Ecosystems
https://doi.org/10.1007/s10021-020-00531-6

ECOSYSTEMS] ™.

© 2020 Springer Science+Business Media, LLC, part of Springer Nature | updates

Temporal Coherence Between Lake
and Landscape Primary Productivity

Jonathan A. Walter,'*

Rachel Fleck,” Jude H. Kastens,® Michael L. Pace,’

and Grace M. Wilkinson?

IDepartment of Environmental Sciences, University of Virginia, 291 McCormick Rd, Box 400123, Charlottesville, Virginia 22904, USA;
ZDepartment of Ecology, Evolution, and Organismal Biology, Iowa State University, 2200 Osborne Dr., Ames, Iowa 50011, USA;
’Kansas Applied Remote Sensing Program, Kansas Biological Survey, University of Kansas, 2101 Constant Ave, Lawrence, Kansas
66047, USA

ABSTRACT

Understanding the patterns and drivers of primary
productivity is a major goal of ecology, but little is
known about whether the primary productivities of
different types of ecosystems—here, lakes and the
landscapes in which they are embedded—fluctuate
in related ways through time. Due to shared cli-
matic variation and well-known connections be-
tween lake and terrestrial ecosystems, such as
nutrient and resource subsidies, we hypothesized
that interannual fluctuations in aquatic and ter-
restrial primary productivity indices could be
coherent. We also expected that lake and water-
shed characteristics could modify the strength and
nature of primary productivity relationships. We
applied wavelet coherence analyses to time series
of lake chlorophyll-a and satellite-derived NDVI to
examine coherence between lakes and land, and
used random forest regression and generalized
additive models to evaluate why coherence varies
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among lakes. There can be substantial coherence
between lake and terrestrial primary productivity,
but the strength and phase (direction and time lag)
of this relationship vary widely, and there were
marked differences between short (2—4-year peri-
ods of oscillation) and long (> 4-year periods of
oscillation) timescales. Across all timescales, vari-
ables associated with the connectedness of lakes to
their watersheds were consistently the important
explanatory variables of the strength and phase of
coherence. The patterns observed in this study
suggest the importance of cross-ecosystem flows, as
opposed to shared climatic variation, in determin-
ing temporal coherence between lakes and the
landscape.

Key words: Synchrony; Compensation; Chloro-
phyll-a; NDVI; Resource subsidies; Hydrologic
connectivity.

HIGHLIGHTS

e Lake and watershed primary production can vary
coherently.

e The magnitude, direction, and time lag of coher-
ence relationships vary widely.

e Hydrologic connectedness is a key feature medi-
ating the lake-landscape coherence relationship.
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INTRODUCTION

Quantifying the primary productivity of ecosys-
tems, and how and by what mechanisms this pro-
cess varies spatiotemporally, is a fundamental goal
of ecology, especially in light of global climate
change (Schlesinger and Bernhardt 2013). There
are rich, but separate, bodies of literature on the
rates and patterns of primary productivity in lakes
(Carpenter and others 1985; Dodson and others
2000; Downing 2009; Seekell and others 2018) and
in terrestrial landscapes (Melillo and others 1993;
Running and others 2000; Schimel and others
2001; Anav and others 2015). Less is known about
the relatedness of temporal fluctuations in primary
productivity between lakes and the landscape.
Aquatic and terrestrial ecosystems are linked
through substantial and temporally variable fluxes
of matter and energy (Cole and others 2007; Har-
rison and others 2009; Butman and others 2016),
which plays an important role in regional and
global carbon cycles (Tranvik and others 2009;
Buffam and others 2011). Given these factors,
whether there are persistent relationships in tem-
poral fluctuations (that is, coherence) in primary
productivity between lakes and the landscape has
substantial implications for understanding the dy-
namic linkages between these systems. Coupling of
temporal patterns in primary productivity across
different ecosystem types has received little atten-
tion with the exception of studies focused on syn-
chronization of terrestrial and coastal marine
ecosystems (Ong and others 2016; Black and others
2018; Lara and others 2019).

Temporally coherent fluctuations in terrestrial
and aquatic primary productivity might plausibly
arise from two general mechanisms. The systems
might both be influenced, directly and indepen-
dently, by the same exogenous environmental
drivers (for example, climate and weather), bring-
ing them into coherence. This mechanism is anal-
ogous to the Moran effect, in which a shared
environmental driver synchronizes spatially dis-
junct populations (Moran 1953). While spatial
synchrony among lakes has been observed for
variables like surface water temperature (Magnu-
son and others 1990), it is unclear if exogenous
environmental drivers also result in coherence be-
tween different ecosystem types. Coherence could
also arise from flows of carbon and nutrients across
ecosystem boundaries. One possible scenario is that
terrestrially fixed carbon enters a lake as dissolved
organic matter, reducing light availability and
therefore photosynthesis (Karlsson and others
2009; Solomon and others 2015). Alternatively,

nutrients entering a lake along with organic matter
can stimulate primary productivity (Thrane and
others 2014; Corman and others 2018; Kelly and
others 2018), or terrestrially fixed carbon could
affect aquatic primary productivity by providing
subsidies to consumers (Tanentzap and others
2017).

