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Abstract— Transient electrophysiological anomalies in the
human brain have been associated with neurological disorders
such as epilepsy, may signal impending adverse events (e.g,
seizurse), or may reflect the effects of a stressor, such as
insufficient sleep. These, typically brief, high-frequency and
heterogeneous signal anomalies remain poorly understood, par-
ticularly at long time scales, and their morphology and variabil-
ity have not been systematically characterized. In continuous
neural recordings, their inherent sparsity, short duration and
low amplitude makes their detection and classification difficult.
In turn, this limits their evaluation as potential biomarkers
of abnormal neurodynamic processes (e.g., ictogenesis) and
predictors of impending adverse events. A novel algorithm is
presented that leverages the inherent sparsity of high-frequency
abnormalities in neural signals recorded at the scalp and uses
spectral clustering to classify them in very high-dimensional
signals spanning several days. It is shown that estimated clusters
vary dynamically with time and their distribution changes
substantially both as a function of time and space.

Index Terms— Spectral clustering, brain signals, high-
frequency abnormalities

I. INTRODUCTION

Anomalies in the brain’s electrical activity have been

associated with a broad range of neurological and neu-

ropsychiatric disorders. Although the underlying biological

processes that give rise to these anomalies are not fully

understood, a large body of literature has shown that they can

occur at the signal or network levels and may be localized

to the affected region or be widespread in large parts of the

brain. Epilepsy, autism spectrum disorders and schizophrenia

are examples of relatively common disorders (each affecting

>1% of the US population) that impact the morphology

and spectral content of neural signals [1], [2], [3], [4]. In

the field of epilepsy where scalp encephalograms (EEG)

are routinely used for diagnostic purposes, signal anomalies

has been reported across the EEG spectrum, particularly at

frequencies ≤50 Hz, (e.g., [1], [5], [6], [7]).

More recently, transient, low-amplitude (≤10 µV) and

short-duration (≤100 ms) waveforms with characteristic fre-

quencies (>80 Hz) have also been identified in human EEG.

These anomalies were first identified in invasive recordings

[8] and have since been associated both with seizure evo-

lution and specifically with the epileptogenic region (the

brain area that is indispensable for generating seizures),

[9], [10]. A growing number of studies have also reported

transient signal anomalies in noninvasive EEG [11], [12],

[13], [15], but their origin, characteristics and variability
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remain poorly understood. It is unclear whether they are

specifically associated with seizure evolution (ictogenesis) or

represent a signature of the epileptic brain, or both. This is in

part due to the focus of most prior studies on relatively short

data. To assess their specificity to ictogenesis and distin-

guish them from physiological high-frequency activity, these

anomalies need to be estimated in continuous EEGs that

contain multiple interictal and peri-ictal epochs of interest,

physiological states (wakefulness/sleep).

The detection and classification of high-frequency (HF)

anomalies in in noninvasive signals is of significant interest,

particularly as potential biomarkers of seizure evolution. In

contrast to invasive EEG, which is available to a small frac-

tion of patients who are candidates for epilepsy surgery, scalp

EEG is a ubiquitous diagnostic tool and available to most

patients. Scalp EEG is also routinely used to measure activity

in other settings, such as sleep studies. Disordered sleep may

also be associated with HF anomalies in the brain. Depending

on their origin in the brain, role and time of occurrence, the

morphology of HF waveforms may vary significantly within

and across patients. Their detection in very high-dimensional

signals and classification is computationally very expensive.

To improve computational efficiency, easy-to- implement

detection and classification is desirable.

This paper presents a novel algorithm for the detection and

classification of HF abnormalities in very high-dimensional

neural signals. Across scientific fields, a number of al-

gorithms have been proposed for clustering experimental

data ([16], [17], [18], [22] among many others). All have

advantages and shortcomings, in terms of their complexity,

robustness and computational cost. Spectral clustering [20]

has been shown to outperform other methods, is straight-

forward to implement, requires no a priori assumptions

(beyond the specification of the number of graph partitions)

and is relatively computationally efficient [19], [21]. The

proposed algorithm leverages the transience and sparsity of

HF anomalies in neural signals to improve the computational

efficiency of clustering without the need to process entire

recordings spanning multiple days. Estimated clusters are

compared to those based on k-means clustering. In addition

to the latter’s extensive use, previous work has also identified

theoretical relationships between the two approaches [18].

