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Abstract—Spectrum monitoring is a powerful tool in dynamic
spectrum access to help secondary users access the unused spec-
trum white space. The common approach for spectrum monitor-
ing is to build infrastructures (e.g. spectrum observatories), which
cost much money and manpower but have relatively low coverage.
To aid in this, we propose a crowdsourcing based spectrum
monitoring system for a large geographical area that leverages
the power of masses of portable mobile devices. The system can
accurately predict future spectrum utilization and intelligently
schedule the spectrum monitoring tasks among mobile secondary
users accordingly, so that the energy of mobile devices can be
saved and more spectrum activities can be monitored. We also
demonstrate our system’s ability to capture not only the existing
spectrum access patterns but also the unknown patterns where
no historical spectrum information exist. The experiment shows
that our spectrum monitoring system can obtain a high spectrum
monitoring coverage and low energy consumption.

Index Terms—DSA, crowdsourcing, spectrum monitoring

I. INTRODUCTION

In traditional spectrum allocation policy, unshared access
of fixed bands are given to licensed users [1]. However, this
old allocation policy causes spectrum scarcity problem, where
there is little spectrum left now to allocate to newly emerged
communication demands. On the other hand, plenty of licensed
bands are underutilized in both time and frequency domains,
known as the spectrum white space. Hence, a new spectrum
sharing paradigm, called dynamic spectrum access (DSA), is
proposed to mitigate this problem. In DSA, incumbent spec-
trum users are called primary users (PUs) and the secondary
users (SUs) can opportunistically access the spectrum white
space as long as they do not trigger any harmful interference
to the PUs’ communications. In this way, DSA can utilize the
considerable amount of underutilized spectrum [2].

One major way to search for the idle bands for SU access is
spectrum monitoring. Spectrum monitoring is a powerful tool
that help users effectively manage the frequencies to avoid im-
proper usage and determine the sources of interference. There
are some dedicated spectrum monitoring observatories and
stations providing detailed spectrum occupancy information.
These systems keep scanning the spectrum, and extract useful
information, which will be finally stored in various spectrum
databases. Spectrum occupancy pattern is a common type of
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the extracted information. Each pattern represents the spectrum
utilization block in both time and frequency domain. It is a
time-frequency representation of corresponding PU’s behavior.

Nevertheless, there are two crucial disadvantages of the
old systems and monitoring approaches. Firstly, today’s spec-
trum observatories are not widely deployed and are mostly
installed by government or well-capitalized enterprises due to
the expensive and cumbersome hardware that is difficult to
manipulate. Secondly, most of these systems merely scan the
spectrum sequentially which is naive and inefficient.

To address the current limitations, we propose to leverage
the power of mass on the concept of crowdsourcing [3].
Specifically, we let the mobile SUs to act both as users of avail-
able spectrum white space and moving spectrum monitoring
devices. With a central controller coordinating a large amount
of commodity secondary mobile devices, we can achieve low-
cost spectrum monitoring at a large geographical scale.

Crowdsourcing based spectrum monitoring face two non-
trivial problems: limited energy and dynamics in crowd dis-
tribution. Mobile users have their own daily usage routines.
Spectrum monitoring functions should not interfere with the
normal operation of other applications. Therefore, the en-
ergy of the mobile devices that can be spared on spectrum
monitoring is limited. Also, one important characteristic of
mobile users is mobility. The number of devices within an area
that can be used to monitor the spectrum varies at different
times and may lead to temporary insufficiency in local device
number. Hence, the difficulty lies in how to achieve the highest
spectrum monitoring coverage with the limited energy and
changing number of mobile users.

We solve these challenges by leveraging the PU occupancy
pattern. As shown in Figure 1, real spectrum access behaviors
exhibit clear patterns. In this figure, a white block denotes
a period of channel idle time, and the dark parts with some
bright texture denote the behavior of active spectrum users.
Thus, recorded past spectrum dataset not only can be used to
extract past spectrum access patterns, but also can implicate
the future dynamics in spectrum access. Thus, our spectrum
monitoring system uses a smart scheduling algorithm that
discovers the dynamic patterns of past spectrum activities to
improve monitoring efficiency and reduce energy consumption
within this system. Besides existing patterns, our system also
includes an algorithm to intelligently watch for and learn new



Fig. 1. From top to bottom, 4 examples of PU patterns from Cityscape
Spectrum Observatory [4] used in our experiment.

patterns that have not been found in past history.
The rest of this paper is arranged as follows. Section II

presents the related work. Section III explains our system
model. Section IV and V describes how we use pattern
information to intelligently assign monitoring tasks among
SUs and how we discover new patterns. Section VI evaluate
our schemes and finally section VII concludes our work.

II. RELATED WORK

Mobile crowdsensing (MCS) is increasingly growing in
popularity due to the extensive use of sensor-equipped mobile
devices, and has been adopted in a diverse of sensing applica-
tions ranging from environment monitoring to human activities
detection [5]. This paper mainly focuses on MCS works related
to the real world spectrum monitoring. These works can be cat-
egorized into two aspects: (1) Hardware implementation [6],
[7]: These existing works have built the hardware prototypes
for distributed spectrum monitoring systems using commodity
mobile devices. However, these papers do not address how
to manage their systems for optimal monitoring performance.
(2) Spectrum monitoring based on fixed sensors [4], [8]:
These works assume spectrum sensors are dedicated and fixed
devices. Their sensor coordination schemes are also simply
letting each sensor to sequentially scanning the spectrum. An
exception to this is a smart scheduling algorithm proposed
in [9]. But this work is only designed for a single fixed
sensor. Our work is the first that designs a crowdsoucing based
spectrum monitoring system with intelligent task scheduling
algorithms to coordinate among mass mobile devices (e.g.
smartphones with spectrum monitoring capability).

