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Spin-momentum coupled Bose-Einstein
condensates with lattice band pseudospins
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The quantum emulation of spin-momentum coupling, a crucial ingredient for the emergence

of topological phases, is currently drawing considerable interest. In previous quantum gas

experiments, typically two atomic hyperfine states were chosen as pseudospins. Here, we

report the observation of a spin-momentum coupling achieved by loading a Bose-Einstein

condensate into periodically driven optical lattices. The s and p bands of a static lattice, which

act as pseudospins, are coupled through an additional moving lattice that induces a

momentum-dependent coupling between the two pseudospins, resulting in s–p hybrid Flo-

quet-Bloch bands. We investigate the band structures by measuring the quasimomentum of

the Bose-Einstein condensate for different velocities and strengths of the moving lattice, and

compare our measurements to theoretical predictions. The realization of spin-momentum

coupling with lattice bands as pseudospins paves the way for engineering novel quantum

matter using hybrid orbital bands.
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S
pin-momentum coupling (SMC), commonly called spin–
orbit coupling, is a crucial ingredient for many important
condensed matter phenomena such as topological insulator

physics, topological superconductivity, spin Hall effects and so
on1–3. In this context, the recent experimental realization of SMC
in ultracold atomic gases provides a powerful platform for
engineering many interesting and novel quantum phases4–9. In
typical experiments, two atomic hyperfine states act as two
pseudospins that are coupled to the momentum of the atoms
through stimulated Raman transitions10,11. However, ultracold
atoms in optical lattice potentials possess other types of degrees of
freedom, which can also be used to define pseudospins12,13. A
natural and important question is whether such new types of
pseudospins can be employed to generate SMC.
In optical lattices filled with ultracold atoms, s- and

p-orbital bands are separated by a large energy gap and
can be defined as two pseudospin states. One significant
difference between hyperfine state pseudospins and lattice band
pseudospins lies in the energy dispersion of spin-up and
spin-down orientations: the dispersion relations are the same
for hyperfine state pseudospins, while they are inverted for
lattice band pseudospins. It is well known from topological
insulators and superconductor physics that inverted band
dispersions, together with SMC, play a central role for
topological properties of materials14–16. Therefore, it is
natural to expect that the inverted band pseudospins,
when coupled with the lattice momentum, may lead to
interesting topological phenomena in cold atomic optical
lattices. Recent experiments with shaken optical lattices
(that is, lattices in which the lattice sites are periodically in
time shifted back and forth17) have realized a simple coupling
(Osx coupling, where O is the coupling strength and sx a Pauli
matrix) between s- and p-band pseudospins, analogous to Rabi
coupling between two regular spins18. However, for the
exploration of exotic phenomena in optical lattice systems,
such as Fulde–Ferrell–Larkin–Ovchinnikov (FFLO) phases19,20

and Majorana fermions16, SMC with s- and p-band pseudospins
is highly desirable21–24.

In our experiments we realize such s–p band SMC for a Bose-
Einstein condensate (BEC) using a weak moving lattice to
generate Raman coupling between s- and p-band pseudospins of a
static lattice25. The moving lattice acts as a periodic driving
field26–31 and has previously been used to generate an effective
magnetic field in the lowest s band of a tilted optical lattice32,33. In
our experiment, the driving frequency of the moving lattice is
chosen close to the energy gap between s and p bands at zero
quasimomentum, leading to a series of hybrid s-p Floquet-Bloch
(FB) band structures. FB band structures in optical lattices give
rise to interesting and important phenomena in cold atoms and
solids34,35, as is evidenced by the recent experimental realization
of a topological Haldane model in a shaken honeycomb optical
lattice36, and the observation of FB states on the surface of a
topological insulator37. We show that the moving lattice generates
two types of coupling between s- and p-band pseudospins: a
momentum-independent Rabi coupling (Osx) and SMC
(asx sin(qxd), where qx is the quasimomentum and d the lattice
period), with strengths of the same order. The coexistence of
these two types of coupling leads to asymmetric FB band
dispersions38. We investigate the FB band structures by
measuring the quasimomentum of the BEC. The initial phase
of the moving lattice plays a significant role in the Floquet
dynamics29, the effects of which are explored through a quantum
quench-induced dynamical coupling of the FB bands. Results are
compared with the theoretical predictions from a simple
two-band model and from numerical simulations of the
Gross–Pitaevskii (GP) equation.

