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We report on the static and dynamical properties of multiple dark-antidark solitons (DADs) in two-component,
repulsively interacting Bose-Einstein condensates. Motivated by experimental observations involving multiple
DADs, we present a theoretical study which showcases that bound states consisting of dark (antidark) solitons in
the first (second) component of the mixture exist for different values of interspecies interactions. It is found that
ensembles of few DADs may exist as stable configurations, while for larger DAD arrays, the relevant windows
of stability with respect to the interspecies interaction strength become progressively narrower. Moreover, the
dynamical formation of states consisting of alternating DADs in the two components of the mixture is monitored.
A complex dynamical evolution of these states is observed, leading either to sorted DADs or to beating dark-dark
solitons depending on the strength of the interspecies coupling. This study demonstrates clear avenues for future
investigations of DAD configurations.
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I. INTRODUCTION

Over the past 25 years, the experimental implementation
of dilute-gas Bose-Einstein condensates (BECs) has provided
a fertile platform for the exploration of a wide range of
macroscopic quantum features [1–3]. One of the major axes
around which this effort has revolved is the study of nonlinear
waves and their existence, dynamics, and interactions within
this atomic physics platform [4]. Such waves were previously
recognized as playing a substantial role in other fields in-
cluding nonlinear optics [5], as well as water waves [6]. The
realm of atomic BECs, however, has enabled the study of a
wide range of such patterns including, but not limited to, dark
solitons [7], vortical states [8–10], and also more complex
entities such as hopfions [11] and even vortex knots [12,13].

Beyond the setting of single-component atomic conden-
sates (which have been the focus of many of the above stud-
ies), recent efforts have considered multicomponent general-
izations of soliton formation and dynamics [14]. A fundamen-
tal state of interest has been the dark-bright (DB) solitary wave
and its close relative, the dark-dark solitary state [15–21].
While the relevance of this state to the dynamics of multiple
polarizations of light in photorefractive crystals was originally
recognized early on in pioneering works in nonlinear optics
[22,23], it was not until their proposal [24] and especially first
experimental realization [25] in atomic BECs that an explo-
sion of interest ensued [26–31]. In recent years, this direction
of research has gained further momentum through the study
of variants of solitary waves such as nonlinear polarization

waves [32] and magnetic solitons [33], so-called dark-antidark
(DAD) structures (where antidark means a bright solitonic
state on top of a finite background) [34], and extensions
to spinor (three-component) solitary waves [35]. This thrust
continues intensely through both experimental and theoretical
studies; see, e.g., Ref. [36] for a recent synthesis.

In an earlier work, we reported the possibility of an ex-
perimental realization of DAD structures [34], as indicated
above. The experimental efforts described in the present work
showcase the generation of multiple such structures in two
different formats: we have observed settings in which the
(multiple) dark solitons are all in the same component and
the antidark solitons are all in the second component, as
well as ones where there is an alternating sequence of darks
and antidarks (in a complementary fashion) between the two
components. This, in turn, motivates a theoretical study of
each one of these two configurations of multi-dark-antidark
solitons. On the one hand, this investigation naturally extends
the setting of a single dark-antidark soliton [34], while on
the other hand, it complements studies of multiple dark-
bright solitons [28,37] and even multiple dark solitons [4].
The key result is that states in which all dark solitons are
contained in one component and antidarks in the other can be
dynamically robust for a few dark-antidark solitons (DADs),
but become progressively less stable for more DADs, in
line with experimental observations. Also in agreement with
experiment, alternating DAD states (where, for instance, in
each component a dark soliton is neighboring two antidark
solitons, and vice versa) are not found as stationary solutions,
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but only as dynamical states in the two-component systems
considered. The dynamics of both types of states is explored.

Our presentation is structured as follows. In Sec. II, we
present the experimental demonstration of the corresponding
states as they are generated in our two-component experi-
ments with 87Rb BECs. Section III describes the modeling
platform of the relevant system, while in Sec. IV we analyze
the existence, stability, and dynamics of the different multi-
soliton DAD states obtained in the context of the theoretical
model. In Sec. V, we briefly discuss the dynamical evolution
of configurations consisting of few alternating DADs. Finally,
we summarize our findings and present our conclusions as
well as some directions for future studies in Sec. VI.

II. EXPERIMENTAL DEMONSTRATION

To motivate our investigation of multisoliton DAD states,
we begin by showcasing experimental results demonstrating
the creation and stability of such structures. To experimen-
tally realize an arrangement of DAD solitons, we employ
a procedure based on Rabi winding [38,39]. An elongated
BEC of approximately 4.5 × 105 87Rb atoms is prepared in
the |F,mF 〉 = |1,−1〉 hyperfine state, optically confined by
a single-beam dipole trap with trap frequencies of approx-
imately {ωx, ωy, ωz} = 2π{1.5, 140, 180} Hz. The weakly
confined x axis is oriented horizontally.

