HTML tags. The user-written script takes these images and
uses them as textures for THREE.js plane objects. It then uses
Alpaca’s updateScene function to send the object to AR.

Google Books server restricts the access of their images to users
on their website (e.g. via the browser). Due to this reason, the
Alpaca application must explicitly upload the content to the Alpaca
Server; more data than just the new scene and interactions. Hence,
this application is considered asset-heavy.

Figure 5-Left shows a user viewing two books in AR through
their phone, while making notes on their laptop. Figure 5-Right
shows a closeup view of one of the books in front of the user within

178

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 12,2020 at 02:34:53 UTC from IEEE Xplore. Restrictions apply.

Figure 5: (Left) The 3rd person view of the Google Books application
shows how the user can interact with their laptop and take notes based
on the books that they have open in their AR workspace. (Right) The
close-up view of the AR device shows the level of detail capable on
the Google Pixel.

AR. The arrow-shaped buttons on the left and right of the book let
the user go to the previous and next pages respectively.

4.1.2 Interacting with Books in AR

For interacting with the books in AR, the script creates two 3D ar-
row shapes using THREE.js and uses Alpaca’s addEventListener
function to add a click event for the arrows. In the callback function
provided to addEventListener, it triggers the Google Books code
as if the user switched to the next page in the browser.

4.2 Exploration of Biodiversity Through Maps

Maps are abundant on the web, and increasingly help people navi-
gate and better understand their surroundings at different levels of
granularity. In most cases, the maps are projections of a 3D world
on to a 2D plane. In other words, they inherently contain 3D infor-
mation. With a simple mapping provided by the developer, a 2D
map on a website can be viewed in 3D in AR on the user’s desk.
For this use case, we picked the Species Mapper web application of
the National Park Service, which visualizes and compares species
distributions across the Great Smoky Mountains National Park.

4.2.1 Elevation to Height Mapping

The Species Mapper web application renders a map of the Smoky
Mountains and provides panning and zooming capabilities. Addi-
tionally, users can view the distribution of different species rendered
as an overlay on the map. Intenrally, the web application uses
leaflet.js, a de facto library for geo-map based applications. Leaflet
renders maps using tiles of images within the DOM.

We start by parsing the DOM for any underlying maps, then
create a THREE.JS plane object with two textures. One texture is
used for the picture of the map, another is used to encode elevation.
The information from these are both gathered from Species Mapper.
To make the map 3D, the user script uses a vertex-shader to map
elevation to height. Finally, the THREE.js object is given to Alpaca’s
updateScene function that renders the AR version of the scene on
the connected AR device. The result is shown in Figure 6.

The Species Mapper application is scene-heavy, because the ver-
tex shader used for height mapping introduces more complexity
to manage the scene and requires more complex usage of the AR
device’s GPU. Even though such complexity may hamper this appli-
cation’s portability to a wider range of devices, that complexity has
enhanced user experience rather significantly.

The map images of Species Mapper are cloud-hosted and easily
usable by the AR device. This is because Alpaca also uses URIs as
the universal identifier of assets as well. In other words, the images
are not uploaded to the Alpaca Server for hosting and only the URIs
are sent to be fetched by the AR device through the Internet.

Figure 6: The AR view of Species Mapper. The elevation of the
mountains is mapped to 3D height by the DOM-Scene mapper.

4.2.2 Map Interactions
After the user selects a species from the host web application, the
desktop runtime is notified that the DOM has changed and it begins
to update the THREE.js object based on the map. The AR device
then updates the scene. Users then interact with the model.

4.3 Exploration of Online Recommendations
There are many web applications that include a powerful online
recommendation engine. YouTube is a prime example of that. Here
we develop a new YouTube-based application using Alpaca that
allows users to interact with and explore in both the 2D screen and
3D physical space.

In today’s web apps, recommendation is usually limited to a
single 1-dimensional list of suggestions. A user can select one item
from the list, upon the selection, a new 1D list of recommendations
are computed based on the selection and delivered to the user. At
any particular time, the user sees one list of recommendations. In a
large part, this is due to the limited space on a 2D screen, and that
selecting from a 1D list is intuitive and direct.