These two mechanisms (Moran-like effects and
cross-ecosystem flows) may not be mutually
exclusive, as climate and weather may be impor-
tant drivers of temporal variability in the magni-
tude of cross-ecosystem flows. For example,
anthropogenic nutrient enrichment of terrestrial
ecosystems enhances terrestrial primary production
and could also drive variability in aquatic primary
production through episodic nutrient loading from
the watershed, for example in runoff from precip-
itation events (Kelly and others 2019; Stockwell
and others 2020). Although nutrient loading is an
exogenous forcing that may be shaped by weather
(for example, precipitation), we distinguish be-
tween this and the pure Moran-like effect because
of the likelihood of vegetation and watershed pro-
cesses determining the magnitude and timing of
inputs to the lake and creating time lags between
nutrients’ stimulating effects on primary produc-
tivity on the landscape and in lakes. Although the
Moran-like independent effects of weather could
be positive in one system and negative in the other,
we do not expect them to be time-lagged given the
short response times of plant photosynthetic rates
and high turnover rates of phytoplankton.

Properties of lakes and watersheds likely shape
the strength and direction of relationships between
aquatic and terrestrial primary productivity, and
time lags between these variables. Lakes are dif-
ferentially affected by catchment processes based
on their position in the watershed, with lower lakes
tending to be more strongly influenced (Kratz and
others 1997, Martin and Soranno 2006). Lake
morphology could also play an important role, with
shallower lakes (Qin and others 2020) or those
with greater shoreline development indices
(Scheuerell and Schindler 2004) potentially expe-
riencing stronger influences of the adjacent ter-
restrial ecosystem. What dominates cross-
ecosystem flows could also help determine whether
lakes and the landscape tend to be positively or
negatively related. If the dominant mechanism is
nutrient inputs from land to lake, then the two
systems may be positively related, whereas if inputs
of dissolved organic carbon (DOC) from land to
lake dominate, then reductions in water clarity
could inhibit lake primary productivity (Karlsson
and others 2009; Solomon and others 2015),
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resulting in a negative relationship. Time lags be-
tween lake and landscape primary productivity
could reflect time differences between carbon fix-
ation and release (Kuzyakov and Gavrichkova
2010), and lags associated with processing and
transport through the watershed (Harman 2015).
Thus, temporal relationships in primary produc-
tivity between the lake and the landscape provide
insight into the drivers of those dynamics and the
strength of the linkages among these ecosystems.

Temporal relationships have often been studied
using correlation, but approaches based on the
wavelet transform (Torrence and Compo 1998)
have grown in popularity because of their ability to
resolve common patterns that confound standard
correlation (Vasseur and Gaedke 2007; Downing
and others 2008; Sheppard and others 2016; Walter
and others 2017). Ecology is multi-causal and
mechanisms often have specific timescales of vari-
ation, so timescale-specific relationships can reflect
specific drivers (Defriez and Reuman 2017; Shep-
pard and others 2019; Wilkinson and others 2020).
Standard correlation can fail to resolve timescale-
specific and temporally lagged effects (Sheppard
and others 2016; Walter and others 2019). Time
lags result from common processes including
transport times between observation points, inter-
vals between generations, and certain predator—
prey relationships. Wavelet coherence overcomes
both problems by indicating the strength of relat-
edness between two variables, and the time lag
(phase difference) between them, as a function of
timescale (Grinsted and others 2004; Sheppard and
others 2017). Figure 1 illustrates a timescale-
specific relationship and examples of phase differ-
ences between two variables.

To investigate patterns of temporal coherence in
primary productivity between lakes and the land-
scapes in which they are embedded, we analyzed
135 long-term (= 20 years) paired lake and land
time series in the northeastern USA. We focus
specifically on the following questions. (Ql) To
what extent are multi-annual [sensu Wilkinson
and others (2020)] patterns of lake primary pro-
ductivity coherent with primary productivity in the
surrounding landscape? (Q2) What are the phase
differences between them, and what does this im-
ply about the predominant mechanisms coupling
primary productivity in lakes and the landscape?
(Q3) What factors explain variability in the mag-
nitude and phase of coherence between lake and
landscape primary productivity? (Q4) Do the an-
swers to questions Ql through Q3 depend on
timescale? We found that on multi-annual time-
scales landscape and lake productivity vary widely

in their coherence and the phase differences be-
tween landscape and lake. The coupling relation-
ships appear to mainly reflect flows of carbon and
nutrients between the ecosystem types.

