Taming Web Views in the Detection of Android Privacy Leaks

Xue Qin
xue.qin@utsa.edu
The University of Texas at San
Antonio
San Antonio, Texas

Xiaoyin Wang
xiaoyin.wang@utsa.edu
The University of Texas at San
Antonio
San Antonio, Texas

ABSTRACT

Billions of smartphone users force both technical and non-technical
facilities to publish their applications in market. One of the easiest
ways to create an application for non-techies is by transferring their
existing website using WebView. Current approaches for privacy
policy analysis are mainly focused on APIs and predefined user
interfaces and cannot cover these type of information. In this paper,
we proposed a novel solution to trace the input data that is collected
from WebView.

CCS CONCEPTS

« Security and privacy — software and application security.

KEYWORDS

android applications, privacy policies, violation detection

ACM Reference Format:

Xue Qin, Robert Neuhaus, Diego Gonzales, Xiaoyin Wang, Travis Breaux,
and Jianwei Niu. 2019. Taming Web Views in the Detection of Android
Privacy Leaks. In Hot Topics in the Science of Security Symposium (HotSoS),
April 1-3, 2019, Nashville, TN, USA. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3314058.3317732

1 INTRODUCTION

Existing work by Slavin et al. [2] attempts to trace privacy policy
statements about collection of platform information to API calls
with static program analysis. These API calls concern personal data
that is automatically collected from the device, such as user location,
device identifiers, contact information, and sensor data. Prior work
by Wang [3] focuses on tracking privacy policy claims based on
direct user input. The user interfaces related to these inputs are gen-
erated either statically or programmatically at runtime. However,
these works are limited because they did not address personal data
that collected through WebView generated user interfaces, which
is another major source of private information.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

HotSoS, April 1-3, 2019, Nashville, TN, USA

© 2019 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-7147-6/19/04...$15.00
https://doi.org/10.1145/3314058.3317732

Robert Neuhaus
robert.neuhaus@my.utsa.edu
The University of Texas at San
Antonio
San Antonio, Texas

Travis Breaux
breaux@cs.cmu.edu
Carnegie Mellon University
Pittsburgh, Pennsylvania

Diego Gonzales
diego.gonzales@my.utsa.edu
The University of Texas at San
Antonio
San Antonio, Texas

Jianwei Niu
jlanweiniu@utsa.edu
The University of Texas at San
Antonio
San Antonio, Texas

Traditional graphic user interface (GUI) can be implemented
using static declarations in resource files, or programmatically in
the code. But they are all generated locally. WebView displays web
pages as part of the GUIs by loading URLs and it also supports the
interaction in the opposite direction, from JavaScript to Java. In
other words, the GUIs that is generated remotely by server makes
static analysis impossible.

Nowadays, many technical teams provide services for non-technical
organizations such as universities and hospitals to take their exist-
ing web applications and convert them into mobile apps with the
help of WebView. Company like GoNative.io! helped their clients
publish 600+ apps with a 98.1% approval rating in 2018. To address
the problem, we propose a novel approach to trigger the application
loading WebView at runtime while tracing the information flows
among the WebView interfaces.

2 APPROACH

Our approach contains three major parts. The first part is to de-
velop a tool to automatically explore the Android application while
supporting both traditional and WebView GUI analysis. The second
part is the procedure of WebView interface detection, we need to
identify and modify all the interfaces statically so that they can be
recognized by our GUI explorer at runtime and keep track of the
information types. The last part is about data flow monitoring, we
apply all the potential interface methods to Flowdroid [1] to trace
information flow.

2.1 GUI Exploration

In order to automatically explore the GUIs of an Android applica-
tion, we develop a GUI automation tool based on a test automation
framework Appium with combination of Android Debug Bridge
(adb) and Android UTAutomator. The fundamental goal of our tool
is to replace the manual exploration as well as to support WebView
GUI analysis.

The tool follows a series of steps to explore: First, our tool takes
application as input and preprocess the setups on Appium. For the
app that requires login, we provide a manual script that contains
login information such as username and password; Then, our tool
tries to trigger every possible GUI event on the screen by clicking
and entering input data. Subsequently, our tool keeps track of all

!https://gonative.io/about

1
2
3
4
5
6
7

o o

10
11
12
13
14
15
16
17
18
19
20
21
22
23

HotSoS, April 1-3, 2019, Nashville, TN, USA

the GUI events it has been explored and marks down all the visited
WebView within a timeout threshold. The final step is to report the
visited record.