To participate in crowdsourcing spectrum monitoring, mo-
bile users would naturally expect certain payoff for the
consumed time and energy. This situation requires effective
incentive mechanisms. It is divided by [10] into the follow-
ing categories: (1) Incentive schemes designed for collecting
certain number of data samples through adjusting the reward
[11], [12]. (2) Incentive schemes based on quality [13], [14]:
in this kind of schemes, not only the quantity and cost of
collected data but also the quality are taken into consideration.
(3) Incentive schemes considering the QoI and credibility of
the collected data [15], [16]. These existing incentive schemes
for attracting users to participate in crowdsourcing tasks are
complementary to our spectrum usage monitoring system. We
can adopt any one of them in our system.

Fig. 2. Our system model.

Fig. 3. PDFs of 4 kinds of pattern interval τ .

Other related existing works focus on how to classify
PU patterns [17], [18] and how to predict future spectrum
utilization [17], [19]. PU pattern classification and prediction
are also required in our system, but they are not the emphasis
of this paper. We apply a classic pattern classification method
for PU pattern classification [20] and adopt an approach from
[9] for future pattern prediction.

III. SYSTEM MODEL

As in Figure 2, our system is built upon a model where
there are multiple PUs and a large group of SUs scattered
inside a large geographical region. The SUs are controlled by
the central controller. The design of our model is based on two
fundamental observations [9]: (1) PU signal has semi-regular
pattern. The spectrum usage pattern represents how PU acts in
both time and frequency domain. Because a PU’s activities will
not be completely random, we are able to find a certain distri-
bution for the corresponding spectrum usage patterns. We refer
a burst of a PU’s transmission as one PU occurrence and the
PU’s pattern is essentially a sequence of its signal occurrences.
In general, the intervals between consecutive occurrences of
a PU have an uneven distribution. (2) PU’s occurrence can
be learned from history. The probability of a PU occurrence
appearing within a certain time period can be calculated using
the PU pattern’s probability density function (PDF). Figure
3 shows the distributions of the occurrence intervals of 4
different PUs from real spectrum monitoring trace [4], which
shows distributions similar to Gaussian distributions.

We assume some PUs are static and some PU can be
mobile. All SUs are assumed to be mobile. According to



[7], there already exist several distributed spectrum monitoring
prototypes built on smartphones. Hence, we can also assume
all SUs have spectrum monitoring capabilities.

IV. EXISTING PU PATTERN MONITORING

In this paper, we deal with two types of PU activity patterns.
The first type is called existing PU pattern, which refers to on-
going PU transmission activities that also appeared in the past
and hence were recorded. The second type is called unknown
PU pattern, which refers to PU transmission activities that are
not included in existing recorded dataset. In this section, we
discuss our existing PU pattern monitoring scheme. In section
V, we will outline unknown pattern monitoring.

Existing PU pattern monitoring leverages PU activity his-
tory in the spectrum databases for future spectrum monitoring.
However, the PU activity information in these databases are
all raw data. Therefore, a PU pattern classification procedure
is required to identify existing PU patterns and compute the
statistical distribution of occurrences in each pattern.

We extract PU patterns from existing PU activity datasets
by the following two steps. First, we obtain the raw in-
phase and quadrature (I/Q) information from the datasets and
generate time-frequency occurrences. Second, we group PU
occurrences into pattern groups based on similarity of the
occurrences in frequency and time domain. The similarity is
characterized by a 2D cross-correlation function [21] as:

P1 ◦ P2(x, y) =
X∑
i=0

Y∑
j=0

P1(i, j)P2(x+ i, y + j), (1)

where P1, P2 denote two occurrences, (X,Y ) represent the
discretized size of each occurrence at time and frequency
domain, and the x, y denote the shifts of P2 in time and
frequency respectively. If two occurrences have a high cross-
correlation, they are very similar in both time and frequency
domain, thus they can be considered as in the same pattern.

For each existing pattern identified in the above process,
we derive the statistical distribution of intervals between
neighboring occurrences. Based on these distributions, a smart
scheduling algorithm then assigns targeted monitoring tasks
of existing PU patterns among SUs, so that we can reduce
the energy consumption of PU monitoring. Essentially, our
existing PU pattern monitoring algorithm leverages the fact
that efficient monitoring of known patterns does not need to
monitor every frequency band all the time. It can perform
targeted monitoring only on time and spectrum range where
the patterns have a chance to occur.

Three approaches for existing PU pattern monitoring are
proposed as follows: The method named ideal optimal assign-
ments is explained in Section IV-A. This method generates
the optimal monitoring assignments under ideal and unrealistic
assumptions. Its performance is treated as the upper bound for
other approaches. A greedy optimization method is described
in Section IV-B. Greedy optimization is a substitute to ideal
optimal assignments with realistic assumptions. A heuristic

TABLE I
IDEAL OPTIMAL ASSIGNMENTS

Given: Lj
i , Ei for i ∈ [1, N ], j ∈ [1,M ]

sd, Tappear , pi, dt
Find: Aj

i
Problem 1: Minimize Energy Consumption
Minimize:

∑M
j=1

∑N
i=1 A

j
i × dt× pi

Subject to: (2), (3), (4), (5)
Problem 2: Maximize Monitored Occurrences
Maximize:

∑M
j=1

∑N
i=1 A

j
i

Subject to: (2), (3), (4), (6)

algorithm is presented in Section IV-C. It can be regarded as
a much faster alternative to greedy optimization.