Results
Experimental set up. To generate the s–p band SMC and FB
band structures, we begin with a 87Rb BEC composed of
B5� 104 atoms confined in a crossed dipole trap. A static lattice
is generated by two perpendicular laser beams with wavelength
lE810 nm intersecting at the position of the BEC, as schemati-
cally shown in Fig. 1a. The harmonic trap frequencies due to the
envelope of the static lattice beams and the crossed dipole trap are
(ox, oy, oz)¼ 2p� (41, 159, 115)Hz, where ex points along the
lattice, ey is the horizontal transverse direction and ez is the
vertical direction. A weak moving lattice with the same lattice
period as the static lattice, d¼p/kL where kL¼

ffiffiffi
2

p
p=l, is then

overlaid with the static lattice (Fig. 1b). The moving lattice beams
are B180MHz detuned from the static lattice. A small frequency
difference Do between the two moving lattice beams determines
the velocity of the lattice according to vlattice¼Do/2kL. To induce
s–p orbital band coupling, |Do| is chosen close to the energy gap
Esp between the s and p bands of the static lattice at quasimo-
mentum qx¼ 0.

One outstanding feature of the coupling scheme employed in
these experiments is the asymmetry of the effective s–p FB bands,
which exhibit a local minimum located at a finite quasimomen-
tum qxa0. The direction in which the minimum is shifted away
from qx¼ 0 is determined by the sign of Do (which determines
the direction of motion of the moving lattice) and |Do|�Esp
(that is, the detuning of the drive from the bandgap at qx¼ 0).
Before describing experimental results and a formal derivation of
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Figure 1 | Experimental set up and schematic lattice illustration.

(a) Experimental arrangement. The crossed dipole trap beams propagate in

the ex and ez directions. The static and moving lattices have overlapping

beams propagating along exþey and � exþey. The static lattice is

generated using the red beams with laser frequency o, and moving lattice is

generated using the blue beams with laser frequencies o0 and o0 þ do.
(b) Lattice potentials along the ex direction. The lattice period d is identical

for the static lattice V0 and the moving lattice V
0
x. The initial offset between

lattice sites of the static and moving lattice, Dx, is dependent on the initial

phase f0 between the two lattices. (c,d) Illustration of the multi-photon

processes for the driven lattice system and the corresponding FB band

structure in the first Brillouin zone. The static lattice induces a large energy

gap (I) through a two-photon process and a small energy gap (II) through a

four-photon process. The moving lattice induces an energy gap when the s

band and the p band are coupled through (III). A smaller energy gap is

produced by a combination of the static and moving lattice (IV).
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the band structure using Floquet theory29,30, we lay the ground-
work by presenting a multi-photon resonance picture that
provides intuitive insights (Fig. 1c,d). In this picture, one starts
with the parabolic dispersion of a free atom in the absence of any
external potentials. An optical lattice then induces 2n-photon
couplings (with n being an integer number) between points of the
dispersion relation due to the absorption and stimulated emission
processes. The couplings are centred around pairs of points that
fulfil conservation of energy and momentum. At these points,
bandgaps open due to avoided crossings. Examples for possible
couplings due to the static lattice (red arrows in Fig. 1c) and the
moving lattice (blue arrows in Fig. 1c), and the associated
bandgaps in the first Brillouin zone are shown in Fig. 1. Different
coupling strengths lead to different sizes of bandgaps, which
result in an asymmetric band structure.
In another pictorial way, the Floquet band structure for the

time-periodic system can be constructed by creating multiple
copies of the Bloch band structure of the static lattice that are
offset in energy by |Do|. The moving lattice couples the p band
and the shifted s band (labelled by s0 in Fig. 1d) at points where
the shifted s band intersects the unshifted p band. The gaps
opened by the coupling can formally be calculated using Floquet
theory.

