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Abstract—In dynamic spectrum access (DSA), Environmental
Sensing Capability (ESC) systems are implemented to detect
the incumbent users’ (IU) activities for protecting them from
secondary users’ (SU) interference as well as maximizing sec-
ondary spectrum usage. However, IU location information is
often highly sensitive and hence it is preferable to hide its true
location under the detection of ESCs. In this paper, we design
novel schemes to preserve both static and moving IU’s location
information by adjusting IU’s radiation pattern and transmit
power. We first formulate IU privacy protection problem for static
IU. Due to the intractable nature of this problem, we propose
a heuristic approach based on sampling. We also formulate
the privacy protection problem for moving IUs, in which two
cases are analyzed: (1) protect IU’s moving traces; (2) protect
its real-time current location information. Our analysis provides
insightful advice for IU to preserve its location privacy against
ESCs. Simulation results show that our approach provides great
protection for IU’s location privacy.

Index Terms—DSA, ESC, IU location privacy

I. INTRODUCTION

The new Citizens Broadband Radio Service (CBRS) is
promulgated by the Federal Communications Commission
(FCC) for dynamic spectrum sharing between government and
commercial users in the 3500-3700 MHz (referred to as 3.5
GHz band) [1], [2]. This new sharing paradigm allows CBRS
devices (CBSD), which are also called secondary users (SUs),
to opportunistically use the 3.5GHz band in locations and
times where federal incumbent users (IUs) are not using this
band. A spectrum access coordination system, called SAS, is
used to grant spectrum access permissions to SUs based on
the location and communication activities of IUs.

However, the prosperity of such a federal-commercial spec-
trum sharing system is contingent on how privacy issues of
federal IUs are handled. On one hand, for the SAS system
to accurately grant SUs spectrum access permissions, it must
leverage the presence information of IUs. On the other hand,
IUs in the 3.5 GHz band are mostly military systems, like
U.S. naval radars. Locations of these IUs are highly sensitive.
Directly revealing IU location information to the SAS system
will compromise incumbents operation security (OPSEC).
These conflicting requirements create a significant challenge
for designing CBRS in 3.5GHz.
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From 2015, the Wireless Innovation Forum (WINNF) has
been developing requirements to preserve OPSEC as required
by FCC for operation in 3.5GHz band [3]. The current
proposal from FCC uses Environmental Sensing Capability
(ESC) system to mitigate this OPSEC challenge. ESC is a
distributed network of sensing devices used for the protection
of incumbent users (IUs) from CBSDs’ transmissions [4]–[6].
ESC systems measure the received signal strength (RSS) of
IU signal and provide such information to SAS. Deriving the
IU presence information from the RSS information, SAS then
allocates the unused frequency bands to CBSDs so that it can
guarantee that CBSDs do not have mutual interference with
IUs [7]. Since the location and activity information of IUs are
not directly revealed to SAS, such an ESC-based system can
provide some simple and basic OPSEC protection.

However, we argue that for highly sensitive IU operation
data, the OPSEC protection in ESC-based system is not
enough. This is because ESC-based system still sends IU
sensing results (i.e. RSS measurements) to SAS. Such sensing
results can be used to derived IU locations through RSS-based
radio localization. This can create potential OPSEC violation
if either SAS or ESCs are compromised by adversaries.

In this paper, we address the above OPSEC problem in
3.5GHz ESC-based DSA system through the use of smart
antenna on the IU side. Our design uses the fact that the
location and configuration of each ESC sensor are registered
at FCC, which then are posted publicly. Leveraging these
public information, our scheme tunes the antenna gains of
an IU transmitter dynamically, such that it creates uncertainty
in an IU’s location even when an adversary obtains the ESC
sensing results and uses RSS-based localization scheme to
derive the IU’s location. We provide a thorough theoretical
analysis on how IU can maximize its location uncertainty,
assuming that an adversary has full access to all ESCs sensing
results. Our scheme ensure that even when both SAS and
ESCs are compromised, the location privacy of IUs are still
protected. Our scheme can be used to protect location privacy
of both mobile and static IUs.

The remainder of the paper is organized as follows. Related
work is given in Section II. Section III introduces the general
system models for static IU and moving IU. Section IV pro-
vides the formulation and our approach for static IU location
privacy preserving problem. Formulation and approaches for



moving IU’s location privacy preservation is described in
Section V. Experimental results are reported in Section VI.
Finally, Section VII concludes the paper.

II. RELATED WORK

Most of the existing works that focus on IU location privacy
protection either add noise or distortion on IU location data
or encrypt the location data using homomorphic cryptosystem
before these data are sent to the SAS system [8]–[11]. How-
ever, these works are not applicable in 3.5GHz DSA system
because IU location data is not sent to SAS in 3.5GHz. In-
stead, SAS obtains received signal strength indication (RSSI)
measurements of IU signals from the ESC.

In an RSS-based localization system, there are multiple
signal receivers placed at specific locations which measure
the RSS of wireless nodes and report the measurements to the
system [12]. These signal receivers are referred as ”anchors”.
Localization algorithms are then used to compute location
estimates based on anchor measurements. In DSA scenario,
ESCs are the anchors measuring the RSS of incumbent trans-
mitters and may potentially use this information to localize
the transmitter. As previously discussed, IU location privacy
is often highly sensitive, and thus the question becomes: is it
possible for an IU to make its location or moving trajectory
undetected even under ESCs’ localization measurement?

Fortunately, most of the robust RSS based localization
schemes all have limited effectiveness no matter what statisti-
cal methods they use [13]. In addition, [14] has shown that it
is possible to spoof the location of a radio transmitter through
tuning its antenna patterns. However, [14] assumes that the
radio localization system believes the targeted transmitter is
using omni-directional antenna and the localization system is
unaware that the transmitter can tune its antenna pattern. In
addition, [14] does not provide any strategy in terms of how a
radio transmitter can best hide its location. Our scheme, on the
other hand, does not rely on the assumption that the adversary
is oblivious to the IU’s capability of radiation pattern tuning.
Our scheme also provides best privacy-protection strategy for
both static and mobile IUs.