We apply an external magnetic field of approximately 1 G
with a linear gradient of approximately 5 mG/cm along the
long axis of the BEC. This produces a spatially varying Zee-
man shift within the F = 1 and F = 2 hyperfine manifolds.
A uniform, fixed-frequency microwave (MW) field is used to
drive transitions between the |1,−1〉 and |2,−2〉 states. In
the following, we consider these two states as the pseudospin
orientation of a spin-1/2 system. The two-level Rabi formula
for the population of atoms in the |2,−2〉 level, P|2,−2〉, takes
a spatially dependent form [40] given by

P|2,−2〉(x, t ) = �2

�2 + δ2(x)
sin2

[√
�2 + δ(x)2

2
t

]
, (1)

where � is the resonant Rabi frequency, t is the winding
time, and δ is the detuning of the microwave coupling which
varies across the cloud due to the spatially dependent Zeeman
shift. By applying the microwave drive for a given amount
of time, a magnetization pattern is created in the condensate
corresponding to the phase winding caused by the differential
Rabi cycling. The magnetic field gradient is then suddenly
removed and the BEC is allowed to evolve in the now homo-
geneous magnetic field. The resulting dynamics are observed
by turning off the optical trap and selectively imaging the two
hyperfine states sequentially after 15 ms (17 ms) of time of
flight for the |2,−2〉 (|1,−1〉) state. Our imaging technique
allows us to image both states in each experimental run. There
is negligible evolution occurring in the time between the two
exposures taken for each run, so that features in the two states
can be accurately superimposed to represent the in-trap spin
structure of the state. Figure 1 presents a variety of these
absorption images where the |2,−2〉 state is on top and the
|1,−1〉 is at the bottom, followed by integrated cross sections
corresponding to the absorption image above.

For a MW driving frequency that is close to the resonance
frequency at the center of the atom cloud, a high-amplitude
winding pattern results. Figure 1(a) shows a state produced
after 15 ms of Rabi winding with �/2π = 19 kHz. The popu-
lation of the two (pseudo)spins alternates along the elongated
direction of the BECwith a large amplitude. Looking at Fig. 1,
it is important to reiterate that the two spin components are
imaged separately while the cloud falls, but the dynamics we
describe here occur in the optical trap where the two spin
components exist together. The bright features in one spin
component fill the dark regions of the other spin component in
this case. After 150 ms of evolution in the optical trap, which
is a long time on the scale of mean-field effects but a short
time in terms of the x-axis trap frequency, a regular array of
alternating DAD solitons corresponding to the initial winding
appears [see Fig. 1(b)]. The DAD solitons are characterized by
a dark notch of low density in one component, which is filled
in by a bright stripe of high density in the other component.
These features are distinct from DB solitons in that the bright
component exists on a finite background density which does
not go to zero. After allowing these solitons to evolve in the
trap for 450 ms, which is longer than half of a trap period,
Fig. 1(c) shows that the arrangement has broken into an irreg-
ular collection of solitonic features and domains rather than
a regular array of alternating DAD solitons. One can clearly
discern some well-defined features with widths characteristic
of dark solitons [41], but the regular pattern demonstrated in
Fig. 1(b) does not persist.

Alternatively, a MW driving frequency which is farther
detuned from resonance will produce an array of spin-mixed
regions separated by regions of spin purity, as described by
Eq. (1) when the detuning δ varies linearly with a large
offset. Figures 1(d)–1(f) show the spin populations after an
identical winding procedure to that describing Figs. 1(a)–
1(c), and for same time increments, but with a microwave
frequency 11 kHz detuned from the resonant frequency at
the center of the cloud. Here, the partial spin transfer only
allows dark solitons to form in the |2,−2〉 component. After
approximately 250 ms of evolution time following the MW
winding, collections of DADs start to nucleate, leading to
persistent configurations containing between two and four
DAD solitons in clusters, as shown in Fig. 1(f). Figure 1(f)
shows density notches in the |2,−2〉 component with the
width characteristic of dark solitons in this system, and there
are corresponding high-density regions in the other spin state.
While we observe density depressions in the second compo-
nent (|1,−1〉) between the antidark solitons, these depressions
are of a larger length scale than the characteristic soliton
scale and are therefore more appropriately interpreted as a
reduced background density for the antidark solitons. These
clusters are unique to the nonalternating (alias sorted) DAD
configurations, i.e., those with all the dark features in one
component and bright features in the other, and therefore mo-
tivate a detailed investigation of the conditions under which
stable DAD configurations can form.

