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A B S T R A C T   

High-quality temperature data at a finer spatio-temporal scale is critical for analyzing the risk of heat exposure 
and hazards in urban environments. The variability of urban landscapes makes cities a challenging environment 
for quantifying heat exposure. Most of the existing heat hazard studies have inherent limitations on two fronts; 
first, the spatio-temporal granularities are too coarse, and second, the inability to track the ambient air tem
perature (AAT) instead of land surface temperature (LST). Overcoming these limitations requires developing 
models for mapping the variability in heat exposure in urban environments. We investigated an integrated 
approach for mapping urban heat hazards by harnessing a diverse set of high-resolution measurements, in
cluding both ground-based and satellite-based temperature data. We mounted vehicle-borne mobile sensors on 
city buses to collect high-frequency temperature data throughout 2018 and 2019. Our research also incorporated 
key biophysical parameters and Landsat 8 LST data into Random Forest regression modeling to map the hy
perlocal variability of heat hazard over areas not covered by the buses. The vehicle-borne temperature sensor 
data showed large temperature differences within the city, with the largest variations of up to 10 °C and 
morning-afternoon diurnal changes at a magnitude around 20 °C. Random Forest modeling on noontime 
(11:30 am – 12:30 pm) data to predict AAT produced accurate results with a mean absolute error of 0.29 °C and 
successfully showcased the enhanced granularity in urban heat hazard mapping. These maps revealed well- 
defined hyperlocal variabilities in AAT, which were not evident with other research approaches. Urban core and 
dense residential areas revealed larger than 5 °C AAT differences from their nearby green spaces. The sensing 
framework developed in this study can be easily implemented in other urban areas, and findings from this study 
will be beneficial in understanding the heat vulnerabilities of individual communities. It can be used by the local 
government to devise targeted hazard mitigation efforts such as increasing green space, developing better heat- 
safety policies, and exposure warning for workers.   

1. Introduction 

Extreme heat events associated with Urban Heat Islands (UHI) pose 
a serious public health risk in many urban areas in the U.S.(Harlan, 
Declet-Barreto, Stefanov, & Petitti, 2013). Climate change is likely to 
further exacerbate the dangers posed by UHI in cities across the U.S. 
and around the world, particularly in poorly planned communities 
(Kovats R. Sari & Koppe, 2006; Brooke Anderson, Bell, Brooke 
Anderson, & Bell, 2011). Simply put, the UHI is the excessive genera
tion and retention of heat by the built environments within urban areas. 
Variables contributing to a city's UHI include the increased surface area 

of buildings, less greenspace and surface moisture, higher heat capa
cities of building materials, and increased exhaust from structures and 
automobiles (Ihara, Kikegawa, Asahi, Genchi, & Kondo, 2008; Kuttler, 
2008). Buildings absorb more heat and retain more longwave radiation 
within the urban canyons. Values from 2009 from the U.S. Census 
Bureau identified 940 metropolitan and micropolitan statistical areas, 
and with continued warming of the climate, large numbers of com
munities and individuals in these towns and cities will be exposed to 
frequent extreme heat events. To protect these communities from ex
treme heat-related hazards, it is imperative that we comprehensively 
track and understand the within-UHI heat exposure variabilities of 
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various at-risk communities. 
The largest and most broadly used resource is heat advisory and 

warnings from the National Weather Service (NWS) and the National 
Oceanic and Atmospheric Administration (NOAA). These services cover 
all the states and cities across the U.S., with hourly weather updates 
from ground-based observations and model output to each municipal 
city and county. The only limitation is their minimum unit for a report 
is city-level or county-level, which does not represent individual com
munities (Maier et al., 2014). Though all communities are and will 
continue being under heat risk, they do not share the same living en
vironment, and thus, city/county-level reports do not adequately de
lineate specific heat hazard for each community. 

Distinct from weather station data, satellite land surface tempera
ture (LST) products are useful observations of intra-city variations in 
urban heat. LST is traditionally used as a proxy to delineate UHIs. With 
the development of more accurate and well-calibrated spaceborne 
thermal sensors such as NASA's ECOSTRESS, to provide LST images 
with better quality, the spatial resolution of LST images could reach 
70 m without resampling, and the frequency is one to two images a 
week. Such spatial resolution is sufficient to provide details about 
which section of the city is hot and what is the intensity of the UHIs. 

