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ABSTRACT

Understanding the patterns and drivers of primary

productivity is a major goal of ecology, but little is

known about whether the primary productivities of

different types of ecosystems—here, lakes and the

landscapes in which they are embedded—fluctuate

in related ways through time. Due to shared cli-

matic variation and well-known connections be-

tween lake and terrestrial ecosystems, such as

nutrient and resource subsidies, we hypothesized

that interannual fluctuations in aquatic and ter-

restrial primary productivity indices could be

coherent. We also expected that lake and water-

shed characteristics could modify the strength and

nature of primary productivity relationships. We

applied wavelet coherence analyses to time series

of lake chlorophyll-a and satellite-derived NDVI to

examine coherence between lakes and land, and

used random forest regression and generalized

additive models to evaluate why coherence varies

among lakes. There can be substantial coherence

between lake and terrestrial primary productivity,

but the strength and phase (direction and time lag)

of this relationship vary widely, and there were

marked differences between short (2–4-year peri-

ods of oscillation) and long (> 4-year periods of

oscillation) timescales. Across all timescales, vari-

ables associated with the connectedness of lakes to

their watersheds were consistently the important

explanatory variables of the strength and phase of

coherence. The patterns observed in this study

suggest the importance of cross-ecosystem flows, as

opposed to shared climatic variation, in determin-

ing temporal coherence between lakes and the

landscape.

Key words: Synchrony; Compensation; Chloro-

phyll-a; NDVI; Resource subsidies; Hydrologic
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HIGHLIGHTS

� Lake and watershed primary production can vary

coherently.

� The magnitude, direction, and time lag of coher-

ence relationships vary widely.

� Hydrologic connectedness is a key feature medi-

ating the lake–landscape coherence relationship.
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INTRODUCTION

Quantifying the primary productivity of ecosys-

tems, and how and by what mechanisms this pro-

cess varies spatiotemporally, is a fundamental goal

of ecology, especially in light of global climate

change (Schlesinger and Bernhardt 2013). There

are rich, but separate, bodies of literature on the

rates and patterns of primary productivity in lakes

(Carpenter and others 1985; Dodson and others

2000; Downing 2009; Seekell and others 2018) and

in terrestrial landscapes (Melillo and others 1993;

Running and others 2000; Schimel and others

2001; Anav and others 2015). Less is known about

the relatedness of temporal fluctuations in primary

productivity between lakes and the landscape.

Aquatic and terrestrial ecosystems are linked

through substantial and temporally variable fluxes

of matter and energy (Cole and others 2007; Har-

rison and others 2009; Butman and others 2016),

which plays an important role in regional and

global carbon cycles (Tranvik and others 2009;

Buffam and others 2011). Given these factors,

whether there are persistent relationships in tem-

poral fluctuations (that is, coherence) in primary

productivity between lakes and the landscape has

substantial implications for understanding the dy-

namic linkages between these systems. Coupling of

temporal patterns in primary productivity across

different ecosystem types has received little atten-

tion with the exception of studies focused on syn-

chronization of terrestrial and coastal marine

ecosystems (Ong and others 2016; Black and others

2018; Lara and others 2019).

Temporally coherent fluctuations in terrestrial

and aquatic primary productivity might plausibly

arise from two general mechanisms. The systems

might both be influenced, directly and indepen-

dently, by the same exogenous environmental

drivers (for example, climate and weather), bring-

ing them into coherence. This mechanism is anal-

ogous to the Moran effect, in which a shared

environmental driver synchronizes spatially dis-

junct populations (Moran 1953). While spatial

synchrony among lakes has been observed for

variables like surface water temperature (Magnu-

son and others 1990), it is unclear if exogenous

environmental drivers also result in coherence be-

tween different ecosystem types. Coherence could

also arise from flows of carbon and nutrients across

ecosystem boundaries. One possible scenario is that

terrestrially fixed carbon enters a lake as dissolved

organic matter, reducing light availability and

therefore photosynthesis (Karlsson and others

2009; Solomon and others 2015). Alternatively,

nutrients entering a lake along with organic matter

can stimulate primary productivity (Thrane and

others 2014; Corman and others 2018; Kelly and

others 2018), or terrestrially fixed carbon could

affect aquatic primary productivity by providing

subsidies to consumers (Tanentzap and others

2017).