We added some automation to the above process using YouTube’s
public API. Specifically, after retrieving the recommendation list for
one video, for each video on the list, we use a script to automatically
retrieve the recommendation lists for those videos. This process
recurses k-levels until a threshold number of videos are retrieved.

The process creates a directed graph. This graph is not a tree,
because the same video may appear in the recommendation lists
obtained during different levels of recursion. Each node in the graph
is a video. To be performant in rendering, typical graphs are capped
at 100 videos which equates to k = 2 levels of recursion when
accounting for 10 related videos fetched from YouTube per video.
Edges between videos indicate what YouTube’s recommendation
engine considers as related: i.e. a connection from A→B means that
B is in the list of videos related to A.

Our script automatically presents the video recommendation
graph in the DOM. Using Alpaca, we can easily make the graph
appear on the AR device in 3D. The AR view is comprised of the set
of nodes in the graph, represented by their video thumbnail images.
These thumbnails are accompanied by interactive buttons that either
“like” or “dislike” the video, which are then used by Support Vector
Machines (SVM) to refine the presentation of the graph.

Figure 7 shows a typical workflow for the mixed-space YouTube
application. First the user starts the desktop application and is
prompted to use their AR device. The user can now intuitively
switch between global and local views of the suggested videos. For
better visibility and exploration, the AR runtime will automatically
orient the thumbnails so they always face the user.

A user can interact with the AR video recommendation graph by
simply tapping on a video, the desktop in-browser view updates in a

179

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 12,2020 at 02:34:53 UTC from IEEE Xplore. Restrictions apply.

Figure 7: (left) The AR view of the recommended videos layout shows
how different videos fall into distinct groups. (right) The third person
view shows what the user sees on their AR device and on their laptop.

synchronized way. Event listeners are transparently attached to both
the videos in the DOM and the videos in the AR scene graph. These
listeners allow the user to make changes in either the desktop or AR
views and have these changes affect the application as a whole.

Due to the number of videos available to the application and the
difficulty in navigating such a graph, an SVM aids the user in filtering
the collection of videos. This filtering occurs by the user selecting
videos they “like” or “dislike” through in-device tap interactions.
After a few selections, the user can trigger a classify function, upon
which we train and test the SVM with the tags of the videos. This
acts as a rudimentary way to increase the dimensionality of each
video and improve the quality of our predictions. The filtering all
happens locally in the browser.

This application is update-heavy because the scene graph has to
be rebuilt every time the user filters the graph or watches a video
and hence triggers the recommendation list to be refreshed. These
updates and the resulting reconstruction process could become a
bottleneck, strain the AR device, and hamper rendering rates.

5 PERFORMANCE RESULTS

Our demo apps also serve as test cases so that we can better under-
stand the performance characteristics to bridge web with AR. In all
tests, we co-locate the Alpaca Server and the browser on the same
PC — a ThinkPad T420 laptop with a 2.80GHz Intel Core i7-2640M
CPU and 8GB of RAM. We focus on the following metrics.

AR startup time should be < 5s from when the desktop applica-
tion creates the scene to when it’s visible on the mobile device. This
roughly corresponds to the time it takes for a user to pick up their
mobile device after using their mouse or keyboard to interact with
the desktop application.

AR frame rate should be in the 30−60 FPS range to be usable.
We are not directly in control of this metric because it is directly tied
to the performance of the AR device, however due to rendering on
the AR device instead of a remote-rendering technique, we find that
this frame rate is achievable. It is worth noting that the frame rate
is affected by the rendering time as well as overheads due to AR
registration and sensing. Thus, AR frame rate can only improve so
much before we reach the limitations of the AR device.

Server memory footprint should be < 100 MB to limit the effect
our system has on other services on the user’s laptop. This range is
around that of a normal web app and can be seen as unintrusive.

Total extension code should be around 100− 1000 lines, with
around 50 lines of Alpaca application code. The Alpaca system is
reusable and complex, but the application code using the API is kept
simple and in only a few additional lines of code. Most THREE.js
applications are already around the 1000 line mark, so adding 50
lines of Alpaca code is relatively minimal.