III. THEORETICAL FRAMEWORK

Motivated by the experimental observations of Sec. II,
we now proceed to describe the theoretical framework for
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FIG. 1. Absorption images of the elongated BEC after Rabi winding with (a)–(c) near-zero detuning and (d)–(f) a detun-
ing of δ = 2π × 11 kHz. A dual-imaging procedure places the |2, −2〉 atoms above the |1,−1〉 atoms for each measurement.
The images (a) and (d) are taken after 15 ms of MW driving, (b) and (e) after an additional 150 ms of undriven evolution,
and (c) and (f) after 410 ms. The corresponding integrated cross sections of each of the two components are shown for each
panel.

modeling these solitonic configurations. We consider a binary
mixture of repulsively interacting BECs composed of the two
hyperfine states mentioned in the previous section, namely,
|F = 1,mF = −1〉 and |F = 2,mF = −2〉, of 87Rb [42] be-
ing confined in a one-dimensional (1D) harmonic oscilla-
tor potential. Such a cigar-shaped geometry can be realized
experimentally [25,27,29] in a highly anisotropic trap with
the longitudinal and transverse trapping frequencies obeying
ωx � ω⊥, as described in Sec. II. Within mean-field theory,
the dynamics of this binary mixture can be well approximated
by the following system of coupled Gross-Pitaevskii equa-
tions (GPE) of motion [2–4]:

ih̄∂tψ j =
[
− h̄2

2m
∂2
x +V (x) − μ j +

2∑
k=1

g jk|ψk|2
]
ψ j . (2)

In the above expression, ψ j (x, t ) ( j = A,B) denotes the wave
function for the A ≡ |1,−1〉 and B ≡ |2,−2〉 hyperfine states,

respectively, and gjk is the interaction coefficient between
species j and k. Note here that in this framework, we do
not consider particle transfer between the components of
the mixture since they lie in a different spin manifold and
therefore such processes are negligible, as has also been
confirmed experimentally. Each ψ j (x, t ) is normalized to
the corresponding number of atoms, i.e., Nj = ∫ +∞

−∞ |ψ j |2dx.
Also, mA = mB = m and μ j refer to the atomic mass and
chemical potentials for each of the species, respectively.
The effective 1D coupling constants are given by g jk =
2h̄ω⊥a jk , where ajk are the three s-wave scattering lengths
(with aAB = aBA) accounting for collisions between atoms that
belong to the same (a j j) or different (a jk, j �= k) species.
We note that both the intra- and interspecies scattering
lengths can, in principle, be manipulated experimentally by
means of Feshbach [43,44] or confinement-induced reso-
nances [45,46]. Finally, V (x) represents the external trapping
potential.
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For the numerical analysis presented below, we express the
system of Eqs. (2) in the following dimensionless form:

i
∂ψA

∂t
=

[
−1

2

∂2

∂x2
+V + gAA|ψA|2 + gAB|ψB|2 − μA

]
ψA,

(3)

i
∂ψB

∂t
=

[
−1

2

∂2

∂x2
+V + gBB|ψB|2 + gAB|ψA|2 − μB

]
ψB.

(4)

Here, μi is the chemical potential of the ith species and
V (x) = 1

2ω
2
1x

2 is the dimensionless harmonic trapping poten-
tial with ωA = ωB ≡ ω1 = ωx/ω⊥ = 0.1. Similar results can
be found for much more elongated condensates with trap
ratios ω1 = 0.01 closer to the one of the above reported ex-
periments. For the numerical findings to be presented below,
we fix the inter- and intraspecies interaction coefficients to
the experimentally relevant values of the hyperfine states of
87Rb, namely, gAA = 1.004 and gBB = 0.9898. To show the
formation and variation of the DAD structures of interest,
we first examine the relevant solutions as a function of gAB,
and then focus on parameter values that are proximal to the
experimental ones. In the dimensionless units adopted above
densities |ψi|2, length, energy, and time are measured in units

of 2aAA,
√

h̄
mω⊥

, h̄ω⊥, and ω−1
⊥ , respectively.

For all of our numerical investigations, a fixed-point nu-
merical iteration scheme is employed [47] in order to obtain
bound states consisting of multiple DADs. To simulate the
dynamical evolution of the DAD arrays governed by Eqs. (3)
and (4), a fourth-order Runge-Kutta integrator is employed
and a second-order finite-difference method is used for the
spatial derivatives. The spatial and temporal discretization
spacings are chosen as dx = 0.05 and dt = 0.001, respec-
tively. Moreover, our numerical computations are restricted to
a finite region by employing hard-wall boundary conditions.
Particularly, in the dimensionless units adopted herein, the
hard walls are located at x± = ±80 and we do not observe
any appreciable density for |x| > 30.

IV. SORTED DARK-ANTIDARK SOLITONS: STABILITY
ANALYSIS AND DYNAMICS

In the following, we will explore the stability of bound
states consisting of an arbitrary number of dark solitons in
the first component of the mixture and corresponding antidark
ones within the second component of the binary system of
Eqs. (3) and (4). These configurations with all bright (or
antidark) solitonic features in one component and all dark soli-
tonic features in the other component will be referred to in the
following as sorted DAD arrays. We remark that bound states
composed of alternating dark and antidark entities within the
same component cannot exist as stationary configurations;
see, also, Sec. V. While such alternating states can (and do)
emerge through the experimental procedure used in Sec. II,
nevertheless they correspond to dynamically evolving (rather
than stationary) states of the system.

