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The experimental and theoretical research of spin–orbit-coupled ultracold atomic gases has advanced
and expanded rapidly in recent years. Here, we review some of the progress that either was pioneered
by our own work, has helped to lay the foundation, or has developed new and relevant techniques. Af-
ter examining the experimental accessibility of all relevant spin–orbit coupling parameters, we discuss
the fundamental properties and general applications of spin–orbit-coupled Bose–Einstein condensates
(BECs) over a wide range of physical situations. For the harmonically trapped case, we show that
the ground state phase transition is a Dicke-type process and that spin–orbit-coupled BECs provide
a unique platform to simulate and study the Dicke model and Dicke phase transitions. For a homo-
geneous BEC, we discuss the collective excitations, which have been observed experimentally using
Bragg spectroscopy. They feature a roton-like minimum, the softening of which provides a potential
mechanism to understand the ground state phase transition. On the other hand, if the collective dy-
namics are excited by a sudden quenching of the spin–orbit coupling parameters, we show that the
resulting collective dynamics can be related to the famous Zitterbewegung in the relativistic realm.
Finally, we discuss the case of a BEC loaded into a periodic optical potential. Here, the spin–orbit
coupling generates isolated flat bands within the lowest Bloch bands whereas the nonlinearity of the
system leads to dynamical instabilities of these Bloch waves. The experimental verification of this
instability illustrates the lack of Galilean invariance in the system.
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1 Introduction

Ultracold atoms are charge neutral, therefore the intrin-
sic physics relevant to the charge degree of freedom of
particles is absent in these systems. Ever since Bose-
Einstein condensation (BEC) was achieved in atomic
gases, one of the main tasks for both theory and exper-
iment has been to artificially introduce charge physics
into neutral atoms. The most famous examples of such
physics are the Lorentz force effect in a magnetic field
and quantum mechanical spin–orbit coupling (SOC).
These effects are ultimately related to gauge-dependent
vector potentials and are of particular interest in the in-
vestigation of ultracold atoms. The connection between
the superfluidity of atoms and the so-called synthetic
magnetic field or SOC clearly has the potential to gen-
erate significant new knowledge and results.

Experimentally, the first artificial magnetic field was
synthesized in a harmonically trapped BEC through the
rotation of the external trapping potential [1]. In the
rotating frame, this leads to a Lorentz force and an anti-
trapping potential for atoms, where the force amplitude
and the frequency of the anti-trap are proportional to
the rotation frequency. However, this technique is lim-
ited because the strength of the anti-trap cannot exceed
the trapping potential, which implies that it cannot be
used for spatially homogeneous BECs. In this case, the
magnetic field has to be generated artificially, which can
be done using the interactions between laser fields and
internal energy states of atoms [2]. The momentum ex-
change during this interaction gives the atom a finite
quasimomentum in a dressed-state basis, which corre-
sponds to a vector potential. Due to the inhomogeneity
of the laser field or the external magnetic field gradient,
this potential could be spatially dependent, which nat-
urally leads to an artificial magnetic field. In principle,
the magnitude of this field is unlimited.

Recently, the first experiments where atoms in two-
dimensional (2D) optical lattices are subjected to an ar-
tificial magnetic field were reported [3, 4]. In these ex-
periments, the hopping between neighboring sites along
one dimension (1D) is assisted by external laser beams
through an absorption and stimulated emission process,
which results in a spatial inhomogeneity of the phase dur-
ing the hopping due to momentum kicks. The inhomo-

geneous phase can accumulate to a finite value around a
unit plaquette, which mimics a magnetic flux. It has been
shown that the magnetic fields generated in this way al-
low for staggered (i.e., neighboring plaquettes possess an
opposite sign of the magnetic field) [5] or homogeneous
[3, 4] fields. Furthermore, the magnitude of the magnetic
field is very large in comparison with the same flux in
solid-state systems. Today it is generally accepted that
the presence of artificial magnetic fields in different envi-
ronments can significantly change the behavior of atoms
and can open many avenues to explore the interplay of
superfluidity and magnetic fields in a controllable way.

The research interest in SOC ultracold atoms is, on
one hand, strongly motivated by the fundamental role of
SOC in many important phenomena in condensed mat-
ter physics [6, 7], such as the spin Hall effect [8]. On
the other hand, it is stimulated by the fundamental and
exotic physics of SOC superfluids. The study of SOC ul-
tracold atomic systems can be divided into two stages,
separated by the benchmark experiment of Ian Spiel-
man’s group at the National Institute of Standards and
Technology (NIST) in 2011 [9]. Before this experiment,
most research efforts focused on theoretical proposals re-
garding the implementation of SOC in ultracold atoms
and the physical effects on the single particle level. Some
well-known results were the proposal to realize Rashba
SOC in an atomic tripod scheme [10] and the use of SOC
atoms to simulate spin-Hall physics [11, 12]. Only a few
studies had considered SOC in many-body systems [13–
15]. Since 2011, the bulk of the attention has shifted
to systems combining SOC and many-body effects. The
latter originate from the elastic collisions between indi-
vidual atoms and are required for the existence of su-
perfluidity. The NIST experiment opened the door to
the new research topic of SOC superfluids in ultracold
bosonic gases, which has no analog in condensed matter,
where particles are usually fermionic. Whereas SOC in
superconductors is a very interesting topic, the exper-
imental implementation remains a challenge. However,
SOC in the Bardeen–Cooper–Schrieffer (BCS) phase of
an atomic, degenerate Fermi gas can provide an experi-
mentally accessible platform to explore such systems.

In recent years, the number of research groups in-
volved in experimental and theoretical work on SOC
in BECs has increased significantly, and many aspects
of these systems have been thoroughly explored. After
the first realization of a SOC BEC in 87Rb, the NIST
group used this system to explore partial wave scattering
[16] and the phenomenon of Zitterbewegung (ZB) [17],
to simulate spin Hall physics [18], and to gain control
over the tunability of the SOC strength [19]. A Univer-
sity of Science and Technology of China (USTC) group
measured the dipole oscillation in different phases of a
SOC 87Rb BEC [27], clarified finite temperature effects
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on the phase transition [28], measured roton-like collec-
tive excitations [29], and recently realized 2D SOC for
bosons [30]. The Shanxi University group carried out ex-
periments of both SOC BECs and Fermi gases. In their
bosonic 87Rb BEC, they explored the dynamics of load-
ing a BEC into a gauge potential [31]. They performed
the first SOC degenerate Fermi gas experiment using
40K, where they quantified the collective properties by
measuring the spin dynamics and the momentum dis-
tribution, and determined the Fermi surface [32]. They
also developed a radio-frequency spectroscopy technique
[33], and showed that molecules can be formed with the
help of Feshbach resonances [34]. Very recently, they
realized 2D SOC [35] for the first time in Fermi gases
and observed the band-gap opening around the Dirac
point by inducing a perpendicular Zeeman field [36]. The
Massachusetts Institute of Technology (MIT) group per-
formed spin-injection spectroscopy in a SOC Fermi gas
with 6Li atoms to measure the energy spectrum of SOC
and the coexistence of SOC with a Zeeman lattice gen-
erated by a radio-frequency field [20]. The Washington
State University (WSU) group investigated the physics
of the ZB effect in 87Rb [21], realized the Dicke model
and the Dicke phase transition [22], measured the col-
lective excitation spectrum (indicating the existence of
roton-like structures) [23], and demonstrated the lack of
Galilean invariance in SOC systems by measuring dy-
namical instabilities of a BEC in a moving optical lat-
tice [24]. The Purdue group used a SOC 87Rb BEC to
study the physics of Landau–Zener tunneling [25] and
to implement interferometry by periodically modulating
the power of the laser beams that generate SOC [26].
Finally, the Institute of Physics (IOP) group in Beijing
generated SOC in a BEC of 87Rb atoms by modulating
magnetic field gradients [37].

Theoretical work has focused on several other aspects,
with one of them being the possibility for the energy
spectrum to possess several global minima. In a linear
system, any superposition of the occupations in these
minima is degenerate, which is the basis for many ex-
otic phenomena when atomic interactions are taken into
account [38, 39]. In the case of a BEC, the degeneracy
is broken by the mean-field energy, and the competi-
tion between the mean-field energy and SOC gives rise
to new phases and phase transitions. The most famous
example of this is the existence of a stripe phase that
is an equal superposition of two minima in momentum
space [40]. The ground state and collective excitations
of SOC BECs have been investigated for a large number
of different settings, such as homogeneous [40–49], har-
monic [50–54], in the presence of a periodic optical lattice
[55–72], a double-well [73–75], rotation [76–81], inside an
optical cavity [82–86], and for particles with dipolar in-
teraction [87–92]. For degenerate Fermi gases, the role

of SOC in the BEC–BCS crossover region has attracted
a lot of attention [93–95]. In the BCS phase, unconven-
tional states are predicted, such as Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) superfluids [38]. Even though the
field only started very recently, it has developed in a
rapid fashion and several review articles on specific top-
ics along this direction already exist [38, 39, 64, 96–102].

In the following, we will review recent theoretical and
experimental progress in this area pioneered by our rel-
evant studies [21–24, 52, 103, 104]. To set the stage, we
will first briefly describe the experimental approaches to
generate SOC [9, 16–29, 31–35].

