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ABSTRACT: The ability of antibodies to recognize their target
antigens with high specificity is fundamental to their natural
function. Nevertheless, therapeutic antibodies display variable and
difficult-to-predict levels of nonspecific and self-interactions that
can lead to various drug development challenges, including
antibody aggregation, abnormally high viscosity, and rapid
antibody clearance. Here we report a method for predicting the
overall specificity of antibodies in terms of their relative risk for
displaying high levels of nonspecific or self-interactions at
physiological conditions. We find that individual and combined sets of chemical rules that limit the maximum and minimum
numbers of certain solvent-exposed amino acids in antibody variable regions are strong predictors of specificity for large panels of
preclinical and clinical-stage antibodies. We also demonstrate how the chemical rules can be used to identify sites that mediate
nonspecific interactions in suboptimal antibodies and guide the design of targeted sublibraries that yield variants with high antibody
specificity. These findings can be readily used to improve the selection and engineering of antibodies with drug-like specificity.
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■ INTRODUCTION

Monoclonal antibodies (mAbs) are one of the most promising
classes of therapeutics because of their many attractive
properties, including their high affinity and specificity for
target molecules and their ability to recruit potent effector
functions after target recognition.1 The generation and affinity
maturation of mAbs involves introducing sequence variation in
their six binding loops (complementarity-determining regions,
CDRs) and, to a lesser extent, in their framework regions.
Although maximal antibody sequence diversity is unimaginably
large, the fraction of antibody sequences that give rise to mAbs
with drug-like properties is expected to be dramatically lower.
Natural filtering mechanisms used by the immune system
eliminate many undesirable mAb sequences during antibody
generation.2 However, antibodies generated by the immune
system (as well as those discovered using in vitro display
methods) are not optimized for the extreme requirements of
many therapeutic applications.3,4 Indeed, several examples of
poor physicochemical properties of mAbs have been reported
that are linked to specific antibody sequences.5−13

Recent work suggests that high specificity is a key indicator
of drug-like antibodies.14 Out of 12 biophysical assays of
nonspecific interactions, self-association, hydrophobicity, and
aggregation that were used to profile 137 clinical-stage
antibodies, only assays that measured antibody nonspecific
interactions (three assays) and self-interactions (two assays)
were able to identify approved antibody drugs as having

superior biophysical properties relative to antibodies in phase 2
and 3 clinical trials. Nevertheless, it remains extremely
challenging to identify the molecular determinants of antibody
specificity for multiple reasons. First, antibody specificity is a
relative concept that is dependent on the type of methods used
to measure nonspecific and self-interactions. Therefore,
analysis of the molecular determinants of antibody specificity
based on data obtained using a single type of assay may lead to
conclusions that are not generally applicable to other types of
antibody specificity measurements. Second, there has not been
sufficient data available until recently14,15 for detailed statistical
analysis of the molecular determinants of antibody specificity.
These new comprehensive data sets provide several different
types of specificity measurements for diverse panels of
antibodies, which could enable a more holistic analysis of the
molecular determinants of antibody specificity than has been
previously possible.
In this work, we have sought to develop chemical (amino

acid composition) rules that are able to identify mAbs with
high, drug-like specificity and reduced risk of displaying high
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levels of nonspecific and self-interactions at physiological
conditions. Our approach is to first segregate clinical-stage
mAbs into two groups, namely, those with low and high
specificity, based on several different types of specificity
measurements. Next, we have sought to develop chemical rules
based on physicochemical properties of different regions in
antibody variable fragments that are able to selectively identify
mAbs with low specificity. This approach seeks to identify the
most important chemical properties of the variable regions of
antibodies linked to specificity in order to improve the
identification and engineering of drug-like antibodies. Here we
report individual and combined sets of chemical rules that
selectively identify mAbs with high specificity based only on
antibody sequences and predicted site-specific solvent
accessibilities, and we apply these rules to guide the re-
engineering of a suboptimal mAb to identify mutations that
increase antibody specificity.

■ EXPERIMENTAL SECTION
Antibody Sequence and Biophysical Data. The amino

acid sequences of the variable (VH and VL) regions of 137
clinical-stage antibodies and their corresponding measure-
ments of nonspecific and self-interactions (Table S1) were
obtained from a previous publication.14 The amino acid
sequences of a panel of preclinical antibodies were provided by
Adimab (Table S2).15 The relative solvent accessibilities of the
clinical (Table S3) and preclinical (Table S4) antibodies were
calculated using a Random Forest Regression method that was
trained on over 900 antibodies in the Protein Data Bank.16 The
maximum and minimum counts for each type of amino acid
present in the CDRs and different regions of antibody variable
regions (Tables S1 and S2) weighted by their solvent
accessible surface areas (Tables S3 and S4) for the clinical-
stage antibodies are reported in Table S5. The similarities of
mAbs relative to those in the training sets are reported as the
difference between 100% and the percentage of the 286
specified amino acid limits that are violated (Table S5). The
preclinical mAbs (Table S2) have greater than 99% similarity
relative to the clinical-stage mAbs (Table S1). The CDRs were
defined using a combination of Chothia and Kabat numbering,
and heavy chain CDR3 was defined to also include two
additional N-terminal residues (as reported, for example, in
Tables S1 and S2). The theoretical net charges of various
antibody regions were calculated at pH 7.4 by assigning
charges of +1 for Lys and Arg, +0.1 for His, and −1 for Asp
and Glu.
Chemical Rules for Identifying Antibodies with Low

Specificity. Rules for describing antibody specificity were
calculated in MATLAB using the procedure described below
and in the Supplemental Methods. First, the specificities of
clinical-stage mAbs were experimentally evaluated using five
specificity tests that set maximum limits on the levels of
nonspecific interactions [>4.3 signal/background for baculovi-
rus particle (BVP) binding, >0.27 for polyspecificity reagent
(PSR) binding, and >1.9 signal/background for ELISA] and
self-interactions [>11.8 nm for affinity-capture self-interaction
nanoparticle spectroscopy (AC-SINS) and >0.01 response
units for clone self-interaction by biolayer interferometry
(CSI)].14 Second, each antibody was assigned to one of two
groups based on its number of physical flags, as defined by the
number of times an antibody exceeded the five maximum
limits for nonspecific and self-interactions. One group with <2
physical flags is defined as the high specificity group and a