In order to obtain the sorted stationary states, a tanh-shaped
profile is used as an initial ansatz for the wave function with
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FIG. 2. Stationary states of two sorted DAD configurations for
interspecies couplings (a) gAB = 0.2, (b) gAB = 0.5, (c) gAB = 0.9,
and (d) gAB = 0.98. The densities |�D|2 of the dark and |�AD|2 of the
antidark solitons are illustrated (see legend). In all cases, the states
remain stable for long evolution times up to t = 104. Other parame-
ters correspond to ω1 = 0.1, gAA = 1.004, gBB = 0.9898, μA = 3.5,
and μB = 3.4. Note that all quantities shown are in dimensionless
units.

nS dark solitons that reads

�D = A(x)
nS∏
j=1

tanh
[
D

(
x − x0 j

)]
. (5)

In the above expression, A(x) = (1/
√
gAA)

√
μA −V (x) is

the common Thomas-Fermi background into which the dark
solitons are embedded. Additionally, D and x0 j refer to the
common inverse width and the center of the jth dark soliton,
respectively. The ansatz employed for the initial-guess wave
function of the corresponding antidark states is

�AD =
nS∑
j=1

B(x) +C sech
[
D

(
x − x0 j

)]
, (6)

where the relevant background here is given by B(x) =
(1/

√
gBB)

√
μB −V (x), and C denotes the amplitude of the

density peak (on top of the background). Recall that DAD
states consist of a density hump modeled here by a bright
soliton as in the second term of Eq. (6) on top of the BEC
background [34,48–51]. Utilizing the above ansatz, station-
ary states consisting of an arbitrary number of sorted DAD
solitons symmetrically placed around the origin (x = 0) have
been identified.

A. Two sorted DADs

Prototypical examples for states with two sorted DADs are
shown in Fig. 2. Here, we see how the relevant state changes
upon variation of the intercomponent interaction coefficient
gAB. The two-dark solitons that are well known to form a
bound state in single-component BECs [4,7] now produce
an attractive potential (due to the repulsive nature of the
interaction and the absence of atoms in the dark solitons) for
the second component. Thus, in this potential well, atoms
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FIG. 3. BdG spectrum of a stationary state composed of two sorted DAD solitons as a function of the interspecies interaction strength
gAB. (a) The real part Re(ω) and (b) the imaginary part Im(ω) of the underlying eigenfrequencies is shown as a function of gAB. In (a), the
trajectories of the two anomalous modes appearing in the spectrum are denoted by magenta (light grey) dots. Note also that each point of
the line Re(ω) = 0 is quadruple degenerate due to particle-number conservation per component, while the existence of a finite imaginary part
signals the presence of an instability of the two-DAD configuration that occurs for gAB ∈ [0.347, 0.369] and [0.946, 0.967]. The solid lines in
(b) provide a guide to the eye for each of the bifurcation loops appearing in the imaginary part of the eigenfrequencies. Other system parameters
correspond to ω1 = 0.1, μA = 3.5, μB = 3.4, gAA = 1.004, and gBB = 0.9898, while all quantities depicted herein are in dimensionless units.

are trapped on top of the background state of the second
component, generating antidark states. As gAB is gradually
increased, these states progress towards the immiscible limit
and eventually, in the vicinity of the latter threshold, “isolate”
themselves into bright-soliton-like droplets. Indeed, as the
immiscibility threshold is crossed, the second component only
prefers to localize itself in these bright structures, suggesting
a morphing of the multi-DAD states into multi-DB ones.

To assess the stability of the aforementioned stationary
DAD states, we perform a Bogoliubov–de Gennes (BdG)
analysis, linearizing around the equilibrium as follows:

�D = �
(eq)
D + [

a(x)e−iωt + b	(x)eiω
	t
]
, (7)

�AD = �
(eq)
AD + [

c(x)e−iωt + d	(x)eiω
	t
]
. (8)

The resulting linearization system for the eigenfrequencies
ω (or, equivalently, eigenvalues λ = iω) and eigenfunctions
(a, b, c, d )T is solved numerically. If modes with purely real
eigenvalues (genuinely imaginary eigenfrequencies) or com-
plex eigenvalues (eigenfrequencies) are identified, these are
tantamount to the existence of an instability [14]. Indeed, upon
our systematic variation of gAB as discussed above (which, for
suitable atomic species, is experimentally realizable via the
use of Feshbach resonances), we identify such instabilities.
While the two-DAD state is dynamically stable for a wide
range of parametric values, there exist narrow intervals of gAB
(mentioned in the caption of Fig. 3) for which the solution is
predicted to be unstable.