Experimental measurements. Adiabatic loading of the BEC into
an s–p FB band is achieved by first ramping on the intensity of the
static lattice, followed by adiabatically ramping on the moving
lattice intensity. In this procedure, the initial relative phase
between the two lattices, f0 (Fig. 1b), becomes irrelevant and can
effectively be set to zero. As we shall show in this paper, if the
moving lattice is suddenly jumped on instead of adiabatically
ramped on, this initial relative phase may manifest itself by
markedly changing the dynamics of the system29.

Figure 2a shows the measurement of the band minimum, qmin,
for different driving frequencies, Do, after adiabatically loading a
BEC into a FB band. The driving frequencies are chosen such that
:Do lies in the gap at qx¼ 0 between the p band (4.64 ER, where
ER¼‘ 2k2L=2m¼h�1749:5Hz) and the d band (5.44 ER). After
adiabatically loading a BEC into a FB band, all lasers are switched
off and the BEC is imaged after 14ms time-of-flight (TOF). In the
experimental images clouds with three different kinetic momenta
are seen: qmin and qmin±2kL. The kinetic momentum of the
middle component, qmin, is equal to the quasimomentum of the
BEC in the hybrid s–p band. Therefore the quasimomentum can
be obtained by measuring the position of the three components in

the TOF images39. Each data point in Fig. 2a is an average over
five iterations of the measurement. A shift of the quasimomentum
is detected that decreases with increasing driving frequency
(Fig. 2a) as the coupling between the p band and shifted s band
becomes weaker. The observed shift indicates a shift of the
minimum of the upper hybrid band (Fig. 2b) into which the BEC
is adiabatically loaded. The solid line in Fig. 2a shows qmin

calculated from a simple two-band model (see below) and is in
reasonable agreement with the data. The symbols are the results
from solution of the Schrödinger equation (squares) and the GP
equation (stars), with finite nonlinear interaction strength. The
periodically driven dynamics are simulated using the time-
dependent GP equation for a two-dimensional system with the
same geometry as the experiment. The width of the BEC is
B10 mm. We see that the interaction could modify the single-
particle results. Since the atom loss is usually large in the
experiment, the numerical results are not intended for direct
comparison with the measurements. See Methods for some
samples of the GP simulations.
Figure 3 presents a complementary data set for which the

driving frequency is set to a constant value with |Do|oEsp
(Fig. 3a) or |Do|4Esp (Fig. 3c) and the quasimomentum is
determined for various depths of the moving lattice. The sign of
Do determines the direction of motion of the moving lattice. For
|Do|oEsp the BEC resides in the lower hybrid s–p FB band
(Fig. 3b), while for |Do|4Esp it is in the upper hybrid band
(Fig. 3d). This leads to a shift of the qmin into opposite directions
for the two cases. For a given driving frequency, the coupling of
the two bands is stronger for larger driving field strength (that is,
larger depth of the moving lattice) so that the BEC is shifted to a
larger absolute value of quasimomentum.
Floquet systems such as the one in our experiment are