These two mechanisms (Moran-like effects and

cross-ecosystem flows) may not be mutually

exclusive, as climate and weather may be impor-

tant drivers of temporal variability in the magni-

tude of cross-ecosystem flows. For example,

anthropogenic nutrient enrichment of terrestrial

ecosystems enhances terrestrial primary production

and could also drive variability in aquatic primary

production through episodic nutrient loading from

the watershed, for example in runoff from precip-

itation events (Kelly and others 2019; Stockwell

and others 2020). Although nutrient loading is an

exogenous forcing that may be shaped by weather

(for example, precipitation), we distinguish be-

tween this and the pure Moran-like effect because

of the likelihood of vegetation and watershed pro-

cesses determining the magnitude and timing of

inputs to the lake and creating time lags between

nutrients’ stimulating effects on primary produc-

tivity on the landscape and in lakes. Although the

Moran-like independent effects of weather could

be positive in one system and negative in the other,

we do not expect them to be time-lagged given the

short response times of plant photosynthetic rates

and high turnover rates of phytoplankton.

Properties of lakes and watersheds likely shape

the strength and direction of relationships between

aquatic and terrestrial primary productivity, and

time lags between these variables. Lakes are dif-

ferentially affected by catchment processes based

on their position in the watershed, with lower lakes

tending to be more strongly influenced (Kratz and

others 1997; Martin and Soranno 2006). Lake

morphology could also play an important role, with

shallower lakes (Qin and others 2020) or those

with greater shoreline development indices

(Scheuerell and Schindler 2004) potentially expe-

riencing stronger influences of the adjacent ter-

restrial ecosystem. What dominates cross-

ecosystem flows could also help determine whether

lakes and the landscape tend to be positively or

negatively related. If the dominant mechanism is

nutrient inputs from land to lake, then the two

systems may be positively related, whereas if inputs

of dissolved organic carbon (DOC) from land to

lake dominate, then reductions in water clarity

could inhibit lake primary productivity (Karlsson

and others 2009; Solomon and others 2015),
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resulting in a negative relationship. Time lags be-

tween lake and landscape primary productivity

could reflect time differences between carbon fix-

ation and release (Kuzyakov and Gavrichkova

2010), and lags associated with processing and

transport through the watershed (Harman 2015).

Thus, temporal relationships in primary produc-

tivity between the lake and the landscape provide

insight into the drivers of those dynamics and the

strength of the linkages among these ecosystems.

Temporal relationships have often been studied

using correlation, but approaches based on the

wavelet transform (Torrence and Compo 1998)

have grown in popularity because of their ability to

resolve common patterns that confound standard

correlation (Vasseur and Gaedke 2007; Downing

and others 2008; Sheppard and others 2016; Walter

and others 2017). Ecology is multi-causal and

mechanisms often have specific timescales of vari-

ation, so timescale-specific relationships can reflect

specific drivers (Defriez and Reuman 2017; Shep-

pard and others 2019; Wilkinson and others 2020).

Standard correlation can fail to resolve timescale-

specific and temporally lagged effects (Sheppard

and others 2016; Walter and others 2019). Time

lags result from common processes including

transport times between observation points, inter-

vals between generations, and certain predator–

prey relationships. Wavelet coherence overcomes

both problems by indicating the strength of relat-

edness between two variables, and the time lag

(phase difference) between them, as a function of

timescale (Grinsted and others 2004; Sheppard and

others 2017). Figure 1 illustrates a timescale-

specific relationship and examples of phase differ-

ences between two variables.

To investigate patterns of temporal coherence in

primary productivity between lakes and the land-

scapes in which they are embedded, we analyzed

135 long-term (‡ 20 years) paired lake and land

time series in the northeastern USA. We focus

specifically on the following questions. (Q1) To

what extent are multi-annual [sensu Wilkinson

and others (2020)] patterns of lake primary pro-

ductivity coherent with primary productivity in the

surrounding landscape? (Q2) What are the phase

differences between them, and what does this im-

ply about the predominant mechanisms coupling

primary productivity in lakes and the landscape?

(Q3) What factors explain variability in the mag-

nitude and phase of coherence between lake and

landscape primary productivity? (Q4) Do the an-

swers to questions Q1 through Q3 depend on

timescale? We found that on multi-annual time-

scales landscape and lake productivity vary widely

in their coherence and the phase differences be-

tween landscape and lake. The coupling relation-

ships appear to mainly reflect flows of carbon and

nutrients between the ecosystem types.

METHODS

Data Acquisition and Processing

We obtained time series data on chlorophyll-a, an

indicator of primary production, from the LAGOS-

NE LIMNO database, version 1.087.3 (Soranno and

others 2017; Soranno and Cheruvelil 2019). The

LAGOS-NE database contains time series of physi-

cal, chemical, and biological parameters from lakes

located in seventeen states of the northeastern and

mid-western portions of the conterminous United

States. Data were aggregated to annual intervals by

averaging measurements from May–September,

the period of most active growth. If a lake had

fewer than three observations during a growing

season, data for that year were discarded. Lake time

series selected for analysis spanned a minimum of

20 years, could have a maximum of two years with

missing data, and years with missing data were

non-consecutive. Because our analyses require

complete time series, missing data were filled with

the median of the time series. A number of lakes in

LAGOS-NE narrowly missed satisfying these crite-

ria, but because this version of LAGOS-NE contains

data through the year 2013, we augmented the

dataset by obtaining additional, freely available

data on a total of 38 lakes from the Wisconsin

Department of Natural Resources (14 lakes) and

Minnesota Pollution Control Agency lake moni-

toring programs (24 lakes). These data were pro-

cessed to match the format of the LAGOS-NE data.