To date, urban temperature mapping has mostly focused on de
termining UHIs and environmental exposure through coarse resolution 
heat maps of cities using satellite (Harlan et al., 2013; Johnson & 
Wilson, 2009) or weather station data (Maier et al., 2014). However, 
within a known UHI, people are exposed to widely varying tempera
tures due to different surrounding environments (Harlan, Brazel, 
Prashad, Stefanov, & Larsen, 2006). Such variations in the environment 
bring many complexities to heat study at a granularity smaller than an 
urban block. The above studies suffer from a lack of high-resolution 
information needed to differentiate the effects of buildings and vege
tation on the temperatures within and between neighborhoods, which 
ultimately influence hyperlocal urban ambient air temperature (AAT). 
Also, satellites lack the spatial and temporal resolution to track the 
actual Urban Heat Exposure (UHE) of individuals and communities over 
time. Most satellites only visit the same geographic location once every 
few days, and such a dataset cannot describe diurnal and daily varia
tions. 

Furthermore, satellites do not directly provide AAT, the heat con
ditions that people experience on the ground, which most closely tied to 
human thermal comfort. Satellite LST products represent surface tem
perature instead of near-surface AAT. Although LSTs have been used as 
a proxy for air temperatures, they differ in magnitude that LSTs are 
hotter in the day but relatively cooler at night (Oke, 1988). Also, LST 
and AAT are not perfectly correlated in various conditions (Ho, Knudby, 
Xu, Hodul, & Aminipouri, 2016; Kloog, Chudnovsky, Koutrakis, & 
Schwartz, 2012). 

A significant advancement in human heat hazard monitoring will be 
to develop a product that captures the complex AAT variability in urban 
environments, identified as known-UHIs, at a highly granular scale. For 
that, we need temperature data with high spatio-temporal resolution 
and coverage. An exciting development in collecting such data is the 
increasing use of mobile sensors (e.g., vehicle-borne, human-borne), 
which can gather high resolution spatiotemporal data on ambient at
mospheric conditions (Anjomshoaa et al., 2018; Eisenman, Lane, & 
Miluzzo, 2006; Honicky, Brewer, Paulos, & White, 2008). Indeed, many 
European cities have attempted to harness mobile sensing networks to 
improve AAT measurements (Erman, Van Hoesel, Havinga, & Jian, 
2008; Hasenfratz et al., 2015; Overeem et al., 2013). Unfortunately, the 
widespread use of these sensors is limited due to the cost and the labor- 
intensive nature of data collection and processing requirements (Reis 
et al., 2015). Also, such sensor networks still have a limitation on 
spatial coverage because the data are mainly point or line data, unlike 
the satellite LST datasets, which can cover a large region. 

To leverage the spatial continuity of satellite-derived products, 
some studies have established simple statistical relationships between 

LST and AAT (Nichol & Wong, 2008; Vancutsem, Ceccato, Dinku, & 
Connor, 2010; Zhu, Lu, & Jia, 2013). These relationships have only 
moderate explanatory power, in part because the near-surface urban 
area is a complex environment with interfering variables that alter the 
relationship between AAT and LST. These studies do not incorporate 
land cover and canopy conditions and shading among other biophysical 
parameters that may improve the relationship between LST and AAT 
(Frey, Rigo, & Parlow, 2007; Li et al., 2011; Yuan & Bauer, 2007). These 
environmental factors have rarely been used in an integrated model to 
estimate AAT. Further, these studies have not addressed the high-re
solution AAT variabilities within known UHIs. 

Our study seeks to blend the strengths of remotely sensed data with 
its contiguous spatial coverage and the advantages of data collected 
from vehicle-borne mobile sensors with its capability of capturing 
highly granular AAT data through machine learning-based modeling to 
produce the first satellite-derived maps of AAT or exposure tempera
ture. We present an innovative approach towards building AAT pro
ducts with the ability to create a more robust conversion from LST to 
AAT by linking with biophysical and meteorological parameters. 
Human heat hazards, exacerbated by climate change, often dis
proportionally affect vulnerable urban communities. The first step to
wards resolving heat hazards is to understand heat distribution. 
Therefore, developing a framework to generate AAT or heat exposure 
maps would be extremely valuable in reducing heat hazards and en
hancing urban resiliency. 

2. Data and method 

2.1. Vehicle borne sensor implementation 

Vehicle-borne sensors in this study were designed and assembled to 
provide high temporal resolution AAT data along with location and 
time (Fig. 1). These sensor packages were assembled from scratch with 
microprocessor components. The cost of assembling one unit is about 
$100 USD. Each sensor includes an AdFruit M0 Feather microprocessor, 
a real-time clock, a GPS unit, a DS18B20 waterproof temperature 
sensor, a battery set, a micro S.D. card, and boards and wires that 
connect the components. IP67 waterproof Polycase boxes were used as 
the enclosure for the sensor assembly and provided an easy mounting 
opportunity on different kinds of surfaces on the vehicle. The sensor 
head is the only thing outside the box, and it is shielded by a white 
hollow plastic ball that ensures sufficient airflow but allows no direct 
solar radiation. 