This suggests the relevance of a further effort in order to
identify the modes responsible for the existence of the insta-
bility. We note that in addition to four modes in the spectrum
at λ = ω = 0 due to symmetries, namely, the conservations
of the particle numbers in each component of the mixture,
there are additional modes of interest that are referred to as
anomalous or negative-energy ones [52]. These are modes
highlighting the excited nature of the state under consideration
(i.e., for the ground state there are no such modes). These

eigenstates are quantified via the so-called negative-energy
or negative Krein signature [52]. The mode energy (or Krein
signature) is defined as

K = ω1

∫ (
|a|2 − |b|2 + |c|2 − |d|2

)
dx, (9)

in a multicomponent system such as the one considered
herein. An example of this sort is shown in the BdG spectrum
presented in the left panel of Fig. 3 for the two sorted DAD
configurations, where the negative-energy modes are denoted
by magenta dots.

The existence and parametric variation of such modes is of
particular relevance since their collision with opposite (pos-
itive) Krein signature modes gives rise to stability changes
in the form of oscillatory instabilities or Hamiltonian-Hopf
bifurcations [4,52]. Indeed, what is happening here, along
the axis of real eigenfrequencies, is that modes with K > 0
and K < 0 collide in pairs and give rise to complex eigen-
frequency quartets, as we will observe below. These resulting
complex eigenfrequencies (all four of them) have K = 0 until
they “complete” an oscillatory instability “bubble.” Then,
these eigenmodes “land back” on the real eigenfrequency
axis and retrieve their respective K < 0 or K > 0 traits. The
resulting instability is the one that we will trace later on
in the dynamics as well. Our calculations show that there
are two such modes in the system consisting of two sorted
DAD solitons. Additionally, three and six such modes appear
when considering, respectively, the three- and the six-DAD
soliton configuration; see, e.g., Figs. 7 and 10. This is in
agreement with the case of dark solitons in single-component
BECs, where an N-soliton state has been shown to possess N
negative-energy modes [53]. Specifically, for all the distinct
sorted DAD configurations investigated herein, there exist
intervals where the above-identified anomalous modes collide
with K > 0 modes pertaining to the collective excitations of
the background condensate. For instance, such a collisional
interval occurs for gAB ∈ [0.946, 0.967] for the two-DAD con-
figuration [Fig. 3(a)], while for the three- and six-DAD states,
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FIG. 4. Dynamical evolution of a stationary state of two sorted
DAD solitons. (a), (c) [(b), (d)] The evolution of the dark [anti-
dark] soliton component upon adding the eigenvectors of the (a),
(b) first and the (c), (d) second anomalous mode identified in the
BdG spectrum of Fig. 3. Other system parameters correspond to
μA = 3.5, μB = 3.4, gAA = 1.004, gBB = 0.9898, and gAB = 0.36.
All quantities plotted are in dimensionless units.

such intervals appear, e.g., for gAB ∈ [0.301, 0.342] [Fig. 7(a)]
and for gAB ∈ [0.19, 0.25], respectively [Fig. 10(a)]. No-
tice also that within the aforementioned parameter intervals,
whenever such collisions take place a bifurcation occurs in the
corresponding imaginary part, presented in Figs. 3(b), 7(b),
and 10(b), respectively, signaling the presence of an instability
of the relevant DAD configuration in each case.

We now explore the direct numerical evolution of the two-
DAD solitonic state for different parametric values. In Fig. 4,
we offer an example for gAB = 0.36 for which the relevant
configuration is stable. We examine the dynamical outcome
of the coherent structure when adding the first [Figs. 4(a)
and 4(b)] and the second [Figs. 4(c) and 4(d)] anomalous
mode to the wave. Close inspection indicates that the former
lower-frequency mode leads to an in-phase oscillation of the
two DAD structures, while the latter higher-frequency mode
leads to an out-of-phase one. Nevertheless, both configura-
tions turn out to be stable, in agreement with our stability
analysis observations in Fig. 3. On the contrary, in Fig. 5,
the higher-frequency anomalous mode associated with out-of-
phase DAD solitary wave oscillations is unstable due to a res-
onant collision with one of the positive Krein signature modes.
Consequently and irrespectively of whether we excite chiefly
the first [Figs. 5(a) and 5(b)] or the second [Figs. 5(c) and
5(d)] anomalous mode, eventually an instability ensues. Nat-
urally, in Figs. 5(c) and 5(d), where the responsible mode for
the instability has been excited, the relevant phenomenology
arises earlier. Nevertheless, it arises in both cases and leads to
a resonant growth of the out-of-phase DAD waves’ oscillation
amplitude before leading to a saturation and, subsequently, to
a recurrence effect [see, especially, Figs. 5(c) and 5(d)]. It is
important to comment at this point that for larger gAB values
also, the lowest-lying anomalous mode destabilizes, resulting
in the appearance of the inner loop present in Fig. 3(b). The
associated instability window here occurs for 0.949 � gAB �
0.959. Notice, however, that the imaginary eigenfrequencies
corresponding to this bifurcation are suppressed (i.e., of much
smaller growth rate) when compared to the predominant ones
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FIG. 5. Evolution of a stationary state of two sorted DAD soli-
tons for μA = 3.5. The time evolution of the dark [antidark] soliton
components is presented in (a) and (c) [(b) and (d)] upon adding the
eigenvectors of the (a), (b) first and the (c), (d) second anomalous
mode identified in the BdG spectrum of Fig. 3. The remaining system
parameters are μB = 3.4, gAA = 1.004, gBB = 0.9898, and gAB =
0.96. All quantities illustrated above are given in dimensionless
units.