In total, 135 lake time series were analyzed. A map

of lakes and selected examples of coherent and

non-coherent time series is provided in Figure S1.

We also obtained from LAGOS-NE, or derived

from data contained therein, a suite of 53 variables

describing lake morphometry, watershed land

cover, hydrologic connections, landscape position,

atmospheric deposition, glaciation history, and cli-

mate for each lake (Soranno and Cheruvelil 2017).

Surficial geology was also considered but could not

be adequately addressed due to the lack of data for

most variables in this category. A complete list and

a criterion for culling the list of potential variables

are given in Supplementary Material S1. These

variables reflect conditions either of the lake itself,

in the watershed as delineated in LAGOS-NE (So-

ranno and others 2017), or within the Hydrologic

Unit Code (HUC) Level-12 unit. Hydrologic Unit

Lake–Landscape Coherence



Codes are a hierarchical system for identifying

watersheds, of which level-12 (that is, a 12-digit

identifying code) is the finest. In our dataset, there

was only one lake in 101 of 114 HUC-12 units, and

at most 5 lakes. LAGOS-NE was accessed through

the LAGOSNE R package (Stachelek and Oliver

2019).

We used growing season accumulated normal-

ized difference vegetation index (NDVI) data as a

proxy for annual primary productivity in the ter-

restrial landscape surrounding each lake. To de-

velop this dataset, start-of-season (SOS) and end-

of-season (EOS) dates were estimated annually

using the 30-year (1989–2018) Advanced Very

High-Resolution Radiometer (AVHRR) NDVI time

series dataset available for the conterminous U.S.

(United States Geologic Survey). These raster image

data, which have 1-km spatial resolution, consist of

weekly issued, biweekly maximum value compos-

ite NDVI scores (Eidenshink 1992, 2006). Source

imagery was collected almost daily, so that the bi-

weekly maximum value composite NDVI scenes

are largely cloud free (clouds, ice, and snow tend to

suppress NDVI values). AVHRR sensors on multiple

satellite platforms have been utilized over the years

to provide a gapless time series.

For each pixel and each year, SOS was deter-

mined using the midpoint of the methods described

in Zhang and others (2003) and Yu and others

(2004). Considering the temporal uncertainties

associated with the NDVI time series (for example,

the precise date of acquisition for each pixel’s value

in a composite image is not known), time steps

were assigned to integers in [1:52] representing

calendar week of issue. Both SOS approaches are

somewhat sensitive to high-frequency noise, so to

facilitate consistent SOS estimation, NDVI time

series were initially smoothed using time series tail

and minima treatment methods adapted from

Wardlow and others (2006). To obtain EOS, NDVI

time series were reversed prior to processing, with

the result subtracted from 53 to obtain the correct

temporal position. Growing season accumulated

NDVI was then determined by summing NDVI

values from SOS to EOS. Some years for some

pixels representing water or barren lands did not

satisfy NDVI threshold-based criteria for vegetation

presence, and in those cases no growing season

accumulated NDVI was assigned.

Using only AVHRR pixels consisting of less than

5% water based on the National Land Cover Da-

tabase (NLCD 2011; Homer and others 2015), we

averaged annual terrestrial NDVI within a radius

dependent on the surface area of the lake. Prior

research established that there is a power-law

relationship between lake surface area and water-

Figure 1. Illustration of timescale-specific relationships between two variables (A) and different phase relationships (B–

D). In (A), the blue and green signals are perfectly positively correlated on short timescales and perfectly negatively

correlated at long timescales; this relationship would be confounded by standard correlation. In (B), fluctuations are in-

phase (/ = 0), corresponding to positive correlation; in (C), fluctuations are temporally lagged, with the green signal

peaking ahead of the blue signal (/ = p/2); in (D), fluctuations are anti-phase (/ = p), corresponding to negative

correlation.
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shed area, and that the intercept (but not the

scaling parameter) differs between lakes and

reservoirs (Walter and others 2020). We set a

minimum radius of 2.5 km to ensure an adequate

sample of terrestrial pixels. Otherwise, we used the

simplifying assumption that lakes are circular to

derive the following equation to scale the search

radius to the surface area of the lake:

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10b0þb1 log10 Al

p

r

:

Here, b0 and b1 are empirically estimated

regression coefficients that differed between lakes

and reservoirs, and Al is the surface area of the lake.