5.1 Alpaca Server Throughput
Herein, we evaluate data transfer rates which directly impacts the
speed that the desktop extension can update the scene graph. On
average, a scene is on the order of kilobytes, but the assets may total

10s of megabytes. This means that supporting 100s of MB/second
should be sufficient for Alpaca applications.

Additionally, there are two test cases of importance: serial and
parallel uploading. Serial uploading is where each MB is uploaded
after the previous one completes. In parallel uploading, we send 4
different objects at the same time, like a browser would do in an
asset-heavy application.

For the test, we repeatedly uploaded blocks of 1 MB (around
the size of a single image) and measured the total time required to
upload all this data. Then, we divide the total data size by the time
to get a rate in MB/s. We repeated this trial in serial and parallel
mode. Results are shown in Figure 8.

Due to the asynchronous way the server was written, we see
a higher upload rate during parallel uploading than in serial. We
suspect that the much higher increase for parallel uploading of 512
MB is due to matching the operating system’s buffer sizes without
exhausting lower level caches. Overall, we see that the Alpaca
Server is able to handle a sustained upload rate of 400 MB/s which
is more than enough for our applications.

5.2 Application Sample Runs

In this section, we test whether the Alpaca server is general and effi-
cient enough to support multiple applications that use it, regardless
of whether those applications are asset-, update-, or scene-heavy.
We performed a series of sample runs for the Species Mapper and
Google Books apps. In those two apps, the AR objects, and the
related geometries, are auto-extracted from the existing web ap-
plications. The YouTube example app is not ideal for use in this
performance testing, because that AR app required us to program-
matically crawl Youtube recommendation listings and then custom
create the AR objects after the multi-step crawl. The resulting run-
time overhead includes multiple rounds of YouTube API queries,
which is more complex. We collected metrics on: the render time
for each frame of the AR device, the CPU usage by the server,
and the memory usage by the server. We evaluated all tests with
an iPhone X running iOS 11.1.2 to eliminate as much AR device
latency as possible to evaluate the server more accurately.

The render time is measured in milliseconds and measures the
time for each frame from when the rendering started to when it
finished. It experiences peaks and troughs based on what the AR
device is doing at the time. For example, when processing a new
scene, the AR device is expected to have a longer render time and
consequently a lower frame rate. We opt to show results in frames
per second (FPS), instead of rendering time.

The CPU usage is measured in terms of percents of a core, as
measured by the ps utility on Linux. This percentage can be greater
than 100% when it uses multiple cores; however, because of the
single threaded nature of the Alpaca Server, we find that this is never

Figure 8: Server throughput as measured in synchronous and par-
allel modes. The data shows the maximum upload rate we can
expect of the system. The synchronous mode corresponds to scene-
and update-heavy applications, while the parallel mode relates to
asset-heavy applications. These are differentiated by the manner of
uploading, between those that must happen in sequence and those
that can be concurrent.

180

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 12,2020 at 02:34:53 UTC from IEEE Xplore. Restrictions apply.

Figure 9: Alpaca Server and On-Device Runtime performance for the
Species Mapper app. This is an example of a scene-heavy application
that requires more compute resources to render the AR application,
which lends to lower-than-average frame rates due to the AR device
used. At the first mark in the graph, the user selected another species
layer. The effect of this change is finished around the second mark.

the case with our applications.

Memory footprint is measured in MB and corresponds to the
virtual memory usage reported by ps. The Alpaca Server will use
more memory as more objects are added into the object store, though
we expect and find that this increase is proportional with the amount
of data it is managing. The results are in Figures 9 and 10.

Figure 9 shows data from the Species Mapper app, which is
scene-heavy. The render rate is between 10-30 FPS. Between the
two marks on the chart (Figure 9), the user added a species layer and
triggered a scene update on the AR device.

Figure 10 shows the Google Books sample run, which is an asset-
heavy application. We can see that it demands higher CPU and
memory usage by the Alpaca Server to handle these assets. Between
the two marks on the chart (Figure 10), the user was scrolling through
different pages of the book, thus triggering multiple updates to the
assets in the Alpaca Server. Once this interaction has completed, the
Alpaca Server’s usage drops back to original levels until the user
interacts with the desktop runtime again.