The sensor units ran Arduino ‘software serial’ libraries to control 
and communicate between the central processor and different compo
nents, the temperature sensor, real-time clock, GPS unit, data storage, 
and warning report. The GPS unit in the sensors was used for time 
adjustment and route identification. The real-time GPS data were re
trieved from bus transit providers and their provided APIs which are 
operated by private businesses contracted through the University of 
Georgia (UGA). We have already developed architecture to filter and 
then upload the data to a cloud-based database as well to maintain the 
integrity and quality of the data. More details about the sensor com
ponent, assembly procedure, and software architecture are given in (N. 
H. Tonekaboni et al., 2018) and (Tonekaboni, 2019). 

The vehicle-borne sensors shown in Fig. 1 were mounted on thirty 
UGA and Athens Transit buses. We visited the bus transit parking lots 
every month to replace the batteries, check the sensors, and access the 
data from the logger. The total cost for maintenance per month is less 
than $1 USD per unit. The buses traverse the Athens area from morning 
through evening recording temperature every five seconds. 

2.2. Vehicle-borne sensor data 

In the data collection process, we used the vehicle-borne mobile 
temperature sensors described in the above section to collect high- 
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resolution data within the greater Athens area. Athens, Georgia, is a 
town with a population of over 100,000. It is located in a humid sub
tropical climate in the southeastern U.S., characterized by long and hot 
summers transitioning into short and cold winters. Average monthly 
temperatures range from 6.4 °C in January to 27.0 °C in July; the 
maximum temperature on average reaches 32 °C or higher on 58 days 
annually (Arguez et al., 2010). 

Sensors were mounted on more than thirty buses, which traversed 
the Athens area from 6 am to 9 pm, and recorded temperature every 
five seconds. We used these vehicle-borne sensors to collect AAT for six 
months (June–November) in 2018 and 6 months (May–October) in 
2019. Data from the year of 2018 were used to calibrate the AAT 
prediction model, which also used LST and other influential biophysical 
parameters. Data from 2019 were used for model validation. Each year, 
within the 6-month deployment period, 90 million rows of raw AAT 
data (roughly 10 gigabytes) were collected from these vehicle-borne 
sensors before data cleaning and filtering. A quality-aware framework 
was used to filter erroneous data before being uploaded to the cloud 
database (see Tonekaboni et al., 2018 for details). 

2.3. Remote sensing data 

Several different satellite-based products were considered in this 
study. Landsat 8 Operational Land Imager (OLI) thermal infrared (TIR) 
data (100-m spatial resolution resampled to 30-m pixel size) for Athens, 
Georgia, were collected and processed for 2018 and 2019 from the USGS 

EarthExplorer website (https://earthexplorer.usgs.gov/). Multispectral 
PlanetScope products (Planet Team, 2017) at 3-m spatial resolution were 
acquired for 2018–2019 for developing high resolution Land Use Land 
Cover (LULC) maps. We performed supervised classification on four 
cloud-free PlanetScope images, two images from August 2018, and the 
other two from July, 2019. LiDAR data for Athens-Clarke County (ACC) 
collected by NOAA in 2015 were downloaded and preprocessed with the 
permission from ACC Geographic Information Service (https://www. 
athensclarkecounty.com/7632/Geospatial-Information-Office). LiDAR 
data were used to retrieve high-resolution canopy cover map for the 
study domain. Each dataset and associated products are explained in 
detail in the following subsections. 

2.3.1. Land surface temperature (LST) 
We calculated Landsat 8 LST from OLI TIR bands using the single- 

channel algorithm (Jiménez-Muñoz & Sobrino, 2010). There are two 
common types of algorithms to calculate LST from satellite thermal 
infrared images, Split-Window (S.W.) Algorithm (Qin, Dall'Olmo, 
Karnieli, & Berliner, 2001), which uses data from two thermal bands, 
and Single-Channel (S.C.) Algorithm, which uses only one thermal band 
data. Due to the reported data quality issue of Landsat 8 TIR band 11 
(https://www.usgs.gov/land-resources/nli/landsat/landsat-8-oli-and- 
tirs-calibration-notices), we use the S.C. algorithm on Band 10 and 
avoided LST computation and comparison between the two algorithms. 
The basic theory of the S.C. algorithm is given in Eq. 1: 

Fig. 1. Vehicle-borne sensor system, (a) Vehicle-borne sensor, (b) sensor mounted on bus, (c) bus routes in Athens, GA with highly urbanized areas such as malls, 
shoping plazas, urban core are combinmedly highlighted in dark gray. 
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where B is the Planck function, Lsen is the radiance-at-the-sensor, Lup is 
the thermal path radiance, Ldown is the downwelling irradiance, ε is the 
surface emissivity, and τ is the atmospheric transmissivity. Between 
June 2018 and November 2018, there were only three usable Landsat 8 
cloud-free or minimally cloud-covered images that were used in LST 
estimation which are July 29th, August 14th, and August 30th. 