III. GENERAL SYSTEM MODEL

A. Attack Model

The general attack model for IU privacy in 3.5GHz is
illustrated in Figure 1. A moving IU transmitter and multiple
ESCs are distributed in a certain area. ESCs measure the RSS
of IU transmission. IU can control its radiation pattern so that
it can tune its antenna gains at different directions subject
to the constrain of its antenna capability. The adversary has
full access to all ESC sensing results and knows the IU’s full
capability in tuning radiation pattern. The goal of the adversary
is to localize and track the IU.

B. Location hiding using radiation pattern tuning

The design of our privacy-protection scheme is based on
the following observation. If the RSS readings at ESCs for an
IU at location A are the same as the RSS readings for the IU

Figure 1. General system model.

at location B, there is no way for an adversary to differentiate
these two locations no matter how he analyzes the data. Since
both A and B can be the IU’s possible locations, this lowers the
chance of finding this IU’s location by half. Thus, by creating
a large amount of possible locations that satisfy the above
condition, an IU can greatly increase its location uncertainty
and hence avoid being localized by the adversary.

To create such a large number of possible locations, an IU
cannot use conventional omni-directional antennas with fixed
transmit power. This is because the path loss from IU location
to all ESCs will be different from the path loss from any other
locations as long as the distance between them are different.
Uniform transmit power to all directions cannot mask such
location-dependent uniqueness from ESC sensing results.

Thus, in our scheme, we propose that a privacy-sensitive IU
uses more advanced antenna designs, such as smart antenna
that can electronically tune its radiation pattern or mechanical
rotating directional antenna that can adjust its transmit power
towards different directions. These advanced antenna designs
are commonly found in IUs in 3.5GHz, which are often
military radar systems. They can vary their transmit power to
different directions, subject to hardware restrictions on their
functionality, to mask the unique path loss characteristics
of its location, and hence create ambiguity in ESC sensing
results. Essentially, through tuning of antenna gains to different
direction, an IU in location x with radiation pattern A can
create the same ESC sensing results as an IU in a large set of
other possible locations with various radiation patterns. Our IU
privacy preservation scheme seeks to find the optimal antenna
tuning strategies that maximize the set of possible locations.

In the remainder of this paper, without loss of generality,
we assume that the IU is equipped with a circular phased array
antenna. The phased array antenna consists of Nant isotropic
elements placed over a circle with radius R and the ith antenna
element is located with the phase angle φi. The radiation
pattern of this circular phased array antenna is expressed as
[15]:

g(θ,ω) =

Nant∑
i=1

ωi exp[j
2π

λ
R cos(θ − φi)] (1)

where θ represents the direction, λ is the signal wavelength and



ω = [ω1, ω2, ..., ωNant ]
H is the complex weight vector which

can be tuned to change the radiation pattern, and generally
these weight vectors have limited range due to hardware and
functionality restrictions hence ωmin ≤ ω ≤ ωmax.

For simplicity, let:

hk =


exp[j 2πλ Rcos(θk − φ1)]
exp[j 2πλ Rcos(θk − φ2)]

...
exp[j 2πλ Rcos(θk − φNant)]

 (2)

Circular antenna array is used in this paper as an example
for problem illustration because it can produce flexible asym-
metric radiation patterns and easily deflect a beam through 2π
[14]. However, our analysis is not restricted to any specific
antenna model. We can plug different antenna models into the
analysis by replacing Equation (1) with their corresponding
radiation functions. For example, Dolph-Tschebyscheff array
antenna can use radiation pattern function:

g(θ,ω) =
∑Nant/2
i=1 ωicos[(2n− 1)u],

when Nant is even

g(θ,ω) =
∑(Nant−1)/2
i=0 ωicos[2nu],

when Nant is odd
u = π

λd cos(θ/2)

(3)

to replace Equation (1).
For mechanically rotating directional antenna, we can use

radiation pattern:

g(θ,ωθ) =

Nant∑
i=1

ωθ,i · I(θ) (4)

to replace Equation (1). Here, θ denotes the antenna’s rotating
angle, ωθ is the antenna weights under θ, and I(θ) is an
indicator function expressed by:

I(θ) =

{
1, if φj ≤ θ ≤ φj+1,∃j ∈ [1, · · · ,M − 1]
0, otherwise

(5)

The antenna’s rotating angle is divided into M parts, each of
which is denoted by (φj , φj+1), j ∈ [1,M − 1]. To control its
directional antenna gain and hence change the RSS readings
at ESCs, IU tunes the antenna weights when it rotates to the
direction of each ESC between corresponding (φj , φj+1).

C. Radiation pattern tuning under radar’s performance re-
quirements

The performance requirements for IU radars vary a great
deal based on their specific services, such as range or angle
determination and target tracking. Without loss of generality,
this paper focuses on tracking radar as an example to show that
the proposed radiation pattern tuning strategy will not affect
incumbent radar’s performance.

Two required factors in tracking radar systems are prob-
ability of detection PD and probability of false alarm Pfa
under a specific range. Given the required PD and Pfa, the
acceptable signal-to-noise ratio (SNR) for radar receiver can

be generated using many approximations. One very accurate
model proposed in [16] is:

PD ≈ 0.5× erfc(
√
−lnPfa −

√
SNR+ 0.5) (6)

Considering both noise and interference, the radar’s signal-
to-interference-noise ratio SINR can be computed as [17]:

SINR =
PS

(1 + 10
INR
10 )× PN

(7)

where PS is the received signal power; PN is the noise
power; and INR is the interference-to-noise ratio at the radar
receiver, which is specified to be at most −6dB by regulatory
authorities [18].

Apparently, changing the radar’s transmit power and an-
tenna radiation pattern will affect its SINR and will possibly
degrade the radar’s performance. To avoid this situation, in this
paper, we ensure that all the tuning strategies will not break
the PD, Pfa and SINR requirements by adding a constraint
on the required minimum SINR in our problem formulation.