II. MATERIALS AND METHODS

A. Electrophysiological data

All scalp EEG data were collected at the Comprehen-

sive Epilepsy Center, Beth Israel Deaconess Medical Center

(BIDMC), as part of clinically indicated studies. Data were
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recorded using a clinical 10-20 EEG system, with a sampling

rate of 500 samples/s and were high-pass filtered using a 3rd

order elliptical filter with cutoff at 80 Hz, 0.5 dB ripple in

the passband and 20 dB attenuation in the stopband. All data

were re-referenced to an average reference montage prior to

analysis. The study was approved by the institutional review

board. Data from 4 adult patients [2 males and 2 females, age

41-48 years, respectively] with diagnosed focal epilepsy and

seizures originating in the left temporal lobe were analyzed.

Recordings spanned ∼51 to ∼65 h. Continuous EEGs are

typically contaminated by multiple artifacts associated with

eye-blinking (high-amplitude, low-frequency), and/or muscle

activity (high-amplitude and broadband). The artifact sup-

pression algorithm in [14] was used to pre-process the data

but it is possible that residual, muscle-related HF activity can

still be detected in high-pass filtered signals. Such activity

may, in fact, be part of a distinct data cluster. A representative

example of segments containing non-random, non-artifactual

HF waveforms of interest are shown in Figure 1.

Fig. 1. One-second interictal (non-seizure) segment from electrodes
Fp1 (top panel), F3, C3 and a Gaussian noise signal (bottom panel). HF
abnormalities are present in electrodes Fp1 and F3 but not C3.

B. Clustering algorithm

The proposed approach is summarized in Figure 2. At

frequencies >80 Hz, signals of biological origin measured

at the scalp have low amplitudes. In prior work [12], [13]

HF anomalies with duration ≤50 ms have been estimated.

EEG signals were, thus, segmented into 50 ms intervals and

a randomness test (runs test) was applied sequentially to

each interval, with the null hypothesis being that it only

contains noise. Segments for which the null hypothesis was

rejected were flagged for further processing, thus substan-

tially reducing the data dimensionality (typically to ≤ 5%

of the raw data). In the second step, a similarity measure

between non-random waveforms within and across electrodes

was used to assess their pairwise similarity. A wide range of

such measures (linear and non-linear) have been proposed,

both in the time and frequency domains. The selection of

an optimal similarity measure is beyond the scope of this

preliminary investigation, so the match filter (MF)[23] was

used to compare pairs of identified waveforms (with signal-

to-noise ratio (SNR) gain as the measure of similarity and

maximum gain obtained when a signal is filtered with its

time-reverse replica). Although time consuming, the MF

provides a measure of pattern similarity. There are many

other similarity measures [19], which may be estimated

at lower computational cost (given that the MF involves

a relatively expensive convolution). Although this step is

not necessary in k-means clustering, it is necessary for

constructing the similarity matrix based on which spectral

clustering will be performed.

A k-nearest neighbor graph W (i, j) was estimated, assum-

ing a connection (edge) wi, j between nodes vi and v j if

either node is in the neighborhood of the other (to obtain

an undirected graph). From this, the diagonal degree matrix

D(i, i) = di =∑ j w(i, j) was calculated. To partition the graph

into k partitions (or k clusters when using the k-means algo-

rithm) we arbitrarily assumed k = 10 when clustering wave-

forms within an individual EEG electrode and k ≤ 30 when

clustering all waveforms across all electrodes. Depending

on their location in the brain, HF abnormalities may differ

substantially between EEG signals both in morphology and

spectral content. To account for potentially heterogeneous

waveforms, a higher number of clusters was assumed when

data across electrodes were combined. Partitions of vertices

Ai, i= 1, ...,k were estimated by minimizing the k-normalized

Ncut defined as: Ncut(A1, ...,Ak) =
1
2 ∑k

i=1
W (Ai,Āi

∑i di
, with Āi the

complement of Ai. This amounts to solving the generalized

eigenvalue problem (D−W )y = λDy, where D−W is the

Laplacian matrix (for details see [24]).
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Fig. 2. Diagram of proposed algorithm.

III. RESULTS

The proposed algorithm was applied to continuous record-

ings, focusing predominantly on the occurrence of signal

abnormalities in seizure-free (interictal) periods. One patient

had data from 22 EEG electrodes and the other from 28

electrodes). Identified waveforms were sparse, non-localized

and heterogeneous. An example of their spatial distribution

in a period of >50 h and a shorter (1-h) sub-interval starting

at 20 h from the beginning of the recordings is shown in

Figure 3. The rate of occurrence of these waveforms in

individual electrodes is shown in left panels. In general,

electrodes along the midline, followed by central (C2, C4)
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and occipital electrodes (O1, O2) had the lowest rates of HF

waveforms. Otherwise, these waveforms occurred bilaterally.