METHODS
Data Acquisition and Processing

We obtained time series data on chlorophyll-a, an
indicator of primary production, from the LAGOS-
NE LIMNO database, version 1.087.3 (Soranno and
others 2017; Soranno and Cheruvelil 2019). The
LAGOS-NE database contains time series of physi-
cal, chemical, and biological parameters from lakes
located in seventeen states of the northeastern and
mid-western portions of the conterminous United
States. Data were aggregated to annual intervals by
averaging measurements from May-September,
the period of most active growth. If a lake had
fewer than three observations during a growing
season, data for that year were discarded. Lake time
series selected for analysis spanned a minimum of
20 years, could have a maximum of two years with
missing data, and years with missing data were
non-consecutive. Because our analyses require
complete time series, missing data were filled with
the median of the time series. A number of lakes in
LAGOS-NE narrowly missed satisfying these crite-
ria, but because this version of LAGOS-NE contains
data through the year 2013, we augmented the
dataset by obtaining additional, freely available
data on a total of 38 lakes from the Wisconsin
Department of Natural Resources (14 lakes) and
Minnesota Pollution Control Agency lake moni-
toring programs (24 lakes). These data were pro-
cessed to match the format of the LAGOS-NE data.
In total, 135 lake time series were analyzed. A map
of lakes and selected examples of coherent and
non-coherent time series is provided in Figure S1.

We also obtained from LAGOS-NE, or derived
from data contained therein, a suite of 53 variables
describing lake morphometry, watershed land
cover, hydrologic connections, landscape position,
atmospheric deposition, glaciation history, and cli-
mate for each lake (Soranno and Cheruvelil 2017).
Surficial geology was also considered but could not
be adequately addressed due to the lack of data for
most variables in this category. A complete list and
a criterion for culling the list of potential variables
are given in Supplementary Material S1. These
variables reflect conditions either of the lake itself,
in the watershed as delineated in LAGOS-NE (So-
ranno and others 2017), or within the Hydrologic
Unit Code (HUC) Level-12 unit. Hydrologic Unit
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Figure 1. Illustration of timescale-specific relationships between two variables (A) and different phase relationships (B—
D). In (A), the blue and green signals are perfectly positively correlated on short timescales and perfectly negatively
correlated at long timescales; this relationship would be confounded by standard correlation. In (B), fluctuations are in-
phase (¢ = 0), corresponding to positive correlation; in (C), fluctuations are temporally lagged, with the green signal
peaking ahead of the blue signal (¢ = n/2); in (D), fluctuations are anti-phase (¢ = n), corresponding to negative

correlation.

Codes are a hierarchical system for identifying
watersheds, of which level-12 (that is, a 12-digit
identifying code) is the finest. In our dataset, there
was only one lake in 101 of 114 HUC-12 units, and
at most 5 lakes. LAGOS-NE was accessed through
the LAGOSNE R package (Stachelek and Oliver
2019).

We used growing season accumulated normal-
ized difference vegetation index (NDVI) data as a
proxy for annual primary productivity in the ter-
restrial landscape surrounding each lake. To de-
velop this dataset, start-of-season (SOS) and end-
of-season (EOS) dates were estimated annually
using the 30-year (1989-2018) Advanced Very
High-Resolution Radiometer (AVHRR) NDVI time
series dataset available for the conterminous U.S.
(United States Geologic Survey). These raster image
data, which have 1-km spatial resolution, consist of
weekly issued, biweekly maximum value compos-
ite NDVI scores (Eidenshink 1992, 2006). Source
imagery was collected almost daily, so that the bi-
weekly maximum value composite NDVI scenes
are largely cloud free (clouds, ice, and snow tend to
suppress NDVI values). AVHRR sensors on multiple
satellite platforms have been utilized over the years
to provide a gapless time series.

For each pixel and each year, SOS was deter-
mined using the midpoint of the methods described

in Zhang and others (2003) and Yu and others
(2004). Considering the temporal uncertainties
associated with the NDVI time series (for example,
the precise date of acquisition for each pixel’s value
in a composite image is not known), time steps
were assigned to integers in [1:52] representing
calendar week of issue. Both SOS approaches are
somewhat sensitive to high-frequency noise, so to
facilitate consistent SOS estimation, NDVI time
series were initially smoothed using time series tail
and minima treatment methods adapted from
Wardlow and others (2006). To obtain EOS, NDVI
time series were reversed prior to processing, with
the result subtracted from 53 to obtain the correct
temporal position. Growing season accumulated
NDVI was then determined by summing NDVI
values from SOS to EOS. Some years for some
pixels representing water or barren lands did not
satisfy NDVI threshold-based criteria for vegetation
presence, and in those cases no growing season
accumulated NDVI was assigned.