IV. LOCATION PRIVACY PROTECTION FOR STATIC IU

A simple model for preserving static IU’s location privacy is
presented in Figure 2, where the circles denotes ESC sensors,
the triangle is an IU at its true location and the square
represents a possible IU location where the IU can create
the same ESC sensing result as at the true IU location. The
shaded area is the union of all possible IU locations given
the ESC sensing result. PLk denotes the path loss between
an IU’s true location and the kth ESC, and P̂Lk denotes the
path loss between the possible IU location and the kth ESC.
Pt represents the IU’s transmit power at its true location. P̂ t
is the transmit power that the IU should use at the possible
location. Gtk and Ĝtk are the antenna gain of the IU at true
location and the possible location in the direction of kth ESC,
respectively.

Figure 2. Model for static IU.

A. Problem Formulation

To understand how the IU can tune its transmitter to force
the adversary to generate the largest possible IU area given
ESCs’ sensing outputs, we divide the analysis into two parts.



First part is from the adversary’s perspective to compute the
area of possible IU locations; second part is for IU to control
the size of this area by tuning the transmit power and radiation
pattern or rotating directional antenna gain. As in Figure 2,
the space is segmented into grids to simplify the procedure of
contouring the possible location area. Each grid is represented
by its center position.

1) From adversary’s perspective: Suppose the space is
uniformly divided into N grids. There are K ESCs and their
locations are denoted by (xk, yk), k = 1, 2, ...,K. The true
location of the IU is (x, y). Each ESC will have a RSS reading
received from the IU. The received power at the kth ESC from
the IU at true location (x, y) is Prk, and the received power
at the kth ESC if the IU is at the ith grid li is denoted by
P̂ ri,k. The < ω̂, P̂ t > tuple represents a feasible combination
of antenna weight vector and transmit power that generates a
P̂ ri,k approximately the same as Prk if IU locates at grid li.

After obtaining Prk from ESCs, adversaries will determine
how many grids are possible IU locations. To do this, an
adversary traverses every grid li to check whether, if the
IU is at li, there exists a < ω̂, P̂ t > tuple that makes
every P̂ ri,k approximate to the corresponding Prk within
a small noise threshold δ. If the solution exists, this grid li
will be determined as a possible IU location and the number
of possible locations NpossibleLoc will be increased. This
procedure is illustrated in Table I, where Z is the set of of
the possible locations of the IU.

Table I

From an adversary’s perspective:
given Prk, ∀k = 1, 2, · · · ,K
for each li, ∀i = 1, 2, · · ·N

find < ω̂, P̂ t >:
ω̂ ∈ [ωmin,ωmax], P̂ t ∈ [Ptmin, P tmax]

that satisfy:
∣∣∣Prk − P̂ ri,k(ω̂, P̂ t)

∣∣∣ ≤ δ,
∀k = 1, 2, · · · ,K; i = 1, 2, · · ·N

if solution exists
NpossibleLoc = NpossibleLoc + 1
Z = Z ∪ li

P̂ ri,k(ω̂, P̂ t) in the formulation is computed by:

P̂ ri,k(ω̂, P̂ t) = P̂ ti + Ĝti,k(ω̂)− PLi,k +Gr − Lr (8)

where P̂ ti is what the transmit power of the IU should be
if it is located at li and P̂ ti ∈ [Ptmin, P tmax]. Here, Ptmin
and Ptmax respectively denote the minimum and maximum IU
transmit power. Gr and Lr are the gain and loss at the receiver
side. Ĝti,k(ω̂) denotes the feasible antenna gain of the IU at
li towards the direction of kth ESC, which is calculated by:

Ĝti,k(ω̂) = 10log10 |g(θi,k, ω̂)|2 (9)

where g(θ,ω) is the function of the antenna’s radiation pattern.
In Equation (8), the expected path loss PLi,k from the

center of li to the kth ESC is expressed as:

PLi,k = 20log10(
4π

λ
) + 10nlog10(di,k) (10)

where n is the path loss exponent, which is set to n = 2 in
this paper. di,k denotes the distance between li and the kth
ESC, and λ denotes the transmitted wave length. However,
our analysis is not constrained to this model. We can plug
path loss models with other geometric forms into the analysis
by replacing Equation (10) with their corresponding functions.

After traversing all the grids through the procedure dis-
cussed above, the adversary is able to depict an area of possible
locations for the targeted IU.

2) From IU’s perspective: Besides preserving its location
privacy, an IU first needs to complete its tasks (e.g. object-
tracking in this paper), hence any change it makes on transmit
power or antenna gain must ensure that SINR at radar receiver
should be no smaller the required minimum SNR (SNRmin).
To protect its location privacy, the IU tunes its transmit power
Pt and antenna weight vectors ω to control the RSS readings
at ESCs, and attempts to find a group of readings that ensures
the adversary to compute the largest area of IU’s possible
locations. Here, we assume that the IU knows the locations
of all surrounding ESC sensors, which are published by FCC
according to 3.5GHz regulation.

The above problem from IU’s perspective is formulated in
Table II. In Table II, for each li, if there exist two groups of IU
parameters, < ω, P t > for IU at true location and < ω̂, P̂ t >
for IU at li, that make the corresponding Prk(ω, P t) and
P̂ ri,k(ω̂, P̂ t) at ESCs approximately the same, and also satisfy
the SNR requirement in which SNRmin is the minimum
SINR for radar operation, the IU confirms this li to be
a possible IU location and increases the count of possible
locations N(ω, P t)possibleLoc. Finally, the IU can obtain a
set of < ω, P t > that maximize the N(ω, P t)possibleLoc, and
these < ω, P t >s are the optimal choices for IU’s transmit
power and antenna weight vector.

Table II

From IU’s perspective:
for each li, ∀i = 1, 2, · · ·N
find ω, Pt, ω̂, P̂ t:
ω, ω̂ ∈ [ωmin,ωmax], Pt, P̂ t ∈ [Ptmin, P tmax]
that satisfy: constraint 1: SINR(ω, P t) ≥ SNRmin

constraint 2:
∣∣∣Prk(ω, P t)− P̂ ri,k(ω̂, P̂ t)

∣∣∣ ≤ δ,
∀k = 1, 2, · · · ,K; i = 1, 2, · · ·N
if solution exists

N(ω, P t)possibleLoc = N(ω, P t)possibleLoc + 1
Z(ω, P t) = Z(ω, P t) ∪ li

ωopt, P topt = argmax
ω,P t

N(ω, P t)possibleLoc

Claim 1: The problem in Table II is NP-hard in general.
Proof: See Appendix A.