described by quasienergy bands. They do not have a thermo-
dynamic ground state, and in the presence of many-body
interactions their stability can be affected by a variety of
factors40–42. Resonance–induced collective excitations and
modulational instabilities can lead to losses43. A prominent
feature of band inversion is the fact that hybrid bands can
transition between stable and modulationally unstable structures.
As shown in Fig. 4a, when the driving frequency approaches the
dip a from the left, the lower hybrid band evolves from a globally
stable structure to a locally stable structure and eventually enters
the globally unstable region at the quasimomentum where BEC
mainly resides (Fig. 4b). The instability causes excitations and
heating of the BEC. Experimentally, we study the stability
of the system by determining the number of condensed atoms
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left in the trap after the static and the moving lattices are
successively and adiabatically ramped on. As the instabilities
cause heating, the heated atoms are evaporated out of the trap.
Therefore absorption imaging reveals an atom loss from the
BEC as shown in Fig. 4. The dips a, b and g in Fig. 4a occur
when the driving frequency is chosen such that it leads to a

coupling close to the Bloch bands p, d and f of the static lattice at
qx¼ 0, respectively.

Minimal two-band model. The dynamics of the BEC
are governed by the full time-dependent GP equation,
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i‘ @
@tc r; tð Þ¼ H0ðtÞþVtrap þVint

� �
c r; tð Þ where Vtrap and Vint

are the external trapping potential and the mean-field interac-
tion, respectively. H0(t) is the single-particle Hamiltonian,

H0 tð Þ ¼ p2

2m
þV0 cos

2 kLxð ÞþV
0
cos2 kLxþ

f0

2
� Dot

2

� �
;

ð1Þ
where the second and the third terms describe the static and
moving optical lattices, respectively, and f0 is the initial relative
phase between the two sets of lattices.
When the static lattice depth V0 is large and when |Do| is close

to the energy gap Esp, higher orbital bands are not significantly
populated in the driven process and the system is well described
by a simple two-band tight-binding model38. Following the
standard procedure in Floquet theory, we obtain the effective
single-particle Hamiltonian (see Methods)

Heff
0 ¼ Es qxð Þ Dsp

D�
sp Ep qxð Þ� Doj j

� �
; ð2Þ

where

Dsp ¼ � i O� a sin qxdð Þþ b cos qxdð Þ½ �e� if0 ð3Þ
is the coupling between s- and p-orbital bands that is induced by
the moving lattice potential for Do40 (see Methods for more
details), and Es and Ep are the energy dispersions for the
uncoupled orbital bands. The three coupling coefficients O, a and
b are given by O¼ V 0

4 sih jsin 2kLxð Þ pij i, a¼ V 0

2 sih jcos 2kLxð Þ piþ 1j i
and b¼ V 0

2 sih jsin 2kLxð Þ piþ 1j i, where |sii and |pii are the
maximally localized Wannier orbital states in the ith site. O is
the coupling between s- and p-orbital states in the same lattice
site, while a and b are the couplings between s- and p-orbital
states of nearest neighbouring sites. SMC between s–p band
psuedospins is represented by a sin(qxd)sx after a spin rotation.

This derivation shows that the inversion symmetry of the FB
band structure is broken due to the coexistence of couplings of
different parities. When the moving lattice intensity is adiabati-
cally ramped on, the quasimomentum of the BEC gradually shifts
away from qx¼ 0 in a definite direction following the hybrid band
minimum. This is quite different from previous shaken lattice
experiments17, where the inversion symmetry of the band was
preserved and the BEC could spontaneously choose either side of
qx¼ 0 as its ground state. In that case, the BEC needed to be
accelerated to break the inversion symmetry. In our scheme, the
position of the true minimum is uniquely determined by the
moving velocity direction, moving lattice depth and driving
frequency.
This minimal two-band model captures the essential physics of

the driven lattices, as we have seen through the comparison of
experimental measurements and theoretical values (Figs 2 and 3),
demonstrating the observation of SMC between s–p band
pseudospins. However, this model may deviate from the
experiment when the modulated dynamics involve additional
orbital bands or when the nonlinear interaction is strong such
that the single-particle band structure will be renormalized by the
interaction term.