Using only AVHRR pixels consisting of less than
5% water based on the National Land Cover Da-
tabase (NLCD 2011; Homer and others 2015), we
averaged annual terrestrial NDVI within a radius
dependent on the surface area of the lake. Prior
research established that there is a power-law
relationship between lake surface area and water-



Lake-Landscape Coherence

shed area, and that the intercept (but not the
scaling parameter) differs between lakes and
reservoirs (Walter and others 2020). We set a
minimum radius of 2.5 km to ensure an adequate
sample of terrestrial pixels. Otherwise, we used the
simplifying assumption that lakes are circular to
derive the following equation to scale the search
radius to the surface area of the lake:

10ﬁ0+ﬁ1 log,o A
r=yl——.
s

Here, fy and f; are empirically estimated
regression coefficients that differed between lakes
and reservoirs, and A4, is the surface area of the lake.
For reservoirs, fip = 1.8 and f; = 1.05, and for
lakes, o = 1.4 and f; = 1.05 (Walter and others
2020). We also considered using watershed
boundaries as spatial units for NDVI time series;
however, a number of small lakes had too few
suitable AVHRR pixels within their watersheds and
so were discarded. For the remaining lake-land-
scape pairs, wavelet coherence test results (see
Analyses) were entirely consistent whether NDVI
time series were determined from circular buffers
or from watershed boundaries, and so we present
results using circular buffers.

Analyses

We tested for wavelet coherence (Grinsted and
others 2004; Sheppard and others 2017) between
time series of lake chlorophyll and terrestrial NDVI
to determine the strength and phase of temporally
persistent relationships between lake and land
primary productivity. Wavelet coherence quanti-
fies the degree to which two time series have cor-
related magnitudes of oscillation and consistent
phase differences through time, as a function of
timescale. Its magnitude ranges from 0 (no rela-
tionship) to 1 (perfect coherence). As we focus on
consistent, as opposed to transient or episodic,
relationships, we considered coherence over the
full time series. Significance testing was performed
by comparing the empirical coherence to a distri-
bution of surrogate coherences generated under a
null hypothesis of no coherence that retained the
spectral (that is, temporal autocorrelation) proper-
ties of the empirical time series (Sheppard and
others 2017). This test is conservative because in
the procedure by which surrogates are generated
only the phase of oscillations varies, while the
power spectrum of each time series is entirely
preserved. In reality, if one variable drives fluctu-
ations in a second variable, the power spectrum of
the second variable is influenced by the first.

However, incorporating such effects is difficult, and
failure to do so appropriately would result in
potentially identifying false relationships.

To determine to what extent interannual pat-
terns of lake and terrestrial primary productivity
are coherent (Q1), we examined the distribution of
coherence magnitudes at short (2- to 4-year periods
of oscillation) and long (> 4-year periods of oscil-
lation) timescale bands and compared the number
of statistically significant coherences to the number
expected under a false-positive error rate of
o = 0.05, assuming independent tests. The period
length of 4 years was chosen to demarcate short
from long timescales because it separates anti-per-
sistent patterns (that is, successive observations
tend to be negatively correlated) from persistent
patterns (that is, successive observations tend to be
positively correlated) (Sheppard and others 2016).
Choosing focal timescale bands a priori facilitates
significance testing (Sheppard and others 2016).

To assess the prevalence of different phase rela-
tionships between lake and terrestrial primary
productivity (Q2), we examined the distribution of
coherence phases for coherence relationships
exceeding the 70th percentile of a distribution of
surrogate coherences generated under a null
hypothesis of no coherence but preserving the
spectral properties of each time series. Only rela-
tively strong coherences were used because for
incoherent variables the phase difference is essen-
tially a random variable uniformly distributed be-
tween —n and n, and hence is not meaningful.
Short and long timescales were again considered
separately.