B. Solving The Problem

1) Approximation Algorithm: Since the problem of pre-
serving static IU’s location privacy formulated in Table II is
generally NP-hard, we cannot obtain the optimal solution by
directly solving it. Therefore, in this subsection, we introduce
a heuristic algorithm whose results approximate the optimal
solutions. In the next subsection, we will explain the worst



case where our heuristic algorithm is deviated from the optimal
solution. We will also provide an analysis on how to determine
whether the worst case will happen at given circumstances.

To find the optimal < ω, P t > s that maximize the number
of possible locations, instead of searching over continuous
variable spaces as in Table VIII, we uniformly sample each
variable into discrete points such that ω ∈ [ω1,ω2, · · · ,ωN1

]
and Pt ∈ [Pt1, P t2, · · · , P tN2 ]. We define a tuple Ui =<
ωn1 , P tn2 > (∀n1 ∈ [1, N1], n2 ∈ [1, N2], i ∈ [1, N1N2])
as a sampled IU transmit parameter setting. In this way, the
problem formulated in Table II is approximately converted to
the problem of finding the optimal Ui among all the sampled
discrete parameter settings. Next, we describe how to find this
optimal Ui that maximize the number of possible IU locations.

As in Table II, if a grid li is a possible IU location, there
must exist a real IU parameter Ui =< ωn1

, P tn2
> at the

IU’s true location and at least another IU parameter set Ûi =<
ω̂, P̂ t > for an IU located at li, such that both constraint 1
and 2 are satisfied in Table II.

To find the condition where such a Ui and Ûi pair exists, let
us first exam constraint 1. Note that Ui at the IU’s true location
must satisfy constraint 1 (the radar’s SNR requirement). In
addition, according to Equation (7), SINR ∝ PS , PS ∝
Pt +Gtarget(ω) +A, where A denotes all the other constant
parameters. Based on Equation (1), (3) and (4), we can further
see that for many commonly used antennas, Gtarget(ω) ∝ ω
where Gtarget(ω) denotes the antenna gain of IU towards
the direction of the target. Thus, SINR is monotonically
increasing with respect to Pt and ω. This means that constraint
1 directly restricts the feasible domain of Ui =< ωn1

, P tn2
>.

Essentially, for li to be a possible IU location, in constraint
1’s feasible domain of Ui, a pair of Ui and Ûi that satisfies
constraint 2 must exist.

Next, we find the condition that such a Ûi exist for a given
Ui in the feasible domain of constraint 1. Let us look at the
relation between P̂ r and Ûi =< ω̂, P̂ t > first. According
to Equation (8), P̂ r is monotonically increasing at P̂t and
ω̂. Hence, no matter which li is considered, the minimum
received power at kth ESC from li is found at minimum P̂t
and minimum ω̂, that is, min P̂ ri,k = P̂ ri,k(ωmin, P tmin);
and the maximum received power at each ESC is found
at maximum P̂t and maximum ω̂, that is, max P̂ri,k =

P̂ ri,k(ωmax, P tmax).
Due to the monotonicity of P̂ r at ω̂ and P̂ t, for a grid li,

the condition for Ûi to exist can be expressed as:

min P̂ ri,k − δ ≤ Prk(ωn1
, P tn2

) ≤ max P̂ri,k + δ (11)

∀k = 1, 2, · · · ,K. When this condition is satisfied, there must
exist at least one Ûi =< ω̂, P̂ t > for IU at li that satisfies
constraint 2, i.e.: ∀k = 1, 2, · · · ,K

P̂ ri,k(ω̂, P̂ t)− δ ≤ Prk(ωn1
, P tn2

) ≤ P̂ ri,k(ω̂, P̂ t) + δ
(12)

Based on the discussion above, we design a brute-force
algorithm in Table III that searches for the optimal tuple
Ui as follows. The algorithm iterates through all possible Ui

samples. For each Ui that is in constraint 1’s feasible domain,
the algorithm then iterates through all possible li locations.
For each li location, if Ûi that satisfies Equation (11) can be
found, li is a possible IU location and the algorithm increases
the count of possible IU location for Ui. Eventually, the Ui of
the maximum possible location count is identified.

Table III

Heuristic Algorithm:
suppose IU is at location (x, y)
for each li, ∀i = 1, 2, · · ·N

compute the possible minimum received power min P̂ ri,k and
maximum received power max P̂ ri,k at kth ESC by:
min P̂ ri,k = P̂ ri,k(ωmin, P tmin)

max P̂ ri,k = P̂ ri,k(ωmax, P tmax)
∀k = 1, 2, · · · ,K
for each tuple Ui = [ωn1 , Ptn2 ]
∀n1 ∈ [1, 2, · · · , N1], n2 ∈ [1, 2, · · · , N2]

compute SINR(Ui)
if SINR(Ui) ≥ SNRmin

compute Prk(ωn1 , P tn2 )

if min P̂ ri,k − δ ≤ Prk(ωn1 , P tn2 ) ≤ max P̂ ri,k + δ,
∀k = 1, 2, · · · ,K
/* count the number of possible locations
corresponding to each IU configuration */
N(ωn1 , P tn2 )possibleLoc = N(ωn1 , P tn2 )possibleLoc + 1
/* record the area of possible locations
corresponding to each IU configuration */
Z(ωn1 , P tn2 ) = Z(ωn1 , P tn2 ) ∪ li

(Z(ωn, P tn): possible IU area given ωn, P tn)
ωopt, P topt = argmax

ω,P t
N(ω, P t)possibleLoc

2) Worst case: Table III’s algorithm first samples the
variable spaces and then traverses all the tuples of sampled
variables for each li and each ESC to determine whether it is a
possible location for IU. If the variable space is sampled finely
enough, we can approach the optimal solution boundlessly.
Apparently, the accuracy of the heuristic algorithm is closely
related to the sampling interval. In this section, we define the
worst case for the algorithm and provide the relation between
the error and sampling interval.