A summary of frame rates is shown in Table 1 (Left). Although
a proper cross-device performance analysis is out of scope for this
paper, rudimentary testing of these applications show that the Google
Pixel can achieve an AR frame rate of 10− 30 FPS consistently,
while the iPhone X is able to consistently output at 30−60 FPS. We
suspect that a major reason for this difference is that the iPhone X
performs AR registration and sensing closer to the hardware.

5.3 Code Size Evaluation

As one of Alpaca’s key goals, we intend that developers can make
use of our infrastructure in only a few lines of code, the majority of
which is typical THREE.js code. To this end, we measured the size
of each of our applications (shown in Table 1 (Right)).

Table 1: The AR frame rate and lines of code of each application.
The frame rate is unsteady during scene changes but then levels out
afterwards. In all cases, the total lines of code is less than 1000 and
the Alpaca contribution is less than 50 lines of code, under 15% of
the total lines of code.

FPS Code Ratio
Google Books 16−60 26/198 (13.8%)

Species Mapper 4−60 17/397 (4.28%)
YouTube 30−60 18/466 (3.86%)

Figure 10: Alpaca Server and On-Device Runtime performance for
the Google Books app. This is an asset-heavy application and must
upload assets directly to the Alpaca Server to get around access
restrictions imposed by Google Books. Between the two marks on
the graph, the user was scrolling through the book, triggering multiple
scene updates, and consequently, multiple asset uploads.

We consider the total lines of code as the number of lines, in-
cluding comments and empty lines, in the extension JavaScript file.
Of those lines, we consider the “Alpaca related” lines as those that
directly interact with the Alpaca API (i.e. calls to listenDOM,
listenEvent, updateScene, and functions that get passed to
event listeners). We find that each of the applications is in the
range of typical THREE.js applications in terms of size, and that the
percentage of Alpaca related lines is below 15% in each case.

6 DISCUSSION AND CONCLUSION

Transforming a web application into a multi-device mixed-space ap-
plication can be costly. We propose Alpaca as a reusable open-source
software platform to greatly reduce that cost and avoid requiring
modifying the original web applications.

Using Alpaca, any 3rd-party web developer can efficiently add an
AR component to a web-application, bridge the DOM of the web and
the SceneGraph of AR, and help users explore the web-application’s
content in a multi-device mixed-space manner. Mixing 2D screen
space and 3D physical space allows a new flexibility for users to
experience contents that are so far limited to web browsers.

Hence, app developers can much more broadly expand the kinds
of content that can be available on AR, while reducing development-
time as well as run-time costs. In turn, novel, spatial-oriented AR
interactions that were primarily used for game development can now
be used for and integrated with the web.

Limitations. In terms of limitations, Alpaca’s use of THREE.js
formats on the AR device is trading performance for reducing the
workload of developers during rapid prototyping. In addition, while
Alpaca expedites the development process, a developer still needs to
have reasonable knowledge about both web and AR programming.
As future work, Alpaca’s single-user multi-device use case can be
extended to multi-user multi-device settings. More extensive cross-
device benchmarking of Alpaca can be valuable as well.

ACKNOWLEDGMENTS

The authors are supported in part by NSF Award CNS-1629890, Intel
Parallel Computing Center (IPCC) at the Joint Institute of Computa-
tional Science of University of Tennessee, and the Engineering Re-
search Center Program of the National Science Foundation and the
Department of Energy under NSF Award Number EEC-1041877.

181

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 12,2020 at 02:34:53 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Usage Statistics of JavaScript as Client-Side Programming Language

on Websites. https://w3techs.com/technologies/details/

cp-javascript. Accessed: 2020-02-02.

[2] W3C Document Object Model. https://www.w3.org/DOM/. Ac-

cessed: 2020-02-02.

[3] S. Ahn, H. Ko, and B. Yoo. Webizing mobile augmented reality content.

New Review of Hypermedia and Multimedia, 20(1):79–100, 2014.