For reservoirs, b0 = 1.8 and b1 = 1.05, and for

lakes, b0 = 1.4 and b1 = 1.05 (Walter and others

2020). We also considered using watershed

boundaries as spatial units for NDVI time series;

however, a number of small lakes had too few

suitable AVHRR pixels within their watersheds and

so were discarded. For the remaining lake–land-

scape pairs, wavelet coherence test results (see

Analyses) were entirely consistent whether NDVI

time series were determined from circular buffers

or from watershed boundaries, and so we present

results using circular buffers.

Analyses

We tested for wavelet coherence (Grinsted and

others 2004; Sheppard and others 2017) between

time series of lake chlorophyll and terrestrial NDVI

to determine the strength and phase of temporally

persistent relationships between lake and land

primary productivity. Wavelet coherence quanti-

fies the degree to which two time series have cor-

related magnitudes of oscillation and consistent

phase differences through time, as a function of

timescale. Its magnitude ranges from 0 (no rela-

tionship) to 1 (perfect coherence). As we focus on

consistent, as opposed to transient or episodic,

relationships, we considered coherence over the

full time series. Significance testing was performed

by comparing the empirical coherence to a distri-

bution of surrogate coherences generated under a

null hypothesis of no coherence that retained the

spectral (that is, temporal autocorrelation) proper-

ties of the empirical time series (Sheppard and

others 2017). This test is conservative because in

the procedure by which surrogates are generated

only the phase of oscillations varies, while the

power spectrum of each time series is entirely

preserved. In reality, if one variable drives fluctu-

ations in a second variable, the power spectrum of

the second variable is influenced by the first.

However, incorporating such effects is difficult, and

failure to do so appropriately would result in

potentially identifying false relationships.

To determine to what extent interannual pat-

terns of lake and terrestrial primary productivity

are coherent (Q1), we examined the distribution of

coherence magnitudes at short (2- to 4-year periods

of oscillation) and long (> 4-year periods of oscil-

lation) timescale bands and compared the number

of statistically significant coherences to the number

expected under a false-positive error rate of

a = 0.05, assuming independent tests. The period

length of 4 years was chosen to demarcate short

from long timescales because it separates anti-per-

sistent patterns (that is, successive observations

tend to be negatively correlated) from persistent

patterns (that is, successive observations tend to be

positively correlated) (Sheppard and others 2016).

Choosing focal timescale bands a priori facilitates

significance testing (Sheppard and others 2016).

To assess the prevalence of different phase rela-

tionships between lake and terrestrial primary

productivity (Q2), we examined the distribution of

coherence phases for coherence relationships

exceeding the 70th percentile of a distribution of

surrogate coherences generated under a null

hypothesis of no coherence but preserving the

spectral properties of each time series. Only rela-

tively strong coherences were used because for

incoherent variables the phase difference is essen-

tially a random variable uniformly distributed be-

tween -p and p, and hence is not meaningful.

Short and long timescales were again considered

separately.

To assess what factors explain variability in the

magnitude and phase of coherence between lake

and landscape primary productivity (Q3), we

combined ‘‘feature selection’’ using conditional

random forest regression (Hothorn and others

2006) with generalized additive models (Wood

2006). Because phases are angular measurements,

we performed analyses on the sine- or cosine-

transformed phase difference between lake and

landscape primary productivity indices. Taking the

cosine assigns in-phase relationships (/ = 0) to a

value of 1, anti-phase relationships (/ = ± p) to a

value of - 1, and quarter-phase relationships

(/ = ± p/2) to a value of 0. Consequently, analysis

of cos(/) focuses on how close the relationship is to

being in-phase. Taking the sine transforms to a

value of 0 for both in-phase and anti-phase rela-

tionships; to -1 for a relationship in which peaks in

chlorophyll-a lag NDVI by ½ a cycle length, or in

other words a time-lagged positive relationship;

and to 1 for a relationship in which peaks in

Lake–Landscape Coherence



chlorophyll-a lead NDVI by ½ a cycle length, or in

other words a time-lagged negative relationship,

assuming that the dominant direction of flows is

from land to lake. Consequently, analysis of sin(/)

focuses on whether the time-lagged relationship

between NDVI and chlorophyll-a tends to be posi-

tive or negative. Whether to apply the sine or co-

sine transformation depended on the dominant

mode of variability in / for a timescale band.

Conditional random forests were used to select

the most important predictors from the suite of 53

predictor variables described above and in Supple-

mentary Material S1. Conditional random forests

are an ensemble machine learning technique based

on classification and regression trees (Hothorn and

others 2006). We fit conditional random forests

consisting of 50,000 trees for each predictor vari-

able and quantified variable importance values for

each predictor. Variable importance values and the

Pearson correlation between empirical values and

model predictions were stable at this forest size.