The worst case occurs when the algorithm in Table III devi-
ates the furthest in its computation results from the algorithm
in Table II. This happens when all discrete samples of Ui in
Table III cannot satisfy the constraints, while feasible setting
of parameters do exist between sample intervals for algorithm
in Table II. In the following, we analyze the mathematical
conditions when the worst case happens.

Let us look at a simple scenario for the worst case. In
the worst case, for a sampled position li, we cannot find any
sampled parameter set Ui =< ωn1

, P tn2
> that makes li a

possible IU location in Table III. But, there exists at least a
Ui =< ωn1 + ∆ω, Ptn2 + ∆p >, that satisfies the conditions
for li to be IU’s possible location in Table II, where ∆ω,∆p
are small portions of the corresponding sample intervals. The
lengths of complete sample intervals are denoted as ∆pmax
and ∆ωmax respectively. Note that when ∆ω,∆p equal to
0 or a complete sample interval, the point at < ωn1 + ∆ω,
Ptn2 + ∆p > then becomes a sample Ui in Table III. For



example, Ui =< ωn1
+ ∆ωmax, P tn2

+ ∆pmax > equals to
tuple Ui+1 =< ωn1+1, Ptn2+1 >.

Given above assumptions, we have the following group of
inequalities for the worst case:

Prk(ωn1
, P tn2

) < min P̂ ri,k − δ
or

Prk(ωn1
, P tn2

) > max P̂ ri,k + δ
∀n1,m1 ∈ [1, N1], ∀n2,m2 ∈ [1,M1]

min P̂ ri,k − δ ≤ Prk(ωn1
+ ∆ω, P tn2

+ ∆p) ≤
max P̂ri,k + δ, ∃n1 ∈ [1, N1], n2,∈ [1, N2]

0 ≤ ∆p ≤ ∆pmax; 0 ≤ ∆ω ≤ ∆ωmax

(13)

Note that the above inequality does not include formulas
that are derived from constraint 1. This is because, due to the
monotonically increasing nature of PS in respect to Ui, if two
neighboring sample Ui and Ui+1 all fail constraint 1 in Table
III, then there does not exist any other Uj in their sample
interval that can satisfy constraint 1 in Table II.

To find the ∆ω,∆p that can solve inequalities (13), we
define a function fUi for a sample Ui as fUi(∆ω,∆p) :=
Prk(ωn1 + ∆ω, P tn2 + ∆p).

As discussed before, received power Prk at kth ESC is
monotonically increasing at Pt and ω. Hence, fUi(∆ω,∆p)
is monotonically increasing at ∆ω and ∆p. The maximum of
fUi(∆ω,∆p) is determined as

fmax = fUi(∆ωmax,∆pmax) = fUj1(0, 0),

where the tuple Uj1 = < ωn1 +∆ωmax, P tn2 +∆pmax >=<
ωn1+1, P tn2+1 >, and the minimum can be found at

fmin = fUi(∆ωmin,∆pmin = fUj2(0, 0).

where Uj2 = < ωn1
+ ∆ωmin, P tn2

+ ∆pmin >=<
ωn1

, P tn2
>. Hence fmax is obtained at Uj1, fmax =

Prk(ωn1+1, P tn2+1) and fmin is obtained at Uj2, fmin =
Prk(ωn1 , P tn2). According to the assumptions, there are three
cases for fmax and fmin:

1) fmin ≤ fmax < min P̂ ri,k − δ: since we cannot find
any fUi(∆ω,∆p) between fmax and fmin that satisfies
min P̂ ri,k− δ ≤ f0 ≤ max P̂ri,k + δ, the inequalities
are infeasible.

2) fmax ≥ fmin > max P̂ ri,k + δ: same as above.
3) fmax > max P̂ ri,k + δ and fmin < min P̂ ri,k − δ:

since fUi(∆ω,∆p) is continuous within [fmin, fmax],
there must be a set of solutions that satisfy min P̂ ri,k−
δ ≤ fUi(∆ω,∆p) ≤ max P̂ri,k + δ. Only in this case
the inequalities are feasible such that the worst case
happens.

Hence, for kth ESC, if all sample of IU parameter settings
cannot make li a possible IU location, whether a worst case ex-
ists between tuple Ui =< ωn1 , P tn2 > and its adjacent tuple
Ui+1 =< ωn1+1, P tn2+1 > can be examined directly using
the values of Prk(ωn1

, P tn2
) and Prk(ωn1+1, P tn2+1). If

the values satisfy the condition in the third case, we can say
that the worst case exists between ωn1 ,Ptn2 and ω̂m1 , P̂ tm2 .
Otherwise, it does not.

V. LOCATION PRIVACY PROTECTION FOR MOVING IU
So far, we discussed how to preserve IU location privacy

for a static IU. However, IUs like shipborne radars are often
mobile. It is also critical to protect their location privacy
even when they are moving. We consider two location privacy
cases for mobile IUs. The first case is to hide an IU’s real-
time current location and the second case is to hide an IU’s
entire moving trajectory. Hiding real-time current location
prevents the IU from being located at the current moment,
while hiding moving trajectory attempts to keep additional
information confidential, such as the IU’s past route and
moving direction. Same as in the static IU model, adversaries
have the capability to calculate the area where IU may appear
at each moment using both current and historical RSS readings
at ESCs. Meanwhile, they can also estimate the IU’s possible
moving ranges based on the feasible range of IU speed.

In this section, we present our algorithm that tunes an
IU’s transmit power and radiation pattern during movement to
optimally preserve its privacy. We assume that the IU knows
its future moving route, which is reasonable since a mobile
IU usually knows where it is going and hence can plan its
route beforehand. The design of our algorithm is based on the
relation between IU’s tunable parameters and the adversary’s
estimation of the possible moving traces of IU. We assume the
IU can adjust its transmit power and radiation pattern at any
moment subject to hardware restrictions on its functionality.