second group with ≥2 physical flags is defined as the low
specificity group. The clinical-stage mAbs were assigned to the
two groups based on their value of each individual biophysical
measurement (BVP, PSR, ELISA, AC-SINS, and CSI) relative
to the limits described above. The preclinical mAbs15 were also
assigned to two groups with high specificity (≤0.27 for PSR)
or low specificity (>0.27 for PSR). Third, rules for the counts
of amino acids in the CDRs and variable regions, weighted by
their relative solvent exposures, were evaluated using the
summed values (increments of 0.1) for various combinations
of specific residues that spanned the values observed in the
clinical-stage antibodies (as described in the Results section).
An amino acid was considered solvent accessible if its relative
solvent exposure was ≥10% (otherwise it was excluded from
analysis), and glycine was assumed to be fully exposed.
The chemical rules were generated using 3-fold cross-

validation methods and were required to meet a number of
constraints (as described in detail in the Supplemental
Methods). Briefly, the clinical-stage mAbs (137) were split
into training (80%) and test (20%) sets in ten different ways
using stratified sampling (Table S6). The training sets were
further divided into three random partitions (folds), two of
which were used for training and the other for validation.
Individual rules were required to satisfy the constraints
summarized in Table S7. Finally, the rules were required to
be observed in each of the ten 80/20% splits, although
different values for the rules were allowed for each split.
The significance of each rule for selectively flagging

antibodies with low specificity was assessed using adjusted
accuracies and 2 × 2 contingency tables (Fisher’s exact test)
for evaluating p-values. Adjusted accuracy was calculated by
equally weighting the true and false positives with the true and
false negatives.

Combined Rules for Enhancing the Identification of
mAbs with Low Specificity. Sets of rules were generated by
combining single rules together (up to six single rules per
combined set were evaluated), as explained in the Results
section. Each mAb was considered to have low specificity if
flagged by four to six rules (as defined on a case-by-case basis).
Sets of rules in the first round of analysis were only accepted if
they met the constraints summarized in Table S7. Finally, the
combined rules (with the same values for each rule) were
required to be observed in each of the ten 80/20% splits. The
best sets of combined rules in the first round of analysis were
identified as those with the lowest coefficients of variation for
the average validation accuracy (ten 80/20% splits). This
process was repeated again for mAbs that were not flagged as
polyspecific in the first round of analysis, as described in the
Supplemental Methods. Briefly, single rules were first
generated using similar constraints as those used in the first
round of analysis (Table S7). Next, combined sets of rules
using the best set of rules from the first round of analysis and
up to six additional rules were required to satisfy the
constraints summarized in Table S7. Finally, the combined
rules (with the same values for each rule) were required to be
observed in each of the ten 80/20% splits. The best sets of
combined rules (from the first and second rounds) were
identified as those with the lowest coefficients of variation for
the average validation accuracy (ten 80/20% splits).

Measurements of Antibody Nonspecific and Colloi-
dal Interactions. mAb variants (39 IgGs) with sequence
differences in their frameworks and CDRs were expressed as
IgG1 antibodies in CHO-3E7 cells (L-11992, National
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Research Council Canada) and purified via Protein A
chromatography. Preparative size-exclusion chromatography
was also performed (when necessary) to reduce the aggregate
content below 10%.
The levels of antibody nonspecific binding were evaluated

using an ELISA method reported previously14 with minor
modifications. Immulon 2HB plates (3655TS, Thermo Fisher
Scientific) were coated separately with six non-antigens as
reported previously except that insulin was immobilized at 0.2
mg/mL (1 h at 37 °C). The plates were washed three times
(0.2 mL/well) using PBST (PBS with 0.05% Tween 20) and
were not blocked. Next, each mAb (1 μM in PBST) was added
to the wells for 1 h. After washing the wells three times (0.2
mL/well of PBST per wash), the secondary antibody (HRP
conjugated goat anti-human IgG antibody, 10 ng/mL; 109-
035-008, Jackson Immuno Research) was added (1 h). Finally,
after removal of unbound secondary antibody, TMB substrate
(TMBS-1000-01, Surmodics) was added, and the plates were
developed (5 min) before quenching with 2 M sulfuric acid.
The volume of the solutions added to the wells was 50 μL/well
unless otherwise specified. The absorbance values were
evaluated at 450 nm using a Biotek Synergy 2 plate reader,
and the signal over background was calculated using
background values evaluated without mAb and with all other
reagents.
The levels of antibody self-interactions were measured for

the mAbs using affinity-capture self-interaction nanoparticle
spectroscopy (AC-SINS), as reported previously.17 Briefly, the
nanoparticle conjugates were prepared by first adsorbing goat
anti-human Fc polyclonal antibody and then co-adsorbing
human mAbs and human polyclonal antibodies at different
ratios (fixed total concentration of 20 μg/mL of human
antibody). The reported plasmon shifts are averages of those
evaluated at three different percentages of human mAbs (5, 15
and 25%). The control values used to calculate the plasmon
shifts were those for 0% human mAb (100% human polyclonal
antibody). The absorbance spectra used to evaluate the
plasmon shifts were measured using a Biotek Synergy 2 plate
reader.
Antibody Sublibrary Design and Sorting. Sites for

mutation in the variable heavy (VH) region of emibetuzumab
were identified using the combined chemical rules. In
particular, sites in the CDRs were targeted if they were (i)
flagged by the maximum limits (rules 1−6 in the combined
rules), (ii) hydrophobic or positively charged, (iii) solvent
exposed [>10% solvent accessible surface area (SASA)], and
(iv) relatively uncommon at a given antibody site (frequency
of <50%) in tens of thousands of human antibodies.18 The last
requirement that the wild-type residue must not be highly
conserved aims to avoid mutations at sites that are critical to
antibody folding or stability. The resulting antibody library was
generated with mutations at eight sites in VH (Y33, R50, R54,
R55, G56, A95, W97, and Y102) with the goal of reducing the
number of chemical flags in the variable regions of
emibetuzumab. For each mutation site, degenerate codons
were designed to sample the wild-type residue, at least one
negatively charged residue and one polar residue, and up to
three additional residues with similar properties relative to the
wild-type. For example, a degenerate codon at Y33 in VH was
used to sample Tyr (wild-type), Phe (aromatic and hydro-
phobic), Val and Ala (hydrophobic), Ser (polar), and Asp
(negatively charged). The total library size was 106 variants,
the library design is summarized in Figure S1, and the single-

chain Fab (scFab) library was constructed and displayed on
the surface of yeast, as described previously.19