To assess what factors explain variability in the
magnitude and phase of coherence between lake
and landscape primary productivity (Q3), we
combined ““feature selection” using conditional
random forest regression (Hothorn and others
2006) with generalized additive models (Wood
2006). Because phases are angular measurements,
we performed analyses on the sine- or cosine-
transformed phase difference between lake and
landscape primary productivity indices. Taking the
cosine assigns in-phase relationships (¢ = 0) to a
value of 1, anti-phase relationships (¢ = &+ =) to a
value of — 1, and quarter-phase relationships
(¢ = £ w/2) to a value of 0. Consequently, analysis
of cos(d) focuses on how close the relationship is to
being in-phase. Taking the sine transforms to a
value of 0 for both in-phase and anti-phase rela-
tionships; to -1 for a relationship in which peaks in
chlorophyll-a lag NDVI by % a cycle length, or in
other words a time-lagged positive relationship;
and to 1 for a relationship in which peaks in
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chlorophyll-a lead NDVI by % a cycle length, or in
other words a time-lagged negative relationship,
assuming that the dominant direction of flows is
from land to lake. Consequently, analysis of sin(¢)
focuses on whether the time-lagged relationship
between NDVI and chlorophyll-a tends to be posi-
tive or negative. Whether to apply the sine or co-
sine transformation depended on the dominant
mode of variability in ¢ for a timescale band.
Conditional random forests were used to select
the most important predictors from the suite of 53
predictor variables described above and in Supple-
mentary Material S1. Conditional random forests
are an ensemble machine learning technique based
on classification and regression trees (Hothorn and
others 2006). We fit conditional random forests
consisting of 50,000 trees for each predictor vari-
able and quantified variable importance values for
each predictor. Variable importance values and the
Pearson correlation between empirical values and
model predictions were stable at this forest size.
We used generalized additive models (GAMs) to
investigate statistical effects and overall explana-
tory power of selected predictors on the timescale-
specific coherence and phase between chlorophyll-
a and NDVI. GAMs replace regression coefficients
with penalized regression splines, thereby identi-
fying nonlinear relationships while balancing par-
simony and model complexity (Wood 2006). We
built GAMs with 3 predictors for the response
variables short-timescale coherence magnitude
(n = 135), long-timescale coherence magnitude
(n = 135), short-timescale phase (# = 39) and long-
timescale phase (n = 45). Predictors were chosen
for inclusion in rank order of variable importance,
skipping variables with strong concurvity with a
higher-ranked predictor. Concurvity is a general-
ization of collinearity used with GAMs. We deemed
estimated concurvity values less than 0.6 to be
acceptable; GAMs are highly robust to concurvity
(Wood 2008). Observations were weighted by time
series length to give greater weight to longer time
series, for which we have greater certainty in the
nature of lake-landscape coherence. Since coher-
ence magnitudes are bounded between 0 and 1, we
used a beta distribution with the GAM models for
these variables. Some predictors were log;, or
square-root transformed to reduce the influence of
extreme values. Because our goal for this analysis
was to explore relationships explaining variability
in temporal coherence between lake and land pri-
mary productivity indices, as opposed to testing a
priori hypotheses about these potential drivers, we
did not apply significance testing or further model
selection/model parsimony methods to our GAMs.

The timescale specificity of the magnitude,
phase, and predictors of coherence (Q4) was
determined by comparing results from short time-
scales (2- to 4-year periods of oscillation) versus
from long timescales (> 4-year periods). Analyses
were carried out in R version 3.5.1 (R Core Team
2018) using the “wsyn” (Reuman and others
2019), “party” (Hothorn and others 2019), and
“mgcv”’ (Wood 2006) packages.

RESULTS

Coherences between lakes and landscape primary
productivity varied widely, spanning nearly 0 to 1,
the entire range of the statistic (Q1). Example time
series from a particularly coherent lake-landscape
pair and a particularly non-coherent lake-land-
scape pair are shown in Figure S1. At short time-
scales, coherence ranged 0.06 to 0.92 with a
median of 0.37 (Figure 2A). Nine lake-landscape
pairs were significantly coherent at short timescales
using o = 0.05 significance level. At long time-
scales, coherence magnitudes ranged 0.08 to 0.95,
with a median of 0.53, and fifteen lake-landscape
pairs were significantly coherent using « = 0.05
significance level (Figure 2B). In each case, the
number of significant coherences is greater than
the number expected by chance given the selected
type-1 error rate (that is, 135*0.05 = 6.75) assum-
ing independent tests. This result highlights that
there is robust evidence that some lake-landscape
pairs are strongly coherent, but we emphasize that
it is also meaningful that there is a wide range of
observed coherences. The spatial distribution of
coherences at short (Figure 3) and long (Figure S2)
timescales indicates no apparent regional patterns
in lake-landscape coherence. Lake-landscape
coherences were substantially timescale specific
(Q4). Although coherence magnitudes were
somewhat greater at long timescales than short,
wavelet coherence suffers from a bias wherein
greater values tend to be returned at long time-
scales, so care should be taken in comparing
coherence magnitudes across timescales. Our sig-
nificance tests do not suffer the same bias, how-
ever. There was no correlation between coherence
magnitudes at short timescales and coherence at
long timescales (Pearson correlation = 0.03), and
only three lakes were significantly coherent at both
short and long timescales.

Phase relationships between lakes and the land-
scape also spanned the range of possible values (0
to £ m), but certain phase relationships were more
common than others (Q2). At short timescales,
most coherence relationships were approximately
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Figure 2. Distributions of coherence magnitudes (A, B) and phase differences (C, D) at short timescales (2—4 years;
panels A, C) and at long timescales (> 4 years; panels B, D). In (C, D), frequency is proportional to radius length.

Figure 3. Map of lakes included in this study by short-
timescale coherence between chlorophyll-a and NDVI.
Black outlines indicate statistically significant coherence.
See Figure S2 for long timescales.

in-phase (Figure 2C). At long timescales, coher-
ence relationships were bimodally distributed with
most coherent lakes exhibiting either phase-lagged
positive (—n/4 < ¢ < — 3w/4) or negative (7/
4 < ¢ > 37/4) relationships with terrestrial NDVI
(Figure 2D).