Quench dynamics. Since a Floquet system is generated by a time-
periodic Hamiltonian, an important question concerns the role of
the initial phase of the driving field29. For the system considered
in this work, this phase determines the relative positions between
the moving and static lattice sites. Though the relative phase does
not change the effective band structure (equation (2)), and thus
the time-averaged dynamics, it can play a crucial role in the
micromotion of the BEC. To demonstrate the effect of the initial
relative phase, we study the oscillations in the population of the

momentum components kx¼ 0, ±2kL after a quantum quench.
Figure 5 presents such quench dynamics after adiabatically
ramping on the static lattice to 5.47 ER followed by a sudden jump
on of the moving lattice to V 0

x¼1 ER with an on-resonant driving
frequency |Do|¼Esp. Figure 5a,b shows the effective band
structure before (Fig. 5a) and after (Fig. 5b) the moving lattice
is jumped on. The jump projects the BEC on to the new band
structure and the BEC acquires components in the new lower and
upper hybrid band. Subsequently, these components beat against
each other. We focus on the evolution during the first 3ms,
during which the BEC mainly stays at qx¼ 0 without significant
dipole motion in the hybrid bands. The TOF images consist of
three momentum populations as shown in the two examples in
Fig. 5c, which are both taken after 0.5ms of evolution. In our
experiments, the initial phase f0 between the static and the
moving lattice is uncontrolled, and is different in each repetition
of the experiment. This leads to different population dynamics in
each experimental iteration and explains the differences between
the two images in Fig. 5c. The population dynamics measured in
10 subsequent experimental iterations are represented by the
rectangles in Fig. 5d,e. For each measurement time, the height
of the rectangle indicates the spread in the data. The shaded
areas represent the result of numerical GP simulations for a
homogeneous spread of relative phases. We find a strong
correlation between the experimental spread and the spread
predicted by the numerics (Fig. 5d,e). Numerical results
calculated for the particular value f0¼ 0 are shown by the solid
line in Fig. 5d,e. They reveal that for a fixed initial phase there are
oscillations on two different time scales. The fast oscillations
(with period TE0.12ms) corresponds to the micromotion of
particles under the high-frequency periodic driving, whereas the
slow oscillation (with TE1.75ms) corresponds to the time-
averaged effective Rabi oscillations between the two hybrid FB
bands. For longer holding times, the periodicity is slightly broken
due to a small dipole motion. Figure 5f shows the correlation
between numerical and experimental spread for the data in
Fig. 5d,e. The straight line is a fit showing the correlation trend. A
linear correlation of rX,Y¼ 0.64 is achieved, where rX,Y is the
Pearson product-moment correlation coefficient defined by
rX;Y¼ E X�E X½ �ð Þ Y �E Y½ �ð Þ½ �

sXsY
. Here E is the expectation value

and s is the s.d.

Discussion
We have realized and characterized a SMC with lattice bands as
pseudospins. This not only provides a powerful tool to control
orbital states with a driving field, but also enriches the study of
novel quantum matter using hybrid orbital bands. There are
many directions that can be taken along this route, for example,
the engineering of similar SMC in higher dimensional systems,
involving different orbital bands, and quantitative analysis and
measurements of the effects of strong interactions on the effective
bands. The realization of similar SMC for fermionic atoms such
as 6Li and 40K with tunable interactions may open the door for
exploring exotic quantum matter. For example, for a spin-
balanced Fermi gas loaded into such tilted s–p dressed bands, the
Cooper pairs may acquire a finite centre-of-mass momentum due
to the broken inversion symmetry that provides a route to search
for the long-sought Fulde–Ferrell–Larkin–Ovchinnikov states38.
Furthermore, the realized spin–orbit coupling with lattice bands
as pseudospins may provide a new platform for the study of
topological insulators and Majorana fermions14–16.

Methods
GP simulations. In Fig. 6, we present the results of GP simulations for different
moving lattice depths. The modification of the band structure minimum can clearly
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be seen from the shift of the quasimomentum of the BEC during the driving
process.