of the outer bifurcation. This suggests that even though the
lowest-lying mode destabilizes, it is not the one (principally)
responsible for the observed instability of the two-DAD con-
figuration. This is indeed confirmed by inspecting once more
the dynamical evolution presented in Figs. 5(a) and 5(b).

B. Three sorted DADs

We now turn to a similar set of results for the configu-
rations with three sorted DADs. In Fig. 6, we observe how
the three solitary wave state progressively transforms itself
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FIG. 6. Stationary states of three sorted DAD solitons for differ-
ent interspecies interactions, namely, (a) gAB = 0.2, (b) gAB = 0.5,
(c) gAB = 0.9, and (d) gAB = 0.98. The density of both the dark
|�D|2 and the antidark |�AD|2 component is shown (see legend). The
presented states remain stable for long evolution times up to t = 104.
The remaining parameters of the system are ω1 = 0.1, gAA = 1.004,
gBB = 0.9898, μA = 3.5, and μB = 3.4. All quantities shown are in
dimensionless units.
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FIG. 7. BdG spectrum of a stationary state of three sorted DAD solitons with respect to the interspecies interaction strength gAB. (a) Real
part Re(ω) of the underlying eigenfrequencies for varying gAB. The points lying at Re(ω) = 0 are quadruple degenerate due to particle-number
conservation in each component. Additionally, the trajectories of the three anomalous modes identified here are depicted by magenta (light
grey) dots. (b) Imaginary part Im(ω) of the eigenfrequencies. The corresponding instability windows of the three-DAD configuration are
0.301 � gAB � 0.342, 0.489 � gAB � 0.493, and 0.932 � gAB � 0.969. Solid lines in (b) provide a guide to the eye for each of the individual
bifurcation loops emerging in the imaginary part of the eigenfrequencies. The remaining system parameters that are used correspond to
ω1 = 0.1, μA = 3.5, μB = 3.4, gAA = 1.004, and gBB = 0.9898, while all quantities shown are given in dimensionless units.

(in its stationary form) as gAB is increased. The prevailing
picture at low gAB once again involves the dark solitary
waves forming wells where the antidark states of the second
component are trapped. Gradually, as gAB is increased, more
of the second component density gets encompassed in the
antidark states, which eventually (as the immiscibility thresh-
old is approached) become essentially dropletlike and will
separate into DB states for sufficiently large gAB. As may be
expected, the BdG spectrum now features three anomalous
modes, as illustrated in Fig. 7. These, in turn, yield their own
potential resonant intervals, as discussed in the caption of
the associated figure. The lowest of these modes is again an
in-phase one, the second mode involves a quiescent central
DAD, while the outer ones oscillate out of phase; finally,
the third mode involves an in-phase oscillation of the outer
waves and an out-of-phase one of the middle wave. The
first mode is never resonant in the parametric regime that
is considered. The second mode causes the first instability
window and is principally responsible for the third window
(where it is associated with the highest growth rate), while
the third mode causes the second instability window and also
leads to a partial destabilization within the third window.
Focusing our attention on the predominant third bifurcation
interval (associated with the maximal instability growth rate)
present for the three-DAD configuration [Fig. 7(b)], we next
examine the unstable dynamics associated with it. Notice
that as in the investigation of configurations with two DADs,
here an inner loop appears in the respective BdG spectrum
[Fig. 7(b)], suggesting in this case the destabilization of not
only the second, but also the third anomalous mode for values
of gAB lying in the interval 0.946 � gAB � 0.954. However, in
Fig. 8, we can observe that independent of which of the modes
we add to the initial stationary configuration with three DADs,
the resonant second mode will eventually be excited, giving
rise to the growth of the associated configuration involving
the out-of-phase motion of the outer DADs, while the middle
one remains quiescent. The saturation of the relevant growing
oscillation and the recurrence of the phenomenon are clearly

observed, especially in Figs. 8(c) and 8(d), where the unstable
mode was added initially to the stationary state and hence gave
rise to the associated instability earlier.