2 Spin–orbit coupling in single particle
systems

2.1 Experimental realization of spin–orbit coupling

In a typical experiment, a degenerate cloud of 87Rb
atoms is prepared in a crossed optical dipole trap. By
applying a homogeneous magnetic bias field along the
x-direction (as shown in Fig. 1), the F = 1 ground
state is split into three energy levels, mf = 0,±1, with
the energy splittings between them approximately equal
within the range of the linear Zeeman effect. Two Ra-
man lasers, whose projection on x-direction point oppo-
sitely (see Fig. 1), are used to couple the energy lev-
els |F = 1,mf = −1⟩ and |F = 1,mf = 0⟩, and
|F = 1,mf = 0⟩ and |F = 1,mf = 1⟩. The energy levels
can be interpreted as pseudo-spins. However, to simu-
late a spin-1/2 system, the third energy level has to be
moved out of resonance. This can be achieved by using
a large magnetic bias field, usually around 10 Gauss, so
that the quadratic Zeeman effect shifts the energy split-
ting between |F = 1,mf = −1⟩ and |F = 1,mf = 0⟩
to a larger value than that of the |F = 1,mf = 0⟩ and
|F = 1,mf = 1⟩ transitions. Choosing an appropriate
frequency difference between the Raman lasers then al-

Fig. 1 Experimental scheme for realization of synthetic
SOC. The atoms are subjected to a bias magnetic field along
the x direction. Two Raman lasers, separated by a π/2 an-
gle, are incident on the atoms at 45◦ and 135◦ with the x
direction.
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lows one to address only the |F = 1,mf = −1⟩ and
|F = 1,mf = 0⟩ transition.

The single particle Hamiltonian in the presence of the
above Raman coupling is given by

H =
p2x
2m

+
∆E

2
σz +

h̄Ω

2
cos(2kRamx−∆ωt)σx, (1)

where px is the momentum of atoms along the x direction
and m is the mass of atoms. The energy splitting between
the |F = 1,mf = −1⟩ and the |F = 1,mf = 0⟩ states is
given by ∆E, and they are coupled by the effective field
cos(2kRamx − ∆ωt), where kRam is the projected wave-
number of Raman laser along the counter propagating
direction, x. The frequency difference between the two
Raman beams is given by ∆ω and the coupling coeffi-
cient, called the Rabi frequency, is defined as

Ω =
Ω1Ω2

2∆
. (2)

This relates the Rabi frequency of each Raman beam,
Ω1,2, to the single photon detuning ∆. The Pauli matri-
ces are used in their standard notation as {σx, σy, σz}.
The wave function of the system can be written as
Φ(x) = (Φ↑, Φ↓)

T , where the hyperfine states are rela-
beled as

| ↑⟩ = |F = 1,mf = 0⟩, | ↓⟩ = |F = 1,mf = −1⟩. (3)

Using the standard rotating wave approximation, the
Hamiltonian can be written as H = p2x/(2m)+∆Eσz/2+
h̄Ω cos(2kx−∆ωt)σx/2− h̄Ω sin(2kx−∆ωt)σy/2. In the
co-rotating frame of the effective field, a unitary trans-
formation, U = exp[i(kRamx−∆ωt/2)σz], can be applied
to give

H = U †HU − ih̄U † ∂U

∂t

=
(px + h̄kRamσz)

2

2m
+

∆E − h̄∆ω

2
σz +

h̄Ω

2
σx. (4)

After dropping a constant term, the Hamiltonian rele-
vant for the experimental SOC can be written as

Hsoc =
p2x
2m

+ γpxσz +
h̄δ

2
σz +

h̄Ω

2
σx, (5)

where δ = ∆E/h̄ − ∆ω is the detuning and the SOC
strength is defined by

γ =
h̄kRam
m

. (6)

2.2 Tunable spin–orbit coupling

To understand the relevance of the above Hamiltonian,
we discuss the experimental implementation of the tun-
able parameters γ, δ, and Ω.

• Detuning. Detuning relates to the energy splitting
and the frequency difference between the Raman
lasers, δ = ∆E/h̄ −∆ω. Because the energy split-
ting is proportional to the amplitude of the bias
magnetic field, one way to adjust the detuning is
by changing the bias field. In particular, a spatially
in-homogeneous bias field can be used to make the
detuning also spatially dependent [2]. Furthermore,
the detuning can also be changed by adjusting the
frequency difference between the Raman beams.
This is possible to do dynamically during an ex-
periment.

• Rabi frequency. The Rabi frequency, Ω =
Ω1Ω2/(2∆), is proportional to the single photon
Rabi frequency, Ω1,2 ∝

√
I1,2, where I1,2 are the

intensities of the Raman beams. It can therefore
be adjusted easily by changing the power of each
Raman beam. This control is coherent and can be
used in real time during an experiment.

• Spin–orbit coupling strength. The SOC strength,
γ = h̄kRam/m, relates to the projected wave
number of the Raman beams, kRam. To tune the
strength of γ, one can naively consider changing
the angle between the incident Raman lasers (see
Fig. 1), which changes kRam. However, in a real
experiment this possibility is very limited due to
restrictions on optical alignment and optical acces-
sibility. Once the setup is fixed, it is typically not
possible to change the angle dynamically.

However, the SOC strength can be changed effectively
by periodic modulation of the power of the Raman lasers
[103]. This leads to

Ω = Ω0 + Ω̃ cos(ωt), (7)

where Ω0 is the average value of the Rabi frequency and
Ω̃ is the modulation amplitude. This expression assumes
that the modulation frequency, ω, is much larger than
any other energy scale in the system, such that it cannot
follow or respond. This suggests a unitary transformation
to cancel the modulation term in the Rabi frequency by
using

U1(t) = exp
(
− i Ω̃ sin(ωt)

2ω
σx

)
, (8)

which leads to

Heff = U †
1HsocU1 − ih̄U†

1

∂U1

∂t

=
p2x
2m

+

(
h̄δ

2
+ γpx

)
cos
[
Ω̃

ω
sin(ωt)

]
σz

+
h̄Ω0

2
σx +

(
h̄δ

2
+ γpx

)
sin
[
Ω̃

ω
sin(ωt)

]
σy. (9)
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Using the standard Bessel function relation
exp(iΩ̃ sin(ωt)/ω) =

∑
n Jn(Ω̃/ω) exp(inωt), where

Jn is the nth Bessel function of the first kind, and
taking into account the high modulation frequency, one
need only keep the zeroth order term (n = 0) that does
not depend on time. The resulting time-independent
Hamiltonian is

Heff =
p2x
2m

+

(
h̄δ

2
+ γpx

)
J0

(
Ω̃

ω

)
σz +

h̄Ω0

2
σx, (10)

with a modified SOC strength of the form

γeff = γJ0

(
Ω̃

ω

)
. (11)

The high frequency modulation of the power of Raman
beams can therefore effectively tune the SOC strength.
We note that this modulation modifies the detuning in
the same manner

δeff = δJ0

(
Ω̃

ω

)
. (12)

Here, we make a number of comments on this method.

• The above method is coherent and can be used dy-
namically. If the change in the modulated ampli-
tude of Ω̃ is slow compared to the high frequency
ω, the time dependence of the effective spin–orbit
coupling strength is given by γeff(t) = γJ0(Ω̃(t)/ω).

• The described approach has been adopted and
shown to work in a recent experiment by the NIST
group [19]. However, to modify the strength, the
value of Ω̃ can potentially exceed that of Ω0, which
means that Ω = Ω0 + Ω̃ cos(ωt) < 0 for every half
period of modulation. In the experiment [19], the
power modulation of the Raman beams alone could
not change the sign of the Rabi frequency. To do
this nevertheless, one can modify the relative phase
between the two Raman beams such that for every
half period the relative phase jumps by π. If the two
Raman beams are in-phase, Ω1 and Ω2 have the
same sign, whereas if they are out of phase, Ω1 and
Ω2 have opposite signs. Using high frequency mod-
ulation and phase jumping every half period, the
NIST group showed that the SOC strength could
be tuned according to γeff for a nonzero δ [19].

• Finally, the above analysis focused on the linear
regime without considering the mean-field interac-
tions between the atoms in a BEC. However, one
may wonder about the effects of the interactions
on the high frequency modulation of the Rabi fre-
quency. Today, all SOC BEC experiments have

been performed using 87Rb, where the difference in
the interaction strength between the |F = 1,mf =
0⟩ and |F = 1,mf = −1⟩ states and within each
component is very small and does not lead to any
observable consequences. One can then assume, to
a good approximation, that these condensates have
SU(2) symmetry (i.e., the interactions do not de-
pend on the spins) and are therefore not affected
by the spin-dependent unitary transformation in
Eq. (8). However, if the symmetry is broken and
the interaction values do not coincide, the high fre-
quency modulation would be affected by the non-
linearity.

3 Trapped BEC with spin–orbit coupling:
Ground states and collective excitations

In this section, we will review different aspects of the
ground state and collective excitations for experimentally
realizable SOC BECs. We show that such systems can
be mapped to the Dicke model [22, 103], which is a far-
reaching and powerful model in quantum mechanics.

3.1 Ground states of SOC BEC and analogy to the
Dicke model

3.1.1 Theory

To describe the ground state properties of an experi-
mentally realizable SOC BEC, we study a 2D geometry
as shown in Fig. 2(a). Such reduced dimensions can be
achieved by applying a strong trapping potential in the
z direction. The reason that we adopt the 2D geome-
try is that it provides an opportunity in a later section
to study scissors and quadruple modes in a clean setting.
The two Raman lasers are counter-propagating along the
x-direction to couple the two hyperfine ground states of
87Rb atoms through a two-photon process [see Fig. 2(b)]
and a very large single photon detuning ∆ ensures that
the excited state can be adiabatically eliminated. Only
the ground state levels are involved in the two-photon
process.