The coefficient of variation in NDVI and variables
associated with modulation of flows between lake
and the landscape (herein termed ‘hydrologic
connectedness’’) tended to be the best predictors of
lake-landscape coherence and phase relationships

(Q3). Such variables included wetland cover and
shoreline, precipitation and runoff, and ground-
water recharge. Variation in the magnitude of
coherence at short timescales was best explained by
total nitrogen deposition, the temporal coefficient
of variation in terrestrial NDVI [cv(NDVI)], and
several variables related to wetland cover in the
watershed and adjacent to the lake (Figure 4A). A
GAM model including the top 3 predictors ex-
plained 14.6% of deviance in short-timescale
coherence, and featured a negative effect of total N
deposition, and positive effects of cv(NDVI) and
herbaceous wetland cover (Figure 5A-C). Among
lakes exhibiting substantial coherence with the
landscape, for which computed phase relationships
are reliable, lakes with more open water wetlands
on their shoreline and with higher average
chlorophyll-a concentrations (that is, more eu-
trophic lakes) were more likely to be in-phase with
the landscape, but those with a high percentage of
shrub/scrub land cover were less likely to be in-
phase with the landscape (Figure 5D-F). A GAM
model with these predictors explained 20.9% of
deviance in cos (¢).

At long timescales, coherence was best explained
by the percentage of shrub/scrub land cover in the
watershed, cv(NDVI), annual precipitation, and the
percentage of watershed area composed of semi-
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Figure 4. Variable importance values (in descending order) from conditional random forest analyses of among-lake
variability in the coherence magnitude (A, C) and phase difference (B, D) between primary productivity in lakes and the
landscape. Results for short timescales (2—4 years) are shown in panels A, B; those for long timescales (> 4 years) in
panels C, D. Wetland variables are drawn in brown; lake variables are in blue; terrestrial vegetation variables are colored
in blue; climate and atmospheric deposition variables are in white; and variables not fitting these categories are in gray.

permanently flooded (regime f) wetlands (Fig-
ure 4C). Regime f wetlands are semi-permanently
flooded where surface water persists throughout
the growing season in most years. Long-timescale
coherence decreased with increasing percentages of
shrub/scrub land cover in the watershed and with
the percentage of watershed area covered by semi-
permanently flooded wetlands, and increased with
increasing cv(NDVI) (Figure 5G-I). This combina-
tion of predictors explained 13.5% of deviance in
coherence. Phase relationships at long timescales
were most strongly influenced by wetland shore-
line and area, and other land cover types (Fig-
ure 4D). Sin(¢) tended to decline with increasing
open-wetland shoreline, notwithstanding a few
outliers, indicating a tendency toward time-lagged
negative effects of NDVI on chlorophyll-a fluctua-
tions (Figure 5J). Increases in the areal percentage

of semi-permanently flooded wetlands in the
watershed were also associated with time-lagged
negative effects, and the percentage of cultivated
crops was associated with time-lagged positive ef-
fects (Figure 5I, L). These predictors explained
31.9% of deviance in sin(d).

DiscussioN

There is wide variability in the coherence of indices
of primary productivity between lakes and the
surrounding landscape, from complete incoherence
to near-perfect coupling across interannual time-
scales. Although the presence of links between
terrestrial and aquatic systems is well known
(Wilkinson and others 2013; Tanentzap and others
2017; Tranvik and others 2018), our findings
underscore the importance of temporally dynamic
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Figure 5. GAM partial effect plots depicting etfects of top predictors on (A—C) short-timescale coherence; (D-F) cosine-
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phase difterence. Models explained, respectively, 14.6%, 20.9%, 13.5%, and 31.9% of deviance in the response variable.

Gray regions indicate + 2 standard errors.

links between aquatic and terrestrial ecosystems.
Although lakes typically make proportionally small
contributions to regional primary productivity,
except in particularly lake-rich regions, aquatic
ecosystems process large amounts of terrestrially
derived nutrients and organic matter (Cole and
others 2007; Downing 2009). Understanding
whether these inputs stimulate or inhibit lake pri-
mary productivity, and the mechanisms that couple
these systems, is important especially on timescales
from a few years to decades [that is, multi-annual
timescales sensu Wilkinson and others (2020)]. For
example, episodic nutrient inputs may stimulate
algal blooms, while precipitation-driven dissolved
organic matter inputs may have longer-term effects
on lake primary producers.