The initial rounds of library sorting were conducted by
incubating 109 (round 1) or 107 (round 2) surface-displaying
yeast with 107 Dynabeads (Protein A, 10002D; Thermo Fisher
Scientific) saturated with antigen (hepatocyte growth factor
receptor as an Fc fusion protein, HGFR-Fc; MET-H5256,
Acro Biosciences) in PBSB (PBS with 1 mg/mL BSA) and 1%
milk for 3 h at room temperature. The final round of sorting
(round 3) was completed via FACS (MoFlo Astrios, Beckman-
Coulter) using 107 cells following incubation with soluble
antigen or polyspecificity reagents. Ovalbumin (Sigma, A5503)
and soluble membrane proteins isolated from CHO cells
(polyspecificity reagent or PSR) were biotinylated using Sulfo-
NHS-LC-Biotin (Pierce, P121335; Thermo Fisher Scientific),
and HGFR-Fc was used as purchased. Cells were incubated
with ovalbumin (260 μg/mL), PSR (130 μg/mL), or HGFR-
Fc (1 nM with 1% milk) for 3 h at room temperature
(ovalbumin, HGFR-Fc) or 20 min on ice (PSR) in PBSB with
an anti-myc tag mouse mAb (1:1000 dilution; 2276S, Cell
Signaling Technologies). After one wash with PBSB, cells were
incubated with secondary reagents to detect scFab display
(1:100 goat anti-mouse Alexa Fluor 488; A11001, Life
Technologies) and binding (1:1000 streptavidin Alexa Fluor
647, S32357, Life Technologies for ovalbumin and PSR; 1:300
goat anti-human Fc Alexa Fluor 647, 109605098, Jackson
Immuno Research Labs for HGFR-Fc). Finally, the cells were
washed with PBSB and sorted for positive display and
nonbinding to ovalbumin and PSR or binding to HGFR-Fc.

Deep Sequencing and Data Analysis. The sorted
antibody library samples were evaluated using deep sequencing
by extracting the scFab plasmids from yeast using the
Zymoprep Yeast Plasmid Miniprep II Kit (D2004; Zymo
Research). The VH region of the scFab gene was amplified via
two-step PCR using Q5 polymerase (M0491; New England
Biolabs). The first reaction was performed using primers that
were complementary to the VH domain, and the primers added
Illumina adapter sequences and barcodes (see Supplemental
Methods for more detail). The PCR product was gel purified
(1% agarose) and isolated using a QIAquick Gel Extraction Kit
(28704; Qiagen, Germantown, MD). The second reaction
used 2 μL of the purified PCR product with primers identical
to the Illumina adapter sequences and was also gel purified
following the manufacturer’s recommendations. Concentra-
tions of each sample were determined using a Qubit 4
Fluorometer (Q33240; Waltham, MA) and pooled together at
an equimolar ratio. The pooled samples were evaluated using
deep sequencing (Illumina MiSeq in a 300 bp paired-end
sequencing reaction). The detailed data analysis is summarized
in the Supplemental Methods.
Next, the deep sequencing data were analyzed to identify

antibody variants observed in four library samples in two
different biological repeats for the third round of sorting,
namely, (i) the input library and the samples sorted for (ii)
negative ovalbumin binding (OVA−), (iii) negative PSR
binding (PSR−), and (iv) positive HGFR-Fc binding. From
these two repeats, 3465 unique scFabs were identified that
were present in all of the eight analyzed samples. To identify
the mutations that are most strongly linked to high specificity,
sets of one to four mutations were evaluated in the 3465
scFabs that were most strongly correlated with enrichment in
the samples sorted for low nonspecific binding. First, all
possible combinations of mutations for the eight mutated sites
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were evaluated. Because the statistical significance of the sets
with four mutations was found to be highest, we focused on
these 43750 mutational sets. Each mutational set [e.g., Y33F,
R54T, G56D, and Y102A in VH] was evaluated by first
identifying clones that contain such mutations (regardless of
whether they have wild-type or mutant residues at other sites),
which are referred to as the four mutant (4MT) group.
Similarly, the clones with wild-type residues at the same four
sites (regardless of whether they have wild-type or mutant
residues at the other sites) were identified, which are referred
to as the four wild-type residue (4WT) group. Only the 4MT/
4WT sets that contain more than ten clones in each group
were further evaluated to maximize statistical significance.
Next, a Spearman’s rank correlation coefficient was evaluated
for each set of clones in the 4WT/4MT sets of antibodies
based on whether they have the mutations (0 or 100%) relative
to their enrichment ratios for PSR− and OVA− samples.
Mutational sets were identified as significant if they have
Spearman correlation coefficients ≥0.6 and p-values <0.05.

■ RESULTS
Chemical Rules for Identifying Antibodies with High

Specificity. Our approach to identify the molecular
determinants of antibody specificity is outlined in Figure 1.
We applied five tests of antibody specificity to 137 clinical-
stage mAbs that either are approved drugs or are (or were) in
phase 2 and 3 clinical trials using previously reported
specificity measurements.14 The specificity measurements
were obtained using different variable (VH and VL) regions
for each clinical-stage mAb and the same constant regions
(IgG1) regardless of the actual isotype. The five assays
included three nonspecific binding assays that evaluate
antibody interactions with various types of proteins, DNA,
and virus particles [ELISA,14 BVP,20 and PSR21] and two
assays that evaluate antibody self-association [AC-SINS22 and
CSI23]. We assigned each mAb up to five physical flags if they
exceeded previously reported upper limits for nonspecific and
self-interactions that segregate the top 90% of approved

antibody drugs from the bottom 10%.14 We define antibodies
with high specificity as those with few (<2) physical flags.
Therefore, we segregated the clinical-stage mAbs (Table S1)
into two groups, namely, those with high specificity (<2
physical flags, 97 mAbs) and low specificity (≥2 physical flags,
40 mAbs), and evaluated chemical rules that selectively identify
mAbs with low specificity.
Our approach to identify such chemical rules involved first

evaluating maximum limits on the combined numbers of
specified residues (weighted by their solvent exposure if >10%
exposed) for all possible combinations of 19 amino acids
(excluding cysteine due to its rarity) for rules composed of as
few as one and as many as 10 residues. This process was
performed for the entire antibody variable fragment and 66
subregions of Fv, including the Fv framework (without the
CDRs), VH, VL, individual CDRs (heavy chain CDRs 1, 2, and
3 and light chain CDRs 1, 2 and 3), and all possible
combinations of CDRs that include as few as two and as many
as six CDRs (e.g., heavy chain CDRs 1 and 3 and light chain
CDR2). These rules sampled values that spanned the
minimum and maximum values observed in the clinical-stage
antibodies in increments of 0.1. In total, we evaluated >107

maximum rules based on the antibody Fv.
We required that the rules meet a number of constraints (see