A. Ideal Optimal Assignments

The core of existing PU pattern monitoring is essentially
the problem of coordinating SUs to achieve the optimal
monitoring assignments based on PU occurrence time.

Consider a case where K PUs are scattered on a certain
area, and N SUs are moving inside the area. K PUs generate
a total number of M PU occurrences within a certain long
period of time T (e.g. a day). The appearance time of the kth
occurrence is denoted as T k

appear and assume the indexes of the
occurrences are sorted in ascending order of their occurrence
time (i.e. j < k → T j

appear < T k
appear). The energy budget in

any SU i at time t for monitoring jobs is the energy left by
all the other applications and is denoted as Ei(t) . For SU i
(i ∈ [1, N ]) and occurrence j (j ∈ [1,M ]), define Aj

i = 1(0)
as (not) assigning SU i to detect occurrence j. Lj

i denotes
the relation of SU i and occurrence j such that Lj

i = 1(0)
represents that SU i is (not) close enough to detect occurrence
j. When monitoring the spectrum, SU devices require a short
period of lead time to switch to a targeted frequency band,
which is called a switching delay sd. Sensing duration dt is
the time that an SU needs in sensing an occurrence of PU
transmission. Monitoring power pi is the power used when
SU is active on spectrum monitoring.

Ideally, given all the parameters mentioned above, the
problem is essentially to optimally assign the SUs to monitor
all of the PU occurrences while minimizing the total energy
consumed by monitoring assignments, which is formulated as
the optimization Problem 1 in Table I. Sometimes due to the
lack of SU devices or available energy for monitoring, the
optimal formulation in Problem 1 becomes infeasible. If this
happens, the goal of optimal assignment changes into finding
an SU monitoring schedule that maximizes the number of PU
occurrences that are monitored. This can be formulated as the
optimal Problem 2 in Table I.

There are four constraints for optimal formulation in step
1. The first constraint specifies that each SU only has a
limited monitoring range. During assignments, SU i cannot
be assigned for occurrence j if occurrence j is out of SU i’s
geographical sensing range, which can be formulated as:

if Lj
i = 0, then Aj

i = 0, for i ∈ [1, N ], j ∈ [1,M ].
(2)



The second constraint indicates that one SU can only be
assigned at most one time to monitor one PU occurrence
among the occurrences that appear within a period shorter
than switching delay. This can be formulated as:

if j < k and T k
appear − T j

appear < sd+ dt, then

k∑
j1=j

Aj1
i ≤ 1, for i ∈ [1, N ], j, k ∈ [1,M ]

(3)

The third constraint needs to ensure that PU monitoring
should not deplete energy for other SU normal activities.
Thus, this constraint states that the algorithm can only use
the leftover energy from other applications, as expressed as:

j1∑
j=1

Aj
i × pi × dt ≤ Ei(T

j1
appear + dt),

for i ∈ [1, N ], j1 ∈ [1,M ]

(4)

The fourth constraint ensures that each PU occurrence
should be detected by at least one SU, as shown as:

N∑
i=1

Aj
i ≥ 1, for j ∈ [1,M ] (5)

When the formulation in Problem 1 is infeasible, we will
execute the formulation in Problem 2. The constraints for
Problem 2 are the same to Problem 1 except for constraint
(5). Under Problem 2, the last constraint states that an SU
should not be assigned to monitor the same PU occurrence
twice. This can be formulated as:

N∑
i=1

Aj
i ≤ 1, for j ∈ [1,M ] (6)

B. Greedy Optimization With Uncertain Future

Note that the optimal assignment problem 1 and problem
2 in the last subsection only provide an upper limit on the
performance of SU assignment algorithm. This is because they
demand that the appearing time of every future occurrence and
the leftover energy at every SUs are precisely known, which
is impractical. Thus, in this subsection, we design a greedy
optimal SU assignment strategy based on uncertain future as
a practical solution for existing PU pattern monitoring. This
greedy strategy can handle the uncertainty in the time and
frequency information of PU occurrences and energy budget.
Note that when there is uncertainty in PU occurrences, an SU
may need to monitor a frequency band for a much longer
amount of time than the sensing duration dt while listening
and waiting for the possible PU occurrence to appear. Thus,
the essence of our greedy approach is to greedily allocate
the energy-limited monitoring time so that we can maximize
our statistical coverage of PU occurrences in a short period
Tstep from the current time. The greedy computation is then
repeated at the beginning of every Tstep as time progresses. In
the following, we describes the detail of this greedy approach.

Fig. 4. Future occurrences of the pattern after Tlast can be computed as PDF
function with its mean shifted to kµ+Tlast. Here, different color represents
occurrences in different patterns.

To maximize the monitoring tasks’ statistical coverage of
PU occurrences, the first step is to analyze the statistical
distribution of PU occurrences. As in Figure 3, the occurrence
time of each pattern will follow a certain distribution which
can be learned from history. Probability that a PU occurrence
appears within a certain time range can thus be computed
based on the distribution. If we assign SU’s limited monitoring
time to span only those time ranges with high occurrence
probability, we can maximize our coverage.