2.3.2. Canopy cover 
Canopy cover was derived from the LiDAR data by extracting the 

difference between the first and last returns of laser beams and co- 
analyzing the plant heights with LiDAR backscattered intensity data 
(MacFaden, O'Neil-Dunne, Royar, Lu, & Rundle, 2012). If an emitted 
laser beam hits a tree canopy, it is designed to produce multiple notable 
return pulses showing diffused reflection. This multiple-return char
acteristic of trees was combined with the extracted first-last return 
differences to identify the canopy and shading information. We im
ported 30 gigabytes of raw LiDAR data into ArcGIS and processed them 
into designated canopy cover with ArcGIS LAStools Toolbox (ESRI, 
Redlands, CA). The final output was a 3-m raster image with 0 and 1 
values, where 0 means not covered by a canopy and 1 means covered by 
the canopy. The overall classification accuracy is 88.7% with a Kappa 
coefficient of 0.775. Next, we resampled the image to 30-m to match 
the pixel size of Landsat 8 LST products, with values range between 0 
and 1 indicating the percentage of area in a 30-m pixel covered by the 
canopy. 

2.3.3. LULC composition 
We used a maximum-likelihood-logistic-regression-based supervised 

classification method (Treitz, Howarth, & Gong, 1992) to classify the 3- 
m resolution PlanetScope multispectral data into three main land cover 
types, vegetation, building/road/soil, and water. The overall classifi
cation accuracy is 92.6% and Kappa coefficient is 0.858 (as shown in  
Table 1.) Next, we resampled the 3-m LULC data from PlanetScope into 
30-m to match the pixel size of Landsat 8 LST products. We did not use 
Landsat 8's multispectral bands for LULC classification to avoid ex
cessive mixed pixel issues in urban areas. Mixed pixels are especially 
problematic for urban areas because of the nature of scattering from 
buildings and trees in cities. Each land cover composition in the newly 
resampled 30-m product was the ratio between the area of individual 
land cover type and the area of the whole 30-m pixel. This way, each 
mixed pixel was decomposed to three land cover types to explain the 
detailed LULC variability in the mixed pixels. 

2.4. Weather station data 

We used weather observations (air temperature and solar radiation) 
from a rooftop station operated by the Climatology Research 
Laboratory (CRL; http://weather. ggy.uga.edu/data/daily/) at UGA. 
This is the closest weather station to most places along the bus routes, 
and this station is located near a heavily urbanized part of the city of 
Athens. The CRL weather station takes observations every two minutes 

and saves the data in an open-access online FTP. Due to the different 
frequency of data collection between the weather station and satellite, 
we chose the closest weather station reading to the satellite time stamp. 
Other weather stations located in Athens-Clarke county have defi
ciencies. Several WeatherSTEM stations collect the necessary data but 
are not always located over a natural surface, which is common practice 
for representative weather station measurements. A National Weather 
Service/Federal Aviation Administration operates a weather station at 
Ben Epps Airport. This station is remote from the main bus routes and 
does not measure solar radiation. Even though the other weather sta
tions were not used in model training and tuning, we use their data for 
AAT model validation. 

2.5. Random forest modeling 

We used the Random Forest model (Liaw, Wiener, et al., 2002), a 
commonly used algorithm in classification and regression, to predict 
AAT using multiple parameters. It is among the types of models that 
could be used where the input data for regression analysis have high 
spatial and temporal variabilities. In this algorithm, hundreds of deci
sion trees are randomly generated, and all trees are independent of each 
other. A final classification or regression model is the most accurate one 
made by aggregating multiple layers of the decision trees. The trees are 
randomly generated, and the training, validation, and test set for the 
whole process are also all randomly drawn from the entire dataset to 
avoid the common overfitting and biases from statistical models. 

The final formula for this study was: 

T f T LC LC LC CC SR T~ { , , , , , , }air LST veg man water wea (2) 

where Tair is AAT, TLST is satellite-derived LST, LCveg, LCman, LCwater are 
the composition of the land cover types of vegetation, building/road/ 
soil, and water, CC is canopy cover, S.R. is solar radiation, Twea is 
weather station temperature. 

Because the Random Forest Model result can be different based on 
the choices of randomly selected training and test sets, the best model 
could only be generated after trying different combinations of model 
parameters and training-test sets. However, with a large volume of data 
and almost infinite possibilities of model parameters, it is too compu
tationally intensive to try all different combinations. Thus, an alter
native solution is to use ‘Hyperparameter’ and K-Fold Cross-Validation. 
Hyperparameter is an alternative method where one can randomly 
change the parameter in the random forest regressor. Also, this method 
is a combination of two or three repeated parameterizations to reduce 
the time cost. We pre-define the choices for the number of estimators as 
200, 400, 600, 800, and 1000 and found 1000 to be the best choice. 
Then we chose several possible numbers for each parameter, for in
stance, 500, 1000, and 1500, to find if the result from a previous 
parameterization is the global best. And we implied K-Fold Cross- 
Validation in the hyperparameter process with K = 3. Therefore, we 
iterated the validation three times with two-thirds of the total dataset as 
the training set and one-third as the testing set. The combination of 
Hyperparameter and 3-Fold Cross-Validation ensures the output model 
is the best possible result with the input data and parameters. Then we 
evaluated the model with the test dataset via different ways to calculate 
model errors. 