[4] C. Andrews, A. Endert, and C. North. Space to think: Large high-

resolution displays for sensemaking. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, CHI ’10, pp.

55–64. New York, NY, USA, 2010. doi: 10.1145/1753326.1753336

[5] C. Andrews and C. North. Analyst’s workspace: An embodied sense-

making environment for large, high-resolution displays. In 2012 IEEE
Conference on Visual Analytics Science and Technology (VAST), pp.

123–131, Oct 2012. doi: 10.1109/VAST.2012.6400559

[6] B. Bach, R. Sicat, J. Beyer, M. Cordeil, and H. Pfister. The Hologram

in My Hand: How Effective is Interactive Exploration of 3D Visualiza-

tions in Immersive Tangible Augmented Reality? IEEE Transactions
on Visualization and Computer Graphics, 2017. doi: 10.1109/TVCG.

2017.2745941

[7] S. K. Badam and N. Elmqvist. Polychrome: A cross-device framework

for collaborative web visualization. In Proceedings of the Ninth ACM
International Conference on Interactive Tabletops and Surfaces, pp.

109–118. ACM, 2014.

[8] S. K. Badam, E. Fisher, and N. Elmqvist. Munin: A peer-to-peer

middleware for ubiquitous analytics and visualization spaces. IEEE
Transactions on Visualization and Computer Graphics, 21(2):215–228,

Feb 2015. doi: 10.1109/TVCG.2014.2337337

[9] D. Belcher, M. Billinghurst, S. E. Hayes, and R. Stiles. Using aug-

mented reality for visualizing complex graphs in three dimensions.

Proceedings - 2nd IEEE and ACM International Symposium on Mixed
and Augmented Reality, ISMAR 2003, pp. 84–93, 2003. doi: 10.1109/

ISMAR.2003.1240691

[10] M. Billinghurst, H. Kato, and I. Poupyrev. The magicbook-moving

seamlessly between reality and virtuality. IEEE Computer Graphics
and applications, 21(3):6–8, 2001.

[11] M. Billinghurst, H. Kato, and I. Poupyrev. The magicbook-A Transi-

tional AR Interace. Computer Graphics and Applications, 21(3):6–8,

2001.

[12] M. Brehmer, M. Sedlmair, S. Ingram, and T. Munzner. Visualizing

dimensionally-reduced data: Interviews with analysts and a charac-

terization of task sequences. In Proceedings of the Fifth Workshop
on Beyond Time and Errors: Novel Evaluation Methods for Visualiza-
tion, BELIV ’14, pp. 1–8. ACM, New York, NY, USA, 2014. doi: 10.

1145/2669557.2669559

[13] M. Corporation. Microsoft hololens. https://www.microsoft.

com/en-us/Hololens. Accessed: 2017-10-27.

[14] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on

large clusters. Communications of the ACM, 51(1):107–113, 2008.

[15] J. Etienne. Ar.js. https://github.com/jeromeetienne/AR.js.

Accessed: 2018-08-15.

[16] N. Ghouaiel, J.-M. Cieutat, and J.-P. Jessel. Adaptive augmented

reality: plasticity of augmentations. In Proceedings of the 2014 Virtual
Reality International Conference, p. 10. ACM, 2014.

[17] J. Grubert, T. Langlotz, S. Zollmann, and H. Regenbrecht. Towards

pervasive augmented reality: Context-awareness in augmented reality.

IEEE transactions on visualization and computer graphics, 23(6):1706–

1724, 2016.

[18] T. Hampel, T. Bopp, and R. Hinn. A peer-to-peer architecture for mas-

sive multiplayer online games. In Proceedings of 5th ACM SIGCOMM
Workshop on Network and System Support for Games, NetGames ’06.

ACM, New York, NY, USA, 2006. doi: 10.1145/1230040.1230058

[19] S. Heyman. Google books article on the new york times. https:

//www.nytimes.com/2015/10/29/arts/international/

google-books-a-complex-and-controversial-experiment.

html. Accessed: 2018-08-15.

[20] A. Hill, B. MacIntyre, M. Gandy, B. Davidson, and H. Rouzati.

