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Abstract— Transient electrophysiological anomalies in the
human brain have been associated with neurological disorders
such as epilepsy, may signal impending adverse events (e.g,
seizurse), or may reflect the effects of a stressor, such as
insufficient sleep. These, typically brief, high-frequency and
heterogeneous signal anomalies remain poorly understood, par-
ticularly at long time scales, and their morphology and variabil-
ity have not been systematically characterized. In continuous
neural recordings, their inherent sparsity, short duration and
low amplitude makes their detection and classification difficult.
In turn, this limits their evaluation as potential biomarkers
of abnormal neurodynamic processes (e.g., ictogenesis) and
predictors of impending adverse events. A novel algorithm is
presented that leverages the inherent sparsity of high-frequency
abnormalities in neural signals recorded at the scalp and uses
spectral clustering to classify them in very high-dimensional
signals spanning several days. It is shown that estimated clusters
vary dynamically with time and their distribution changes
substantially both as a function of time and space.

Index Terms— Spectral clustering, brain signals,
frequency abnormalities
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I. INTRODUCTION

Anomalies in the brain’s electrical activity have been
associated with a broad range of neurological and neu-
ropsychiatric disorders. Although the underlying biological
processes that give rise to these anomalies are not fully
understood, a large body of literature has shown that they can
occur at the signal or network levels and may be localized
to the affected region or be widespread in large parts of the
brain. Epilepsy, autism spectrum disorders and schizophrenia
are examples of relatively common disorders (each affecting
>1% of the US population) that impact the morphology
and spectral content of neural signals [1], [2], [3], [4]. In
the field of epilepsy where scalp encephalograms (EEG)
are routinely used for diagnostic purposes, signal anomalies
has been reported across the EEG spectrum, particularly at
frequencies <50 Hz, (e.g., [1], [5], [6], [7]).

More recently, transient, low-amplitude (<10 uV) and
short-duration (<100 ms) waveforms with characteristic fre-
quencies (>80 Hz) have also been identified in human EEG.
These anomalies were first identified in invasive recordings
[8] and have since been associated both with seizure evo-
lution and specifically with the epileptogenic region (the
brain area that is indispensable for generating seizures),
[9], [10]. A growing number of studies have also reported
transient signal anomalies in noninvasive EEG [11], [12],
[13], [15], but their origin, characteristics and variability
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remain poorly understood. It is unclear whether they are
specifically associated with seizure evolution (ictogenesis) or
represent a signature of the epileptic brain, or both. This is in
part due to the focus of most prior studies on relatively short
data. To assess their specificity to ictogenesis and distin-
guish them from physiological high-frequency activity, these
anomalies need to be estimated in continuous EEGs that
contain multiple interictal and peri-ictal epochs of interest,
physiological states (wakefulness/sleep).

The detection and classification of high-frequency (HF)
anomalies in in noninvasive signals is of significant interest,
particularly as potential biomarkers of seizure evolution. In
contrast to invasive EEG, which is available to a small frac-
tion of patients who are candidates for epilepsy surgery, scalp
EEG is a ubiquitous diagnostic tool and available to most
patients. Scalp EEG is also routinely used to measure activity
in other settings, such as sleep studies. Disordered sleep may
also be associated with HF anomalies in the brain. Depending
on their origin in the brain, role and time of occurrence, the
morphology of HF waveforms may vary significantly within
and across patients. Their detection in very high-dimensional
signals and classification is computationally very expensive.
To improve computational efficiency, easy-to- implement
detection and classification is desirable.

This paper presents a novel algorithm for the detection and
classification of HF abnormalities in very high-dimensional
neural signals. Across scientific fields, a number of al-
gorithms have been proposed for clustering experimental
data ([16], [17], [18], [22] among many others). All have
advantages and shortcomings, in terms of their complexity,
robustness and computational cost. Spectral clustering [20]
has been shown to outperform other methods, is straight-
forward to implement, requires no a priori assumptions
(beyond the specification of the number of graph partitions)
and is relatively computationally efficient [19], [21]. The
proposed algorithm leverages the transience and sparsity of
HF anomalies in neural signals to improve the computational
efficiency of clustering without the need to process entire
recordings spanning multiple days. Estimated clusters are
compared to those based on k-means clustering. In addition
to the latter’s extensive use, previous work has also identified
theoretical relationships between the two approaches [18].