We used generalized additive models (GAMs) to

investigate statistical effects and overall explana-

tory power of selected predictors on the timescale-

specific coherence and phase between chlorophyll-

a and NDVI. GAMs replace regression coefficients

with penalized regression splines, thereby identi-

fying nonlinear relationships while balancing par-

simony and model complexity (Wood 2006). We

built GAMs with 3 predictors for the response

variables short-timescale coherence magnitude

(n = 135), long-timescale coherence magnitude

(n = 135), short-timescale phase (n = 39) and long-

timescale phase (n = 45). Predictors were chosen

for inclusion in rank order of variable importance,

skipping variables with strong concurvity with a

higher-ranked predictor. Concurvity is a general-

ization of collinearity used with GAMs. We deemed

estimated concurvity values less than 0.6 to be

acceptable; GAMs are highly robust to concurvity

(Wood 2008). Observations were weighted by time

series length to give greater weight to longer time

series, for which we have greater certainty in the

nature of lake–landscape coherence. Since coher-

ence magnitudes are bounded between 0 and 1, we

used a beta distribution with the GAM models for

these variables. Some predictors were log10 or

square-root transformed to reduce the influence of

extreme values. Because our goal for this analysis

was to explore relationships explaining variability

in temporal coherence between lake and land pri-

mary productivity indices, as opposed to testing a

priori hypotheses about these potential drivers, we

did not apply significance testing or further model

selection/model parsimony methods to our GAMs.

The timescale specificity of the magnitude,

phase, and predictors of coherence (Q4) was

determined by comparing results from short time-

scales (2- to 4-year periods of oscillation) versus

from long timescales (> 4-year periods). Analyses

were carried out in R version 3.5.1 (R Core Team

2018) using the ‘‘wsyn’’ (Reuman and others

2019), ‘‘party’’ (Hothorn and others 2019), and

‘‘mgcv’’ (Wood 2006) packages.

RESULTS

Coherences between lakes and landscape primary

productivity varied widely, spanning nearly 0 to 1,

the entire range of the statistic (Q1). Example time

series from a particularly coherent lake–landscape

pair and a particularly non-coherent lake–land-

scape pair are shown in Figure S1. At short time-

scales, coherence ranged 0.06 to 0.92 with a

median of 0.37 (Figure 2A). Nine lake–landscape

pairs were significantly coherent at short timescales

using a = 0.05 significance level. At long time-

scales, coherence magnitudes ranged 0.08 to 0.95,

with a median of 0.53, and fifteen lake–landscape

pairs were significantly coherent using a = 0.05

significance level (Figure 2B). In each case, the

number of significant coherences is greater than

the number expected by chance given the selected

type-1 error rate (that is, 135*0.05 = 6.75) assum-

ing independent tests. This result highlights that

there is robust evidence that some lake–landscape

pairs are strongly coherent, but we emphasize that

it is also meaningful that there is a wide range of

observed coherences. The spatial distribution of

coherences at short (Figure 3) and long (Figure S2)

timescales indicates no apparent regional patterns

in lake–landscape coherence. Lake–landscape

coherences were substantially timescale specific

(Q4). Although coherence magnitudes were

somewhat greater at long timescales than short,

wavelet coherence suffers from a bias wherein

greater values tend to be returned at long time-

scales, so care should be taken in comparing

coherence magnitudes across timescales. Our sig-

nificance tests do not suffer the same bias, how-

ever. There was no correlation between coherence

magnitudes at short timescales and coherence at

long timescales (Pearson correlation = 0.03), and

only three lakes were significantly coherent at both

short and long timescales.

Phase relationships between lakes and the land-

scape also spanned the range of possible values (0

to ± p), but certain phase relationships were more

common than others (Q2). At short timescales,

most coherence relationships were approximately

J. A. Walter and others



in-phase (Figure 2C). At long timescales, coher-

ence relationships were bimodally distributed with

most coherent lakes exhibiting either phase-lagged

positive (-p/4 < / < - 3p/4) or negative (p/

4 < / > 3p/4) relationships with terrestrial NDVI

(Figure 2D).

The coefficient of variation in NDVI and variables

associated with modulation of flows between lake

and the landscape (herein termed ‘‘hydrologic

connectedness’’) tended to be the best predictors of

lake–landscape coherence and phase relationships

(Q3). Such variables included wetland cover and

shoreline, precipitation and runoff, and ground-

water recharge. Variation in the magnitude of

coherence at short timescales was best explained by

total nitrogen deposition, the temporal coefficient

of variation in terrestrial NDVI [cv(NDVI)], and

several variables related to wetland cover in the

watershed and adjacent to the lake (Figure 4A). A

GAM model including the top 3 predictors ex-

plained 14.6% of deviance in short-timescale

coherence, and featured a negative effect of total N

deposition, and positive effects of cv(NDVI) and

herbaceous wetland cover (Figure 5A–C). Among

lakes exhibiting substantial coherence with the

landscape, for which computed phase relationships

are reliable, lakes with more open water wetlands

on their shoreline and with higher average

chlorophyll-a concentrations (that is, more eu-

trophic lakes) were more likely to be in-phase with

the landscape, but those with a high percentage of

shrub/scrub land cover were less likely to be in-

phase with the landscape (Figure 5D–F). A GAM

model with these predictors explained 20.9% of

deviance in cos (/).