A. Location Privacy Model for Moving IUs

Model for moving IU is the same as in Figure 2 except that
the IU is mobile in this case. Consider a discrete time range
T = [t1, ..., tn], where each time slot ti is of the same size.
During time T , IU is moving along a planned route and ESCs
detect the IU’s signal and record the RSS readings at each
time slot. From these RSS readings, the possible IU area at a
time slot ti ∈ T can be computed and is denoted as Zi.

It is important to note that computing Zt is different from
Section IV’s computation of the area of static IU possible
locations. This is because the adversary has access to historical
RSS data and there is realistic upper limit on IU moving
speed. From the adversary’s point of view, the past possible
location area Zi−1 constrains the possible locations of IU
at current time ti because the distances between possible
locations cannot be larger than an IU’s maximum moving
speed times a time slot. For example, the shape of Z1 will
restrict the area of Z2, and the shrunken Z2 will further
impact Z3. Conversely, feasible area of possible IU locations
at current time ti (i.e. Zi) will also cause shrinking of the
possible IU area estimation for previous time slots. This
essentially means that the current Zi will also reduce Zi−1
and all the way to Z1, essentially restricting the size of the
past moving trajectory. The algorithm in Table IV shows how
the adversary can narrow down the possible location traces
of moving IUs through such correlation between historical
location estimation and current location estimation. In this
algorithm, the adversary assumes the maximum speed of IU
is ∆ per time interval.



An example in Figure 3 shows how adversaries generate
possible area for a moving IU using the algorithm in Table
IV. The procedure can be divided into three steps: (1) Step 1:
Based on Table I, an adversary uses the RSS readings obtained
from ESCs’ sensing results to compute the initial estimations
of Z1 and Z2 on IU’s possible area at time t1 and t2. (2)
Step 2: Since the past possible location area Zi−1 constrains
the possible locations of IU at current time ti, the adversary
update current estimation Z2 at t2 based on the past estimation
Z1 at t1. The blue area refers to the updated possible IU area
at time t2 and the gray area refers to the pruned old possible
IU area at time t2. It is no longer considered as possible area,
because the locations inside the gray area cannot be reached
by any locations in initial Z1 within a time slot due to the IU
speed limit. (3) Step 3: The gray area is removed from possible
IU area Z1 since the feasible IU area at current time t2 will
also impose an effect on feasible IU area of previous Z1. Based
on the 3 steps above, given a current time tn, the adversary
can obtain all the final possible IU area Zj , j ∈ [1, n].

Figure 3. An example showing how adversary generates possible areas for
moving IU.

Table IV

Adversary generates possible areas for moving IU:
At the current time tn:
Given the RSS readings at tn

Step 1: Compute initial estimation of Zn using RSS
readings according to Table I in Section IV.

Step 2: /* update current Zn by Zn−1 */
Zn = {li|li ∈ Zn and ∃lj ∈ Zn−1such that|li − lj | ≤ ∆}
Step 3: /* Update past location trajectory based on Zn*/
From tj = tn−1 to tj = t1:
Zj = {lk|lk ∈ Zj and ∃lu ∈ Zj+1such that|lk − lu| ≤ ∆}

With the above assumption on how an adversary leverages
historical ESC readings, the problem of maximizing the pri-
vacy protection for moving IUs must consider the correlation
between past moving trajectory and current location estima-
tion. Hence, selecting the optimal IU transmit parameters at
each time slot is not equivalent to finding one single global
optimal parameters for the entire time period. Instead, an
IU must dynamically tune its antenna patterns and transmit
power at each slot to defend its moving trajectory and current

location. Next, we will present our analysis about (1) how an
IU can hide its true moving trajectory; (2) how an IU can hide
its real-time current location.

B. Conceal IU’s Moving Trajectories

We know that an IU can change the RSS readings at ESC
side by adjusting its transmit power and radiation pattern,
so that it can control an adversary’s estimation on the area
of possible IU locations. Thus, assuming the IU knows its
future route, it can make a plan of how to adjust these tunable
parameters along its way to reduce the adversary’s probability
on finding out the IU’s true trace. We define this probability
as a summation of the reciprocal of the size of possible IU
area Zj (∀ j ∈ [1, n]) for every time slot tj in T . The problem
of concealing IU trajectory, thus, can be formulated as:

optωj , optP tj,j∈[1,n]
= arg min

ωj ,P tj ,j∈[1,n]

n∑
j=1

1

size(Zj(ωj , P tj))

(14)
The algorithm in Table V compute the above Equation (14).
Here, we assume the adversary will use the algorithm in Table
IV to compute Zj and the IU can estimate the RSS readings
at ESCs for each of its future location based on the published
ESC locations and some radio propagation model.

Table V

IU maximize the number of possible traces:
Step 1: Discretizes the IU’s future route plan into

a series of points, where a point Li corres-
ponds to the planed IU position at time ti.

Step 2: For each location point Li, run algorithm in
Table III to compute the set of Zi(ωn1 , P tn2 ),
which is the collection of possible location
areas for each possible IU configuration at
time ti. Denote the set as
Z̃i = {Zi(ωn1 , P tn2 )| for all (ωn1 , P tn2 )}

Step 3: For every possible sequence of IU parameter
tuning, which is denoted as
s = {(ωn1 , P tn2 )i|i = 1...n} ,
retrieve the corresponding sequence of Zi
and narrow down these Zi based on
Step 2 and 3 in Table IV.

Step 4: Pick the best sequence Sopt that satisfies
Equation (14) among all sequences.

C. Conceal IU’s Real-time Location

Consider that an adversary is using the algorithm in Table
IV to obtain the feasible area of possible IU locations at any
moment given the IU parameters. If the IU wants to best
conceal its location at a current time tn, it needs to find a
certain group of IU parameters that minimize the probability
on finding out its true location at tn, which can be formulated
as minimizing the reciprocal of Zn as follows:

optωn, optP tn = arg min
ωn,P tn

1

size(Zn(ωn, P tn))
(15)

An algorithm similar to the one in Section V-B can be used
to find the solution for this goal. The only change is in Step



4, where the metric of selecting the optimal tuning sequence
should be Equation (15) instead of Equation (14).

