
Taming Web Views in the Detection of Android Privacy Leaks

Xue Qin
xue.qin@utsa.edu

The University of Texas at San

Antonio

San Antonio, Texas

Robert Neuhaus
robert.neuhaus@my.utsa.edu

The University of Texas at San

Antonio

San Antonio, Texas

Diego Gonzales
diego.gonzales@my.utsa.edu

The University of Texas at San

Antonio

San Antonio, Texas

Xiaoyin Wang
xiaoyin.wang@utsa.edu

The University of Texas at San

Antonio

San Antonio, Texas

Travis Breaux
breaux@cs.cmu.edu

Carnegie Mellon University

Pittsburgh, Pennsylvania

Jianwei Niu
jianwei.niu@utsa.edu

The University of Texas at San

Antonio

San Antonio, Texas

ABSTRACT

Billions of smartphone users force both technical and non-technical

facilities to publish their applications in market. One of the easiest

ways to create an application for non-techies is by transferring their

existing website using WebView. Current approaches for privacy

policy analysis are mainly focused on APIs and predefined user

interfaces and cannot cover these type of information. In this paper,

we proposed a novel solution to trace the input data that is collected

from WebView.

CCS CONCEPTS

• Security and privacy → software and application security.

KEYWORDS

android applications, privacy policies, violation detection

ACM Reference Format:

Xue Qin, Robert Neuhaus, Diego Gonzales, Xiaoyin Wang, Travis Breaux,

and Jianwei Niu. 2019. Taming Web Views in the Detection of Android

Privacy Leaks. In Hot Topics in the Science of Security Symposium (HotSoS),

April 1–3, 2019, Nashville, TN, USA. ACM, New York, NY, USA, 2 pages.

https://doi.org/10.1145/3314058.3317732

1 INTRODUCTION

Existing work by Slavin et al. [2] attempts to trace privacy policy

statements about collection of platform information to API calls

with static program analysis. These API calls concern personal data

that is automatically collected from the device, such as user location,

device identifiers, contact information, and sensor data. Prior work

by Wang [3] focuses on tracking privacy policy claims based on

direct user input. The user interfaces related to these inputs are gen-

erated either statically or programmatically at runtime. However,

these works are limited because they did not address personal data

that collected through WebView generated user interfaces, which

is another major source of private information.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

HotSoS, April 1–3, 2019, Nashville, TN, USA

© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-7147-6/19/04. . . $15.00
https://doi.org/10.1145/3314058.3317732

Traditional graphic user interface (GUI) can be implemented

using static declarations in resource files, or programmatically in

the code. But they are all generated locally. WebView displays web

pages as part of the GUIs by loading URLs and it also supports the

interaction in the opposite direction, from JavaScript to Java. In

other words, the GUIs that is generated remotely by server makes

static analysis impossible.

Nowadays, many technical teams provide services for non-technical

organizations such as universities and hospitals to take their exist-

ing web applications and convert them into mobile apps with the

help of WebView. Company like GoNative.io1 helped their clients

publish 600+ apps with a 98.1% approval rating in 2018. To address

the problem, we propose a novel approach to trigger the application

loading WebView at runtime while tracing the information flows

among the WebView interfaces.

2 APPROACH

Our approach contains three major parts. The first part is to de-

velop a tool to automatically explore the Android application while

supporting both traditional and WebView GUI analysis. The second

part is the procedure of WebView interface detection, we need to

identify and modify all the interfaces statically so that they can be

recognized by our GUI explorer at runtime and keep track of the

information types. The last part is about data flow monitoring, we

apply all the potential interface methods to Flowdroid [1] to trace

information flow.

2.1 GUI Exploration

In order to automatically explore the GUIs of an Android applica-

tion, we develop a GUI automation tool based on a test automation

framework Appium with combination of Android Debug Bridge

(adb) and Android UIAutomator. The fundamental goal of our tool

is to replace the manual exploration as well as to support WebView

GUI analysis.

The tool follows a series of steps to explore: First, our tool takes

application as input and preprocess the setups on Appium. For the

app that requires login, we provide a manual script that contains

login information such as username and password; Then, our tool

tries to trigger every possible GUI event on the screen by clicking

and entering input data. Subsequently, our tool keeps track of all

1https://gonative.io/about

HotSoS, April 1–3, 2019, Nashville, TN, USA Trovato and Tobin, et al.

the GUI events it has been explored and marks down all the visited

WebView within a timeout threshold. The final step is to report the

visited record.