At long timescales, coherence was best explained

by the percentage of shrub/scrub land cover in the

watershed, cv(NDVI), annual precipitation, and the

percentage of watershed area composed of semi-

Figure 2. Distributions of coherence magnitudes (A, B) and phase differences (C, D) at short timescales (2–4 years;

panels A, C) and at long timescales (> 4 years; panels B, D). In (C, D), frequency is proportional to radius length.

Figure 3. Map of lakes included in this study by short-

timescale coherence between chlorophyll-a and NDVI.

Black outlines indicate statistically significant coherence.

See Figure S2 for long timescales.
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permanently flooded (regime f) wetlands (Fig-

ure 4C). Regime f wetlands are semi-permanently

flooded where surface water persists throughout

the growing season in most years. Long-timescale

coherence decreased with increasing percentages of

shrub/scrub land cover in the watershed and with

the percentage of watershed area covered by semi-

permanently flooded wetlands, and increased with

increasing cv(NDVI) (Figure 5G–I). This combina-

tion of predictors explained 13.5% of deviance in

coherence. Phase relationships at long timescales

were most strongly influenced by wetland shore-

line and area, and other land cover types (Fig-

ure 4D). Sin(/) tended to decline with increasing

open-wetland shoreline, notwithstanding a few

outliers, indicating a tendency toward time-lagged

negative effects of NDVI on chlorophyll-a fluctua-

tions (Figure 5J). Increases in the areal percentage

of semi-permanently flooded wetlands in the

watershed were also associated with time-lagged

negative effects, and the percentage of cultivated

crops was associated with time-lagged positive ef-

fects (Figure 5I, L). These predictors explained

31.9% of deviance in sin(/).

DISCUSSION

There is wide variability in the coherence of indices

of primary productivity between lakes and the

surrounding landscape, from complete incoherence

to near-perfect coupling across interannual time-

scales. Although the presence of links between

terrestrial and aquatic systems is well known

(Wilkinson and others 2013; Tanentzap and others

2017; Tranvik and others 2018), our findings

underscore the importance of temporally dynamic

Figure 4. Variable importance values (in descending order) from conditional random forest analyses of among-lake

variability in the coherence magnitude (A, C) and phase difference (B, D) between primary productivity in lakes and the

landscape. Results for short timescales (2–4 years) are shown in panels A, B; those for long timescales (> 4 years) in

panels C, D. Wetland variables are drawn in brown; lake variables are in blue; terrestrial vegetation variables are colored

in blue; climate and atmospheric deposition variables are in white; and variables not fitting these categories are in gray.
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links between aquatic and terrestrial ecosystems.

Although lakes typically make proportionally small

contributions to regional primary productivity,

except in particularly lake-rich regions, aquatic

ecosystems process large amounts of terrestrially

derived nutrients and organic matter (Cole and

others 2007; Downing 2009). Understanding

whether these inputs stimulate or inhibit lake pri-

mary productivity, and the mechanisms that couple

these systems, is important especially on timescales

from a few years to decades [that is, multi-annual

timescales sensu Wilkinson and others (2020)]. For

example, episodic nutrient inputs may stimulate

algal blooms, while precipitation-driven dissolved

organic matter inputs may have longer-term effects

on lake primary producers.

We proposed that coherence between lakes and

the landscape could be driven by shared responses

to weather, potentially mediated by flows of carbon

and nutrients across ecosystem boundaries, and by

lake characteristics (Figure 6). Our results provide

some inference into the importance of these

mechanisms in the lakes we studied, specifically

that lake–landscape coherence largely arises

through cross-ecosystem flows of carbon and

nutrients, with wetlands playing a key mediating

role. If coherence was driven predominantly by

shared, independent Moran-like effects of exoge-

nous drivers like weather, we should expect strong

coherences to mainly be in-phase or anti-phase;

instead, we see many time-lagged relationships,

although short-timescale coherences were more

often in-phase or anti-phase. Further evidence for

this interpretation is that variables associated with

hydrologic connections between lakes and the

landscape—for example, wetlands area and shore-

line, runoff, groundwater recharge, and headwater

stream density—were among the most important

Figure 5. GAM partial effect plots depicting effects of top predictors on (A–C) short-timescale coherence; (D–F) cosine-

transformed short-timescale phase difference; (G–I) long-timescale coherence; (J–L); sine-transformed long-timescale

phase difference. Models explained, respectively, 14.6%, 20.9%, 13.5%, and 31.9% of deviance in the response variable.