Supplemental Methods and Table S7 for full details), including
that they selectively flag clinical-stage mAbs with low
specificity relative to mAbs with high specificity. We also
required that each rule flag mAbs with low specificity (as
judged by the PSR assay) in a selective manner for a second
training set of 424 human (preclinical) mAbs. The amino acid
sequences and nonspecific binding (PSR) values for the
preclinical mAbs used in this work are given in Table S2,15 the
relative solvent accessibilities are given in Tables S3 (clinical-
stage antibodies) and S4 (preclinical antibodies), and the
amino acid composition limits that define the clinical-stage and
preclinical mAbs are given in Table S5.
Our findings for chemical rules that identify mAbs with poor

specificity based on maximum limits on the number of solvent-

Figure 1. Overview of the methodology used to evaluate the molecular determinants of antibody specificity for monoclonal antibodies (mAbs).
Each mAb received up to five physical flags based on exceeding limits for two self-interaction tests (AC-SINS > 11.8 nm and CSI > 0.01 response
units) and three nonspecific interaction tests (PSR > 0.27, ELISA > 1.9 signal/noise, and BVP > 4.3 signal/noise). The experimental data and limits
were reported in a previous publication.14 The statistical significance was evaluated for the ability of the chemical rules to selectively flag mAbs with
low specificity (≥2 physical flags) relative to mAbs with high specificity (<2 physical flags). The chemical rules were filtered using nonspecific
interaction measurements for an additional set of 424 preclinical mAbs to identify the most robust and general chemical rules.
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exposed amino acids in antibody variable regions are
summarized in Figure 2 and Table S8. Despite evaluating
>107 different chemical rules, only 16 ultimately met our
constraints and passed our statistical analyses. Our most
significant rule flags mAbs with a sum of >5.0 solvent-exposed
Gln, Arg, His, Pro, Met, Leu, Tyr, and Trp residues in heavy
chain CDRs 1, 2, and 3 (H123) and light chain CDRs 2 and 3
(L23; Figure 2A). This single rule flagged more than half
(55%) of mAbs with low specificity while only flagging
relatively few (14%) mAbs with high specificity (p-value of 2.6
× 10−6). While eight residues contributed to the rule, we
evaluated how each residue contributed to the differences in
the observed values for low specificity mAbs relative to high

specificity mAbs for the entire panel of clinical-stage mAbs and
not only for the subset of mAbs flagged by each rule. Notably,
the most important residues were Gln (accounts for >30% of
the difference observed between low and high specificity
mAbs), and Arg and His (each of which contribute 10−30%).
Conversely, Pro, Met, Leu, and Tyr contributed modestly (0−
10%) and Trp contributed negatively (<0%). The last finding
is because mAbs with low specificity actually have less Trp
(heavy chain CDRs 1, 2, and 3 and light chain CDRs 2 and 3)
when considering the entire panel of clinical-stage mAbs, but
they have more Trp when considering the subset of mAbs
flagged by this particular rule. The distribution of values for
this chemical rule reveals that most mAbs with values >5.0

Figure 2. Chemical rules for selectively flagging mAbs with low specificity that limit the maximum allowable number of solvent-accessible residues
in antibody variable regions. Each chemical rule is a maximum limit on the summed counts of different types of amino acids in the CDRs weighted
by their relative solvent accessibilities. (A) Most selective maximum chemical rule for identifying mAbs with low specificity. mAbs with >5.0 Gln,
Arg, His, Pro, Met, Leu, Tyr, and Trp residues, weighted by their solvent exposures, in five CDRs (heavy chain 1, 2, and 3 and light chain 2 and 3)
are flagged. On the left, the percentages of mAbs flagged with high and low specificity are reported for the entire set (137 mAbs). In the middle, the
distribution of the percentages of mAbs with ranges of chemical flag values are reported. On the right, the average adjusted accuracies of the
chemical rule for flagging low specificity antibodies relative to high specificity ones are reported for the training and test sets. (B) Summary of the
ten most selective chemical rules that limit the maximum sum of particular types of residues. The bolded value of each rule is the most statistically
significant one when evaluated for the entire panel of clinical-stage mAbs, while the range of values reflect those that met the constraints during
cross validation. In panels A and B, the contributions of the residues to each rule are reported in terms of their contributions to the differences in
the observed rule values for mAbs with low specificity (40 clinical-stage mAbs) relative to those with high specificity (97 clinical-stage mAbs). The
relative contributions of each amino acid are represented as bold and underlined blue font (most important, >30%), regular and underlined blue
font (important, 10−30%), black font (minor importance, 0−10%), and gray font (least important, <0%). The negative contributions of some
residues are due to the fact that the contributions are calculated for the entire set of clinical-stage mAbs (137 mAbs) and not only for those mAbs
flagged by each rule. mAbs with low and high specificity are defined as described in Figure 1. The p-values are calculated using a 2 × 2 contingency
table (Fisher’s exact test), and the reported accuracies are adjusted to account for the different numbers of mAbs with high (97) and low (40)
specificity. In panel A, the average adjusted accuracies are calculated based on the training (80%) and test (20%) sets for each of the ten splits of the
training and test sets. In panel B, the adjusted accuracies are calculated for the entire set of 137 clinical-stage mAbs using the best flag values.
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possess low specificity and those with values <5.0 have high
specificity. Finally, the accuracy of the training (71%) and test
(69%) sets of mAbs are similar, suggesting that our cross-
validation procedures prevent overfitting of the training data.
It is notable that Arg is the most important contributor to

the maximum chemical rules (Figure 2B). Of the top ten
maximum rules, Arg is one of the most significant contributors
(>30% contribution) in half of the rules and a significant
contributor (10−30%) in all of the other rules. Moreover, His
and Gln are also key contributors to the maximum rules (e.g.,
both contribute >30% in at least one of the rules), suggesting
that certain positively charged and polar residues may be
particularly important in mediating polyspecificity. Finally,
although we considered many different subregions in the
antibody variable regions, most (85%) of the chemical rules
involve various combinations of heavy and light CDRs.
A key hypothesis in our preceding analysis is that

overenrichment of specific types of solvent-accessible residues
in antibody variable regions is linked to poor specificity. We
also sought to test the converse hypothesis by evaluating if
under-representation of other types of residues may also be

predictive of antibody specificity. Therefore, we evaluated
minimum limits on the number of the residues weighted by
their solvent exposure in antibody variable regions for all
possible combinations of as many as ten residues (19 amino
acids excluding cysteine; a total of >107 rules).
We identified a small subset of minimum rules (24) that met

our constraints (Figure 3 and Table S8). For example, the
most significant minimum rule was a sum <11.6 Asn, Asp, Leu,
Ala, Pro, Met, His, Glu, and Gln residues in the variable heavy
domain (VH; Figure 3A). This single rule flagged half of the
mAbs with low specificity while flagging few (13%) mAbs with
high specificity (p-value of 1.5 × 10−5). The most significant
contributors were negatively charged (Asp) and polar (Asn)
residues. Of the top ten minimum chemical rules, it is notable
that Asp is the single most important contributor, and Asn and
Glu are also key contributors. These findings suggest that the
presence of negatively charged and certain polar residues in
antibody variable regions are linked to high specificity, which is
consistent with previous work.5,7,8,19,24−30