We define the time between two consecutive occurrences
of a same pattern as the pattern interval τ . The statistical
distribution of τ is computed based on this pattern’s historical
data. Its mean µ determines the mean occurrence interval, and
standard deviation σ measures the variation of occurrences
intervals in each pattern.

As in Figure 4, the distribution of τ can be used to generate
a reliable future occurrence sequence in Tstep. Assuming
Tlast is the last time where we observed a PU pattern’s
occurrence, distribution of the pattern’s kth future occurrence
after Tlast can be computed as the PDF function in Figure 5
with the mean shifted to kµ + Tlast. The cumulative density
function (CDF) for each PU pattern is calculated based on PDF
function. We then assign an SU monitoring time to maximize
the probability of occurrence detection based on the CDFs.

Since the exact energy budget for monitoring (i.e. leftover
energy of other applications) is also uncertain, a prediction of
energy budget for spectrum monitoring in the current Tstep is
also needed to figure out the limit on monitoring time in each
SU. In our greedy optimization, the prediction is based on
profiles of mobile device usage. Using the usage information,
at the current time t, we can predict the time when the next
charging event will happen, denoted as Tcharge , and other
applications’ future energy consumption till the next charging
event, denoted as Eapp(t). We can also obtain the current
battery energy Ebattery(t). Hence, the energy budget for each
SU per Tstep can be estimated by

Ei(t) =
Ei

battery(t)− Ei
app(t)

total number of Tsteps before T i
charge

, (7)

We further suppose that SUs report their locations at the
beginning of each Tstep, and they will stay adjacent to this



location within Tstep. Thus, the relation Lj
i between SU i and

occurrence j can be computed using the location information.
Now given the above parameter definitions and assumptions,

the goal of our greedy optimization can be formulated as find-
ing the optimal start and end points for each monitoring task
assignment happening within Tstep. This greedy optimization
problem can be formulated as in Table II, where t0

j
i and t1

j
i

are defined as the start and finish time of an SU i’s monitoring
task on occurrence j respectively. Here, the objective function
is essentially the statistical coverage of PU occurrences, which
is defined as the summation of probabilities of capturing the
occurrences that appear in Tstep.

TABLE II
GREEDY OPTIMIZATION PROBLEM WITH UNCERTAIN FUTURE

Given: Lj
i , CDFj , Ei for i ∈ [1, N ], j ∈ [1,M ]

sd, Tstep, p
Find: Aj

i , t0
j
i , t1

j
i

Maximize:
∑M

j=1

∑N
i=1 A

j
i × CDFj(t1

j
i − t0

j
i )

Subject to: (2),(8),(9), (10),(11),(12)

There are six constraints in the greedy optimization in Table
II. The first and the second one capture the sensing range of
each SU as in equation (2) and (8):

if Lj
i = 0, then t0

j
i = 0 and t1

j
i = 0,

for i ∈ [1, N ], j ∈ [1,M ]
(8)

The third constraint prevents overlapping of sensing tasks on
the same PU occurrence to prevent wasting energy, as shown
as:

if i 6= k, then t0
j
i − t1

j
k ≥ 0 or t0

j
k − t1

j
i ≥ 0,

for i, k ∈ [1, N ], j ∈ [1,M ]
(9)

The fourth constraint ensures that an SU is not assigned to
two monitoring tasks at the same time and also the inter-task
interval for an SU should be larger than the switching delay.
This constraint is formulated as:

if j 6= k, then t0
j
i − t1

k
i ≥ sd or t0ki − t1

j
i ≥ sd,

for i ∈ [1, N ], j, k ∈ [1,M ]
(10)

The fifth constraint represents the relation between t0
j
i and

t1
j
i . When assigning SU i to detect pattern j, t0

j
i should be

smaller than t1
j
i , and they should both be within the range of

Tstep, which can be expressed as:

if Aj
i = 1, then 0 ≤ t0ji < t1

j
i ≤ Tstep,

for i ∈ [1, N ], j ∈ [1,M ]
(11)

The last constraint is similar to (3), which is to ensure
that the energy consumption of each SU cannot exceed the
corresponding energy budget at the beginning of Tstep. The
formulation is shown as:

M∑
j=1

(t1
j
i − t0

j
i )× pi ≤ Ei, for i ∈ [1, N ], (12)

where Ei is computed by equation (7).

Fig. 5. An example showing how we divide the PDF into 7 portions. The
interval between 2 consecutive dash lines are a portion of σ.

C. Fast Heuristic Algorithm

The greedy optimization problem in Table II needs to be
solved repeatedly at the beginning of every Tstep. Unfortu-
nately, it is a mixed integer programming problem, which is
in general NP complete. Thus, solving it directly is impractical
due to its high computational complexity and the potential of
dealing with a large amount of SUs in a large geographical
scale. Thus, we propose a heuristic algorithm as a substitute to
directly solving the greedy optimization problem. In essence,
the heuristic algorithm is an approach that applies a rougher
but faster way of iteration to reach an quasi-optimal results
for the greedy optimization problem. In greedy optimization
method, we use the optimization techniques to find the assign-
ments that attain the largest coverage in the imminent Tstep
time, while in the heuristic algorithm, we design an iteration
method to quickly generate the assignments with limited loss
in coverage for this Tstep time.