Gray regions indicate ± 2 standard errors.
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predictors of the magnitude and phase of lake–

landscape coherence. Hydrologic connectivity, via

both surface waters and sub-surface flows, has a

fundamental role in the spatiotemporal dynamics

of lake ecosystems (Canham and others 2004;

Martin and Soranno 2006; Fergus and others

2017). Wetlands are an important component of

these connections, processing and exporting large

amounts of carbon and nutrients (Detenbeck and

others 1993; Gergel and others 1999; Martin and

Soranno 2006). Many of these variables are also

correlates of lake–landscape position (Kratz and

others 1997; Martin and Soranno 2006). The area

of wetlands around the lake tends to increase

moving from high in the watershed to low; these

lakes also tend to accumulate inputs from larger

areas, and also are more likely to have inflowing

streams. However, other correlates of lake–land-

scape position including stream density, lake con-

nection, and upstream lake area were also

candidate predictor variables but were less influ-

ential.

Interestingly, the dominant mode of variability

in phase differences among lakes that were coher-

ent with the landscape on long timescales was be-

tween a time-lagged positive and a time-lagged

negative effect. Negative effects of terrestrial pri-

mary productivity on aquatic primary productivity

could reflect dissolved organic carbon (DOC)

loading; DOC may inhibit photosynthesis by

decreasing water clarity (Karlsson and others 2009;

Solomon and others 2015). In our analyses, time-

lagged negative relationships were associated with

increasing amounts of wetlands in the watershed

and on the shoreline, and time-lagged positive

relationships were associated with the more agri-

cultural watersheds. DOC export to aquatic systems

is associated with forests and wetlands (Gergel and

others 1999; Canham and others 2004), while

agriculture can be a considerable source of nutrient

runoff. The time lags between terrestrial and

aquatic primary productivity may reflect both

transport time, for example, through slow path-

ways like groundwater, and the timing of biogeo-

chemical transformations (Cardille and others

2007). For example, a typical pathway for DOC

originating on land is for carbon to be fixed into

leaves during the growing season, fall during au-

tumn senescence, and decompose before entering

the DOC pool.

Surprisingly, we found little evidence that lake–

landscape coherence depended on characteristics of

lakes themselves. We considered a number of pre-

dictors characterizing lake morphometry (maxi-

mum depth, shoreline development ratio) and

biogeochemistry (mean chlorophyll-a), but only

mean chlorophyll-a was a relatively important

predictor of any response variable. Taken together

with our results on the importance of hydrologic

connectedness and cv(NDVI) for lake–landscape

coherence, it seems that lake–landscape coherence

is largely imposed by the terrestrial landscape and

mediated through flows of carbon and nutrients

across the terrestrial-aquatic interface (Carpenter

and others 1998; Buffam and others 2011).

Figure 6. Diagram of hypothesized mechanisms

underpinning lake–landscape coherence results. (1)

Weather may cause shared, independent effects on

terrestrial and aquatic primary production leading to in-

phase or anti-phase coherence. (2) Dissolved organic

matter from terrestrial primary production may carry

nutrients that stimulate aquatic primary production or

decrease light availability in lakes. Land cover shapes the

quantity and quality of terrestrial dissolved organic

matter delivered to lakes; flow paths and terrestrial

decomposition contribute to time (phase) lagged effects.

(3) The form and magnitude of nutrient loading from the

watershed into lakes are influenced by land use.

Nutrients that stimulate production in the watershed

can also stimulate primary production in the lake at a

phase lag based on the bioavailability of the exogenous

inputs and the timing of delivery to the receiving aquatic

ecosystem. (4) Wetlands modify the coherence between

lakes and the landscape by altering flow paths. Wetlands

retain water that would otherwise be immediately

delivered downstream and process nutrients and

dissolved organic matter, altering the quality and

quantity of material delivered downstream. (5) Lake

characteristics such as the size, depth, and food web

structure potentially modify these influences. Artwork

attribution: graphics from Integration and Application

Network, University of Maryland Center for

Environmental Science (ian.umces.edu/imagelibrary/);

pine tree by Tracey Saxby, corn stalk by Jane Thomas,

pondweed by Dieter Tracy, carp by Kate Moore, and

largemouth bass and Daphnia by Kim Kraeer and Lucy

Van Essen-Fishman.
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Insights from the study of spatial synchrony in

population dynamics (Liebhold and others 2004;

Walter and others 2017) suggest that weather

variation and climate oscillations should be

important in coupling these dynamics, in a sort of

cross-ecosystem ‘‘Moran effect’’ (Moran 1953).