Combinations of Rules Are Highly Selective for
Identifying mAbs with High Specificity. The selectivity

Figure 3. Chemical rules for selectively flagging mAbs with low specificity that limit the minimum allowable number of solvent accessible residues
in antibody variable regions. Each chemical rule is a minimum limit on the summed counts of different types of amino acids in the CDRs weighted
by their relative solvent accessibilities. (A) Most selective minimum chemical rule for identifying mAbs with low specificity. mAbs with <11.6 Asn,
Asp, Leu, Ala, Pro, Met, His, Glu, and Gln residues, weighted by their solvent exposures, in VH are flagged. The graphs are presented as described in
Figure 2. (B) Summary of the ten most selective chemical rules that limit the minimum sum of particular types of residues. In panels A and B, the
contributions of the residues to each rule are reported as described in Figure 2 except that the differences in the observed rule values are calculated
for high specificity mAbs relative to low specificity mAbs. mAbs with low and high specificity are defined as described in Figure 1. The p-values and
accuracies are calculated as described in Figure 2.
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of these rules led us to evaluate whether greater discrimination
between antibodies with high and low specificity could be
achieved using combinations of these rules (Figure 4 and
Table S9). Therefore, we tested all possible combinations of 40
maximum and minimum individual rules (Table S8) that
passed our constraints to generate the best sets of rules that
selectively identify mAbs with low specificity. We evaluated
sets of rules with as few as four and as many as six rules (a total
of >106 sets of rules), and identified antibodies with low
specificity as those with ≥4−6 chemical flags (as defined on a
case-by-case basis). We eliminated the vast majority of the sets
of rules by requiring that they satisfy a number of constraints
(see Supplemental Methods and Table S7 for details),
resulting in only 16 sets of rules that met these constraints.
The best set of chemical rules we identified comprised six

chemical rules and displayed significant improvement in
performance relative to the individual rules (Table S9). This
set of rules (Set A in Table S9) includes three maximum limits
and three minimum limits, five of which are CDR-specific and
the other is VH-specific. This set of rules was able to flag 35%
of clinical-stage mAbs with low specificity while flagging only
2% of mAbs with high specificity (≥4 chemical flags
corresponds to low antibody specificity). Similar to the
individual rules, this set of rules displays similar average
validation (66%) and test (67%) accuracies.

We reasoned that the specificity predictions could be further
improved by eliminating mAbs flagged by the first set of six
rules (Set A in Table S9) and generating additional rules for
selectively flagging liabilities that were not identified in the first
round of analysis (Figure 4 and Tables S10−S12). Therefore,
we eliminated mAbs from our training sets that were flagged by
the first set of rules (Table S10) and identified individual
maximum and minimum chemical rules that were best at
selectively identifying the remaining mAbs with low specificity
in our training sets (Table S11). We applied similar constraints
and statistical methods in generating the individual rules for
the second specificity test as we used for the first test (see
Supplemental Methods for details).
Interestingly, we identified several (45) chemical rules

(Table S11) that were markedly different than those generated
in the first round of analysis (Figures 2 and 3 and Table S8).
For example, Lys was the most significant contributor (>30%
contribution) in most (61%) of the maximum rules in the
second round of analysis, while Arg was rarely observed as one
the most significant contributors (19% of the maximum rules).
Moreover, most (73%) of the maximum and minimum rules in
the second round of analysis were specific for one of the
variable regions (VH or VL), the entire Fv, or the variable
framework (Fv without the CDRs), which was markedly
different than the findings in the first round of analysis (27%).

Figure 4. Combined chemical rules display high selectivity for identifying clinical-stage mAbs with low specificity. (A) Antibodies with predicted
high specificity are required to be flagged by <8 of 12 rules. The contributions of the residues to each rule are reported as described in Figures 2 and
3. (B) The combined rules selectively flag mAbs with low specificity (≥2 physical flags) and display similar average adjusted accuracies for the
training and test sets. The experimentally determined antibody specificities, as judged by five measurements of nonspecific and self-interactions, are
defined as described in Figure 1. The p-values and adjusted accuracies are calculated as described in Figure 2, and the area under the curve (AUC)
is also reported.
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We next evaluated whether the best set of rules in the first
round of analysis could be combined with rules generated in
the second round of analysis to further improve the selectivity
of identifying mAbs with low specificity (Figure 4 and Table
S12). Therefore, we tested all possible combinations of the 45
individual rules (Table S11) with the six rules generated in the
first round of analysis (Set A in Table S9) for a total of 8 to 14
chemical rules per set. As for the first round of analysis, we
required that the sets of rules meet a number of constraints and
statistical measures (see Supplemental Methods and Table S7
for details), and we identified mAbs with low antibody
specificity as those with ≥4−12 chemical flags (as defined on a
case-by-case basis).
Our best combined set of chemical rules is reported in

Figure 4A, and additional details are given in Table S9 (Set A)
and Table S12 (Set F). The expanded set of 12 rules
significantly improves the overall identification of clinical-stage
mAbs with high specificity, as defined as those with <8 of 12
chemical flags. This set of rules flags most (78%) of clinical-
stage mAbs with low specificity while flagging few (8%) mAbs
with high specificity (p-value of 1.6 × 10−15 and area under
curve of 0.85; Figure 4B). Importantly, the average accuracy
for our training (83%) and test (90%) sets of antibodies are
similar.
The distribution of the number of chemical flags for the

mAbs with high and low specificity reveals that most mAbs
with <8 chemical flags have high specificity, while those with
≥8 chemical flags have low specificity (Figure 5). It is also
notable that the predictions of antibody specificity can be
further refined. Antibodies with <4 chemical flags are all
predicted correctly to have high specificity (accuracy of 100%).
Likewise, antibodies with ≥8 flags are mostly predicted
correctly to have low specificity (accuracy of 90%). Antibodies
with 4−7 flags, which were considered in our original analysis
as those with high specificity (<8 of 12 chemical flags), are
predicted correctly with more modest accuracy (75%). This
suggests that a useful application of our chemical rules is to
define three regions of specificity predictions, two with higher
confidence (0−3 chemical flags for high specificity and 8−12
flags for low specificity), and a third with modest confidence in
predicting high antibody specificity (4−7 flags).
We also sought to test the performance of our chemical rules