Similar to greedy optimization, we run the heuristic algo-
rithm before the beginning of each Tstep time. The heuris-
tic algorithm has two steps: step 1 is to identify segments
as assignment units to simplify the PDF of each predicted
occurrence; step 2 is the segment-based SU scheduling.

Step 1: In step 1, we first divide the PDF of a PU occurrence
from the center into 7 sensing segments, and each segment
has a length of a standard deviation σ of the PDF as shown
in Figure 5. Assuming that PU occurrences follow a PDF
similar to normal distribution, which has been validated in
analysis of PU behaviors as shown in Figure 3, the probability
that an occurrence appears outside of the 7σ range can be
approximated as 0. Each segment is the smallest time unit
considered in our scheduling algorithm. Given the energy that
should be reserved for each SU at each Tstep, the goal of
our scheduling algorithm is to properly utilize the energy
within each Tstep to monitor as much segments as possible
for all pattern occurrences in Tstep. If each segment of every
occurrence has an assigned SU to monitor the corresponding
PU’s activity, then all PU activities will almost surely be
captured by our scheduling algorithm.

Step 2: In step 2, we assign SU’s monitoring jobs in unit
of segment. There are two scheduling cases for each segment:
(1) If there exists any SU that is capable of monitoring the PU
for the entire sensing segment, the task of this segment will be
allocated to a single SU. (2) For the segment with no feasible



assignment, we will use best effort assignment strategy.
For both cases, we first compute the relation Lj

i at the
beginning of Tstep. Based on Lj

i , we can obtain a list of
SUs which are close enough to detect a PU j’s signal. For
each segment of a PU occurrence, we further narrow down
the SU list to only include those with sufficient energy and
have no other on-going monitoring assignment to cover the
entire segment. If the resulted list is not empty, we have case
1 and use a metric rewardki,j for picking the best SU from
the list to monitor the target segment. The higher the value of
rewardki,j is, the more preferable that SU i is for monitoring
segment k of PU j’s occurrence. When we cannot find any SU
that has adequate energy or time to sense an entire segment, we
have case 2 and will use best effort strategy. In this case, SU
with the largest reward metric rewardki,j will provide its best
effort to cover as much of the segment as possible, and then
leave the rest of the segment to the SU with the second largest
reward and so forth, until the segment is entirely covered,
or there is no assignable SU left. Essentially, the two cases
described above ensures that we first try to assign a single SU
to monitor an entire segment before we resort to the best effort
assignment that assigns monitoring tasks with finer time span.
This preference for larger time unit in assignment is because an
SU needs to pay the cost of switching delay. Thus, assignment
of an SU to monitor a too small time period is not efficient
in terms of monitoring time management.

For both cases, we use a metric rewardki,j for picking the
best SU from a list of SU candidates to be assigned to monitor
the target segment. This rewardki,j is designed to be a product
of three factors as follows:

rewardki,j =W k
i,j × Ei × valueji , (13)

where W k
i,j denotes SU i’s relative profit of sensing the

segment k of PU j’s occurrence comparing to the choices
of monitoring the segments of other PUs’ occurrences; valueji
denotes how valuable is SU i’s potential monitoring service for
occurrence j comparing to the other possible choices of SUs
for this monitoring job. The calculation for energy budget Ei

follows equation (7), identical to that of greedy optimization.
W k

i,j is computed as below:

wk
i,j = probkj × L

j
i ; W

k
i,j = wk

i,j −maxW k
j if w

k
i,j > 0

(14)
where probkj is the probability that an PU j’s occurrence
appears in segment k , wk

i,j denotes the absolute profit (i.e.
chance of capturing an occurrence) if we assign SU i to
monitor segment k of PU j, and maxW k

j is defined as the
largest w value that can be obtained by SU i if SU i spends
segment k’s time to monitor other PUs occurrences instead of
PU j’s occurrence. Mathematically,

maxW k
j = max

l 6=j,m
wm

i,lL
l
iO

k,m
j,l ,∀i, j satisfying Lj

i = 1, (15)

where Ok,m
j,l = 1 if segment k of PU j’s occurrence time

overlaps with segment m of PU l’s occurrence time and
Ok,m

j,l = 0 for other cases. Essentially maxW k
j is a loss

that should be taken into account for relative profit calculation
because an SU cannot simultaneously monitor multiple PUs.
If an SU is allocated to monitor a segment of one PU, it will
lose the probability of capturing occurrences of other PUs.

The design of the valueji is based on the following rationale.
Assuming an SU i is able to hear more than one PUs’ signal,
the urgency of mandating SU i to monitor a particular PU
j’s segment is related to the number of SUs within the area
that can also sense PU j’s signal. If many SUs can detect PU
j’s signal, then it is not a big issue to arrange SU i to sense
other PUs’ signal since it is easy to find alternative SUs for
the monitoring task of PU j. Thus, the valueji will be small
in this case. Based on this reasoning, we define:

valueji = 1− Xj∑
l∈S(i)Xl

(16)

where Xj denotes the number of SUs that can hear PU j’s
signal and S(i) is defined as the set of PUs whose signal can
be heard by SU i.

At the beginning of each Tstep, we determine which case
will be encountered and then perform the reward metrics
computation. The procedure will be repeated for each Tstep.

V. UNKNOWN PU PATTERN MONITORING

So far, we only mandated SUs to monitor the PU patterns
occurred in the past. However, historical information will
grow inaccurate as time goes by due to PUs’ spectrum access
behavior change and mobility, which will finally degrade the
performance of our proposed system. To keep our system
updated with PU dynamics, we also need to discover new
PU patterns, which is defined as pattern exploration in [9].