Kharma: An open kml/html architecture for mobile augmented re-

ality applications. In 2010 IEEE International Symposium on Mixed
and Augmented Reality, pp. 233–234. IEEE, 2010.

[21] H.-M. Huang, U. Rauch, and S.-S. Liaw. Investigating learners’ atti-

tudes toward virtual reality learning environments: Based on a con-

structivist approach. Computers & Education, 55(3):1171–1182, 2010.

[22] A. Inc. Apple ARKit for iOS. https://developer.apple.com/

arkit/. Accessed: 2017-10-27.

[23] P. Inc. Vuforia engine. https://developer.vuforia.com/. Ac-

cessed: 2019-06-06.

[24] S. Irawati, S. Hong, J. Kim, and H. Ko. 3D Edutainment Environ-

ment : Learning Physics through VR / AR Experiences. Science And
Technology, pp. 21–24, 2008. doi: 10.1145/1501750.1501755

[25] N. Kawai, T. Sato, Y. Nakashima, and N. Yokoya. Augmented Reality

Marker Hiding with Texture Deformation. IEEE Transactions on
Visualization and Computer Graphics, 23(10):2288–2300, 2017. doi:

10.1109/TVCG.2016.2617325

[26] R. Kooper and B. MacIntyre. Browsing the real-world wide web: Main-

taining awareness of virtual information in an ar information space.

International Journal of Human-Computer Interaction, 16(3):425–446,

2003.

[27] M. Krichenbauer, G. Yamamoto, T. Taketomi, C. Sandor, and H. Kato.

Augmented Reality vs Virtual Reality for 3D Object Manipulation.

IEEE Transactions on Visualization and Computer Graphics, 14(8):1–

1, 2017. doi: 10.1109/TVCG.2017.2658570

[28] T. Langlotz, T. Nguyen, D. Schmalstieg, and R. Grasset. Next-

generation augmented reality browsers: rich, seamless, and adaptive.

Proceedings of the IEEE, 102(2):155–169, 2014.

[29] G. A. Lee, U. Yang, Y. Kim, D. Jo, K.-H. Kim, J. H. Kim, and J. S.

Choi. Freeze-set-go interaction method for handheld mobile augmented

reality environments. In Proceedings of the 16th ACM Symposium on
Virtual Reality Software and Technology, pp. 143–146. ACM, 2009.

[30] G. LLC. Google ARCore. https://developers.google.com/ar/.

Accessed: 2017-10-27.

[31] B. MacIntyre, A. Hill, H. Rouzati, M. Gandy, and B. Davidson. The

argon ar web browser and standards-based ar application environment.

In 2011 10th IEEE International Symposium on Mixed and Augmented
Reality, pp. 65–74. IEEE, 2011.

[32] T. Mahmood, E. Butler, N. Davis, J. Huang, and A. Lu. Building

multiple coordinated spaces for effective immersive analytics through

distributed cognition. In Proc. of Intl. Symp. on Big Data Visual and
Immersive Analytics, BDVA’18, 2018.

[33] T. Mahmood, E. Butler, N. Davis, J. Huang, and A. Lu. Improving

information sharing and collaborative analysis for remote geospatial

visualization using mixed reality. In Proc. of Intl. Symp. on Mixed and
Augmented Reality, ISMAR’19, 2019.

[34] N. Marquardt, K. Hinckley, and S. Greenberg. Cross-device interaction

via micro-mobility and f-formations. In Proceedings of the 25th annual
ACM symposium on User interface software and technology, pp. 13–22.

ACM, 2012.

[35] E. Mendez, G. Schall, S. Havemann, S. Junghanns, and D. Schmalstieg.

Generating 3d models of subsurface infrastructure through transcoding

of geo-database. IEEE computer graphics and applications, 28(3):48–

57, 2008.

[36] S. Minocha and C. L. Hardy. Designing navigation and wayfinding

in 3d virtual learning spaces. In Proceedings of the 23rd Australian
Computer-Human Interaction Conference, pp. 211–220. ACM, 2011.

[37] N. Murray. Contextual interaction support in 3d worlds. In Distributed
Simulation and Real Time Applications (DS-RT), 2011 IEEE/ACM 15th
International Symposium on, pp. 58–63. IEEE, 2011.