We proposed that coherence between lakes and
the landscape could be driven by shared responses
to weather, potentially mediated by flows of carbon

and nutrients across ecosystem boundaries, and by
lake characteristics (Figure 6). Our results provide
some inference into the importance of these
mechanisms in the lakes we studied, specifically
that lake-landscape coherence largely arises
through cross-ecosystem flows of carbon and
nutrients, with wetlands playing a key mediating
role. If coherence was driven predominantly by
shared, independent Moran-like effects of exoge-
nous drivers like weather, we should expect strong
coherences to mainly be in-phase or anti-phase;
instead, we see many time-lagged relationships,
although short-timescale coherences were more
often in-phase or anti-phase. Further evidence for
this interpretation is that variables associated with
hydrologic connections between lakes and the
landscape—for example, wetlands area and shore-
line, runoff, groundwater recharge, and headwater
stream density—were among the most important
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Figure 6. Diagram of hypothesized mechanisms
underpinning lake-landscape coherence results. (1)
Weather may cause shared, independent effects on
terrestrial and aquatic primary production leading to in-
phase or anti-phase coherence. (2) Dissolved organic
matter from terrestrial primary production may carry
nutrients that stimulate aquatic primary production or
decrease light availability in lakes. Land cover shapes the
quantity and quality of terrestrial dissolved organic
matter delivered to lakes; flow paths and terrestrial
decomposition contribute to time (phase) lagged effects.
(3) The form and magnitude of nutrient loading from the
watershed into lakes are influenced by land use.
Nutrients that stimulate production in the watershed
can also stimulate primary production in the lake at a
phase lag based on the bioavailability of the exogenous
inputs and the timing of delivery to the receiving aquatic
ecosystem. (4) Wetlands modify the coherence between
lakes and the landscape by altering flow paths. Wetlands
retain water that would otherwise be immediately
delivered downstream and process nutrients and
dissolved organic matter, altering the quality and
quantity of material delivered downstream. (5) Lake
characteristics such as the size, depth, and food web
structure potentially modify these influences. Artwork
attribution: graphics from Integration and Application
Network, University of Maryland Center for
Environmental Science (ian.umces.edu/imagelibrary/);
pine tree by Tracey Saxby, corn stalk by Jane Thomas,
pondweed by Dieter Tracy, carp by Kate Moore, and
largemouth bass and Daphnia by Kim Kraeer and Lucy
Van Essen-Fishman.

predictors of the magnitude and phase of lake—
landscape coherence. Hydrologic connectivity, via
both surface waters and sub-surface flows, has a
fundamental role in the spatiotemporal dynamics
of lake ecosystems (Canham and others 2004;
Martin and Soranno 2006; Fergus and others
2017). Wetlands are an important component of
these connections, processing and exporting large
amounts of carbon and nutrients (Detenbeck and
others 1993; Gergel and others 1999; Martin and

Soranno 2006). Many of these variables are also
correlates of lake-landscape position (Kratz and
others 1997; Martin and Soranno 2006). The area
of wetlands around the lake tends to increase
moving from high in the watershed to low; these
lakes also tend to accumulate inputs from larger
areas, and also are more likely to have inflowing
streams. However, other correlates of lake-land-
scape position including stream density, lake con-
nection, and upstream lake area were also
candidate predictor variables but were less influ-
ential.

Interestingly, the dominant mode of variability
in phase differences among lakes that were coher-
ent with the landscape on long timescales was be-
tween a time-lagged positive and a time-lagged
negative effect. Negative effects of terrestrial pri-
mary productivity on aquatic primary productivity
could reflect dissolved organic carbon (DOC)
loading; DOC may inhibit photosynthesis by
decreasing water clarity (Karlsson and others 2009;
Solomon and others 2015). In our analyses, time-
lagged negative relationships were associated with
increasing amounts of wetlands in the watershed
and on the shoreline, and time-lagged positive
relationships were associated with the more agri-
cultural watersheds. DOC export to aquatic systems
is associated with forests and wetlands (Gergel and
others 1999; Canham and others 2004), while
agriculture can be a considerable source of nutrient
runoff. The time lags between terrestrial and
aquatic primary productivity may reflect both
transport time, for example, through slow path-
ways like groundwater, and the timing of biogeo-
chemical transformations (Cardille and others
2007). For example, a typical pathway for DOC
originating on land is for carbon to be fixed into
leaves during the growing season, fall during au-
tumn senescence, and decompose before entering
the DOC pool.