C. Six sorted DADs

In order to generalize our findings to even larger DAD
soliton arrays, we now consider the stability properties of a
stationary state consisting of six sorted DAD solitons. The
gradual transformation of the obtained stationary states as
gAB increases is illustrated in Figs. 9(a)–9(d). One can see
in the figure how the blobs corresponding to the location
of the individual DADs separate as gAB is increased. To
address the stability of these bound states, we employ the
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mode identified in the BdG spectrum of Fig. 7. The remaining system
parameters correspond to μA = 3.5, μB = 3.4, gAA = 1.004, gBB =
0.9898, and gAB = 0.96. The quantities shown are in dimensionless
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shown are in dimensionless units.

same diagnostics as in the previous two cases. Specifically,
for the numerical findings to be presented below, we fix
μA = 3.5, μB = 3.4 and we vary gAB within the interval
[0, 1]. The relevant BdG spectrum is illustrated in Figs. 10(a)
and 10(b). Once again, the magenta dots are used to de-
note the anomalous (negative Krein signature) modes in the
figure. Importantly, a cascade of Hamiltonian-Hopf bifurca-
tions can be observed in this BdG spectrum as is corrobo-
rated by the finite imaginary eigenfrequencies (or instability
growth rates), Im(ω), depicted in Fig. 10(b). The associated
instability intervals, five in this case, are indicated in the figure
caption.

The corresponding modes are simply the normal modes of
vibration of the six solitary waves considered as particles. In
that vein, the lowest out of the six anomalous modes present
for the state with six DADs is an in-phase one. Accordingly,
the highest, i.e., the sixth, anomalous mode involves an out-
of-phase motion of adjacent coherent structures. Finally, all
the intermediate modes, i.e., from the second until the fifth
one, entail relevant mixed phase oscillations. Turning to the
fifth interval, exhibiting the largest instability growth rate, as
illustrated in Fig. 10(b), we next inspect the unstable dynam-
ics of the six-DAD configuration for gAB = 0.94 (Fig. 11).
Before delving into the details of the associated dynamics, it
is important to stress at this point that as the immiscibility
threshold is approached, four out of the six anomalous modes
destabilize. This can be observed by close inspection of the
spectrum, revealing four loops in the imaginary part of the
BdG spectrum in Fig. 10(b). Two possible manifestations
of the instability, using perturbations along the third and
sixth eigenmode, are shown in Fig. 11. Specifically, upon
adding the third of the aforementioned modes to the initially
stationary six-DAD state [Figs. 11(a) and 11(b)], we observe
that the instability manifests itself from the very early stages
of the dynamics, leading to the oscillatory motion of the
six-DAD configuration, involving the in-phase oscillation of
the central and the outermost DAD waves. The intermediate
pair of DADs remains approximately quiescent during this os-
cillatory dynamical evolution. However, for all the remaining
cases, it is found that independently of which mode we add to
the initially stationary six-DAD state, namely, either the first,
second, fourth, fifth, or sixth mode [see here Figs. 11(c) and
11(d)], the resonant second mode will eventually be excited,
giving rise to a growth of the corresponding configuration
that entails the out-of-phase vibration of the central DAD
waves and the in-phase oscillation between the second and
the outermost DAD pairs.
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is evident by the finite imaginary eigenfrequencies shown in (b). The associated instability intervals, being denoted by the black circles,
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(b) provide a guide to the eye for the individual bifurcation loops appearing in the imaginary part of the eigenfrequencies. Other parameters
used are μA = 3.5, μB = 3.4, gAA = 1.004, and gBB = 0.9898. All quantities shown are provided in dimensionless units.
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V. ALTERNATING DARK-ANTIDARK SOLITONS

Having discussed the static properties of arrays consisting
of multiple sorted DAD solitons, motivated by the experimen-
tal observations we next turn our attention to the dynamics
of solitonic states consisting of dark and antidark waves in
each of the components of the mixture in an alternating
fashion. Despite our extensive efforts to identify stationary
states consisting of alternating dark and antidark solitons (i.e.,
DAD configurations where the dark features and, in a comple-
mentary way, the antidark features alternate between the two
pseudospin components), our numerical findings suggest that
such a state cannot be stationary. We have dynamically con-
structed such alternating states and monitored their evolution
and interactions [Figs. 12(a)–12(h)]. Examples illustrating the
spatiotemporal evolution of solitonic entities composed, for
instance, of one dark followed by an antidark soliton in the
first component, and vice versa in the second component, are
presented in Figs. 12(a), and 12(b) for gAB = 0.6 and in Figs.
12(e), and 12(f) for gAB = 0.96 respectively. Notice that re-
gardless of the value of the intercomponent coupling strength,
the alternating entities perform oscillations of growing am-
plitude during the initial stages of the dynamics. However,
for smaller values of gAB and for times around t ≈ 2 × 103,
the alternating states are lost within the significantly excited
background and only a single DAD soliton appears to survive
at later times. On the other hand, a distinct evolution pos-
sibility arises as gAB increases. For instance, for gAB = 0.96
and focusing on these later times, beating dark-dark solitons
develop in the two components and propagate within the BEC
medium for (dimensionless) times up to t ∼ 3 × 103 that we
have considered [31].

