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ABSTRACT

We propose a framework to detect software bugs based on code pat-
tern detection. Our framework will mine and generate bug patterns,
detect those patterns in code, and calculate a vulnerability measure
of software. While our framework performs well, we realize that it
requires heavy manual tasks that render the framework infeasible
to use in practice. However, we believe that recent advancements in
machine learning will allow us to apply deep learning techniques
to source code, which will help automate our framework for better
practicality in the real world.
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1 INTRODUCTION

The security and reliability of software systems are essential in
making decisions for real-world problems. Many process-based
approaches and models have been developed to quantify software
vulnerabilities and reliability. However, these approaches, while
useful, have many limitations. Our framework develops a pattern-
based vulnerability measurement model, which checks software
artifacts for the existence of negative patterns to produce a vulner-
ability measure and we hope to extend to probabilistically estimate
whether a given cyber system preserves a given set of security or
reliability properties. The project’s components include a Learning
Engine to mine bug repositories to create bug patterns; a Pattern
Detector to detect the existence and invocation of patterns; and
a Vulnerability Model for the estimation of the vulnerability of a
software project based on the detected patterns.

Further, we recognize that our framework (as well as many other
frameworks we have studied) requires a large amount of manual
processes with software code to perform properly and stay up-to-
date. We propose to use deep learning to mitigate some of these
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manual processes to make our model feasible to real-world appli-
cations. However, while using deep learning on natural language
has recently gained much attention, their is quite limited literature
and research that has applied deep learning to software code. We
discuss our first steps toward utilizing deep learning for processing
software code, which is creating high quality word embeddings so
learning tasks can be performed.

2 APPROACH

2.1 Framework

The Learning Engine acts as a repository of known patterns which
will be used to identify bugs in code during pattern detection. To
create this repository, we utilized the Common Weakness Enumera-
tion (CWE) database and Github, focusing on Java-related bugs and
projects. For each bug we collected bug categories, descriptions,
solutions, and sometimes sections of code. Then, for the most com-
mon code bugs we manually extracted concrete code patterns from
them to be used during Pattern Detection.

To conduct the Pattern Detection in our framework, we utilized
SpotBugs!, a fork of the static analysis tool FindBugs [2]. Given code
patterns, the tool analyzes Java bytecode and detects the existence
of the patterns.

After identifying bug patterns, they further needed to be linked
to abstract quality aspects to calculate a vulnerability measure.
Specifically, we consider five major aspects of code reliability: Data,
Behavior, Performance, Security, and Design.

Finally, the detection of a bug pattern does not indicate a bug
exists, only that it is highly probable it exists. We integrate targeted
testing techniques in order to test if the section of code identified
by the pattern actually produces an error, showing it truly is a bug.

For our Measurement Model we use Formula 1 to generate a
vulnerability value, normalized to the range [0, 1]. Here, Detected
is the set of bug instances found in the code using patterns. Risk(b)
denotes the risk value of a given bug b, which is calculated using
the quality aspects and testing results during Pattern Detection. R is
a constant representing the average risk sum per software project.

R
Vulnerability = 1 — - (1)
R+ XY petected Risk(b)
With this formula, vulnerability scores above 0.5 indicate above
average vulnerability, and lower than 0.5 indicate below average

vulnerability.

1SpotBugs URL: https://spotbugs.github.io/
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2.2 Word Embeddings of Code Elements

Like most sophisticated vulnerability and reliability measurement
frameworks we found, many processes in our framework must be
performed manually. Since the magnitude of these manual processes
makes such frameworks infeasable for real-world use, we hope to
utilize deep learning to mitigate some or all of the manual processes
to make our framework practical.

Most of our manual processes deal directly with code. However,
deep learning tasks cannot be applied directly to code elements
as they have no meaningful underlying numerical representations
for the learning task calculations to be performed on. Inspired
by natural language processing (NLP), we have created word em-
beddings for Java code elements. These word embeddings were
created in Tensorflow [1] using a modified version of the Word2Vec
Skip-gram [4] algorithm.

In NLP, Word2Vec is based on the assumption that similar words
are used in similar context. For example, the similar words “fast”
and “quick” would be used in the same way and in close proximity to
the same words in a large body of text, or corpus. Word2Vec creates
vector representations for words, called word embeddings. For each
word in a corpus, Word2Vec identifies the words surrounding it in
the corpus as context and then performs word prediction using deep
learning to modify the embedding of each word. After performing
the prediction task many times over the entire corpus, the word
embeddings will eventually converage and represent the relative
semantic meaning of all the words. A good sign of high quality
word embeddings is that similar words are grouped together in the
vector space, since similar words should have very similar word
embeddings.

For source code, we perform a similar process. We first convert
source code to an abstract syntax tree (AST), which is a graph
representation of the source code where code elements are nodes
and the structure is defined by the edges. We then walk the AST
and collect context for each node visited. Through our research we
have found that simply using surrounding code elements as context
for the current node is not sufficient to produce high quality word
embeddings. Therefore, we identify context based on asking the
question “What other node types or code elements in the AST are
needed to determine the meaning or perform the task of the target
code element?”

3 RESULTS

For our framework, we have created a website? where a Github
repository URL can be entered. If the automatic build script is able
to successfully build the repository, it will produce measurement
results and bug detection outputs based on our framework. For the
final vulnerability calculation, R has been determined based on the
average bug occurances across 717 top Github Java projects.

In our initial attempt at creating word embeddings for code
elements, we performed Word2Vec on the Java Development Kit 8
(JDK8) which included 15,355 unique code elements. We achieved a
lowest loss of 2.69 and perplexity of 14.80, which is acceptable. We
explored the vector space that contains our word embeddings and
found that many similar code elements have been grouped together,
as can be seen in Figure 1. For example, in the original vector space

http://galadriel.cs.utsa.edu:25666/
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Figure 1: JDK8 embeddings for 34 common code elements;
this graph visualizes 300 dimensional vectors in 2 dimen-
sional space.

if can be found closest to &&, ||, while, and ? (which represents the
conditional statement); and the double literal can be found closest
to the char literal, String literal, int literal, and + operator.

4 FUTURE WORK

In the next steps of our research we will continue to refine and
develop word embeddings for code elements. We will then use those
word embeddings to automate our framework using learning tasks
that include: detection of semantic vulnerabilities, enforcement of
natural language policies, classification of bugs to abstract quality
aspects, and generation of robust concrete bug patterns.
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