At shorter time scales (e.g,, 1-h) frontal electrodes had

the higher rate of transient HF signals. In this example,

artifactual (e.g. related to muscle-activity) signals were not

excluded. However, for both patient recordings and across

electrodes, the first identified cluster contained waveforms

suspected to be residual muscle-related artifacts.

(a) EEG recordings spanning >50 h.

(b) EEG recordings spanning 1 h.

Fig. 3. (a) Distribution of non-random HF waveforms across EEG
electrodes in a ∼51-h seizure-free period from patient #1 (right panel)
and their rate of occurrence (per h) in individual electrodes-specific rate
of occurrence.

Examples of identified waveforms in 3 different clusters

are shown in Figure 4. Overall, those with similar character-

istic frequency and signatures (e.g., sinusoids) were classified

in the same cluster, while those with distinct characteristic

frequencies (>20 Hz apart) and similar morphology were

classified in different clusters, as were those with distinct

signatures (e.g., bursts versus sinusoids). A higher (but not

statistically distinct) number of bursts was estimated in

electrodes covering the clinically identified seizure onset.
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Fig. 4. Examples of transient HF waveforms in distinct clusters. Three
waveforms of similar morphology and characteristic frequency were clas-
sified in the same cluster (black). Higher-frequency signals with similar
signatures were classified in different clusters (black versus purple) and so
were signals containing bursts (brown).

Electrode-specific clusters of identified HF waveforms in

2-h interictal (≥12 h removed from a seizure) and peri-ictal

(1-h prior to 1-h after a seizure) intervals for 2 patients

are shown in Figures 5 and 6. The first cluster, containing

waveforms suspected to be artifactual is not shown but all

other clusters are shown. Waveforms were typically clustered

in a small number of statistically distinct clusters, typically

1-2 clusters in interictal intervals and ≤5 clusters in peri-

ictal intervals. As expected, a significantly higher number

of transient waveforms were identified in peri-ictal intervals,

although their spatial specificity was unclear, occurring in

broad areas of the brain beyond the epileptogenic region.

Electrodes along the midline, followed by central and occip-

ital, had the lowest number of HF signals.

Fig. 5. Distribution of identified waveforms in 9 clusters, as a function
of electrode, in a 2-h interictal segment (left) and preictal segment (right),
respectively, from Patient #1. Ear electrodes A1 and A2, are not shown.

Fig. 6. Distribution of identified waveforms in 9 clusters, as a function
of electrode, in a 2-h interictal segment (left) and preictal segment (right),
respectively, from Patient #4. Additional electrodes F9, T9, P9 and F10,
T10, P10 are shown.

Finally, when signals from all electrodes were combined

prior to clustering, a larger number of statistically distinct

clusters were estimated even in interictal intervals, although

typically ≤10. The distributions of identified waveforms

in 30 clusters over a period of 20 hours, using spectral

clustering versus k-means clustering are shown in Figure 7.

In both cases, a small number of statistically distinct clusters

were identified (6-8 with spectral clustering, 4-5 with k-

means clustering). When waveforms were examined in each
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cluster, the smaller number of k-means clusters contained

mixtures of waveforms with statistically distinct character-

istic frequencies (>20 Hz apart), indicating that k-means

may be less sensitive to the frequency content of individual

waveforms compared to spectral clustering. Both approaches

distinguished signals with different morphologies.
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(a) Spectral clustering results
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(b) K-means clustering results

Fig. 7. Distribution of interictal HF waveforms in 30 clusters, identified
via spectral (a) and k-means clustering (b), as a function of time, in 2-h
intervals (total of 20 hours).

IV. CONCLUSION

This paper has explored the classification of heterogeneous

pathological HF waveforms in noninvasive EEG (up to 65 h)

from 4 epilepsy patients by proposing an algorithm based on

spectral clustering that leverages the sparsity of HF activity in

scalp EEG to reduce the data dimensionality, and uses match-

filtering to assess the similarity of identified waveforms.

Comparisons of identified clusters with those obtained used

k-means clustering indicate that spectral clustering may be

more sensitive to waveforms with distinct frequency char-

acteristics but similar signatures. The results also suggest

that HF signal abnormalities are sparse in type, spatially dis-

tributed and can be classified using a relatively small number

of clusters (≤10 when examined across electrodes and ≤5

when examined within the same electrode) even in periods of

significantly increased HF activity potentially associated with

seizure evolution. Clearly these findings are preliminary and

based on a very small number of patients. Further studies

using extensive simulations to control signal morphology

and frequency content and compare findings across different

clustering approaches and/or based on different similarity

measures for constructing the similarity graph are planned.
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