Using unknown pattern to represent new PU patterns that
are not included in our existing pattern dataset, our design
aims to watch as many unknown patterns as possible while
stably monitoring the occurrences of existing patterns.

A. Heuristic Algorithm based on SU Location

Suppose that after finishing existing pattern detection at
the beginning of each Tstep, some SUs may still have extra
remaining energy and idle time to be utilized for detecting un-
known PU occurrences. Optimal assignments for this scenario
can be generated using the same optimization formulation as
in Table I of Section IV-A, except that occurrence i in this
formulation means unknown pattern occurrence i. Again, the
optimal assignments strategy assumes an ideal situation where
pattern occurrence sequence and the locations of all SUs and
PUs are known beforehand.

Due to the optimal assignments’ unrealistic assumptions, we
propose another heuristic algorithm for unknown PU pattern
monitoring. The core of this algorithm lies in: (1) Without
any prior information on new PU patterns, SUs randomly scan
the spectrum to capture new PU occurrences. (2) If any new
occurrences are detected, the central controller will quickly
model the distribution of intervals between new occurrences,
so that future monitoring job assignments on new PU patterns
can be more targeted and accurate.



The design of the heuristic algorithm has five parts: group-
ing SUs based on locations, deciding SUs’ monitoring sched-
ule, random monitoring, targeted monitoring, and updating
patterns in existing pattern sets.

1) Group SUs based on locations: Intuitively, different
SUs will have high correlation in sensing outputs if they
are geographically close enough. We define the SUs whose
sensing ranges have adequate overlap as one group, closeby
SUs belonging to the same group are considered to monitor
the same area. We treat the SUs in a group as an aggregate for
monitoring jobs to reduce energy consumption of each SU.

There is a trade-off between energy consumption and sens-
ing accuracy when choosing the overlap threshold. On one
hand, smaller overlap threshold may result in a loss of sensing
coverage since the algorithm may not detect new PU signals
that only occurred in the non-overlapping area. On the other
hand, the number of SUs in a group decreases as the threshold
increases, which means an SU will need to spend more energy
and time to handle this group’s monitoring tasks. In this paper,
we set the overlap threshold to 80% of a device’s sensing
range. This value is adjustable based on the desired level of
trade-off between energy consumption and sensing accuracy.

2) Decide SUs monitoring schedule: For each group, we
need to decide the monitoring schedule of SUs inside it
to maximize the aggregated monitoring time. There are two
problems: How much usable time will this group have? How
much time and energy each SU should contribute to this
group? For each Tstep, the assignable time of a group is
determined by the idle time and energy of its SUs. Our goal
is to assure as much usable time as possible for that group.
Therefore, we set a metric Ruser in group as the criterion to
allocate SUs’ idle periods to the groups. A SU is more valuable
to its group if it has larger Ruser in group compared to other
SUs. This metric R is determined by the sensor priority Sp
and energy budget Ei of SU i as:

Ruser in group = Spi × Ei (17)

Sensor priority is a parameter characterizing the impor-
tance of an SU’s monitoring service in a group, which is
related to the number of SUs in that group. If a group contains
many SUs, it is trivial not assigning a particular SU to sense
an occurrence since it is easy to find alternative SUs for that
monitoring job. The priority of SUs in a group is computed as
the reciprocal of the group’s SU number. If an SU is included
in multiple groups, it will be treated as different devices as in
computing the corresponding metrics. For example, if SU 1 is
in both group A and B, suppose group A and B has 2 and 3
SUs respectively, the rewards of SU 1 in group A and B are
calculated as R1 in A = 1

2 × E1 and R1 in B = 1
3 × E1.

In each step, all the values of Ruser in group are sorted in a
descending order. Then, we allocate the idle time of each SU to
its corresponding group following this list of Ruser in group.
Specifically, when taking an entry of Ri in A in the list, we
first check if Tstep is totally covered in group A. If the answer
is yes, we skip to check the next entry in the list. Otherwise,

we allocate SU i’s idle time for monitoring job in group A.
The process continues until Tstep is totally covered in every
group or no usable time or energy of the SUs is left. Time
segments of different SUs assigned to the same group should
not be superposed as to reduce energy consumption.

3) Random monitoring: Note that there is no prior knowl-
edge on where and when a new pattern will appear. Hence,
we uniformly divide a groups’ sensing time into multiple
small pieces and randomly select a frequency band to sense
during each time piece. If any unknown occurrences are found,
we record the time and frequency of those occurrences, and
the locations where the SUs stayed when detecting the new
occurrences. We also cluster the occurrences into different
patterns. This stage creates the unknown pattern dataset.

4) Targeted monitoring: After capturing some new PU
occurrences, we can enter the targeted monitoring stage, where
we compute the mean and deviation of each new pattern’s
intervals to model its statistic distribution.

When a new pattern just starts to occur, it is more likely
that there is not enough occurrence observations to accu-
rately characterize the new pattern’s occurrence distribution.
However, we can see from the observations in Figure 3
that the distributions of different pattern intervals are usually
approximate Gaussian distributions. Therefore, when pattern
samples are inadequate, we model the pattern intervals as
Gaussian distributions using computed mean and deviation.
If only two occurrences of a pattern are found, we use the
interval between these two occurrences as the mean value, and
choose the average deviation of all kinds of patterns within
the dataset as the new pattern’s predetermined deviation. If
just one occurrence of a pattern is detected, we use both the
average mean and deviation of all kinds of patterns as the
preset values for modeling. The mean and deviation value will
be updated after each Tstep.