[38] S. Oviatt and P. Cohen. Multimodal interfaces that process what comes

naturally. Communications of the ACM, 43:45–53, 2000.

[39] S. Oviatt, R. Coulston, and R. Lunsford. When do we interact mul-

timodally?: Cognitive load and multimodal communication patterns.

In Proc. of the 6th Intl Conf. on Multimodal Interfaces, ICMI ’04, pp.

129–136, 2004.

[40] I. Rabbi and S. Ullah. A survey on augmented reality challenges and

tracking. Acta graphica: znanstveni časopis za tiskarstvo i grafičke
komunikacije, 24(1-2):29–46, 2013.

[41] M. Raji, A. Hota, T. Hobson, and J. Huang. Scientific visualization

as a microservice. IEEE transactions on visualization and computer

182

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 12,2020 at 02:34:53 UTC from IEEE Xplore. Restrictions apply.

graphics, 2018.

[42] M. Raji, A. Hota, and J. Huang. Scalable web-embedded volume

rendering. In 2017 IEEE 7th Symposium on Large Data Analysis and
Visualization (LDAV), pp. 45–54. IEEE, 2017.

[43] H. Rouzati, L. Cruiz, and B. MacIntyre. Unified webgl/css scene-

graph and application to ar. In Proceedings of the 18th International
Conference on 3D Web Technology, pp. 210–210. ACM, 2013.

[44] D. Schmidt, J. Seifert, E. Rukzio, and H. Gellersen. A cross-device

interaction style for mobiles and surfaces. In Proceedings of the De-
signing Interactive Systems Conference, pp. 318–327. ACM, 2012.

[45] Z. Szalavári and M. Gervautz. The personal interaction panel–a two-

handed interface for augmented reality. In Computer graphics forum,

vol. 16, pp. C335–C346. Wiley Online Library, 1997.

[46] M. Virvou and G. Katsionis. On the usability and likeability of virtual

reality games for education: The case of vr-engage. Computers &
Education, 50(1):154–178, 2008.

[47] D. Wagner, T. Pintaric, and D. Schmalstieg. The invisible train. ACM
SIGGRAPH 2004 Emerging technologies on - SIGGRAPH ’04, p. 12,

2004. doi: 10.1145/1186155.1186168

[48] D. Wagner, G. Reitmayr, A. Mulloni, T. Drummond, and D. Schmal-

stieg. Pose tracking from natural features on mobile phones. Proceed-
ings - 7th IEEE International Symposium on Mixed and Augmented
Reality 2008, ISMAR 2008, pp. 125–134, 2008. doi: 10.1109/ISMAR.

2008.4637338

[49] T. J. Wang. Educating avatars: on virtual worlds and pedagogical intent.

Teaching in Higher Education, 16(6):617–628, 2011.

[50] J. S. Yi, Y. ah Kang, and J. Stasko. Toward a deeper understanding of

the role of interaction in information visualization. IEEE transactions
on visualization and computer graphics, 13(6):1224–1231, 2007.

[51] A. P. Yu and S. T. Vuong. Mopar: A mobile peer-to-peer overlay

architecture for interest management of massively multiplayer online

games. In Proceedings of the International Workshop on Network and
Operating Systems Support for Digital Audio and Video, NOSSDAV

’05, pp. 99–104. ACM, New York, NY, USA, 2005. doi: 10.1145/

1065983.1066007

[52] S. Zollmann, C. Poglitsch, and J. Ventura. Visgis: Dynamic situated

visualization for geographic information systems. In 2016 International
Conference on Image and Vision Computing New Zealand (IVCNZ),
pp. 1–6. IEEE, 2016.

[53] S. Zollmann, G. Schall, S. Junghanns, and G. Reitmayr. Comprehensi-

ble and interactive visualizations of gis data in augmented reality. In

International Symposium on Visual Computing, pp. 675–685. Springer,

2012.

183

Authorized licensed use limited to: University of North Carolina at Charlotte. Downloaded on September 12,2020 at 02:34:53 UTC from IEEE Xplore. Restrictions apply.