AAT model evaluation was performed by computing the absolute 
and standardized differences between predictions and actual values for 
the test dataset. We also calculated the mean absolute percentage error 
(MAPE) via dividing the error by the actual values in the test dataset. 
Here, the test and validation dataset contained a portion of the data 
excluded from K-Fold Cross Validation, and the data especially left for 
model validation, which was the 2019 dataset in our study. 

2.6. Other statistical modeling 

We compared results from the Random Forest algorithm with other 

Table 1 
Producer, User and Overall Accuracy of the LULC supervised classification.        

Classification Impervious Water Vegetation Truth User accuracy  

Impervious 8900 95 1699 10,694 0.832 
Water 4 1549 3 1556 0.996 
Vegetation 213 117 16,221 16,551 0.98 
Total 9117 1761 17,923 28,801 Overall  

Accuracy = 0.926 
Producer 

accuracy 
0.976 0.88 0.905  Kappa = 0.858 
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commonly used approaches, including Multilinear Regression and 
Gradient Boost Model, to evaluate relative accuracy. 

Multilinear Regression Model attempts to fit a linear equation be
tween the targeted parameter and multiple explanatory variables 
(Kutner, Nachtsheim, Neter, Li, et al., 2005). The general formula looks 
like this: 

= + + + +y x x kxk0 1 1 2 2 (3) 

where y is the dependent variable, x1, x2, …, xk are explanatory 
variables, ϵ are the residual terms, β0, β1, β2, …, βk are correlation 
coefficients in this model. 

Gradient Boost Model is a type of decision tree model constructed 
from multiple weak learners to produce better results (Friedman, 
2002). However, this is different from Random Forest Regression and 
other decision trees because all tree regressors are predictions of the 
residuals between the constructed trees and the real value. 

3. Results and discussion 

3.1. Vehicle-borne AAT and hot spots 

We first present a sample map of vehicle-borne sensor temperatures 
on August 14th, 2018 (Landsat 8 overpass day) for the morning (30 min 
before and after 9 am), noon (30 min before and after 12 pm), after
noon (30 min before and after 3 pm), and early evening (30 min before 
and after 6 pm) (Fig. 2). The bus routes cover the most populated parts 
of Athens-Clarke County comprehensively. However, less populated 
areas with fewer businesses such as in the southwest are not well 
covered. 

From these data points, both spatial and temporal variations are 
evident. Spatially “hot spots” evident by red color-coding is located 
across the city at places with a higher level of urbanization. Downtown 
Athens, the shopping plazas in the west corridor, and several other 
suburban plazas all stand out in the image as hot spots. At noon and 

afternoon times, the hot spots reached temperatures over 40 °C while at 
the same time, some suburban and places well shaded by buildings or 
canopies were below 30 °C. The maximum difference was 14 °C during 
noontime. LST product shows a similar noontime spatial pattern that 
urban core areas reached 52 °C, and rural areas were around 30 °C. The 
maximum difference was 22 °C in the Landsat 8 LST image on that day. 
Diurnal variability is also evident across the area, as shown in the 
temperature range of each image. On that day, the AAT increased from 
around 18 °C in the early morning to around 40 °C in the late afternoon. 

These maps show evident diversity in temperatures across the city, 
but the dataset is limited in spatial coverage to areas with bus routes, 
which hinders spatial extrapolation and applications. The LST satellite 
products provide the spatial contiguity, although at a coarser spatial 
resolution and with quite different values from vehicle-borne AAT 
(Fig. 3). In the clipped grid, AAT recorded by the vehicle-borne sensors 
ranged from 29.69 to 32.75 °C, while the Landsat 8 LST value in the 
same grid was 39 °C, which is significantly higher than AAT. Never
theless, Landsat 8 LST images cover the whole urban area, with many 
cells without any bus AAT data. To better facilitate the bus AAT data to 
explain the urban heat phenomenon beyond the bus routes, we trained 
the machine learning models such as random forest and others using the 
overlapping bus AAT and Landsat 8 LST along with spatially decom
posed LULC and other biophysical parameters. The machine learning 
models were aimed at predicting AAT at places not covered by the 
vehicle-borne sensors. After a robust training and validation process, 
the models can be implemented every time Landsat 8 passes over the 
study site producing a novel Landsat-8 resolution or a higher resolution 
spatial AAT product. These AAT products can then be used to study 
community exposure risk or heat hazard risk in an urban environment. 
That is the premise behind the machine learning modeling. 