if we eliminated the use of specific experimental limits to define

antibody specificity (e.g., mAbs with PSR values >0.27 have
low specificity) and instead simply ranked the antibodies from
the most specific to the least specific based on experimental
measurements (Figure 6). To do this, we ranked the 137
clinical-stage mAbs from best (lowest levels of nonspecific or
self-interactions) to worst (highest levels of nonspecific
interactions or self-interactions) for each of the five biophysical
assays and used the average rank percentile of the five assays to
define the most specific mAbs (lowest rank). Given that there
are 97 of 137 mAbs with <2 physical flags in our original
definition of high specificity, we would expect that these
antibodies would be ranked mostly in the top 71% (97 of 137
mAbs). Indeed, we find that most (94%, 91 of 97 mAbs) of the
antibodies ranked in the top 71% of the mAbs have <2 physical
flags (Figure 6A), suggesting that our original definition of
antibody specificity is weakly influenced by the use of
experimental limits to determine poor specificity. Moreover,
we find that our chemical rules segregate the best and worst
antibodies in a similar manner as the physical rules (Figure
6B). We also observe that mAbs with 0−3 chemical flags are
mostly (79%, 19 of 24 mAbs) ranked in the top half of the
antibodies, while mAbs with 8−12 chemical flags are all
(100%) ranked in the bottom half of the antibodies and those
with 4−7 chemical flags show intermediate average ranks
(Figure 6C). These findings further suggest that our chemical
rules provide the strongest predictions of high specificity for
mAbs with 0−3 chemical flags and low specificity for mAbs
with 8−12 chemical flags.
Our goal in developing the chemical rules in this work was

to broadly describe antibody specificity and not rely on any
single type of experimental specificity measurement. Never-
theless, we next evaluated how the rules that emerged from our
analysis would perform in the context of each individual
specificity assay (three nonspecific binding assays and two self-
interaction assays). For each biophysical assay, the antibodies
were segregated into two groups based on previously
established limits for high levels of nonspecific and self-
interactions.14 Next, the specificity test in Figure 4 was applied
to each group of antibodies defined by single nonspecific and
self-interaction measurements (Figures S2−S6). Encourag-
ingly, the performance of the chemical rules was both strong
and relatively similar for the five individual assays (p-values <
10−5 and accuracy of ≥75% for each assay). Moreover, we

Figure 5. Distributions of the number of chemical flags for clinical-stage mAbs with high and low specificity. The chemical flags are defined in
Figure 4A. The experimentally determined antibody specificities, as judged by five measurements of nonspecific and self-interactions, are defined as
described in Figure 1. mAbs with high specificity are those with <2 physical flags and mAbs with low specificity are those with ≥2 physical flags.
The adjusted accuracies are calculated as described in Figure 2.
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observed that the accuracies for the PSR (Figure S2) and AC-
SINS (Figure S3) assays were particularly strong for predicting
high specificity of mAbs with <4 chemical flags (100%
accuracy). More generally, we also observed strong perform-
ance for the PSR (Figure S2), AC-SINS (Figure S3), ELISA
(Figure S5), and BVP (Figure S6) assays for predicting mAbs
with high specificity (>80% accuracy, <4 chemical flags) and
low specificity (>80% accuracy, 8−12 chemical flags).
Evaluation of Combinations of Chemical Rules Using

Independent Sets of Antibodies. We also evaluated our
chemical rules using independent sets of antibodies not
included in our training or test sets. We first evaluated an
independent set of nonspecific interaction (PSR) measure-
ments for an additional 359 preclinical mAbs (Tables S13 and
S14) that largely fell within the amino acid compositions that
we evaluated previously in this work (≥98% and <99%
similarity based on the maximum and minimum limits in Table
S5). Importantly, the combined specificity rules correctly
identified more than half (55%) of these preclinical mAbs with
low specificity while flagging few mAbs (16%) with high
specificity (p-value of 1.6 × 10−4 and accuracy of 69%; Figure
S7). It is also notable that the accuracies for the training (70%)
and test (69%) sets of preclinical antibodies were similar.

We also tested our predictions using a second independent
set of mAbs (39 IgGs) that we generated and characterized
using nonspecific binding (ELISA14) and self-association (AC-
SINS17) assays (Figure 7). Importantly, the mAbs predicted by

our specificity rules to have poor specificity (≥8 chemical
flags) displayed significantly higher levels of nonspecific
binding than those that pass our test (<8 flags, p-value of 6.3
× 10−4; Figure 7A). Moreover, we find that the same specificity
test is also able to identify mAbs with high levels of self-
association (Figure 7B). The mAbs identified by our specificity
test (≥8 flags) displayed markedly higher levels of self-
association relative to mAbs that were not flagged (<8 flags, p-
value of 1.2 × 10−9). Moreover, we observed that mAbs with
<4 chemical flags generally had lower levels of nonspecific
binding and self-association than those with 4−7 flags,
although the difference for nonspecific binding is not
significant. These results demonstrate the generality of our
methodology for identifying antibodies with drug-like specific-
ity.
The strong performance of our chemical rules for identifying

antibodies with high specificity using multiple independent sets
of data (Figures 7 and S7) suggests that our rules identify some
of the most important determinants of antibody specificity.
However, we sought to evaluate our predictions using much
larger data sets to better evaluate their utility in identifying
antibodies with high specificity. Therefore, we sought to
mutagenize a clinical-stage antibody (emibetuzumab) that is
flagged by all 5 biophysical assays (ELISA, PSR, BVP, AC-
SINS, and CSI)14 and 8 out of 12 of the chemical rules. Our
strategy was to identify sites in the variable regions that were
flagged by our maximum rules and mutate them to residues
that reduced the number of chemical flags, including those that
are most important in the minimum rules (e.g., D and T). We
identified eight sites in the heavy chain CDRs to mutagenize,
and sampled five mutations per site in addition to the wild-type
residue using degenerate codons (Figure S1), which resulted in
>106 variants. This library was then displayed on yeast as

Figure 6. Comparison of the average ranks for clinical-stage mAbs
based on five measures of nonspecific and self-interactions and the
corresponding number of physical and chemical flags. (A) The
average ranks of mAbs with <2 physical flags (97 of 137 mAbs, 71% of
mAbs) and ≥2 physical flags (40 of 137 mAbs, 29% of mAbs) are
calculated based on their ranks for five assays of self- and nonspecific
interactions. (B, C) The average experimental ranks of mAbs
compared to (B) <8 versus ≥8 chemical flags and (C) the number
of chemical flags. In panel C, three regions are shown, one with
predicted high specificity (0−3 chemical flags highlighted in green), a
second one with intermediate specificity (4−7 chemical flags
highlighted in yellow), and a third one with low specificity (8−12
chemical flags highlighted in red).