To determine the ground state properties, we use a
mean-field approach in the form of the standard Gross–
Pitaevskii (GP) equation

ih̄∂Φ
∂t

= [H2D + V (x, y) +Hint]Φ, (13)

where the single particle, SOC part is given by

H2D =
p2x
2m

+
p2y
2m

+ γeffpxσz +
h̄Ω

2
σx. (14)

For simplicity, we restrict the treatment to the case of
zero detuning, δ = 0. Ω in Eq. (14) should be equal to
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Ω0 of Eq. (10). If there is no high frequency modulation
of the Rabi term, γeff → γ. The 2D trapping potential is
chosen to be harmonic

V (x, y) =
1

2
mωy2(η2x2 + y2), (15)

where ωx and ωy are the trapping frequency along the
x- and y-direction, respectively, and the ratio between
them is given by η = ωx/ωy. The term describing the
inter-atomic interactions in Eq. (13) is given by

Hint =

(
g↑↑|Φ↑|2 + g↑↓|Φ↓|2 0

0 g↑↓|Φ↑|2 + g↓↓|Φ↓|2
)
,

(16)

where the coefficients g relates to the respective s-wave
scattering lengths. In the real experiment on 87Rb, the
difference between g↑↑, g↑↓ and g↓↓ is very small. To make
the numerical calculations more general, we choose to use
dimensionless units by scaling energy, length, and time
as h̄ωy,

√
h̄/(mωy), and 1/ωy, respectively.

The ground states of the GP equation can be found
by using the standard imaginary time evolution method
with a typical result shown in Fig. 2(c). Whereas the
density profile of each spin component follows the well-
known Thomas-Fermi distribution, the momentum dis-
tribution shows the existence of a finite quasimomentum
along the propagation direction of the Raman lasers, see
Fig. 2(d).

Such a stationary ground state, which has zero group
velocity despite possessing a finite quasimomentum, is
fundamentally different from the well-known ground
states of a BEC in the absence of SOC, which condense
at zero quasimomentum. In fact, the nonzero quasimo-
mentum is located close to the minimum of the SOC
single-particle spectrum

Fig. 2 Experimental scheme for realization of spin–orbit
coupling. (a) Raman laser geometry. (b) Two-photon cou-
pling. (c) Typical ground state density distribution of one
spin component. (d) Corresponding momentum distribution.
The horizontal and vertical dotted lines represent ky = 0 and
kx = 0 respectively. Reproduced from Ref. [103].

E±(kx, ky) =
k2x + k2y

2
±

√
(γeffkx)2 +

(
Ω

2

)2

, (17)

where kx and ky are the quasimomenta in the x and y
direction, respectively. The spectrum E±(kx, ky) is the
dispersion relation of Eq. (14). One can see that SOC
only affects the spectrum along its own direction, x,
while keeping the free particle dispersion along the y-
direction. One of the main features of this spectrum is
that it possesses a double-well structure in its lowest
branch: E−(kx, ky). If Ω < 2γ2

eff, two degenerate mini-
ma appear at (kx, ky) = (±kmin, 0), where

kmin =

√
γ2

eff −
(

Ω

2γeff

)2

. (18)

However, if Ω ≥ 2γeff, only one minimum exists at
kmin = 0 and the lowest branch of the single-particle
spectrum has the standard parabolic form. The behav-
ior of the ground state in this regime is mostly the same
as for BECs in the absence of SOC. In the following, we
concentrate on the regime Ω < 2γ2

eff, where the ground
states spontaneously choose to occupy one of the minima
and therefore breaks the degeneracy of the single-particle
spectrum. Such a ground state is called a plane wave
phase in the literature [40], because the atoms condense
at a finite quasimomentum, just like a plane wave.

The tuning of the SOC parameters, Ω or γeff, drives
the system through a phase transition between the plane
wave phase and the conventional BEC phase. The critical
value for the transition is given by γc

eff =
√
Ω/2 and it

can be characterized using the spin polarizations

⟨σz⟩ =
∫

dxdy (|Φ↑|2 − |ϕ↓|2), (19)

and

⟨σx⟩ =
∫

dxdy Φ∗
↑Φ↓. (20)

Because the plane wave phase breaks time-reversal sym-
metry, which is closely linked to the existence of fer-
romagnetism, one can expect the spin-imbalance to be
⟨σz⟩ ̸= 0. This can also be seen by realizing that when
Ω < 2γ2

eff, SOC dominates and spin polarization is pre-
ferred. In the conventional BEC regime, Ω ≥ 2γ2

eff, the
Rabi frequency term dominates and, because it depends
on σx, the spin-balance ⟨σz⟩ = 0 and ⟨σx⟩ ̸= 0 is pre-
ferred.

Results for the numerically obtained ground states
as a function of the SOC strength γeff [recalling that
γeff/γ = J0(Ω̃/ω)] are shown in Fig. 3. Here, the circles
represent |⟨σz⟩| and the squares ⟨σx⟩. As expected from
the intuitive analysis above, the spin polarization |⟨σz⟩|
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Fig. 3 Quantum phase transition indicated by the spin
polarization |⟨σz⟩| and ⟨σx⟩ as a function of γeff. The solid
and dashed lines are from the prediction of the Dicke Hamil-
tonian, i.e., (25) and (26). The circles and squares are from
the numerical simulation of the GP equation (13). Ω = 16,
γ = 9.37. Reproduced from Ref. [103].

is zero for a small γeff (where the Rabi frequency term
dominates), whereas beyond the critical value γc

eff (where
SOC dominates) it takes a finite value. The quantity
⟨σx⟩ also behaves as expected: it is maximal (⟨σx⟩ = 1)
when the Rabi frequency dominates and decreases when
SOC dominates with increasing values of γeff. The sharp
changes in both ⟨σz⟩ and ⟨σx⟩ confirm the phase transi-
tion at the critical value γc

eff =
√

Ω/2. Whereas the plot
only gives the absolute value of the spin polarization, it
is worth noting that the plane-wave phase ground-state
spontaneously occupies one of the two minima in momen-
tum space, which are characterized by opposite signs of
⟨σz⟩.

Because the system possesses one phase in which the
spin is balanced and a second in which it is imbalanced,
and in which it chooses the sign of the polarization ran-
domly, it closely resembles the Dicke model [105]. Tra-
ditionally, the Dicke model describes the interaction be-
tween a single quantum field and a two-level atomic en-
semble. Besides its fundamental importance, the Dicke
model is well known for the presence of an interesting
phase transition. Once the strengths of the interaction
between the atoms and the quantum field interaction
exceeds a threshold value, the atomic ensemble inter-
acts collectively with the quantum field by resembling a
large spin. This leads to a so-called superradiant phase
in which the photon mode is occupied macroscopically
and the spin polarization of the atomic ensemble is non-
zero [106]. The sign of the polarization is chosen sponta-
neously by the ground state. If, on the other hand, the
interaction strength is smaller than the threshold value,
the spin polarization and the photon mode occupation
are zero. The ground state properties of the SOC BEC,
as shown in Fig. 3, therefore allow interpreting the sys-
tem in terms of a Dicke-type transition.

To formally map the SOC system to the Dicke model,
we introduce the collective spin operators as

S(x,y,z) =
1

2

∑
i

σi
(x,y,z), (21)

where the sum runs over all atoms. Substituting these
into the N -particle Hamiltonian of Eq. (14), and using
the harmonic mode operator

px = i
√

mh̄ωx

2
(a† − a), (22)

one can obtain the Hamiltonian [103]

HDicke = h̄ωxNa†a+ h̄ΩSx + iγeff
√
2mh̄ωx(a

† − a)Sz.

(23)

This is the Hamiltonian of the Dicke model [105], which
can be more clearly seen by introducing S+ = Sy + iSz

and S− = Sy−iSz. The Hamiltonian can then be written
as

HDicke = h̄ωxNa†a+ h̄ΩSx

+γeff

√
mh̄ωx

2
(a† − a)(S+ − S−). (24)

Note that we already neglected the dynamics along the y-
direction, because it is not effected by SOC and therefore
does not provide new physics.

For γeff >
√

Ω/2 the analytical results predicted by
the Dicke model of Eq. (24) can be written as [103, 106]

|⟨σz⟩| =
2

N
|Sz| =

√
1− Ω2

4γ4
eff

, (25)

⟨σx⟩ =
2

N
Sx = − Ω

2γ2
eff

, (26)

and if γeff ≤
√
Ω/2, they are |⟨σz⟩| = 0 and ⟨σx⟩ =

−1. These analytical results are also shown in Fig. 3,
using a solid line for |⟨σz⟩| and a dash one for ⟨σx⟩. The
perfect match between these two approaches confirms
the validity of the mapping to the Dicke model. Because
the Dicke phase transition is of second order, the SOC
phase transition is of second order as well. This can also
be seen easily by calculating the energy numerically.

Let us finally comment on the effects of the interac-
tions and the existence of other possible ground states.

• Interaction effects. In the above mapping, the in-
teractions given in Eq. (16) play a fundamental
role, even though they do not explicitly appear in
the derivation. In an interacting BEC all atoms are
forced to occupy the same many-body ground state,
which allows the restriction to a single quantum
mode, a, of the harmonic oscillator, px → a†−a, to
mimic the single mode quantum field of the Dicke

Yongping Zhang, et al., Front. Phys. 11(3), 118103 (2016)
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model. If the interaction is absent, the atoms do not
affect each other, and therefore each atom behaves
independently. This makes it impossible to use only
a single harmonic mode. A direct effect of the use of
a single mode is that in Eqs. (25) and (26) the spin
average of the BEC is proportional to 1/N times
the collective spin value, i.e., |⟨σz⟩| = 2|Sz|/N . The
physics of a single-particle SOC is therefore funda-
mentally different from Dicke physics.
The reason that the interaction terms do not ex-
plicitly appear in the derivation of the Dicke model
as given in Eq. (24), is that the difference be-
tween the spin-dependent interaction coefficients
(g↑↑, g↑↓, and g↓↓) is very small in current exper-
iments. This makes any spin twist effect, which is
proportional to (g↑↑+g↓↓−2g↑↓)S

2
z , negligible. How-

ever, if the spin-dependent interaction strengths are
unequal, the spin twist effect needs to be included
in the derivation of the Dicke Hamiltonian.