VI. SIMULATION RESULTS

In this section, we simulate the static IU and the moving
IU location privacy protection problem described in Section
IV and V to analyze the feasibility of our privacy-protection
scheme under different circumstances. We assume the IUs are
equipped with tracking radars. Our simulation confirms that
by adjusting its transmit power and antenna’s radiation pattern,
probability of the IU’s location being detected by adversaries
using ESCs’ sensing outputs can be reduced to a very low
level. We also analyze how different numbers of antenna
elements, noise thresholds, and ESC number will affect the
simulation results for preserving an IU’s location privacy.

Simulation results for static IUs using circular phased array
antenna are shown in Figure 4. The parameters used in this
simulation are Nant = 2 or 5, δ = 2dB, K = 4, the grid
length is set to 100m. The target of IU’s tracking radar is
located in grid (4, 104), which is approximately 10km away
from the IU. PD and Pfa are set to 0.96 and 10−6 at a range
of 60km. In Figure 4, the circle represents a true IU location,
the plus signs represent ESCs’ locations and the asterisks
represent possible IU locations computed by adversaries. We
can see that the true IU location is successfully hidden inside
the computed possible locations. It is not surprising that the
areas close around true location will have high probabilities
to be a possible IU location, and the simulation results proved
this speculation. However, there are many points very far away
from the true location that still end up as possible IU locations,
which shows the strong feasibility for preserving IU’s static
location privacy.

Figure 4. Examples showing maximized possible location area for static IU
when Nant = 2 and Nant = 5.

In our simulation of mobile IUs, we set the speed of IU
as between 0 to 2 (grid per time interval). Figure 5 shows an
example of possible IU locations at 6 consecutive points of
time while an IU is moving, where Nant is set to 2 and K
equals 4. As in each sub-figure, the IU is successfully hidden
within a bunch of possible IU locations, which is a positive
factor for protecting the IU’s location information. Though the
possible locations tend to appear around the true IU location,
many of them also exist in distant grids, which is another
positive factor to preserve moving IU’s location privacy.

Figure 6 (a) shows 10 randomly picked possible traces for
one IU’s real route (There are many more that we cannot

Figure 5. Maximal areas of possible IU locations at each point of time. The
crosses in all sub-figures denote the true IU locations, the plus signs denote
the ESC locations, and the other markers are computed possible IU locations.

show for figure clarity reason). We can see that merely using
2 antenna elements, an IU can still befog ESCs with many
fake traces.

Figure 6. Sub-figure (a) shows 10 randomly picked possible IU traces in
dash-dot lines and the IU’s real route in a sold red line. Sub-figure (b) shows
an example of the most dissimilar trace, ti, i ∈ [1, 6] denotes each time step.

The most dissimilar trace to the true IU route is presented
in Figure 6 (b). Similarity between two traces is measured by:

dist =

tn∑
t=t1

√
(L1t − L2t)2 (16)

where n is the number of time points of these two traces, and
L1t is the location of trace 1 at time t (t ∈ [t1, tn]), L2t is the
location of trace 2 at time t. As in Figure 6, the existence of
the possible traces that are far away from the true trace make
preservation of moving IU’s location privacy feasible.

Table VI shows the number of possible IU trajectories
computed under five different routes of the IU, and the amount
of possible trajectories varies much on different IU routes. The
maximal distance refers to the similarity between true IU route
and possible traces. It is computed by Equation (16). The total
distance between a true route and a possible trace within 6
points of time is as large as thousands. The average Euclidean
distance (max dist./6 time points) between true IU trace and
possible IU trace is usually larger than 200m.

Next, we assume an IU moves within 6 time steps, and
record the number of possible IU locations at last time step,
which can be regarded as the possible current locations for
the IU. We also record the number of possible IU traces along



Table VI
POSSIBLE IU TRACES COMPUTED UNDER 5 DIFFERENT IU ROUTES

IU routes number 1 2 3 4 5
Possible routes 1389 2567 2158 7169 4443

max dist. (×100m) 18.11 14.36 16.99 15.63 22.39

Table VII
NUMBER OF POSSIBLE IU TRACES AND CURRENT LOCATIONS

δ K Nant = 2 Nant = 5

Possible IU traces
1 dB 4 40 6124905

6 14 4924908

2 dB 4 1389 10153583
6 186 9037580

Possible IU locations
1 dB 4 4 74

6 2 71

2 dB 4 12 89
6 8 86

the way. Three general trends in Table VII can be observed.
First, both the number of possible current IU locations and
the number of possible IU trajectories increases when the
number of antenna elements Nant increases. This is because a
smart antenna array with more elements has more flexibility in
adjusting the radiation pattern. Mathematically, more antenna
elements leads to more tunable ω and hence larger degree of
freedom in the problems. Therefore, it is easier for an IU to
create different RSS readings at ESCs. Second, the number
of possible IU locations and trajectories also increases as the
value of acceptable noise level increases. The reason is that
larger noise level indicates looser bounds in determining a
possible IU location. Third, both the numbers of possible IU
locations at last time step and possible IU trajectories decrease
when the number of ESCs (i.e. K) grows. Mathematically,
adding ESCs means adding extra constraints to problem in
Table II, and further reduce the li’s probability of being
regarded as a possible IU location.

VII. CONCLUSION

In this paper, we analyzed the feasibility of preserving
both static and moving IU’s location privacy by adjusting its
radiation pattern and transmit power. We defined the way to
preserve an IU’s location privacy as to hide its true location
inside all other possible IU locations estimated by adversaries
using ESCs’ RSS readings. We investigated how an IU’s trans-
mit power, radiation pattern and ESC deployment influence
the IU’s capability of hiding its location. We formulated the
problem for a static IU to protect its location information,
and show this feasibility problem is NP-hard in general. We
then proposed a sampling method to solve this problem. Based
on this, we then formulated the problem for moving IUs, in
which two cases are analyzed: the first is to protect an IU’s
moving traces and the second is to protect its real-time location
information. Our analysis provides insightful guidance for an
IU to preserve its location information whether it is static
or moving against the potential localization attack of ESCs.
Simulation results also show that our approach provides great
effectiveness for an IU’s location privacy protection.