2.2 WebView Interface Detection

WebView provides a mechanism for the JavaScript code inside it to
invoke Android apps’ Java code. The APT used for this purpose is
called addJavascriptinterface(). Android applications can register
Java objects to WebView through this API, and all the public meth-
ods in these Java objects can be invoked by the JavaScript code
from inside WebView. Since Android API 17, all Java methods must
include the @JavascriptInterface annotation to be accessible within
JavaScript.
public class MainActivity extends AppCompatActivity {
@Override
protected void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.activity_main);
WebView myWebView = (WebView) findViewByld(R.id.webview);
myWebView.addJavascriptInterface(new WebApplInterface(this), "Android
");
WebSettings webSettings = myWebView.getSettings();
webSettings.setJavaScriptEnabled(true);
myWebView.loadUrl("file:///android_asset/js.html");
}

public class WebApplInterface {
Context mContext;
WebAppInterface(Context c) {
mContext = ¢;

}
@JavascriptInterface
public void showToast(String toast) {
Toast.makeText(mContext, toast, Toast. LENGTH_SHORT).show();

}

}
Listing 1: Java Code of WebView Interface Implementation

Listing 1 shows a GUI implementation example using WebView.
keyword @JavascriptInterface in line 18 annotates the showToast()
method of the WebApplInterface class, and Line 7 illustrates the
use of the addFavascriptInterface() API method with an instance
of the WebApplInterface class included as a parameter. The add-
Javascriptinterface() method allows the WebAppInterface instance
to be accessible from within JavaScript, while the @JavascriptInter-
face annotation allows JavaScript to call the instance’s showToast()
method. Line 6 in Listing 2 illustrates the showToast() method of
the WebApplInterface instance being called from within JavaScript,
passing in a string as a parameter. Without the @Javascriptinterface
annotation, the showToast() method would not be callable from
within JavaScript.

The fact that any method that is called within JavaScript must
contain a specific annotation means that a list of methods to moni-
tor can be generated by decompiling an Android application and
parsing the resulting .smali files for methods containing the anno-
tation. Figure 1 shows us the frequency of WebView annotation
usage from top 100 apps across 8 categories. From the result, 74%
of the apps are using this annotation. And 20 applications each
consisted of at least 25 methods containing the annotation, and 5
applications have more than 100 annotations.

O 0 NG A W N

—_
S

—-
_

Trovato and Tobin, et al.

<head>
<title>Webview Test</title>
</head>
<script type="text/javascript">
function showAndroidToast(toast) {
Android.showToast(toast);
}
</script>
<b0dy>
<input type="button" value="Say_hello" onClick="showAndroidToast('Hello_
Android!")" />
</body>

Listing 2: Sample JavaScript Code of a Java Object’s Method
Being Called

Frequency of @Javascriptinterface Annotation

" I N
) o] 3
3 3 3

Number of Anotations per App

. “”HHlllllnnnn...,.....

AT NQO MY
2833

TR RN RN R N R N R R]
NRAANemIIIINAARSG GRRRRISL5 33§

Figure 1: Frequency of @Javascriptinterface Annotation

2.3 Data Flow Monitoring

After we identify the all web view interface method invocations
between JavaScript code and Android Java code, we will instru-
ment the invocations and record the data transferred through the
interface. During the GUI exploration, we input a unique value
into each different text box, so that we can tell the source of the
data based on the value. Therefore, for each interface invocation,
we can tell which text boxes are its data source. Finally, applying
FlowDroid to the Android Java code with the interface invocations
as information sources, we can tell input of which text boxes in the
web views flows to the network.

REFERENCES

[1] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-
tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
FlowDroid: Precise Context, Flow, Field, Object-sensitive and Lifecycle-aware
Taint Analysis for Android Apps. SIGPLAN Not. 49, 6 (Jun 2014), 259-269.
https://doi.org/10.1145/2666356.2594299

Rocky Slavin, Xiaoyin Wang, Mitra Bokaei Hosseini, James Hester, Ram Krishnan,
Jaspreet Bhatia, Travis D. Breaux, and Jianwei Niu. 2016. Toward a Framework for
Detecting Privacy Policy Violations in Android Application Code. In Proceedings
of the 38th International Conference on Software Engineering (ICSE ’16). ACM, New
York, NY, USA, 25-36. https://doi.org/10.1145/2884781.2884855

X. Wang, X. Qin, M. Bokaei Hosseini, R. Slavin, T. D. Breaux, and J. Niu. 2018.
GUILeak: Tracing Privacy Policy Claims on User Input Data for Android Appli-
cations. In 2018 IEEE/ACM 40th International Conference on Software Engineering
(ICSE). 37-47.

N,

&