2.2 WebView Interface Detection

WebView provides a mechanism for the JavaScript code inside it to

invoke Android apps’ Java code. The API used for this purpose is

called addJavascriptInterface(). Android applications can register

Java objects to WebView through this API, and all the public meth-

ods in these Java objects can be invoked by the JavaScript code

from inside WebView. Since Android API 17, all Java methods must

include the @JavascriptInterface annotation to be accessible within

JavaScript.

1 public classMainActivity extends AppCompatActivity {

2 @Override

3 protected void onCreate(Bundle savedInstanceState) {

4 super.onCreate(savedInstanceState);

5 setContentView(R.layout.activity_main);

6 WebView myWebView = (WebView) findViewById(R.id.webview);

7 myWebView.addJavascriptInterface(newWebAppInterface(this), "Android

");

8 WebSettings webSettings = myWebView.getSettings();

9 webSettings.setJavaScriptEnabled(true);

10 myWebView.loadUrl("file:///android_asset/js.html");

11 }

12

13 public classWebAppInterface {

14 Context mContext;

15 WebAppInterface(Context c) {

16 mContext = c;

17 }

18 @JavascriptInterface

19 public void showToast(String toast) {

20 Toast.makeText(mContext, toast, Toast.LENGTH_SHORT).show();

21 }

22 }

23 }

Listing 1: Java Code of WebView Interface Implementation

Listing 1 shows a GUI implementation example using WebView.

keyword @JavascriptInterface in line 18 annotates the showToast()

method of the WebAppInterface class, and Line 7 illustrates the

use of the addJavascriptInterface() API method with an instance

of the WebAppInterface class included as a parameter. The add-

JavascriptInterface() method allows theWebAppInterface instance

to be accessible from within JavaScript, while the @JavascriptInter-

face annotation allows JavaScript to call the instance’s showToast()

method. Line 6 in Listing 2 illustrates the showToast() method of

the WebAppInterface instance being called from within JavaScript,

passing in a string as a parameter. Without the@JavascriptInterface

annotation, the showToast() method would not be callable from

within JavaScript.

The fact that any method that is called within JavaScript must

contain a specific annotation means that a list of methods to moni-

tor can be generated by decompiling an Android application and

parsing the resulting .smali files for methods containing the anno-

tation. Figure 1 shows us the frequency of WebView annotation

usage from top 100 apps across 8 categories. From the result, 74%

of the apps are using this annotation. And 20 applications each

consisted of at least 25 methods containing the annotation, and 5

applications have more than 100 annotations.

1 <head>

2 <title>Webview Test</title>

3 </head>

4 <script type="text/javascript">

5 function showAndroidToast(toast) {

6 Android.showToast(toast);

7 }

8 </script>

9 <body>

10 <input type="button" value="Say␣hello" onClick="showAndroidToast('Hello␣

Android!')" />

11 </body>

Listing 2: Sample JavaScript Code of a Java Object’s Method

Being Called

Figure 1: Frequency of @JavascriptInterface Annotation

2.3 Data Flow Monitoring

After we identify the all web view interface method invocations

between JavaScript code and Android Java code, we will instru-

ment the invocations and record the data transferred through the

interface. During the GUI exploration, we input a unique value

into each different text box, so that we can tell the source of the

data based on the value. Therefore, for each interface invocation,

we can tell which text boxes are its data source. Finally, applying

FlowDroid to the Android Java code with the interface invocations

as information sources, we can tell input of which text boxes in the

web views flows to the network.

REFERENCES
[1] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-

tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
FlowDroid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware
Taint Analysis for Android Apps. SIGPLAN Not. 49, 6 (Jun 2014), 259–269.
https://doi.org/10.1145/2666356.2594299

[2] Rocky Slavin, Xiaoyin Wang, Mitra Bokaei Hosseini, James Hester, Ram Krishnan,
Jaspreet Bhatia, Travis D. Breaux, and Jianwei Niu. 2016. Toward a Framework for
Detecting Privacy Policy Violations in Android Application Code. In Proceedings
of the 38th International Conference on Software Engineering (ICSE ’16). ACM, New
York, NY, USA, 25–36. https://doi.org/10.1145/2884781.2884855

[3] X. Wang, X. Qin, M. Bokaei Hosseini, R. Slavin, T. D. Breaux, and J. Niu. 2018.
GUILeak: Tracing Privacy Policy Claims on User Input Data for Android Appli-
cations. In 2018 IEEE/ACM 40th International Conference on Software Engineering
(ICSE). 37–47.