• Other possible ground states. The plane wave phase
exists in the parameter regime where the single-
particle spectrum of the spin–orbit coupling has
a double-well structure in momentum space. How-
ever, in this regime, a second ground state phase
can appear and, using a simple variational method,
a striped phase [40] has been predicted for currently
experimentally realizable SOC BECs [41, 43]. This
striped phase is characterized by the equal occu-
pation of the two minima at the same time and
it features a spatially periodic density modulation.
Unfortunately, for realistic experiments using 87Rb,
this phase only exists in the regime of very weak
Rabi frequencies, which is hard to reach under cur-
rent experimental circumstances.

3.1.2 Experimental realization

In the previous section, we have reviewed the theoretical
work showing that the ground state physics of a SOC
BEC can be related to the Dicke model and that the
phase transition between the plane wave phase and the
conventional BEC phase is a Dicke-type phase transition
[103]. In this section, we will describe the experimental
confirmation of this model [22].

Let us first stress the importance of the Dicke model
[107] and describe the challenges relating to its experi-
mental realization. The Dicke model deals with the in-
teraction between an ensemble of simple two-level atoms
and a single quantum field mode, and it is therefore a
fundamental model in quantum mechanics. It helps to
develop a basic understanding of how many-body sys-
tems interact with light and, because this hybrid many-
body system is theoretically tractable, it provides an es-
sential platform to explore the collective dynamics of

many-body physics. The predicted phase transition is
of fundamental significance for investigating collective
many-body behavior and helps interpret other effects in
many-body systems. Today, the Dicke system is well un-
derstood and a broad range of applications have been
found in areas such as quantum optics and quantum in-
formation. To generate a single quantum mode, usually
an optical cavity is used (see Fig. 4). However, to observe
the Dicke phase transition, a strong coupling between the
optical cavity field and the atoms is required, which un-
til recently was not experimentally possible. Even though
the Dicke model was proposed nearly 60 years ago [105],
the predicted phase transition was observed experimen-
tally only very recently, using momentum eigenstates of
a BEC inside an optical cavity [108].

Compared to the cavity scheme, the proposed ap-
proach, using a harmonically trapped and SOC BEC (see
Fig. 4), has the advantages of having fully tunable pa-
rameters, a very strong coupling, and essentially no dis-
sipation. This makes the SOC BEC an excellent platform
for exploring the Dicke model and related applications.

To study experimentally the ground state properties
of a SOC BEC and to demonstrate the analogy with
the Dicke model, an elongated BEC of 87Rb atoms was
prepared in a crossed dipole trap with trapping frequen-
cies (ωx, ωy, ωx) = 2π × (12 − 34, 134, 178) Hz. Then,
the Raman lasers, arranged such that the angle between
them was π/2 and the angle between each and the BEC
long axis was π/4, were adiabatically ramped up to dress
the atoms. Their frequencies were deliberately chosen to
lie between the D1 and D2 lines to minimize the AC
stark shift due to single photon processes. A 10 gauss
magnetic bias field was applied along the long axis to
define a quantum axis and to produce a quadratic Zee-
man shift to eliminate the state |1, 1⟩. The samples were
measured using a spin-involved time-of-flight technique,
which allowed the revelation of spin and momentum dis-
tributions.

To change the atomic bare states to Raman dressed
states, two experimental approaches were investigated

Fig. 4 Experimental schemes for the realization of the
Dicke model. (a) Optical cavity scheme. The optical model
in the cavity couples two atomic spin states. (b) Spin–orbit-
coupled BEC in an external trap. Two spin states are coupled
via a two-photon process. Reproduced from Ref. [22].
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in detail. The first started from a BEC in the bare state
| ↑⟩ (or | ↓⟩), and adiabatically turned on the Raman
lasers, using a very large detuning. The initial bare states
and the dressed states with the large detuning overlap
strongly and have a similar spin composition. In the next
step, the Raman detuning is adiabatically reduced to
a final value. In the second approach, the detuning is
kept at the desired value, whereas the Rabi frequency is
increased adiabatically by ramping up the Raman lasers.
More details can be found in Ref. [22].

The experimental measurements of the spin polariza-
tions of ground states in the plane wave phase and con-
ventional BEC phase are shown in Fig. 5. In the experi-
ment, however, the phase transition is induced by chang-
ing the Rabi frequency Ω, rather than the SOC strength,
as proposed in the above section. The Rabi frequency is
scaled in units of the recoil energy of the Raman lasers,
ERam = h̄2k2Ram/(2m). Considering this energy scale, the
critical condition of the phase transition, Ω = 2γ2

eff, is
Ω = 4ERam. In the regime Ω < 4ERam, the system is in
the plane wave phase [see Fig. 5(a)], which is analogous
to the superradiant phase of the Dicke model. In this
phase, the ground state spontaneously occupies one of
the two momentum-space minima [labeled by L and R in
Fig. 5(a)]. The solid line is the prediction from the Dicke
model given in Eq. (25). One can clearly see that the
experimental data agrees well with the prediction. For a

Fig. 5 (a) |⟨σz⟩| as a function of the Rabi frequency Ω for
δ = 0. The solid blue line is from the prediction by the Dicke
model. The symbols are the experimentally measured data.
The vertical error bars are the standard deviations for 4 to 5
realizations, while the horizontal error bars reflect the system-
atic uncertainties in the determination of Ω. The insets are
examples of the dispersion relation in different phases. (b)
Experimental time-of-flight images of ground states loaded
to +q. Due to the Raman momentum transfer, the pseudo-
spin states are horizontally separated by 2h̄kRam. The verti-
cal dashed line represents zero momentum. Reproduced from
Ref. [22].

typical Rabi frequency, the time-of-flight measurements
are shown in Fig. 5(b), where the two spin states are sep-
arated by 2h̄kRam. Beside the non-zero spin polarization
of the atoms, the photon number is also non-vanishing.
Because the mean photon number corresponds to the
square of the quasimomentum of the BEC, i.e., q2 and
q2 = 1 − Ω2/4γ2

eff according to the prediction from the
Dicke Hamiltonian [22], it can be obtained experimen-
tally from the time-of-flight data. The results are shown
in Fig. 6(a), together with the data points obtained using
numerical solutions of the GP equation and the analo-
gous Dicke model. All results are consistent with each
other.

The good agreement of the results regarding the spin
polarization of the atoms and the mean photon num-
ber, shown in Figs. 5 and 6, therefore confirms that the
ground states of a SOC BEC can be used to explore Dicke
physics. It is worth noting that in the above treatment
the detuning was always zero. If the detuning were cho-
sen to be finite, the phase transition becomes less sharp
and the region in which the system is in the plane wave
phase (corresponding to the superradiant phase of a gen-
eralized Dicke model) is extended, see Fig. 7.

Fig. 6 (a) Scaled photon number as a function of Ω. The
red symbols are the experimental results from the quasimo-
mentum measurements. The vertical error bars are the stan-
dard deviations for 4 to 5 realizations, whereas the horizontal
error bars reflect the systematic uncertainties in the determi-
nation of Ω. The blue symbols are from the GP equation sim-
ulation, and the solid line is from the prediction of the Dicke
model. (b) Numerical results for the single particle ground
state energy Es (blue diamonds) and the nonlinear interac-
tion energy Enon (red circles) as a function of Ω. The black
solid line indicates the single particle energy from the predic-
tion of the Dicke model. The dashed vertical line shows the
location of the quantum phase transition. Reproduced from
Ref. [22].
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Fig. 7 |⟨σz⟩| as a function of Rabi frequency Ω for nonzero
δ. For a finite detuning, there is no quantum phase transi-
tion. The data points are experimental measurements and
the solid lines are the corresponding predictions of the gener-
alized Dicke model. The vertical error bars are the standard
deviations for 4 to 5 realizations, whereas the horizontal error
bars reflect the systematic uncertainties in the determination
of Ω. Reproduced from Ref. [22].

3.2 Collective excitations: Dipole oscillation, scissors
mode and quadrupole mode

Inevitably, various physical quantities may change dra-
matically around the critical point of the quantum phase
transition. This provides other signatures that can sig-
nify this transition and in the following, we summarize
the results for the collective dynamics of the ground
states of a SOC BEC. Theoretically and experimentally,
it has been shown that the characteristic frequencies of
some typical collective dynamical variables behave to-
tally different in different phases.

3.2.1 Dipole oscillation

Dipole oscillations are one of most fundamental collec-
tive excitations for a harmonically trapped BEC [110].
To excite a dipole mode, the trap can be suddenly dis-
placed, such that the initial ground state of the BEC is
no longer the ground state of the displaced trap. This
leads to a collective excitation of the atoms, which for a
conventional BEC always oscillates at the trapping fre-
quency. The nonlinearity has no effect on this frequency.
Because of this, dipole oscillation can be used to calibrate
the trap frequencies experimentally.

In the presence of SOC, however, the period of the
dipole oscillation depends on the SOC parameters. This
can be seen by numerically tracking the center-of-mass

⟨r⟩ =
∫

dxdy (|Φ↑|2 + |Φ↓|2) r(t) (27)

after a sudden shift of the trapping potential. If the dis-
placement of the trapping potential is in the y-direction,
the center-of-mass motion ⟨y⟩ behaves just like in the

case of a regular BEC, with the oscillation frequency
being equal to the trapping frequency of ωy and unaf-
fected by the SOC parameter. However, if the displace-
ment is in the x-direction, i.e., the direction along which
the Raman lasers propagate, the SOC strength affects
the oscillation period, see Fig. 8. For each value of the
Rabi frequency, Ω, the dipole oscillation periods have
a peak located around the critical values of Dicke-type
phase transition. In the conventional BEC phase (small
γeff), the period increases with increasing SOC strength,
whereas in the plane wave phase (large γeff), the period
decreases. As expected, without SOC (γeff = 0), the
period corresponds to the one for a regular BEC, i.e.,
T = T0 = 2π/ωx. For values of γeff that are far beyond
the critical value γc

eff for the phase transition, the period
decreases to T0 again. This is because, in this region, the
ground state consists of only one component. We also
note that in the plane wave phase, close to the critical
point, the center-of-mass motion suffers from a fast de-
cay, as can be seen from the inset plots in Fig. 8. In any
other regime the propagation is without dissipation.