We will be able to leverage the rough pattern interval models
to predict where and when other new occurrences of this PU
pattern will appear in the next Tstep. Heuristic algorithm in
Section IV-C is adopted here to generate a group’s sensing
scheduling, except that the ”worker” in this section is changed
from SUs to groups.

After group scheduling is finished, we again do the random
monitoring by uniformly dividing each group’s remaining
sensing time and randomly choosing a frequency band to
monitor, in order to explore more unknown PU patterns.

5) Update patterns in existing pattern sets: There are two
updates in existing pattern sets at the end of each Tstep: (1)
we will add newly discovered patterns to the pattern sets, and
update the mean and deviation value of each pattern interval
distribution. We will check if the location where we discovered
a PU pattern is moving. If it is, the location information will
be updated. (2) we will remove PU patterns that have not
occurred for a long time from the sets.

Unknown pattern monitoring algorithm ensures that our
system can start to function even when no historical data is
provided. It gradually creates the pattern set and improve its
monitoring intelligence based on the past data. New pattern



exploration is not isolated from our scheduling algorithm. The
scheduling algorithm always uses up-to-date spectrum infor-
mation obtained from both existing and unknown monitoring
algorithms, thus is not wedded to a wrapped dataset.

B. Update Relations between PU and SU Locations

In all previous discussions of existing and unknown pattern
monitoring, we assume that we know PU and SU locations so
that we can determine if an SU can hear a PU’s signal. An
SU’s location is easy to obtain from its location updates which
are commonly performed by modern-day mobile devices. The
location of PU, on the other hand, is not readily available .
In this section, we will explain how we obtain and update the
location information of PU.

During unknown PU pattern monitoring, the initial random
assignment of monitoring jobs ensures that the occurrences of
a new PU pattern will likely be detected by different SUs.
These SUs are at different locations and the sensing results of
these SUs can then be used to localize the PU through radio
localization techniques such as trilateration and proximity [22].

When a new PU pattern becomes stably detected at pre-
dicted appearing times, it becomes an existing pattern.

At this stage, it is possible that only one SU is assigned
by the existing PU pattern monitoring algorithm to monitor
this pattern. Overtime, a mobile PU may drift away from
its old location and the SU assigned by existing PU pattern
monitoring algorithm using its old location may not hear the
PU’s signal anymore. If the unknown PU pattern monitoring
algorithm in other SUs picked up the PU’s signal before this
happens, we know that this known PU has moved its location
and can use radio localization techniques to recompute its new
location. If the unknown PU pattern monitoring algorithm did
not pick up the moving PU’s signal before it went off the
radar, this PU is considered disappeared. However, the PU
is not lost permanently. It may soon get picked up by the
unknown pattern detection algorithm at some SU as a new
pattern and its new location will be identified again following
the procedure of the previous paragraph.

VI. EXPERIMENT

In this section, we evaluate the performance of our crowd-
sourcing based spectrum monitoring scheme using simula-
tions that are based on real world data. We did two sets
of simulations. The first set examines the case where all
patterns are stable and there is no unknown pattern, and the
second set evaluates the cases where there are many unknown
patterns. In the first set of simulations, we evaluated the
greedy optimization method and heuristic algorithm and use
the ideal optimal assignments as the benchmark. In the second
simulation set, we evaluated the performance of heuristic
algorithm with the ideal optimal assignments as a higher bound
and a naive random detection method as a lower bound.

In our simulation, 44 types of real PU patterns in TV
frequency bands are extracted from data in Cityscape Obser-
vatory spectrum databases [4], where 34 of them are used as
existing PU patterns that are present from the beginning of an

Fig. 6. A trace-driven simulation. (dash-dot lines: taxi movement trajectories.
circles: PUs.) We also add movements (yellow lines) to 3 PUs.

simulation, and another 10 patterns start in the middle of the
simulation to act as unknown PU patterns. We also artificially
makes 3 of the existing PU patterns to be from mobile PUs
since the mobility of PUs should also be under consideration.
The mobility of the PU is reflected in the changes of signal
strength in SU’s sensing results. We have to add artificial
mobility of PU into the spectrum monitoring results because
such sensed signal strength changes were not observed in
existing spectrum dataset. Hence, we manually add the traces
to some PUs to simulate the case where a PU is also moving.
Figure 1 shows 4 examples of the PU patterns.

We utilize 100 taxi trajectories from mobility traces dataset
of taxi cabs in San Francisco [23] to represent SU mobility
traces. Figure 6 shows a smaller scale illustration of our
simulation setting with 60 taxi traces and 10 PU deployment.

To ensure our evaluation is based on realistic energy con-
sumption on mobile devices, we utilized a Device Analyzer
dataset from University of Cambridge [24] which contains: (1)
times when a phone is turned on and off; (2) times at which the
phone is charging; (3)the real time battery level and voltage,
etc. Hence, we are able to compute from this dataset the real
energy consumption of phone applications, which can be used
for computing (7) in greedy optimization method and heuristic
algorithm. For the energy consumption of spectrum sensing,
according to [7], SU devices being active on sensing draws
about 1.5W as the monitoring power and the sensing duration
dt is set to be 5ms based on [9]. We also set the frequency
switching delay sd in our simulation to 50ms based on the
empirical measurement in [7].