A similar outcome (i.e., involving the unstable dynamics)
arises upon increasing the number of alternating waves in each
component. Specifically, and as depicted in Figs. 12(c), and
12(g) [Figs. 12(d), and 12(h)], when two dark [antidark] and
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FIG. 12. Spatiotemporal evolution of the densities of both com-
ponents showcasing the oscillations and interactions of alternating
DAD solitons for (a)–(d) gAB = 0.6 and (e)–(h) gAB = 0.96, respec-
tively. (a), (e) [(c), (g)] An initial seeding of a single dark [two darks]
and a single antidark in the first component and (b), (f) [(d), (h)] their
relevant mirror images in the second component. Other parameters
used are μA = 3.5, μB = 3.4, gAA = 1.004, and gBB = 0.9898. The
quantities illustrated are in dimensionless units.

a central antidark [dark] solitary waves are initialized in the
first [second] hyperfine state, a nearly bound state formation
occurs in the relevant dynamics. Here, the central wave in
each component oscillates in its amplitude persistently at the
center of the configuration, while the outer two waves perform
out-of-phase oscillations. However, at later times, i.e., around
t ≈ 200 for gAB = 0.6 and around t ≈ 500 for gAB = 0.96, the
alternating structures are set in motion, resulting, in turn, in a
single sorted DAD soliton oscillating around the trap center
for all times in the former case, and oscillating and interacting
beating dark-dark entities for the latter scenario.

It is also worth commenting at this point that since the
alternating states are not stationary ones, emission of radiation
from the relevant pattern takes place right after the initial (at
t = 0) seeding, resulting in an excited BEC background in all
cases studied here. Finally, we note in passing that one can
systematically study the dynamical evolution of the system
when considering an arbitrarily large number of alternating
dark and antidark waves. Here, more complex interactions be-
tween the ensuing waves take place, including their deforma-
tion into beating dark-dark solitons (results not shown here).

VI. CONCLUSIONS

In the present work, we have been motivated by experimen-
tal realizations of two-component BECs in an elongated trap
to consider solitary wave structures involving dark solitonic
states in one of the components and corresponding antidark
ones in the other. The combination of a spatially dependent
Zeeman shift with a uniform fixed-frequency microwave drive
was demonstrated as a viable experimental pathway to the
formation of such structures. It was possible to create ex-
perimentally both cases where all the dark solitons were in
one component and the antidark ones in the other, as well
as settings where in each component the dark and antidark
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waves alternate. We corroborated these experimental realiza-
tions with a theoretical analysis based on a two-component
Gross-Pitaevskii model in a quasi-one-dimensional geometry.
We saw that such a setup enables the formulation of station-
ary configurations with all the dark solitary waves in one
component and the antidark ones in the other component.
In fact, we found such states with two, three, six, and, in
principle, arbitrary “lattices” of dark waves in one component
and antidarks in the other. On the other hand, this was not
the case for the alternating dark-antidark configurations. Such
a state could only be traced as a dynamical one and never
as a stationary one. For the multiple sorted DAD wave case,
we found that the waves were generally dynamically stable,
although the presence of N anomalous modes (in the states
with N DAD waves) could potentially lead to windows of
oscillatory instabilities. The latter were observed to give rise
to resonant growth of the oscillations involving the DAD
waves, but eventually a saturation thereof and a potential
recurrence subsequently of the associated dynamics.

Naturally, there are many possible extensions of this direc-
tion of studies. From an analytical standpoint, it is relevant to
extend the type of understanding that exists for the interac-
tions of dark [7] and even dark-bright [4,54] solitary waves
to the realm of dark-antidark structures. This will provide a
guideline for understanding the formation of equilibria (when
all the darks are in the same component) or the absence thereof
(when the adjacent darks are in alternating components).
Another direction that would be of substantial interest would
be to extend relevant structures to the realm of spinor conden-

sates with three spin states where it is possible to envision
different types of extensions, e.g., ones where two compo-
nents are dark and one antidark, as well as ones where only
one component is dark and two are antidark [55]. Finally, it is
also natural to extend considerations to higher dimensions and
seek lattices of multiple vortex-antidark states either with the
vortices bearing the same or alternating topological charges.
Understanding in a quantitative fashion the interaction of two
such states or the formation of lattices of more such states
is also a topic of ongoing interest [56]. Studies along these
directions are presently underway and will be reported in
future publications.
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