The peaks and the damped motion around γc
eff pro-

vide significant experimental signatures for the Dicke-
type phase transition. They have been examined more
carefully in both experiment [27] and theory [109].

3.2.2 Scissors mode

The scissors mode [110–112], in a fashion similar to that
of the dipole mode, can also be used to study the effects
of SOC. It can be excited by introducing an anisotropy in
the trapping potential (e.g., η = ωx/ωy ̸= 1), followed by
a sudden rotation of the asymmetric trap by an angle θ.
This induces a periodic oscillation of the quantity ⟨xy⟩,

Fig. 8 The period T of the dipole oscillation as a func-
tion of the Rabi frequency Ω and the SOC strength. The
insets demonstrate the corresponding center-of-mass motion
⟨x⟩. The green line is the critical value for the phase transi-
tion. The circles are from a numerical simulation of Gross–
Pitaevskii equations (GPE). The harmonic trap displacement
D = 1. T0 = 2π/ωx. Reproduced from Ref. [103].
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Fig. 9 The oscillation period of the scissors mode as a
function of the SOC strength for three different Ω. The scis-
sors mode is excited by a sudden rotation of the asymmetric
harmonic trap by an angle θ. T1 = 2π/ωy

√
η2 + 1 is the os-

cillation period with SOC. In this figure, η =
√
5 and θ = 4◦.

Reproduced from Ref. [103].

which is defined as

⟨xy⟩ =
∫

dxdy (|Φ↑|2 + |Φ↓|2) xy. (28)

For a regular BEC, the period of the scissors mode is
given by T1 = 2π/

√
ω2
x + ω2

y, which was confirmed ex-
perimentally [110–112]. In the presence of a spin–orbit
coupling, we theoretically find that this period is no
longer constant and the dependence on the coupling
strength is shown in Fig. 9 for three different Rabi fre-
quencies. Just as for the dipole oscillation, the period
of the scissors mode shows peaks and damping of the
oscillations around the critical point.

3.2.3 Quadrupole mode

The collective quadrupole oscillations have also been
investigated theoretically and experimentally. Without
SOC their mode frequency depends on the trapping ge-
ometry and the ratio of the kinetic energy to the trapping
energy. The results in the presence of spin–orbit cou-
pling are shown in Fig. 10(a), where the experimental
data points are overlaid on the results obtained from nu-
merically solving the GP equation. Here the quadrupole
period, Tso, is scaled in units of the period T measured
for the off-resonant case (δ ≫ Ω). This allows one to
remove the dependence on the trap geometry, which is
slightly different for each Rabi frequency [see Figs. 10(b)
and (c)]. The experimental and the numerical calcula-
tion both show that the peak of the quadrupole period
lies around the critical point and that the oscillations
show strong damping in the transition region. These be-
haviors are the same as for the dipole and the scissors
oscillations.

In this section, we have summarized the recent results
for the phase transition between the plane wave and con-
ventional BEC phases in a weakly trapped BEC with
SOC. The plane wave phase shows spin polarization and

Fig. 10 The quadrupole mode period as a function of Ω.
The blue points and the solid blue line are from numerical
simulations. The dashed vertical line represents the location
of the quantum phase transition. The red symbols with error
bars are the experimentally measured data. The vertical error
bars are the uncertainty of the oscillation frequency from the
sinusoidal fits, whereas the horizontal error bars reflect the
systematic uncertainties in the determination of Ω. (b, c)
Experimentally observed temporal oscillation of the conden-
sate width for (b) Ω = 4.2ERam and (c) Ω = 7.2ERam. The
upper and lower panel of each figure represents the off- reso-
nant case (δ ≫ Ω) and on-resonant case (δ ∼ 0), respectively.
The solid lines are fits to the experimental data. Reproduced
from Ref. [22].

spontaneously occupies one of the two minima in momen-
tum space. The conventional BEC phase is characterized
by zero quasimomentum and spin balance. The phase
transition between these two, which is of second order,
has been confirmed both theoretically and experimen-
tally to be of Dicke-type, using ground state variables as
well as the properties of the collective excitations. The
connections between SOC BECs and the Dicke model
provides a new and powerful tool to theoretically and
experimentally explore Dicke physics using a SOC BEC
(such as recent studies about spin squeezing [113, 114]).

4 Homogeneous spin–orbit-coupled BEC:
Bragg spectroscopy measurement of
roton-like structures and Zitterbewegung

4.1 Bragg spectroscopy indicating roton-like excitation

Above, we study a weakly trapped case. Now, we con-
sider a homogeneous BEC with experimentally realized
SOC. We present our experimental measurements of col-
lective excitations through standard Bragg spectroscopy,
revealing the existence of a roton-like excitation [23].

In the literature, both ground states and collec-
tive excitations of homogeneous systems are discussed.
With the use of a physically straightforward variational
method, ground states are demonstrated to include plane
wave, stripe, and conventional BEC phases [41, 43]. The
full phase diagram can be labeled by various parameters,
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such as δ,Ω, and the nonlinear coefficients g [41, 43, 115].
Once the ground states are known, their collective excita-
tions can be analyzed using the standard Bogoliubov-de-
Gennes (BdG) equations. It has been shown that the ex-
citation spectrum of a plane wave phase features a roton-
like structure [23, 115–117]. The stripe phase, which is a
superfluid phase with a broken continuous translational
symmetry due to density crystallinity, exhibits an exci-
tation spectrum comprised of two linear phonon modes
[47].

The roton-like structure of the plane wave phase can
be understood in the following way. For a conventional
BEC, the collective excitation spectrum is considered as
an overall upwards displacement of the linear spectrum
due to the mean-field repulsive interaction energy. At the
same time, we consider the long wavelength regime, |q| <
1/ξ, where q is the quasimomentum of the excitation
and ξ is the healing length. The excitation spectrum in
this regime has a linear dispersion that generates phonon
modes. The same intuitive picture is used for SOC BECs.

First, let us begin from a linear system with the Hamil-
tonian

Hsoc = −1

2

∂2

∂x2
− i ∂

∂x
σz +

δ

2
σz +

Ω

2
σx. (29)

The corresponding spectrum is characterized by a double
well structure in momentum space as shown by the dot-
ted line in Fig. 11(a). The collective excitation spectrum
can be constructed by an upwards shift of the double
well and the creation of a phonon mode in the long wave-
length regime, as shown by the solid line in Fig. 11(a).
Besides the well-known phonon mode, there is a clear
parabolic minimum at finite quasimomentum in the ex-
citation spectrum. Such a minimum is analogous to a ro-
ton excitation in the context of superfluid helium [118–
121] and systems with long-range [122–125] (or finite-
range [126, 127]) interactions. However, in this regime
the minimum at finite momentum originates from the
double well structure of the linear spectrum. For other

parameter regimes, such as the regime of very large δ,
no double well exists in the linear spectrum and such
minima disappear accordingly. To distinguish this type
of roton excitation from the one that could be found in
systems with long-range interaction or in superfluid he-
lium, we call the minimum a roton-like excitation.

We experimentally measure the roton-like excitation
by performing Bragg spectroscopy [23]. This experimen-
tal technique has become a standard method for mea-
suring the collective excitations of a BEC [128]. Since
its first employment in BEC systems [129], Bragg spec-
troscopy has been used to reveal excitations in diverse
situations, such as homogeneous BECs [131–133], BECs
in optical lattices [134–137], and dipolar BECs [138].

Our experimental results are interpreted by theoretical
analysis [23]. A BEC is described by the Gross–Pitaevskii
(GP) equation,

HsocΨ +HintΨ = µΨ, (30)

where µ is the chemical potential, Hsoc the linear Hamil-
tonian in Eq. (29), and Hint the nonlinear term described
in Eq. (16). The general wave function Ψ↑,↓(x, t), is given
by

Ψ↑,↓(x, t) = e−iµt+ikx [Φ↑,↓(x, t) + δΦ↑,↓(x, t)] , (31)

where k, Φ↑,↓, and δΦ↑,↓(x, t) are the momentum of the
ground state, the ground state, and the perturbations of
the system, respectively. These perturbations are given
by

δΦ↑,↓ = U↑,↓(x) exp(iqx− iδωt)
+V ∗

↑,↓(x) exp(−iqx+ iδω∗t), (32)

where U , V are the two amplitudes, q is the quasimo-
mentum, and δω is the frequency of the perturbations.
Substituting the general wave-function into the time-
dependent GP equations, and keeping the terms U and
V linear, we obtain the BdG equations,



H↑(k) + (q + k)
Ω

2
+ g↑↓Φ↑Φ

∗
↓ g↑↑Φ

2
↑ g↑↓Φ↑Φ↓

Ω

2
+ g↑↓Φ

∗
↑Φ↓ H↓(k)− (q + k) g↑↓Φ↑Φ↓ g↓↓Φ

2
↓

−g↑↑Φ
∗2
↑ −g↑↓Φ

∗
↑Φ

∗
↓ −H↑(−k) + (q − k) −

(
Ω

2
+ g↑↓Φ

∗
↑Φ↓

)
−g↑↓Φ

∗
↑Φ

∗
↓ −g↓↓Φ

∗2
↓ −

(
Ω

2
+ g↓↓Φ↑Φ

∗
↓

)
−H↓(−k)− (q − k)




U↑

U↓

V↑

V↓

 = δω


U↑

U↓

V↑

V↓

 , (33)

where H↑(k) = −µ + (q+k)2

2 + 2g|Φ↑|2 + g|Φ↓|2 + δ
2 and

H↓(k) = −µ + (q+k)2

2 + g|Φ↑|2 + 2g|Φ↓|2 − δ
2 . Note that

all our GP and BdG equations are dimensionless. We use

2ERam = (h̄kRam)2/m as the unit of energy. In this unit,
the dimensionless SOC strength γ = 1.