A. Existing PU Pattern Monitoring

In this experiment, we simulated a crowdsourcing spectrum
monitoring scenario of 2 hour duration, in which 34 PUs
transmitting known patterns are deployed among 10 to 100
SU traces. A Tstep lasts for 5 seconds. At each Tstep, SUs
report their locations to the central controller.

First, we compare existing pattern coverage, defined as

EPcoverage =
DetectedExistingPatternNumber

TotalExistingPatternNumber
.

(18)



among optimal assignments, greedy optimization method and
fast heuristic algorithm in Figure 7. In the experiment, the SU
number is increased from 10 to 100 to see the changes in the
coverage. For each parameter setting, we run 10 independent
random simulations and show the average results in Figure
7. From the figure, it can be observed that the coverage is
apparently increasing with the growth of SU numbers. The
performance of the greedy optimization method is slightly
superior to that of the heuristic algorithm, since a heuristic
algorithm cannot really guarantee an optimal solution.

Fig. 7. Existing pattern coverage comparison. (Yellow line: Optimal assign-
ments. Red line: Greedy optimization. Blue line: Heuristic algorithm)

Figure 8 further shows the total energy consumption of
our spectrum monitoring algorithm in the above experiment,
which is the summation of energy consumption of spectrum
monitoring from all the SUS.

The total energy (presented in solid lines) consumed by
the heuristic algorithm and greedy optimization are very close
to each other, demonstrating the effectiveness of the heuristic
algorithm. We also plot an energy ratio (presented in dash-
dot lines) to show how much energy spectrum sensing really
consumed against the total usable energy budget, which is
defined as:

EnergyRatio =
TotalUsedEnergyForSensing

TotalUsableEnergyBudget
(19)

From Figure 8, it can be seen that as the number of SUs
increases, more total energy is used to get better coverage of
PU signals, while the per SU’s energy consumption actually
decreases since more sensors are sharing the monitoring
responsibility.

Figure 9 shows how the number of SUs available for spec-
trum monitoring jobs changes over time. An SU is available
if it has extra energy to monitor spectrum in the next Tstep
time. We define the available SU ratio as:

AvailableSURatio =
AvailableSUNumber

TotalSUNumber
, (20)

and record its changes in each Tstep. As shown in Figure
9, the available SU ratio of heuristic algorithm fluctuates.
This is due to the randomness in the energy budget, which
is caused by the randomness in other applications’ energy
consumption. However, we do not observe drastic decrease
in available SU numbers, because the energy budget used by

Fig. 8. Energy consumption evaluation. Left side shows the total energy
consumption in J. Optimal assignments, greedy optimization and heuristic al-
gorithm are presented using solid blue, red and green lines, respectively. Right
side shows the energy ratio of heuristic algorithm and greedy optimization,
which are presented using purple and orange dash-dot lines, respectively.

spectrum monitoring at each Tstep is portioned based on an
SU’s past energy profile.

Fig. 9. Changes of available SU number in heuristic algorithm across time.

B. Unknown PU Pattern Monitoring

In this set of simulation, we add an additional 10 unknown
patterns besides the 34 existing patterns. The other settings of
the simulation is the same. As a reference, we run a random
detection algorithm, which divides available sensing time of
each SU uniformly into small time chunks of 50 ms in length.
Each time chunk is assigned to monitor a random frequency
band and the algorithm is not able to learn from history.

First, we show an unknown PU pattern coverage compar-
ison over optimal assignments, SU location based heuristic
algorithm and the random detection method. The coverage
represents the method’s capability of capturing new patterns.
This unknown pattern coverage is defined as:

UPcoverage =
DetectedUnknownPatternNumber

TotalUnknownPatternNumber
(21)

As in Figure 10, the output of random detection method is
barely 25% percent of the output of our heuristic algorithm.
This is because our heuristic algorithm can learn from history
to assign the limited SU monitoring time on the most likely
frequency and time of PU occurrence. There is still a gap
between our heuristic algorithm and the ideal optimal assign-
ments since the optimal assignment unrealistically assumes
known future, while the heuristic algorithm is designed with
uncertain future.

Since unknown PU pattern monitoring consumes energy,
it may affect future energy budget for existing pattern mon-
itoring. Thus, we compare existing pattern coverage of our



Fig. 10. Unknown pattern coverage comparison. Blue line: Optimal assign-
ments. Yellow line: Heuristic algorithm based on SU location. Red line:
Random detection.

heuristic algorithm with and without the unknown pattern
monitoring part. Figure 11 shows the results. There is indeed a
small coverage drop after adding unknown pattern monitoring.
However, we believe that this small drop in existing pattern
coverage is worthy to ensure our system can detect dynamic
PU patterns as well as mobile PUs.

Fig. 11. A comparison showing how the unknown pattern monitoring (UPM)
affects existing PU pattern coverage.

VII. CONCLUSION

This paper presents a novel crowdsourcing based spec-
trum monitoring system, which can intelligently schedule
the monitoring tasks for masses of portable mobile devices,
by leveraging the PU occupancy patterns. We propose three
algorithms based on practical spectrum usage data, two for
existing pattern monitoring and one for unknown pattern
monitoring. Simulation results show that our system achieves
a high spectrum monitoring coverage. Our system is also ca-
pable of running efficiently even when no historical spectrum
information is available.
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