Surprisingly, we found little evidence that lake-
landscape coherence depended on characteristics of
lakes themselves. We considered a number of pre-
dictors characterizing lake morphometry (maxi-
mum depth, shoreline development ratio) and
biogeochemistry (mean chlorophyll-a), but only
mean chlorophyll-a was a relatively important
predictor of any response variable. Taken together
with our results on the importance of hydrologic
connectedness and cv(NDVI) for lake-landscape
coherence, it seems that lake-landscape coherence
is largely imposed by the terrestrial landscape and
mediated through flows of carbon and nutrients
across the terrestrial-aquatic interface (Carpenter
and others 1998; Buffam and others 2011).
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Insights from the study of spatial synchrony in
population dynamics (Liebhold and others 2004;
Walter and others 2017) suggest that weather
variation and climate oscillations should be
important in coupling these dynamics, in a sort of
cross-ecosystem ‘“Moran effect” (Moran 1953).
Indeed, spatially synchronous weather has been
inferred to synchronize dynamics across lakes
(Magnuson and others 1990; Baines and others
2000; Pace and Cole 2002; Pham and others 2008;
Rusak and others 2008) and drive spatial syn-
chrony in terrestrial primary production (Koenig
and Knops 1998; Wettstein and others 2011;
Shestakova and others 2016; Defriez and Reuman
2017). However, weather may not synchronize
lakes at the regional spatial extent of our study
(Soranno and others 2019), and weather does not
seem commonly to directly synchronize lakes with
the landscape, at least on multi-annual timescales.
Although we did not explicitly test for weather
drivers of coherence, the relative predominance of
phase-lagged coherences—particularly at long
timescales—and the relatedness of hydrologic
connectedness to spatial variation in coherence
between lakes and the landscape suggest that the
proximal mechanisms of lake-landscape coherence
likely have more to do with nutrient and organic
matter subsidies from the landscape to the lake,
than shared environmental forcing operating sim-
ilarly, but separately and simultaneously on the
lake and the landscape. This is in contrast to spatial
synchrony in population dynamics, where climate
can synchronize populations over large areas, even
with little or no dispersal between them (Liebhold
and others 2004). Other studies of cross-ecosystem
synchrony between terrestrial and marine ecosys-
tems have found climate to be an important driver
(Ong and others 2016; Black and others 2018), but
the relative magnitude of inputs from the land to
lakes is likely larger than from the land to the
ocean.

The magnitude of lake-landscape coherence was
entirely uncorrelated across timescales, affirming
the power of our timescale-specific approach.
Standard approaches based on correlation or
regression would not have uncovered this pattern
and would have been confounded by the strong
differences between short and long timescales.
Importantly, this also suggests that different
underlying mechanisms are responsible for short-
versus long-timescale coherence between lakes and
the landscape. Particular mechanisms have char-
acteristic timescales of variation and tend manifest
on those same timescales, as has been shown in
studies of population spatial synchrony (Sheppard

and others 2016; Anderson and others 2019) and
inferred for some studies of synchrony in lakes
(Baines and others 2000; Pace and Cole 2002).
Although variables associated with hydrologic
connectedness tended to explain among-lake vari-
ation in lake-landscape coherence, specifically
what mechanisms are at play are not yet known.
For example, the role of “‘flashy”” events, such as
storms resulting in overland flows and relatively
high flow rates through riverine systems, versus
slow-but-consistent processes like groundwater
recharge, is unclear, but could be resolved by
studying time series with sub-annual intervals be-
tween observations.

Our conclusions are limited by data drawn from
a biased set of lakes (Stanley and others 2019) with
relatively short time series of error-prone indicator
variables. Despite these limitations, we believe it
would be inappropriate to dismiss evidence for
lake-landscape coherence on these grounds. We
chose NDVI and lake chlorophyll-a as indices of
primary productivity because of their relative
availability. Other measures, such as from eddy
covariance for terrestrial ecosystems (Vesala and
others 2006; Aubinet and others 2012) and in situ
measurements of oxygen dynamics and carbon
fixation for lakes provide more direct measure-
ments of primary productivity. However, their
limited availability made them ill-suited to the
goals of this study. Satellite remote sensing of lake
water quality can enable study of additional lakes,
but the need for calibration data (Ross and others
2019) and cloud cover mean that remotely sensed
time series would have similar limitations to our
dataset. Additionally, while our time series are near
the lower length limits where wavelet analyses can
be reasonably applied, our data are among the
longest records that currently exist, and requiring
longer time series would have substantially re-
duced the number of lakes in the study, hindering
our goals. Considering the limited statistical power
afforded by our short time series and potential for
observation error, the detection of strong relation-
ships is meaningful.

This study provides evidence of wide variation in
the coupling of temporal ecosystem dynamics be-
tween lakes and the landscapes they are embedded
in, and provides a springboard for future work
leveraging temporal pattern to understand causes
and consequences of coupling between lakes and
the landscape. Although further research is needed
to clarify the specific mechanisms of temporal
coherence between lakes and the landscape, vari-
ables associated with hydrologic connectedness
explained substantial spatial variation in lake-
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landscape coherence, suggesting that cross-ecosys-
tem flows may commonly be a proximal mecha-
nism. Based on analogs with synchrony in
populations and communities, and observations of
coastal systems (Ong and others 2016; Black and
others 2018; Lara and others 2019), we expected
that shared climatic fluctuations could induce
synchrony between lakes and the landscapes, but
this does not seem prevalent. Finally, this study
affirms that multi-annual dynamics, which partic-
ularly in aquatic ecosystems are less well under-
stood compared to seasonal and short-term trends
(Wilkinson and others 2020), exhibit rich patterns,
and that their investigation can lead to new insights
into ecosystem dynamics.
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