Tight-binding model. We consider a BEC in a combination of a one-dimensional
static optical lattice and a moving lattice,

Vstatic xð Þ ¼ V0 cos
2 kLxð Þ; ð4Þ

V x; tð Þ ¼ V 0cos2 kLxþ
f0

2
� Do

2
t

� �
: ð5Þ

The single-particle Hamiltonian is given by

H0 ¼
Z

dxCy xð Þ p2

2m
þVstatic xð ÞþV x; tð Þ

� �
C xð Þ:

By expanding the wave function in terms of the two lowest orbital states of the
static optical lattice and assuming that all other higher orbital bands are not
relevant, we obtain

C xð Þ ¼
X
j;a

bj;awa x� xj
� �

; ð6Þ
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Figure 6 | Plots of the evolution of the BEC momentum space density distribution as a function of kx for different evolution times. The moving lattice

depth is ramped to (a) V0 ¼0.25 ER, (b) V
0 ¼0.5 ER and (c) V0 ¼ 1.0 ER in the first 60ms and then keep this value for the following 40ms. The white lines

indicate the centre of the small dipole osicllation from which the band minimum is determined. The driving frequency is |Do|¼ 5.21 ER.
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where a¼ s, p is the orbital index, j is the site index and wa(x� xj) is the Wannier
function for orbital state a localized at site xj with the corresponding annihilation
operator bj,a. Substituting this wave function into the Hamiltonian, we obtain the
tight-binding model

H ¼
X
j;kh i

� tsb
y
jsbks þ tpb

y
jpbkp

	 

þ

X
ja;kb

Aja;kb tð Þbyjabkb þ
X
j

Esb
y
jsbjs þ Epb

y
jpbjp

	 


ð7Þ

¼
X
j;k

b
y
js

b
y
jp

0
@

1
A
T

� tsd j;kh i þ Esdj;k 0
0 tpd j;kh i þ Epdj;k

� �
þ Ajs;ks tð Þ Ajs;kp tð Þ

Ajp;ks tð Þ Ajp;kp tð Þ

� �� �
bks
bkp

� �
ð8Þ

where

ts ¼ �
Z

dxw�
s x� xj
� � p2

2m
þVstatic xð Þ

� �
ws x� xkð Þ;

tp ¼
Z

dxw�
p x� xj
� � p2

2m
þVstatic xð Þ

� �
wp x� xkð Þ;

Es ¼
Z

dxw�
s x� xj
� � p2

2m
þVstatic xð Þ

� �
ws x� xj
� �

;

Ep ¼
Z

dxw�
p x� xj
� � p2

2m
þVstatic xð Þ

� �
wp x� xj

� �
;

are the bare tunnelling elements between the same orbital states on the adjacent
sites |j� k|¼ 1 (that is, dhj,ki ¼ 1) and the on-site energies from the static optical
lattice. The hi in the summations indicates summing over the nearest neighbour
sites. The moving lattice induces assisted or dressed tunnelling elements between
adjacent sites and also modifies the on-site energies:

Ajs;ks tð Þ ¼
Z

dxw�
s x� xj
� �

V x; tð Þws x� xkð Þ;

Ajp;kp tð Þ ¼
Z

dxw�
p x� xj
� �

V x; tð Þwp x� xkð Þ;

Ajs;kp tð Þ ¼
Z

dxw�
s x� xj
� �

V x; tð Þwp x� xkð Þ;

Ajp;ks tð Þ ¼
Z

dxw�
p x� xj
� �

V x; tð Þws x� xkð Þ:

Time-independent effective Hamiltonian. To obtain a time-independent effec-
tive Hamiltonian, we first eliminate the diagonal-dressed terms by a unitary
transformation

U tð Þ ¼ exp
i
‘

Z t

0
dt

0 X
j;k

X
a

Aja;ka tð Þbyjabka

2
4

3
5: ð9Þ

The rotated Hamiltonian is

H0ðtÞ ¼ U tð ÞHðtÞU � 1ðtÞ� i‘U tð Þ @
@t

U � 1 tð Þ: ð10Þ

We make the approximation that the driving does not change the on-site energy
and bare tunnelling of the same orbital states:

U tð Þbyja;kbbja;kbU
� 1 tð Þ � byja;kbbja;kb: ð11Þ

We obtain

H ¼
X
j;k

b
y
js

byjp

0
@

1
AT Es Ajs;kp tð Þ

Ajp;ks tð Þ Ep

� �
bks
bkp

� �
;

where Es¼� tsd j;kh i þ Esdj;k and Ep¼tpd j;kh i þ Epdj;k . The s–px couplings induced by
the moving lattice are

Ajs;kpðtÞ ¼
R
dxw�

s x� xj
� �

V x; tð Þwp x� xkð Þ
¼ sjh jV 02 kLxþ f0

2 � Do
2 t

	 

pk


 �

¼ V 0

2 sjh j cos 2kLxð Þcos f0 �Dotð Þ½
� sin 2kLxð Þsin f0 �Dotð Þ� pk



 �
:

ð12Þ

The moving lattice has the same wave vector as the static lattice so that

z0 ¼ sj
� 

cos 2kLxð Þ pj



 �
¼ 0;

z1 ¼ sj
� 

sin 2kLxð Þ pj



 �
6¼ 0;

z2 ¼ sj
� 

cos 2kLxð Þ pjþ 1



 �
¼ � sj

� 

cos 2kLxð Þ pj� 1


 �

6¼ 0;

z3 ¼ sj
� 

sin 2kLxð Þ pjþ 1



 �
¼ þ sj

� 

sin 2kLxð Þ pj� 1


 �

6¼ 0:

After the Fourier transformation

bjs ¼
1ffiffiffiffi
N

p
X
kx

bk;se
ikxxj ; ð13Þ

bjp ¼
1ffiffiffiffi
N

p
X
kx

bk;pe
ikxxj ; ð14Þ

we obtain

H kx ; tð Þ ¼
Es � 2ts cos kxdð Þ

Q
sp tð ÞQ�

sp tð Þ Ep þ 2tp cos kxdð Þ

� �
;

where the s–p coupling is given byQ
sp tð Þ ¼ ieif0 Oþ a sin kxdð Þþb cos kxdð Þ½ �e� iDo t

þ ie� if0 �Oþ a sin kxdð Þ� bcos kxdð Þ½ �eiDo t

and the coupling coefficients are defined as

O ¼ V 0

4
z1 ¼

V 0

4
sj
� 

sin 2kLxð Þ pj



 �
; ð15Þ

a ¼ V 0

2
z2 ¼

V 0

2
sj
� 

cos 2kLxð Þ pjþ 1



 �
; ð16Þ

b ¼ V 0

2
z3 ¼

V 0

2
sj
� 

sin 2kLxð Þ pjþ 1



 �
: ð17Þ

For Do40, we perform a unitary transformation followed by the rotating wave
approximation,

U2 tð Þ ¼ 1 0
0 eiDo t

� �
: ð18Þ

This leads to the time-independent Hamiltonian

Heff ¼ U2 tð ÞH kx ; tð ÞU � 1
2 tð Þ� i‘U2 tð Þ @

@t U
� 1
2 tð Þ

¼
Es � 2ts cos kxdð Þ

Q
sp tð Þe� iDo tQ�

sp tð ÞeiDo t Ep þ 2tp cos kxdð Þ� ‘Do

" #
;

which returns to our effective Hamiltonian equation (2), where we have
Dsp¼� i O� a sinðqxdÞþb cos qxdð Þ½ �e� if0 . For Doo0, similar procedures result
Dsp¼i Oþ a sin qxdð Þþ b cos qxdð Þ½ �eif0 . Note that b is usually much smaller than O
and a; however, we keep it for completeness.
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