Indeed, spatially synchronous weather has been

inferred to synchronize dynamics across lakes

(Magnuson and others 1990; Baines and others

2000; Pace and Cole 2002; Pham and others 2008;

Rusak and others 2008) and drive spatial syn-

chrony in terrestrial primary production (Koenig

and Knops 1998; Wettstein and others 2011;

Shestakova and others 2016; Defriez and Reuman

2017). However, weather may not synchronize

lakes at the regional spatial extent of our study

(Soranno and others 2019), and weather does not

seem commonly to directly synchronize lakes with

the landscape, at least on multi-annual timescales.

Although we did not explicitly test for weather

drivers of coherence, the relative predominance of

phase-lagged coherences—particularly at long

timescales—and the relatedness of hydrologic

connectedness to spatial variation in coherence

between lakes and the landscape suggest that the

proximal mechanisms of lake–landscape coherence

likely have more to do with nutrient and organic

matter subsidies from the landscape to the lake,

than shared environmental forcing operating sim-

ilarly, but separately and simultaneously on the

lake and the landscape. This is in contrast to spatial

synchrony in population dynamics, where climate

can synchronize populations over large areas, even

with little or no dispersal between them (Liebhold

and others 2004). Other studies of cross-ecosystem

synchrony between terrestrial and marine ecosys-

tems have found climate to be an important driver

(Ong and others 2016; Black and others 2018), but

the relative magnitude of inputs from the land to

lakes is likely larger than from the land to the

ocean.

The magnitude of lake–landscape coherence was

entirely uncorrelated across timescales, affirming

the power of our timescale-specific approach.

Standard approaches based on correlation or

regression would not have uncovered this pattern

and would have been confounded by the strong

differences between short and long timescales.

Importantly, this also suggests that different

underlying mechanisms are responsible for short-

versus long-timescale coherence between lakes and

the landscape. Particular mechanisms have char-

acteristic timescales of variation and tend manifest

on those same timescales, as has been shown in

studies of population spatial synchrony (Sheppard

and others 2016; Anderson and others 2019) and

inferred for some studies of synchrony in lakes

(Baines and others 2000; Pace and Cole 2002).

Although variables associated with hydrologic

connectedness tended to explain among-lake vari-

ation in lake–landscape coherence, specifically

what mechanisms are at play are not yet known.

For example, the role of ‘‘flashy’’ events, such as

storms resulting in overland flows and relatively

high flow rates through riverine systems, versus

slow-but-consistent processes like groundwater

recharge, is unclear, but could be resolved by

studying time series with sub-annual intervals be-

tween observations.

Our conclusions are limited by data drawn from

a biased set of lakes (Stanley and others 2019) with

relatively short time series of error-prone indicator

variables. Despite these limitations, we believe it

would be inappropriate to dismiss evidence for

lake–landscape coherence on these grounds. We

chose NDVI and lake chlorophyll-a as indices of

primary productivity because of their relative

availability. Other measures, such as from eddy

covariance for terrestrial ecosystems (Vesala and

others 2006; Aubinet and others 2012) and in situ

measurements of oxygen dynamics and carbon

fixation for lakes provide more direct measure-

ments of primary productivity. However, their

limited availability made them ill-suited to the

goals of this study. Satellite remote sensing of lake

water quality can enable study of additional lakes,

but the need for calibration data (Ross and others

2019) and cloud cover mean that remotely sensed

time series would have similar limitations to our

dataset. Additionally, while our time series are near

the lower length limits where wavelet analyses can

be reasonably applied, our data are among the

longest records that currently exist, and requiring

longer time series would have substantially re-

duced the number of lakes in the study, hindering

our goals. Considering the limited statistical power

afforded by our short time series and potential for

observation error, the detection of strong relation-

ships is meaningful.

This study provides evidence of wide variation in

the coupling of temporal ecosystem dynamics be-

tween lakes and the landscapes they are embedded

in, and provides a springboard for future work

leveraging temporal pattern to understand causes

and consequences of coupling between lakes and

the landscape. Although further research is needed

to clarify the specific mechanisms of temporal

coherence between lakes and the landscape, vari-

ables associated with hydrologic connectedness

explained substantial spatial variation in lake–
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landscape coherence, suggesting that cross-ecosys-

tem flows may commonly be a proximal mecha-

nism. Based on analogs with synchrony in

populations and communities, and observations of

coastal systems (Ong and others 2016; Black and

others 2018; Lara and others 2019), we expected

that shared climatic fluctuations could induce

synchrony between lakes and the landscapes, but

this does not seem prevalent. Finally, this study

affirms that multi-annual dynamics, which partic-

ularly in aquatic ecosystems are less well under-

stood compared to seasonal and short-term trends

(Wilkinson and others 2020), exhibit rich patterns,

and that their investigation can lead to new insights

into ecosystem dynamics.
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