II. MATERIALS AND METHODS

A. Electrophysiological data

All scalp EEG data were collected at the Comprehen-
sive Epilepsy Center, Beth Israel Deaconess Medical Center
(BIDMC), as part of clinically indicated studies. Data were
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recorded using a clinical 10-20 EEG system, with a sampling
rate of 500 samples/s and were high-pass filtered using a 3rd
order elliptical filter with cutoff at 80 Hz, 0.5 dB ripple in
the passband and 20 dB attenuation in the stopband. All data
were re-referenced to an average reference montage prior to
analysis. The study was approved by the institutional review
board. Data from 4 adult patients [2 males and 2 females, age
41-48 years, respectively] with diagnosed focal epilepsy and
seizures originating in the left temporal lobe were analyzed.
Recordings spanned ~51 to ~65 h. Continuous EEGs are
typically contaminated by multiple artifacts associated with
eye-blinking (high-amplitude, low-frequency), and/or muscle
activity (high-amplitude and broadband). The artifact sup-
pression algorithm in [14] was used to pre-process the data
but it is possible that residual, muscle-related HF activity can
still be detected in high-pass filtered signals. Such activity
may, in fact, be part of a distinct data cluster. A representative
example of segments containing non-random, non-artifactual
HF waveforms of interest are shown in Figure 1.
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Fig. 1. One-second interictal (non-seizure) segment from electrodes
Fpl (top panel), F3, C3 and a Gaussian noise signal (bottom panel). HF
abnormalities are present in electrodes Fpl and F3 but not C3.

B. Clustering algorithm

The proposed approach is summarized in Figure 2. At
frequencies >80 Hz, signals of biological origin measured
at the scalp have low amplitudes. In prior work [12], [13]
HF anomalies with duration <50 ms have been estimated.
EEG signals were, thus, segmented into 50 ms intervals and
a randomness test (runs test) was applied sequentially to
each interval, with the null hypothesis being that it only
contains noise. Segments for which the null hypothesis was
rejected were flagged for further processing, thus substan-
tially reducing the data dimensionality (typically to < 5%
of the raw data). In the second step, a similarity measure
between non-random waveforms within and across electrodes
was used to assess their pairwise similarity. A wide range of
such measures (linear and non-linear) have been proposed,
both in the time and frequency domains. The selection of
an optimal similarity measure is beyond the scope of this
preliminary investigation, so the match filter (MF)[23] was
used to compare pairs of identified waveforms (with signal-
to-noise ratio (SNR) gain as the measure of similarity and
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maximum gain obtained when a signal is filtered with its
time-reverse replica). Although time consuming, the MF
provides a measure of pattern similarity. There are many
other similarity measures [19], which may be estimated
at lower computational cost (given that the MF involves
a relatively expensive convolution). Although this step is
not necessary in k-means clustering, it is necessary for
constructing the similarity matrix based on which spectral
clustering will be performed.

A k-nearest neighbor graph W (i, j) was estimated, assum-
ing a connection (edge) w;; between nodes v; and v; if
either node is in the neighborhood of the other (to obtain
an undirected graph). From this, the diagonal degree matrix
D(i,i) =d; =Y,;w(i, ) was calculated. To partition the graph
into k partitions (or k clusters when using the k-means algo-
rithm) we arbitrarily assumed k = 10 when clustering wave-
forms within an individual EEG electrode and k£ < 30 when
clustering all waveforms across all electrodes. Depending
on their location in the brain, HF abnormalities may differ
substantially between EEG signals both in morphology and
spectral content. To account for potentially heterogeneous
waveforms, a higher number of clusters was assumed when
data across electrodes were combined. Partitions of vertices
A;,i=1,...,k were estimated by minimizing the k-normalized
Neut defined as: Neut(Ay, ..., Ay) = 1 35| Wg‘d’* , with A, the
complement of A;. This amounts to solving the generalized
eigenvalue problem (D — W)y = ADy, where D — W is the
Laplacian matrix (for details see [24]).
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Fig. 2. Diagram of proposed algorithm.

III. RESULTS

The proposed algorithm was applied to continuous record-
ings, focusing predominantly on the occurrence of signal
abnormalities in seizure-free (interictal) periods. One patient
had data from 22 EEG electrodes and the other from 28
electrodes). Identified waveforms were sparse, non-localized
and heterogeneous. An example of their spatial distribution
in a period of >50 h and a shorter (1-h) sub-interval starting
at 20 h from the beginning of the recordings is shown in
Figure 3. The rate of occurrence of these waveforms in
individual electrodes is shown in left panels. In general,
electrodes along the midline, followed by central (C2, C4)
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and occipital electrodes (O1, O2) had the lowest rates of HF
waveforms. Otherwise, these waveforms occurred bilaterally.
At shorter time scales (e.g,, 1-h) frontal electrodes had
the higher rate of transient HF signals. In this example,
artifactual (e.g. related to muscle-activity) signals were not
excluded. However, for both patient recordings and across
electrodes, the first identified cluster contained waveforms
suspected to be residual muscle-related artifacts.
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(a) EEG recordings spanning >50 h.
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(b) EEG recordings spanning 1 h.