Figure 7. Combined chemical rules strongly differentiate between
mAbs with different levels of nonspecific and self-interactions for an
independent set of antibodies. (A) Nonspecific interactions (ELISA)
and (B) self-interactions (AC-SINS) are reported for 39 mAbs that
were not included in the training and test sets used to generate the
combined chemical rules. The p-values are reported using a two
sample Anderson−Darling test. In panel A, the difference between ≤3
chemical flags and 4−7 chemical flags is not significant.
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single-chain Fab fragments and sorted for low nonspecific
binding against two reagents (PSR and ovalbumin) or high
(specific) binding to the target antigen, and the selected
antibody variants with high specificity were identified using
deep sequencing (see Experimental Section for more details).
Our findings are summarized in Figure 8. Of the 3465

antibodies that we identified in two independent experiments,
we first sought to identify sets of mutations that were most
strongly correlated with significant enrichment for high
specificity during selection. Our initial analysis led us to
focus on sets of four mutations to maximize statistical
significance. For example, we identified a set of four mutations
(Y33F, R54T, G56D, and Y102A in VH) that shows strong
correlation between antibody variants with such mutations and
their enrichment ratios during selection for low polyspecificity
(Spearman’s correlation coefficients of 0.81 for PSR and 0.83
for ovalbumin; Figure 8A). Of the top ten sets of four
mutations we identified, all of them included a mutation that

introduces negative charge, further suggesting that negative
charge is linked to increased antibody specificity (Figure 8B
and Table S15). It is also notable that most (80%) of the top
sets of mutations involved eliminating at least one Arg in the
CDRs. In total, we identified 13 sets of four mutations and 161
antibodies with such mutations that are expected to possess
high specificity (see Experimental Section for more details).
We next sought to test the ability of our chemical rules to

correctly predict antibodies with high specificity (Figure 8C).
Strikingly, despite observing thousands of antibodies with 0−7
chemical flags (2370 antibodies) and 8−12 flags (1095
antibodies with 8 chemical flags) in our input library, our
rules correctly identified almost all selected antibodies with
high specificity (160 of 161 antibodies with <8 chemical flags,
p-value of 10−26). Moreover, we find that antibodies with 0−3
flags were much more strongly enriched than even those with
4−7 flags (p-value <10−38), which further suggests that our
predictions of specificity are strongest for antibodies with 0−3

Figure 8. Design of Fab sublibraries of emibetuzumab guided by the combined chemical rules and evaluation of selected mutants with improved
antibody specificity. The VH domain of emibetuzumab was mutated at eight solvent-exposed sites (Y33, R50, R54, R55, G56, A95, W97, and Y102)
in the three heavy chain CDRs that were flagged by the maximum chemical rules. The mutations sampled the wild-type residue as well as five
mutations that are predicted to reduce the number of chemical flags. The libraries were constructed as single-chain Fab fragments (scFabs) on
yeast, sorted for nonbinding to two polyspecificity reagents [PSR and ovalbumin (OVA)], and evaluated via deep sequencing. (A) Enrichment
ratios for antibody variants with a set of four mutations (F33, T54, D56, and A102 in VH) relative to antibody variants with wild-type residues at
the same positions (Y33, R54, G56, and Y102 in VH) for two different polyspecificity reagents. The curves (logistic regressions) are guides to the
eye. (B) Top ten sets of four mutation combinations that are most strongly correlated with reduced binding to polyspecificity reagents and
increased specificity. (C, D) The (C) number and (D) percentage of mAb variants selected with high specificity as a function of the number of
chemical flags relative to the corresponding values for the input library. In panel A, the mAbs included in the wild-type or mutant groups are only
required to have wild-type or mutant residues at the four evaluated sites and can have either wild-type or mutant residues at the other four sites.
Moreover, the p-values are reported for the Spearman’s correlation coefficients (ρ). In panel C, the p-values for the comparisons of the number of
mAbs are calculated using a 2 × 2 contingency table (Fisher’s exact test). In panel D, the p-value for comparing the distributions of mAbs are
calculated using paired sample t-test (two tailed).
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chemical flags. More generally, we find that the distributions of
the number chemical flags for the selected mAbs with high
specificity relative to the input library are significantly different
(p-value of 10−8; Figure 8D). These findings demonstrate how
our chemical rules can be used to guide the design of antibody
libraries that target sites involved in polyspecificity and
facilitate the identification of antibody mutants with significant
improvements in specificity.

■ DISCUSSION
Our findings provide a relatively simple yet powerful
description of the overall specificity of monoclonal antibodies
at physiological conditions. To the best of our knowledge,
there are no prior methods for predicting the overall
propensity of antibodies to interact nonspecifically with various
types of molecules or themselves based simply on their primary
structures and their corresponding sequence-based solvent
accessibilities. Importantly, the conceptual framework that we
have developed is able to explain many previous disparate
findings and observations. Our finding that antibodies with
high specificity have low levels of positively charged CDR
residues is consistent with previous findings that increased
levels of positive charge in the CDRs and variable (VH and VL)
regions are linked to poor antibody specificity2,10,19,31−35 and
pharmacokinetics10,12,34−38 as well as high viscosity in
concentrated antibody solutions.39 Conversely, our finding
that antibodies with high specificity have increased levels of
negative charge in the CDRs is consistent with previous
findings that increased levels of negative charge in antibody
CDRs and variable regions are linked to high solubility and low
aggregation propensity,5,7,8,24,25,30,40−42 low self-association17