APPENDIX

A. Proof of Claim 1

To prove the feasibility of the problem in Table II, let us
consider a sub-problem, which is to determine whether a single
li is a possible IU location:

Table VIII

sub-problem:
find any ω, Pt, ω̂, P̂ t
that satisfy: SINR ≥ SNRmin∣∣∣∣∣10log10

P̂ t
∣∣∣ω̂H ĥk

∣∣∣2
( 4π
λ
d̂k)

2
− 10log10

Pt|ωHhk|2
( 4π
λ
dk)

2

∣∣∣∣∣ ≤ δ
∀k = 1, 2, ·,K

⇔ 1
δ′ ≤

∣∣∣∣∣ P̂ t
∣∣∣ω̂H ĥk

∣∣∣2
( 4π
λ
d̂k)

2
/
Pt|ωHhk|2
( 4π
λ
dk)

2

∣∣∣∣∣ ≤ δ′
In Table VIII, SINR at a radar receiver is computed using

Equation (7), SNRmin is calculated based on Equation (6)
given the required minimum PD and maximum Pfa.

Firstly, we relax the SINR constraint from the sub-problem
by setting SNRmin to be infinitesimal. Then we have the
relaxed version of sub-problem without the SINR constraint.
The original sub-problem’s feasible domain is a subset of the
relaxed sub-problem’s feasible domain. If we prove the relaxed
sub-problem to be NP-hard, the original sub-problem should
also be NP-hard.

To prove the feasibility of the relaxed sub-problem, let us
consider its complementary problem (for simplicity, let f̂k =
ĥk

4π
λ d̂k

and fk = hk
4π
λ dk

) in Table IX.

Table IX

complementary problem:

max
ω,P t,ω̂,P̂ t

t = min
k

{
P̂ t
∣∣∣ω̂H f̂k

∣∣∣2
Pt|ωHfk|2

}K
k=1

s.t.
P̂ t
∣∣∣ω̂H f̂k

∣∣∣2
Pt|ωHfk|2

≤ δ′, k = 1, 2, ·,K.

equivalent problem:
find any ω, Pt, ω̂, P̂ t

that satisfy: η ≤
P̂ t
∣∣∣ω̂H f̂k

∣∣∣2
Pt|ωHfk|2

≤ δ′

∀k = 1, 2, ·,K

The relaxed sub-problem is feasible if and only if the
solution t∗ to complementary problem in Table IX satisfies
t∗ ≥ 1

δ′ and it is infeasible if and only if t∗ < 1
δ′ . Conversely,

assume relaxed sub-problem can be solved in polynomial time,
then for any given value of η that lies in [0, δ′], we can
also solve the following equivalent problem in Table IX in
polynomial time.

Comparing two problems in Table IX, if we can find
the maximum value of η which makes equivalent problem
feasible, we can obtain the solution to the complementary
problem. Since η ∈ [0, δ], suppose there exists a turning point
η′ such that when η ≤ η′, equivalent problem in Table IX is
feasible, while for η > η′, the equivalent problem is infeasible.
Thus this turning point η′ is exactly the maximum value of η



and is the solution to the complementary problem in Table IX.
Bisection method can be used here to find this turning point
η′. Because bisection method computes within polynomial
time, the reduction from complementary problem in Table
IX to problem in Table VIII is also polynomial. Hence, to
prove that relaxed sub-problem is NP-hard, we can first show
complementary problem in Table IX is NP-hard.

Now consider the case where the solution to complementary

problem in Table IX is obtained when t∗ =
P̂ t|ω̂H f̂∗k |

2

Pt|ωHf∗k |2
, and

then we have Table X.

Table X

max
ω,P t,ω̂,P̂ t

P̂ t
∣∣∣ω̂H f̂∗

k

∣∣∣2
Pt|ωHf∗

k |
2

s.t.
P̂ t
∣∣∣ω̂H f̂k

∣∣∣2
Pt|ωHfk|2

≤ δ′

P̂ t
∣∣∣ω̂H f̂k

∣∣∣2
Pt|ωHfk|2

≥
P̂ t
∣∣∣ω̂H f̂∗

k

∣∣∣2
Pt|ωHf∗

k |
2

To make the analysis simpler, we change the objective
function in this formulation into logarithmic form. By moving
P̂ t|ω̂H f̂∗k |

2

Pt|ωHf∗k |2
to the other side of the inequality, the problem is

finally reformulated as in Table XI.

Table XI

max
ω,P t,ω̂,P̂ t

log P̂ t− log P t+ log
∣∣∣ω̂H f̂k

∣∣∣2 − log ∣∣ωHfk

∣∣2
s.t.

P̂ t
∣∣∣ω̂H f̂k

∣∣∣2
Pt|ωHfk|2

≤ δ′

P̂ t
∣∣∣ω̂H f̂k

∣∣∣2
Pt|ωHfk|2

−
P̂ t
∣∣∣ω̂H f̂∗

k

∣∣∣2
Pt|ωHf∗

k |
2 ≥ 0

⇔ ω̂H
(

P̂ t

Pt|ωHf∗
k |

2 f
∗
kf
∗H
k − P̂ t

Pt|ωHfk|2
fkf

H
k

)
ω̂ ≤ 0

This is a multivariate optimization problem. Commonly,
to find absolute maximum and minimum values of such
functions, we first try to determine all critical points of this
function and evaluate it at these points. In our case, suppose
we want to find the critical points over ω̂, we need to treat all
the other variables as constants. Now the problem is reduced
to a univariate problem. Hence, if we can show this reduced
problem is NP-hard, we prove that problem in Table XI is
NP-hard too.

As observed in Table XI, fkf
H
k now becomes a Hermitian

positive semi-definite matrix and(
P̂ t

P t |ωHf∗k |
2f
∗
kf
∗H
k − P̂ t

P t |ωHfk|2
fkf

H
k

)
is an indefinite matrix. Thus, the reduced problem is a
non-convex quadratically constrained quadratic programming
(QCQP) problem, which is NP-hard in general [19]. Thus,
complementary problem in Table IX is NP-hard in general
and so is sub-problem in Table VIII. Since the sub-problem
should be computed for each li in order to solve the problem

in Table II, clearly problem in Table II is also NP-hard in
general.
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