The collective excitation spectrum δω is calculated by
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Fig. 11 (a) Single-particle dispersion (red dotted line)
and BdG spectrum (blue solid line) of a SOC BEC for a
nonlinear coefficient g = 0.186, Raman detuning 0.28ERam
(δ = 2π × 500 Hz), and Rabi frequency of 2.5ERam. (b) The
roton-like mode softening with decreasing Raman detuning
δ. The lines correspond to Raman detuning 1ERam, 0.5ERam,
and 0 from top to bottom. Reproduced from Ref. [23].

diagonalizing the BdG equations. A typical result for a
plane wave ground state in the case where g↑↑ = g↓↓ =
g↑↓ is shown by the solid line in Fig. 11(a). However,
we find that when the Raman detuning δ is decreased,
the roton-like structure softens as depicted in Fig. 11(b).
The softening of the roton-like minimum becomes clearer
when we consider miscible nonlinear coefficients (such as
the ones in Fig. 12, g↑↑ = g↓↓ ≫ g↑↓). For a thresh-
old value of the Raman detuning δ, the excitation en-
ergy becomes negative at the roton minimum (Fig. 12).
Physically, a negative excitation means that the excited
energy is smaller than the ground state energy. The ex-
cited state is thus energetically more preferable than
the ground state, or, in other words, the ground state
is energetically unstable. Therefore, the parameters for
which the roton minimum touches zero establish a crit-
ical boundary. Beyond this boundary (corresponding to
a much smaller Raman detuning), plane waves suffer an
energetic instability. At that moment, the plane wave
ground states cease to exist and the system enters into
the stripe phase.

From the above study, we conclude that roton-like
minimum softening is of great interest, because we are
able to identify the phase transition between the plane
wave phase and the stripe phase. In fact, roton soften-
ing is very important in the literature, because it be-
comes a possible route to generate a supersolid, an exotic
phase of matter featuring superfluidity and density crys-
tallinity at the same time. Interestingly, the stripe phase
can also be understood as a kind of supersolid [47]. We
would like to emphasize that, even though the roton-like
minimum here is due to single particle physics, its soft-
ening relates to the supersolid phase transition, exactly
correlating to true roton softening in long-range interac-
tions and superfluid helium systems. Finally, we mention
that the phase transition between the plane wave and

stripe phases is of first order [43], just as for most other
superfluid–supersolid transitions.

Because the roton-like minimum is an outstanding
characteristic of the system, in our experiment we delib-
erately arrange the Bragg beams such that they probe
the roton minimum. To perform Bragg spectroscopy, two
counter-propagating Bragg laser beams are incident on
the elongated SOC BEC. The Bragg beams are perturba-
tive and drive transitions between the ground state and
collective excitations. When tuned on resonance through
the matching of momentum and energy imparted by the
Bragg beams, the BEC becomes excited. The physical
mechanism of Bragg spectroscopy is a two-photon reso-
nance, schematically shown in Fig. 13(b). The momen-
tum imparted by the Bragg beams is made equal to the
momentum of an excitation at the position of the roton-
like minimum [around q = 1 in Fig. 13(b)] by choosing
appropriate parameters for the wavelength of the Bragg
beams and the incident angle between them. Resonances

Fig. 12 Roton-like minimum softening and energetic
instability for decreasing Raman detuning δ in a miscible
regime (g11 = g22 = 0.186, g12 = 0.08) with Ω = 2.5ERam.
The lines correspond to the Raman detuning of 0.6ERam,
0.4ERam, 0.2ERam and 0 from top to bottom. Reproduced
from Ref. [23].

Fig. 13 (a) Bragg spectroscopy for a SOC BEC. h̄Ω =
3.5ERam and δ = 2π× 500 Hz. Each point is an average over
four measurements. (b) Schematic description of the transi-
tions corresponding to the three peaks in the spectrum. Re-
produced from Ref. [23].
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occur when tuning the frequency difference between the
beams. As shown in Fig. 13(b), once the input momen-
tum is fixed, there are three primary resonance condi-
tions, labeled by α, β, and γ in Fig. 13(b). Two of the
resonances (α and β) occur in the lower branch of the ex-
citation spectrum, where one (β) is located at the roton-
like minimum. The remaining resonance (γ) occurs in
the higher branch. Another resonance should occur in
the higher branch in the negative quasimomentum di-
rection, but this resonance requires a large resonant en-
ergy. Because it is not relevant to the roton-like struc-
ture study, we do not consider this resonance. The Bragg
spectroscopy signals are depicted in Fig. 13(a) by count-
ing the number of atoms in the excited state. By fitting
the position of each resonant peak, we obtain the exci-
tation spectrum.

Roton-like mode-softening can be observed by varying
the Raman detuning, δ. By repeating the process used to
find the position of the resonant peaks in Fig. 13(a) for
different values of the detuning, the data of Fig. 14(a)
are obtained. One can easily see that the positions of the
Bragg peaks are shifted as a function of δ; The roton-like
mode (β) softens for decreasing positive values of the Ra-
man detuning. Figure 14(b) is a zoomed-in plot of the
roton-like mode softening. We note that the softening
does not reach zero, and there is always a roton mini-
mum gap [the lowest value shown in Fig. 14(b)]. This is
because the experimental nonlinear coefficients are such
that the system is in the very weakly miscible regime.
The three coefficients are nearly equal (g↑↑ ≈ g↓↓ ≈ g↑↓),
which does not support the stripe phase as a ground
state for experimentally convenient Raman laser powers.
Therefore, regardless of the value of the Raman detun-
ing, the ground state is always in the plane wave phase.

Fig. 14 (a) Location of Bragg peaks as a function of Ra-
man detuning. Each point is an average over four data runs.
These data were taken for h̄Ω = 3.5ERam. The vertical er-
ror bars in (a) are approximately the symbol size. The data
quality in the uppermost branch is impacted by the small-
ness of the spin overlap between the initial and final state.
(b) Zoomed-in view of the data for peak β. The lines in (a)
and (b) represent the result of theoretical calculations. Re-
produced from Ref. [23].

The existence of the finite roton minimum gap prevents
the system from transitioning from plane wave to stripe
phases. Furthermore, we find that there is a symmetry
between the data points for positive and negative de-
tuning. The symmetry originates directly from the time-
reversal-like symmetry of the Hamiltonian (29) and the
GP equation (30), described by RδKσx, where Rδ flips
the sign of the detuning, RδδR†

δ = −δ, and K is the com-
plex conjugation operator. When the Raman detuning
becomes negative, the shape of the dispersion relation of
the Hamiltonian (29) changes such that the ground state
of the BEC now has a quasimomentum opposite to the
value at positive detuning.

Finally, we point out that during our experiments,
two other groups performed Bragg spectroscopy mea-
surements of roton-like structures in a BEC [29, 139].
Thus, Ref. [29] uses a system similar to ours and the
roton-like minimum softening is observed by fixing the
Raman detuning, δ, and varying the tuning of the Rabi
frequency, Ω.

4.2 Collective dynamics: Zitterbewegung

The collective dynamics of homogeneous BECs with ex-
perimentally realizable SOC have been investigated in
Refs. [140–145]. The unique and distinguished dynami-
cal feature of these systems is the coupling between the
spin dynamics and motional degrees of freedom (such as
center-of-mass motion). The coupling between the spin
dynamics and external degrees of freedom can be imple-
mented in two different ways: the spin and momentum
can be connected through SOC or by spin-dependent in-
teractions. In the presence of SOC, spin dynamics di-
rectly affects the behavior of the momentum. In the pres-
ence of spin-dependent interactions, spin dynamics af-
fects the interaction energy, subsequently leading to a
change of the external dynamics such as the breathing
mode [140]. In this section, we review our experiments
investigating the coupling between the spin oscillation
and an oscillation of external quantities such as veloc-
ity and position induced by a sudden quenching of the
spin–orbit coupling parameters [21].

Our observations relate to Zitterbewegung (ZB), i.e., a
rapidly trembling motion first predicted for a relativistic
Dirac particle. It is one of the outstanding predictions
from relativistic quantum mechanics due to Schrödinger
[146]. In a Dirac system, ZB is generated by the interfer-
ence of positive and negative energy states. The direct
observation of ZB of real relativistic electrons is diffi-
cult because the amplitude of the trembling motion is
extremely tiny and its frequency is extremely high [147].
However, such exotic motion has been simulated experi-
mentally in different systems such as trapped ions [148],
optical waveguide arrays [149] and BECs [17, 21]. The
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motivation behind these experiments [17, 148, 149] is the
preparation of the simplest Dirac system having one time
and just one spatial dimension. Such a 1+1-dimensional
Dirac system is described by a two-component spinor.
The dispersion exhibits two branches. The gap between
these two branches is related to the mass of the parti-
cle. Because the two bands are inverted relative to one
another, the velocity of a particle with a given quasi-
momentum is opposite in the two branches. Therefore,
Rabi oscillations between the two branches are accom-
panied by a velocity oscillation (furthermore leading to
an oscillation of the particle’s position), which is ZB. For
the observation of the effect, it is not essential that the
velocity of the particle is exactly opposite for the two
branches. As described by the theoretical proposals of
Refs. [150, 151], bands split by SOC demonstrate ZB as
long as the two velocities are different. Furthermore, the
particles do not need to be placed exactly at the position
of the avoided crossing between the two dispersion bands
to observe the motion.