(although exceptions have been noted for mAbs with abnormal
levels of negative charge41,42) and favorable pharmacoki-
netics.12,37,38,43 Moreover, our finding that antibodies with
high specificity also have increased levels of polar CDR
residues (e.g., Asn) is consistent with the fact that increased
levels of polar residues in the CDRs are linked to increased
antibody specificity31,32 and improved pharmacokinetics.9 Our
specificity rules capture multiple factors that govern the
physicochemical properties of antibodies and simplify them
into powerful guidelines for rapidly identifying mAbs that are
expected to display favorable specificity, solubility, and
biodistribution.
What are the implications of our chemical rules for

generating and engineering antibodies with high affinity?
Interestingly, the theoretical net charge of the CDRs (pH 7.4)
of the mAbs with high specificity is near zero (−0.1 ± 2.4) and
more than half of them (61%) have positively charged CDRs.
While mAbs with low specificity do have more positively
charged CDRs on average than those with high specificity
(+1.8 ± 2.7 for mAbs with low specificity vs −0.1 ± 2.4 for
mAbs with high specificity), we do not expect that antigen-
binding sites that are strongly negatively charged are likely to
be generally compatible with high affinity binding. It is
plausible that antibodies with CDR net charges near zero (pH
7.4) and with appropriate amounts of noncharged hydrophilic
and hydrophobic residues as predicted by our rules may be
most attractive for achieving both high affinity and specificity.
Nevertheless, these speculative ideas await additional exper-
imental and computational analysis.
Although our findings generally suggest that increased

negative charge in antibody variable regions is linked to
reduced nonspecific and self-interactions, it is well established

that overenrichment in negative charge in antibody variable
regions is also linked to increased self-association and viscous
solution behavior at high antibody concentrations.41,44−48 One
obvious difference between this work and previous studies
related to viscous antibodies are the solution conditions, as we
analyzed antibody self-interaction measurements at physio-
logical conditions (PBS at pH 7.4) and previous studies have
evaluated antibody viscosity measurements in typical for-
mulation conditions (e.g., pH 5−6 without salt or with low salt
concentrations). Another notable difference is that the
antibodies with high specificity in our analysis have modest
amounts of negative charge, based on their theoretical net
charge calculated at pH 7.4, in their VH (+0.8 ± 1.9), VL (+0.8
± 2.0), Fv (+1.5 ± 2.5), heavy chain CDRs (−0.6 ± 1.7), light
chain CDRs (+0.6 ± 1.9), and overall CDRs (−0.1 ± 2.4;
Table S16). Moreover, the isoelectric points of the variable
regions of the antibodies with high specificity in our analysis
are relatively typical of antibodies in general, as evidenced by
the values for VH (7.4 ± 1.4), VL (7.5 ± 1.4), and Fv (7.7 ±
1.3; Table S16).
Caution should be used when interpreting our predictions of

specificity for antibodies with variable region charges and
isoelectric points that fall beyond the range of values
represented in our study. For example, omalizumab is viscous
at high antibody concentrations (e.g., ∼40 cP at ∼120 mg/mL
in histidine buffer at pH 6.0).41,42,49 Notably, this mAb has
abnormal charge properties relative to those for the high
specificity antibodies in this study, including a more negatively
charged VL (−3.9 relative to 0.8 ± 2.0 at pH 7.4) and light
chain CDRs (−4.9 relative to 0.6 ± 1.9 at pH 7.4) as well as a
lower VL isoelectric point (pI of 4.7 relative to 7.5 ± 1.4).
Moreover, mutations in the light chain CDRs of omalizumab
(D28A, D30N, H92Y, E93T, D94T, and Y96P in VL) that
reduce the amount of negative charge (−1.0 relative to −4.9
for wild-type at pH 7.4) and increase the isoelectric point of VL
(pI of 6.3 relative to 4.7 for wild-type) to be within the range
of the high specificity antibodies in this study significantly
reduce the viscosity (<10 cP at ∼120 mg/mL).41,42,50 Future
work is needed to better define limits on the amount of
negative charge in antibody variable regions that is favorable
for specificity without promoting attractive electrostatic
interactions that are unfavorable for high concentration
viscoelastic behavior.
There are also multiple factors to consider when interpreting

and applying our findings. We defined the limits of sequence
space for our analysis in Table S5 based on the maximum and
minimum numbers of each type of amino acid (weighted by
their relative solvent accessibilities even for residues exposed
<10%) in the CDRs and variable regions of preclinical and
clinical-stage antibodies in our training sets. It is expected that
the performance of our rules will be reduced for antibodies
whose amino acid compositions and site-specific solvent
accessibilities are outside the range of chemical and structural
diversity that we explored in this analysis. Encouragingly, we
find that the accuracy of our specificity predictions for
nonspecific binding (PSR assay) is weakly impacted by
reducing the similarity of antibodies in our test set relative
to the those in our training set (Figure S7). However, the
accuracy of such predictions is expected to decrease as the
antibodies to be analyzed become more dissimilar relative to
those in our training sets. Second, the antibody specificity
measurements considered in this work were obtained using
common antibody constant regions (IgG1 isotype with
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corresponding kappa and lambda light chains) regardless of the
actual antibody isotype.14,15 This is notable because it is well-
known that isotype differences between antibodies can lead to
differences in self-association and related properties such as
solubility and viscosity.14,48,51−54 The effects of different
antibody isotypes on the physicochemical properties of mAbs
have not been addressed in our specificity analysis and will
need to be addressed in future work.
It is also important to consider the impact of the methods

we used to calculate solvent-accessible surface areas on our
findings. We employed a published machine learning method
that only requires antibody variable region sequences,16 which
is particularly convenient for antibodies of unknown structure.
Nevertheless, it is important to note that this machine learning
method yields slightly different models each time it is trained,
which leads to small differences in the predicted solvent
accessibility values and the resulting chemical rule values. For
example, we compared two different models generated from
this machine learning method and observed minor differences
in the number of chemical flags for the clinical-stage antibodies
(Table S17). This results in minor changes in the accuracy of
the predictions for the specificity of the clinical-stage
antibodies (e.g., 82−85% accuracy). We recommend not
only using the same machine learning method, but also the
same compiled model that we used in this work to calculate
solvent accessibilities for evaluating the number of chemical
flags for additional antibodies. It is also notable that the
machine learning method is mostly trained on antibodies with
kappa light chains, and caution should be used when applying
this method to antibodies with lambda light chains. More
generally, our training sets of nonspecific and self-interaction
measurements primarily contained antibodies with kappa light
chains given that most clinical-stage antibodies have kappa
light chains (91% of the clinical-stage antibodies in this study),
and our chemical rules are expected to be most useful for
predicting the specificity of antibodies with kappa light chains.
We expect that our findings will immediately impact

therapeutic antibody development in multiple ways. First,
our specificity rules will serve as valuable design guidelines for
generating antibody libraries with drug-like specificity. This is
particularly important for both in vitro antibody discovery and
affinity maturation given that it is only possible to sample an
extremely small fraction of maximum CDR chemical diversity,
and it is critical to focus the CDR diversity on combinations of
residues that give rise to drug-like properties. We also expect
that our specificity rules will provide powerful guidelines for
both identifying antibody candidates with high specificity
during early antibody discovery and re-engineering existing
antibodies with drug-like properties later in the optimization
and development process. More generally, we expect that our
novel conceptual framework, which can be readily expanded in
the future to include additional structural information and
incorporate additional biophysical data sets, will accelerate the
generation of potent antibody therapeutics with drug-like
properties.
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