3.2. Random forest model training and tuning 

According to previous research about biophysical parameters 

Fig. 2. Morning (a), noon (b), afternoon (c), and evening (d) time snapshots of AAT data from bus sensors(Data classified using natural breaks).  
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influencing AAT (Frey et al., 2007; Li et al., 2011; Yuan & Bauer, 2007), 
there is an agreement that the local environment has a significant in
fluence on air temperature. Human-made materials, vegetation, close
ness to a waterbody, shadow of building or trees, and time of the day 
are important contributors to changes in air temperature. Based on 
previous findings and availability of datasets, we choose five para
meters (i.e., LST, LULC, Canopy Cover, Weather Station Temperature, 
and Solar Radiation) to model AAT. Because LST from Landsat 8 is only 
available during noontime on certain days (temporal resolution: 
16 days), we used the corresponding pairs of vehicle-borne AAT and 
Landsat 8 LST datasets during the 30-min window of Landsat 8 overpass 
for model training. We trained and validated the random forest model 

using hyperparameter and K-Fold Cross-Validation. A three-layer den
drogram is presented in Fig. 4, and the tuning results for the regressor 
parameters are shown in Table 2. 

In this dendrogram, LCLU_man_p is the percentage of the land cover 
being human-made materials, w_temp and w_solar are the weather 
station temperature and solar radiation observations respectively, and 
LST is Landsat 8 land surface temperature. This dendrogram can be 
interpreted as a simplified regression tree if the tree only has three 
layers. At every node, each set of input data will make a Yes or No 
decision based on the criteria, and all input data will be categorized 
into two branches. If the tree stops there, each set of data will be signed 
with a value shown in the box. For example, if a sample has less than 
30% of land cover with human-made materials and weather station 
temperature observations are smaller than 30.83 °C (87.5 °F), then the 
predicted value will be assigned as 29.9 °C together with other 93 
samples and the predicted values for these samples will have an MSE of 
1.4 °C. 

Bootstrapping is a standard method for sampling data points (with 
or without replacement) in model tuning. The parameters used in 

Fig. 3. Comparison between bus AAT data and Landsat 8 LST on spatial resolution and contiguity (each dot is a bus AAT reading; each grid is a Landsat 8 30-m pixel; 
data classified using equal intervals). 

Fig. 4. A demo three-layers random forest model dendrogram used in this study (mse: mean standard error; samples: number of samples within each branch; value: 
the predicted value for the samples in this branch). 

Table 2 
Tuning result for the random forest regressor parameters.        

Bootstrap Max 
depth 

Max 
features 

Min samples 
leaf 

Min samples 
split 

Number of 
estimators  

False 80 2 1 2 1000 
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bootstrapping are, (1) Max depth - maximum number of levels in each 
decision tree, (2) Max features - maximum number of features con
sidered for splitting a node, (3) Min samples leaf - minimum number of 
data points allowed in a leaf node, (4) Min samples split - minimum 
number of data points placed in a node before the node is split, and (5) 
Number of estimators - number of trees in the forest. For instance, the 
demo three-layer tree in Fig. 4 has (1) a Max depth of 3, (2) Max fea
tures of 1, (3) Min samples in a leaf of 12, (4) Min samples split of 153, 
and (5) the number of the estimator as 1 because this demo dendrogram 
is just one tree. Also, in the K-Fold Cross-Validation, the number K is 
three, which means every time we use one-third of the total data to test 
the newly generated model. 

We compared the random forest model output to the output from 
the traditional linear regression model, Gradient boosting regressor 
model, to illustrate that those methods do not outperform the random 
forest model. We compared the observed values from the test dataset 
and the predicted values from all the above regression models (Fig. 5) 
and calculated the Mean Absolute Error (MAE) and Mean Standard 
Error (MSE) for each regression model (Table 3). 

Sample points inside the two rectangles in Fig. 5 (a and b) were used 
to evaluate the prediction performance between different regression 
models. It is evident that the predicted AAT values from the Random 
Forest model are closer to the observed ones than the other models. 
MAE and MSE values for all regression models showed that the Random 
Forest model outperformed other methods (Table 3). 

3.3. Model testing 

We assessed the effectiveness of the hyperparameter and model 
tuning in the performance of the model using error parameters such as 

MAE, MSE, and MAPE (Table 4). These parameters were used to assess 
the differences between the original default Random Forest model and 
the tuned model. The tuned model has a MAE of 0.29 °C, a MSE of 
0.57 °C, and a MAPE of 0.86% compared to a MAE of 0.36 °C, MSE of 
0.71 °C and a MAPE of 1.08% before hyperparameter tuning and vali
dation. Moreover, in the model, each parameter contributes a sig
nificant portion to explain the model variance ranging from LST con
tributing 35% to Percentage of Water contributing 5%. 