In our experiments, we exploit the 1D SOC to simu-
late ZB [21]. We first prepare a SOC BEC as described in
detail in the previous sections. The experimental scheme
is shown in Figs. 15(a) and (b). Only two of the three
ground states of 87Rb atoms are coupled by Raman
beams. We first prepare a BEC in the ground state of
the lower spin–orbit band with a quasimomentum at the
band minimum. Then, the collective dynamics is induced
by a rapid jump in the Raman detuning δ [Fig. 15(c)] or
the Rabi frequency Ω [Fig. 15(d)]. The quenching of the
Raman detuning from δ to −δ can be implemented by
a sudden jump in the frequency difference between the
two Raman lasers, because a relative phase jump of π
between the Raman lasers leads to a jump of the Rabi
frequency from Ω to −Ω. In the experiment, we record
the mean velocity ⟨vx⟩ of the atoms in the direction of
the Raman coupling, which is defined as [21]

⟨vx⟩ =
h̄

m
(q + kRam ⟨σz⟩) =

N↑v↑ +N↓v↓
N

, (34)

where N is the total atom number and N↑ and N↓ are
the number of atoms in the upper and lower component,
respectively.

v↑ = h̄(q + kRam)/m, v↓ = h̄(q − kRam)/m, (35)

are the velocities of the two components, where kRam is
the magnitude of the wave vector of one Raman laser
projected onto the x direction [Fig. 15(a)] and q the
quasimomentum. Note that there is a 2h̄kRam/m veloc-
ity difference between the two components due to the
laser momentum. From the first equality of Eq. (34), we
can see that the spin oscillations of ⟨σz⟩ lead to oscilla-
tions in ⟨vx⟩ and thus to ZB. We measure N↑,↓ and the
quasimomentum q for each time step after quenching the

Fig. 15 (a) Experimental scheme for the creation of SOC.
(b) The two-photon interaction between Raman lasers and
the F = 1 manifold of a 87Rb BEC. (c) Typical band struc-
ture before (dashed-black) and after (solid-red) quenching the
system by changing the detuning from δ to −δ. The wave
packets symbolically show the wave function directly after
the quench. The short time dynamics are dominated by ZB
oscillations. (d) Similar to (c), but for a jump of the rela-
tive phase between the two Raman beams, i.e., quenching Ω
to −Ω. The band structure is unaltered by the phase jump.
Reproduced from Ref. [21].

Raman parameters by performing time-of-flight imaging
in the presence of a spin-resolving Stern–Gerlach field,
which separates the two components. For the numerical
analysis, we use the 2D GP equation in the presence of a
weak harmonic trap to simulate the experimental cigar-
shaped geometry. We first find the ground state through
imaginary time evolution for fixed SOC parameters. The
mean velocity ⟨vx⟩ is then traced numerically after the
quench.

Experimental and theoretical results obtained by
quenching the detuning δ are shown in Fig. 16. Here
Ω = 2.5ERam and the initial detuning is δ = 6.25ERam.
The detuning is then quenched to δ = −6.25ERam, where
ERam = h̄2k2Ram/(2m) is the recoil energy. The dynam-
ics after the quench features a rapid population oscil-
lation between the two components. An experimental
snapshot obtained by time-of-flight imaging is shown in
Fig. 16(c). The time evolution of the mean velocity is
shown in Fig. 16(a). Both the experimental data (open
circles) and the results of a numerical calculation (solid
line) indicate that the mean velocity oscillates perfectly
for the first few periods. The measured and calculated
quasimomenta are illustrated in the top of Fig. 16(a) by
the filled black circles and the black line, respectively.
On such short time scales, the quasimomentum is almost
constant [i.e., q = kx in Fig. 16(c)]. The ZB frequency is
determined by the energy splitting between the two SOC
bands. For the parameters used in Fig. 16(a) the ZB fre-
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Fig. 16 (a) Experimental observation of the ZB oscilla-
tion of ⟨vx⟩ for Ω = 2.5ERam and δ quenched from 6.42ERam
to −6.42ERam. Open circles are experimental data, the black
line is from the numerical simulations of the GP equation,
and the dashed red line is an analytical prediction from the
single-particle Hamiltonian. Experimental (black dot) and nu-
merical (solid line) quasimomenta are shown in the top part
of the plot. (b) ⟨vx⟩ for numerical simulation of the experi-
mental parameters with [solid line, same as (a)] and without
(dashed line) interactions. (c) Experimental image taken at
t = 325 µs, showing the Stern–Gerlach separation and the
2h̄kRam photon momentum separation of the bare states. (d)
Experimental (open circles) and numerical results (filled cir-
cles) for the ZB oscillation frequency vs. δ after the quench.
The dashed line shows the band splitting calculated from the
effective two band model for Ω = 2.5ERam. The experimental
error bars are determined from fit uncertainties, shot-to-shot
variations of kx, and calibration uncertainty of Ω. Repro-
duced from Ref. [21].

quency is 3.62Er. The oscillation frequencies obtained
for different values of δ are plotted in Fig. 16(d). The
splitting between the spin–orbit bands without atomic
interactions is ∆E = 2

√
(δ/2 + h̄2qkRam/m)2 + (Ω/2)2,

which is shown by the dotted line in Fig. 16(d). The
agreement between the energy splitting and the mea-
sured oscillation frequency is very good.

After a few perfect oscillations, the ZB damps. Two
mechanisms might be responsible for the experimentally
observed damping: the finite momentum distribution of
the initial BEC and the wave packet separation in real
space. In a realistic experiment, the harmonic trap ex-
pands the momentum distribution of a BEC. The initial
ground state has a finite momentum distribution around
the minimum of the lower spin–orbit band, resulting in
the ZB damping [151]. In contrast, the repulsive atomic
interactions reduce the momentum distribution by ex-
panding the wave function in the spatial domain. In this
way, the many-body effects reduce the damping. Regard-
ing the second damping mechanism, we note that the two

spin–orbit bands have different group velocities. Thus,
the wave packets of the two bands gradually separate in
real space. The reduction of the overlap between the two
wave packets then provides another ZB damping mech-
anism. After ZB has damped out, we observe dipole os-
cillation. The damping and subsequent dipole oscillation
of the ZB are discussed in details in Ref. [21].

Similar ZB dynamics can also be triggered by quench-
ing of the Rabi frequency Ω. We demonstrate this by
quenching the Rabi frequency from Ω to −Ω, see the
short-time dynamics in Fig. 17(a). In this case, there is
no change in the SOC band structure before and after the
quench [Fig. 15(d)]. As an application, we can use such a
quench to load a BEC into the upper SOC band. For this,
two-phase jumps of the Raman lasers are implemented.
We start with a BEC at the minimum of the lower spin–
orbit band with Ω = 3.5ERam and δ = 1.6ERam, where
the majority of the population is | ↓⟩. The first phase
jump, changing Ω to −Ω, triggers the ZB [Fig. 17(a)].
After half a period of the ZB, i.e., at tZ = 40 µs, the
atoms are in the upper band where the vast majority of
the population is | ↑⟩. We immediately apply the second
phase jump that flips −Ω back to Ω. For the specific
parameters used in this example, we load approximately
80% of the BEC into the upper band near q = kx.

This technique provides a pathway to explore upper
band dynamics. The time sequence of the experiment is
shown in Fig. 17(b). After loading a BEC into the upper
band, it is allowed to evolve for some time tW − tZ . The

Fig. 17 Loading of the upper band via two-phase jumps
separated by 40 µs where Ω = 3.5ERam and δ = 1.6ERam. (a)
Experimentally observed ZB oscillations (open circles) after
a single-phase jump and the corresponding numerical simu-
lations (solid line) of the experimental conditions. (b) The
time sequence. (c, d) Experimentally observed quasimomen-
tum and spin polarization, respectively. Insets are experimen-
tal images taken during the evolution, where the vertical line
indicates zero kinetic momentum. Reproduced from Ref. [21].
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quasimomentum [Fig. 17(c)] and spin polarization, de-
fined as (N↑ −N↑)/(N↑ +N↑), [Fig. 17(d)] are recorded
for various evolution times. We see that the BEC moves
toward the minimum of the upper band along the upper
band dispersion [Fig. 15(d)]. For comparison, we calcu-
late the expected single-particle dynamics for atoms in
the upper band [plotted as lines in Figs.17(c) and (d)],
based on the upper band dispersion relation. Both the
predicted quasimomentum and spin polarization fit the
experimental results very well, which indicates the single-
particle nature of our observation.

In conclusion, quenching provides a flexible tool to ma-
nipulate SOC BECs. By quenching SOC parameters, rich
dynamics is induced in the system. In our experiments,
we have demonstrated how the physics of the ZB can be
observed by quenching either the detuning or the Rabi
frequency. Finally, we note that the investigation of the
ZB has been generalized theoretically to spin-1 BECs
with 2D SOC [153].

5 Spin–orbit-coupled lattice BEC: Flat bands
and dynamical instability measurements

In this section, we review our work on BECs in an optical
lattice with SOC [24, 104]. Optical lattices have already
become one of most important experimental means to
manipulate atoms, because we can have full experimen-
tal control of the system’s initial conditions [154]. The
combination of a periodic potential and SOC is particu-
larly intriguing; many topological phenomena and exotic
spin models can be constructed using this method (see
Ref. [64] for a review). For example, in their classical
paper [155], Kane and Mele studied intrinsic SOC in a
honeycomb periodic potential and revealed the existence
of the quantum spin Hall effect, opening an avenue to
study topological insulator physics with a Z2 index.