Fig. 3. (a) Distribution of non-random HF waveforms across EEG
electrodes in a ~51-h seizure-free period from patient #1 (right panel)
and their rate of occurrence (per h) in individual electrodes-specific rate
of occurrence.

Examples of identified waveforms in 3 different clusters
are shown in Figure 4. Overall, those with similar character-
istic frequency and signatures (e.g., sinusoids) were classified
in the same cluster, while those with distinct characteristic
frequencies (>20 Hz apart) and similar morphology were
classified in different clusters, as were those with distinct
signatures (e.g., bursts versus sinusoids). A higher (but not
statistically distinct) number of bursts was estimated in
electrodes covering the clinically identified seizure onset.
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Fig. 4. Examples of transient HF waveforms in distinct clusters. Three

waveforms of similar morphology and characteristic frequency were clas-
sified in the same cluster (black). Higher-frequency signals with similar
signatures were classified in different clusters (black versus purple) and so
were signals containing bursts (brown).

Electrode-specific clusters of identified HF waveforms in
2-h interictal (>12 h removed from a seizure) and peri-ictal
(1-h prior to 1-h after a seizure) intervals for 2 patients
are shown in Figures 5 and 6. The first cluster, containing
waveforms suspected to be artifactual is not shown but all
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other clusters are shown. Waveforms were typically clustered
in a small number of statistically distinct clusters, typically
1-2 clusters in interictal intervals and <5 clusters in peri-
ictal intervals. As expected, a significantly higher number
of transient waveforms were identified in peri-ictal intervals,
although their spatial specificity was unclear, occurring in
broad areas of the brain beyond the epileptogenic region.
Electrodes along the midline, followed by central and occip-
ital, had the lowest number of HF signals.
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Fig. 5. Distribution of identified waveforms in 9 clusters, as a function

of electrode, in a 2-h interictal segment (left) and preictal segment (right),
respectively, from Patient #1. Ear electrodes Al and A2, are not shown.
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Fig. 6. Distribution of identified waveforms in 9 clusters, as a function

of electrode, in a 2-h interictal segment (left) and preictal segment (right),
respectively, from Patient #4. Additional electrodes F9, T9, P9 and F10,
T10, P10 are shown.

Finally, when signals from all electrodes were combined
prior to clustering, a larger number of statistically distinct
clusters were estimated even in interictal intervals, although
typically <10. The distributions of identified waveforms
in 30 clusters over a period of 20 hours, using spectral
clustering versus k-means clustering are shown in Figure 7.
In both cases, a small number of statistically distinct clusters
were identified (6-8 with spectral clustering, 4-5 with k-
means clustering). When waveforms were examined in each

Authorized licensed use limited to: Catherine Stamoulis. Downloaded on September 12,2020 at 11:33:39 UTC from IEEE Xplore. Restrictions apply.



cluster, the smaller number of k-means clusters contained
mixtures of waveforms with statistically distinct character-
istic frequencies (>20 Hz apart), indicating that k-means
may be less sensitive to the frequency content of individual
waveforms compared to spectral clustering. Both approaches
distinguished signals with different morphologies.

(a) Spectral clustering results

(b) K-means clustering results

Fig. 7. Distribution of interictal HF waveforms in 30 clusters, identified
via spectral (a) and k-means clustering (b), as a function of time, in 2-h
intervals (total of 20 hours).

IV. CONCLUSION

This paper has explored the classification of heterogeneous
pathological HF waveforms in noninvasive EEG (up to 65 h)
from 4 epilepsy patients by proposing an algorithm based on
spectral clustering that leverages the sparsity of HF activity in
scalp EEG to reduce the data dimensionality, and uses match-
filtering to assess the similarity of identified waveforms.
Comparisons of identified clusters with those obtained used
k-means clustering indicate that spectral clustering may be
more sensitive to waveforms with distinct frequency char-
acteristics but similar signatures. The results also suggest
that HF signal abnormalities are sparse in type, spatially dis-
tributed and can be classified using a relatively small number
of clusters (<10 when examined across electrodes and <5
when examined within the same electrode) even in periods of
significantly increased HF activity potentially associated with
seizure evolution. Clearly these findings are preliminary and
based on a very small number of patients. Further studies
using extensive simulations to control signal morphology
and frequency content and compare findings across different
clustering approaches and/or based on different similarity
measures for constructing the similarity graph are planned.
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