Due to the overrepresentation of data collected from places with 
impervious surfaces, we included weather station data to represent 
temperature over suburbs and other less urbanized regions. We ran
domly extracted 10,800 data points with predicted AAT and LST from 
Landsat 8. For the weather station temperature, we used noon time data 
from the UGA CRL Weather Station, Athens Epps Airport Weather 
Station and three WeatherSTEM Weather Station data. These weather 
stations represent both central urbanized city and suburbs less-popu
lated Athens. According to the plot below (Fig. 6), the modeled AAT 
output is closer to weather station temperature than LST. And the about 
6 °C variation in AAT is also identical with the spatial variation found 
from Result Part 1 which cannot be captured by Weather Station Data. 

The observed versus predicted AAT of the tuned model revealed the 
error to be smaller than two standard deviations (2 S.D.) without any 
particular pattern of over or underestimation (Fig. 7). But we still 
identified a few outliers with differences greater than 5 °C. 

As we observed in the vehicle-borne AAT data (Fig. 3), typically, 
there are many data points within one Landsat 8 LST pixel. Any time 

Fig. 5. Comparison between predicted values from Random Forest model and other regression models, and the actual observed values.  

Table 3 
MAE and MSE comparison for different regression models used to predict AAT.     

Model MAE, oC MSE, oC  

Random Forest 0.29 0.57 
Gradient Boost 0.74 1.06 
Linear Regressor 1.57 2.24 
Voting Regressor 0.81 1.13 

Table 4 
Contribution of variables in the tuned Random Forest Model.    

Most important parameter Contribution of the variables (explained 
variance)  

LST 0.35 
Weather station temperature 0.18 
Percentage of Vegetation 0.13 
Percentage of soil/building/road 0.13 
Percent of canopy cover 0.09 
Weather station solar radiation 0.07 
Percentage of Water 0.05 
Total 1 
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there is an abrupt change in vehicle-borne AAT due to either a change 
in land cover type within a Landsat 8 pixel or being at the proximity of 
an unnatural heat source such as exhaust or engine of another vehicle, 
there will be an increased deviation between LST and AAT. In the 
Random Forest Regression process, the decision tree will balance be
tween normal data and outliers instead of overfitting the pattern of 
outliers. Therefore, the model will not respond to the outliers caused by 
factors not included as model variables well. 

3.4. Model output visualization and analysis 

Finally, all important parameters, LST, canopy cover, land cover 
composition, weather station temperature, and solar radiation, were 
used in the Random Forest model for AAT predictions for the entire 
Athens-Clarke County for each cloudless Landsat image. Fig. 8 presents 
an example of the estimated 30-m resolution AAT and Landsat 8 LST 
distribution across Athens-Clarke County at noontime of August 14th, 
2018 and August 1st 2019. 

From this predicted AAT map, we can pick the hot spots across the 

city, showing both the highly urbanized downtown areas, business 
plazas, and the residential districts. The hot spots during noontime on 
August 14th, 2018 peaked around 34 °C at the downtown and shopping 
plazas in Athens, and there were areas found to be 5–6 °C cooler several 
meters away. The hot spots during noontime on August 1st 2019 
peaked around 36 °C at the downtown and shopping plazas in Athens, 
and there were also cool spots around them. These cool spots near 
downtown and plazas are mostly missing from the LST maps because 
surrounding environments usually contaminate LST pixels being 
coarser resolution. Residential districts typically have a large amount of 
vegetation coverage, which subdues these hot spots on the LST maps. 
The similar but opposite phenomenon is that heated buildings and 
roads were 4–5 °C higher than the green space near those buildings or 
apartment complexes. 

For a quantitative comparison, we selected all the urban core de
veloped areas and plotted their corresponding AAT and LST for pixels 
with changing percentage of vegetation since % vegetation within a 
pixel plays a significant role in reducing LST (Fig. 9). Both graphs show 
the negative correlation between the percentage of vegetation and 

Fig. 6. Comparison between AAT, LST and Weather Station Temperature at noontime (box represent 25th and 75th percentile, the whiskers represent 5th and 95th 
percentiles, and the line in the box represents median). 

Fig. 7. Visualization of Random Forest model error: Actual vs. Predicted AAT (each line represents a certain standard deviation- SD from the mean).  
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temperature, which means an increase in vegetation cover reduces both 
AAT and LST. However, LST instantly decreases as the vegetation cover 
increases because more vegetation means less artificial materials like 
asphalt and pavement and higher evaporative cooling. AAT does not 
decrease when the vegetation cover increases from 0 to 50% because, in 
a mixed pixel, the near-surface temperature is strongly influenced by 
other land cover types within the pixel and around the pixel. In other 
words, AAT is not sensitive to increasing vegetation cover up to a 
certain threshold as opposed to LST, which shows an immediate re
duction. The threshold of vegetation cover for AAT to decline is roughly 
50% at 30-m resolution (this study). However, that threshold will most 
likely change with a change in spatial resolution. AAT Shows a sig
nificant decline when vegetation cover within a pixel exceeds 50%. 

Previous research tried either to solely link LST with AAT (Nichol & 
Wong, 2008; Vancutsem et al., 2010; Zhu et al., 2013) or use coarse 
resolution data to estimate AAT (Harlan et al., 2013; Johnson & Wilson, 
2009). A few studies incorporated different parameters into AAT 
modeling but did not have revisited data for model validation and 
scaling up (Makido, Shandas, Ferwati, & Sailor, 2016). Our modeling 
framework enables a broader application to other cities and countries. 
The results indicate that the sensing is scalable and replicable to other 
cities of different sizes, especially to those with well-connected city 
transit systems or other public utility vehicles (e.g., sanitation, main
tenance, law enforcement) (Anjomshoaa et al., 2018). The public utility 
vehicles can also be used to collect AAT data and make them available 
as open-source and free to use datasets. 

3.5. Limitations 

There are a few limitations to be recognized in our study. First, in 
using vehicle-borne sensors, the AAT sensing was limited to roadways. 
Future developments should include AAT from human-borne sensors 
into the model. Human-borne sensors allow temperature monitoring in 
areas that are accessible only to pedestrians and allow tracking of in
dividual heat exposure within known UHIs (De Nazelle et al., 2013;  
Tonekaboni et al., 2018). A second issue involves the raster format of 
our remotely sensed data. Modifiable Areal Unit Problem (MAUP) is an 

Fig. 8. Comparison between Random Forest predicted AAT map (a), and Landsat 8 LST map of Athens-Clarke County (b) (Noon, August 14th, 2018), predicted AAT 
map (c), and Landsat 8 LST map (d) (Noon, August 1st 2019). Data classified using equal intervals. 

Fig. 9. Relationship between percentage of vegetation cover and (a) AAT, and 
(b) LST (box represent 25th and 75th percentile, the whiskers represent 5th and 
95th percentiles, and the line in the box represents median). 
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inevitable problem in studies using raster data, irrespective of how we 
choose boundaries of pixels. This problem would be minimized in fu
ture studies when we have a much higher spatial resolution model but 
still cannot be eliminated completely. In future studies, we will improve 
the spatio-temporal resolution of AAT maps in several ways. Spatially, 
we will build models that have a spatial resolution of 3-m. Temporally, 
we will ensure that the model adapts to diurnal AAT changes, which 
will help in producing AAT maps every hour for an urban area and 
meeting the ultimate goal of generating dynamic AAT maps for public 
and urban planning. 

4. Conclusions 

In this study, we successfully developed and implemented a vehicle- 
borne drive-by thermal sensing system in a mid-sized city and used the 
Random Forest model to predict ambient air temperature (AAT) at 
places without such high-resolution AAT data. Our analysis shows that 
AAT, which is a better indicator of human heat exposure, has a com
plicated relationship with land cover. LST traditionally used in urban 
heat island studies may not be sufficient to indicate human thermal 
comfort as it does not have a strong adjacency effect and almost has a 
binary relationship with land cover types or shading. LST is not an 
accurate indicator of human thermal comfort. For instance, many 
places can have extremely high LST but people do not usually experi
ence it as extreme thermal discomfort because of different radiative 
properties of the ground (absorptive vs reflective), whereas, AAT shows 
a higher variability as it is derived from a complex relationship between 
land cover types and other biophysical and meteorological parameters. 
This novel approach outlines a path to utilize public vehicles or transit 
vehicles as sensor carriers with minimum additional cost and environ
mental impact. The long lifespan and low energy requirement of mobile 
sensors also provide an excellent continuity in the AAT observations. 
Machine learning techniques such as Random Forest modeling can be 
valuable in scaling up the mobile sensor observations to a larger geo
graphic region. 

The findings from this study will be beneficial for understanding the 
heat vulnerabilities of individual communities. Better identification of 
communities at risk of heat stress will help local, state, and federal 
officials to devise more informed and targeted mitigation efforts, and 
therefore make communities and cities more livable, workable, and 
sustainable. The results will have transformative social benefits. For 
instance, this knowledge will help identify where structural changes 
can be made to known urban UHIs via increased greenspace, posting 
warning signs, aid employers in developing better heat-safety policies 
for their workers, and guide agencies such as the NWS in how to 
communicate public warnings on heat safety more effectively. 
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