We now focus on nonlinear Bloch spectra and the cor-
responding nonlinear Bloch states in a SOC lattice BEC.
It is well known that for a single-particle system with pe-
riodic potentials, Bloch’s theorem applies. For a many-
body BEC system, Bloch states are intriguing because
they directly relate to the experimental preparation of
the system. The stability of Bloch states is crucial to the
superfluidity of a BEC [156].

5.1 Isolated flat bands

We have already described how SOC can change the
spectrum of a homogeneous BEC (e.g., giving rise to a
double-well spectrum). In optical lattices, we find that
SOC also dramatically modifies the Bloch spectrum.
The most outstanding feature concerns the lowest Bloch
band, which may be flat [104, 157]. In the following dis-

cussion, we first provide an intuitive mechanism behind
the existence of the flat band, and then demonstrate its
properties.

The flat band may be understood in the following way.
The spectrum of the SOC Hamiltonian is described by
H0 = p2x/2 + γpxσz + Ωσx and is characterized by two
branches µ± = k2/2±

√
γ2k2 +Ω2. In the lower branch,

and for low values of the Rabi coupling strength Ω, there
is a double-well structure as demonstrated in Fig. 18(a),
with minima found at kmin = ±

√
γ2 −Ω2/γ2. The up-

per branch is found at an energy gap 2Ω at momentum
k = 0. By increasing Ω, the energy gap also increases,
appearing as though the Rabi frequency suppresses the
central peak of the lower branch at k = 0.

In the presence of an optical lattice, the single-particle
Hamiltonian becomes H0 + V0 sin2 x. The eigenvalues of
this single-particle system form Bloch energy bands and
a gap structure. We define the first Brillouin zone edges
by the reciprocal lattice vectors, kedge = ±1, which are
represented by the vertical solid (blue) lines for γ < 1 and
the vertical dashed (red) lines for γ > 1 in Fig. 18(a).

The mechanism for flat band generation is slightly dif-
ferent in two regimes γ < 1 and γ ≥ 1. For γ < 1, at
Ω = 0, |kmin| = γ < |kedge|. At the edges of first Brillouin
zone, energy gaps are opened to form the lowest Bloch
band [see Fig. 18(b)]. The width of the lowest band is
determined by the energy at the Brillouin zone edges
measured relative to the energy at kmin [i.e., the value of
h in Fig. 18(b)], and by the height of the central peak
at k = 0. If γ is close to 1, indicating that the original
band minima kmin are near the edges, the band edges be-
come the lowest Bloch band minima, i.e., h = 0, and the
band width only depends on the central peak height. By
adiabatically increasing the Rabi coupling term Ω, the
height of the central peak is gradually reduced. There-
fore, the lowest band could become very flat for a specific
region where the coupling is very strong. However, if γ is
much smaller than 1, at Ω = 0, the minima at kmin ap-

Fig. 18 Formation of isolated flat bands. (a) Energy spec-
trum µ±(k) of a single particle Hamiltonian H0. The vertical
solid (or dashed) lines represent the possible location of the
edges of the first Brillouin zone for γ < 1 (γ > 1). (b) Lowest
Bloch band for γ < 1. The gray arrow describes the suppres-
sion of the central peak with increasing Ω. (c) Lowest Bloch
band for γ ≥ 1. The solid (green) line is µ−(k), while the
dotted lines are µ−(k ± 2). Reproduced from Ref. [104].
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proach zero inside the first Brillouin zone and h will have
a large energetic value. In this case, one cannot change
the value of h by tuning Ω. Thus, the width of the lowest
band cannot be squeezed flat.

In the other regime, γ ≥ 1, the minima at kmin of
H0 are located outside of the first Brillouin zone [see
Fig. 18(c)] at Ω = 0. The lowest band is thus generated
by folding the energy spectrum into the first Brillouin
zone. This is done through shifting the energy spectrum
of H0 by a reciprocal lattice vector in momentum space.
The band minima now are located at kmin ± 2, and then
the physics is similar to the case γ < 1. Moreover, for γ ≥
1, the minima of the lowest band shift toward the band
edges when Ω is adiabatically increased from 0. There
is a specific range of Ω for which the band minimum
remains at the band edge. In this region, a flat band can
be realized where the central peak is suppressed with
increasing Ω.

The above mechanism can be tested numerically, as
demonstrated in Ref. [104]. To quantify the flatness of
the lowest band, we define the ratio, R, as

R =
Band gap

Width of the lowest band , (36)

where the band gap describes the energy gap between
the lowest and the first band at k = 0. Figures 19(a)
and (b) show the ratio R for the case of γ = 0.74 < 1
and γ = 1.05 > 1, respectively, neglecting interatomic
interactions (solid lines). Both cases indicate that for an
appropriate Ω, the lowest Bloch band can be very flat in
comparison with the gap between the lower two bands.

Fig. 19 Flatness (ratio R) of the lowest Bloch band. V0 = 1.
(a) γ = 0.74 and c = 0. (b) γ = 1.05. Solid line c = 0 and
dashed line c = 0.05. In the inset, a typical example of a flat
band is shown with Ω = 1.15, c = 0.05. (c) The maximum
flatness as a function of γ with c = 0. (d) The maximum
flatness as a function of c with γ = 1.05. Reproduced from
Ref. [104].

We note that the maximum flatness can reach 20 for
γ = 0.74 and 170 for γ = 1.05. The suppression of the
flatness for γ = 0.74 < 1 agrees with our intuitive phys-
ical mechanism: The band minima are far enough away
from the first Brillouin zone edges that the lowest band
cannot be squeezed to be exactly flat. The maximum flat-
ness depends on the SOC strength, γ. With increasing
γ, the lower band becomes flatter as shown in Fig. 19(c).

For a realistic BEC, the effects due to the nonlin-
ear interactions between the atoms need to be taken
into account. The numerical analysis should be based
on the corresponding GP equation, ih̄∂Φ/∂t = (H0 +
V0 sin2 x)Φ+ c(|Φ↑|2 + |Φ↓|2))Φ. The nonlinearity, c, de-
creases the maximum flatness of the lower band but does
not destroy it, as shown in Fig. 19(d). The maximum
flatness with increasing nonlinearity is still very large. A
typical nonlinear flat Bloch spectrum is shown in the in-
set plot of Fig. 19(b). For comparison, the dependence of
the ratio R on Ω at γ = 1.05 is plotted for the nonlinear
(dotted line) and linear (solid line) cases in Fig. 19(b).

5.2 Experimental measurement of dynamical
instability using a translating optical lattice

One of the many interesting questions regarding a BEC
in an optical lattice is the stability of the system [156].
Mathematically, the behavior of a BEC in a lattice is
described by the nonlinear GP equation. A solution of a
nonlinear equation may suffer from dynamical instabili-
ties, i.e., perturbations to a solution can grow exponen-
tially with time, resulting in the destruction of the solu-
tion. Another mechanism of instability can also destroy
BEC: the energy instability. If the state of the system
is not at a local minimum, the system will emit excita-
tions to access the local minimum. Hence, the state is
unstable. Both dynamical and energetic instabilities of a
lattice BEC have been investigated extensively in theory
[158–165] and experiment [166–168].

Theoretically, once a nonlinear Bloch wave is known,
its stability can be analyzed by solving the BdG equa-
tions. Using this method, the stability of nonlinear Bloch
waves at any quasimomentum k in an arbitrary band can
be calculated [158–163, 165, 165]. In our experiments,
the BEC is initially prepared in the ground state, which
is located at the minimum of the lowest Bloch band. A
moving optical lattice is then utilized to load a BEC ef-
fectively into its destined location in the band structure
[167, 168]. Due to the Galilean invariance of a regular
BEC, the physics of a moving optical lattice is equiva-
lent to that of physically moving a BEC. However, for a
SOC BEC, the Galilean invariance is broken, and these
two schemes are no longer equivalent [44, 169]. Moreover,
the results are expected to be asymmetric for lattices
moving in different directions.
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Motivated by the importance of stability and the lack
of Galilean invariance, we experimentally observe the dy-
namical stability of a SOC BEC in a translating optical
lattice [24]. We do not consider energetic instabilities be-
cause the time scale for an energetic instability is very
long compared to that of a dynamical instability [167].
Furthermore, energetic instabilities require a dissipation
of energy. In BEC experiments, this dissipation of en-
ergy can be introduced by a thermal atom cloud. The
total trapping potential of the combined dipole trap and
optical lattices is very shallow, providing an evaporative
cooling mechanism that allows thermal atoms to escape
from the trap. This prevents interactions between the
BEC and the thermal atoms, thus negating any energy
instabilities in the system.

In the following, we describe our theoretical analysis
and experimental approach. A SOC 87Rb BEC is pre-
pared by the Raman dressing technique described in pre-
vious sections [see the experimental scheme shown in
Figs. 20(a) and (b)]. The corresponding single-particle
system is described by the Hamiltonian

Hsoc =
p2x
2m

+ γpxσz +
h̄δ

2
σz +

h̄Ω

2
σx, (37)

where SOC occurs in the x-direction with strength γ =
h̄kRam/m, momentum kRam = 2π/(λRam

√
2), and wave-

length λRam, determined by the Raman beams. The
energy spectrum of Hsoc is E±(kx) = h̄2k2x/(2m) ±
h̄
√
(γkx + δ/2)2 +Ω2/4. A typical spectrum for our ex-

perimental parameters is depicted in Fig. 20(c).
The translating optical lattice is generated by two

additional beams that are co-propagating with the Ra-
man beams. The lattice velocity, v = π∆ν/klat, depends
on the frequency difference ∆ν between the two lat-
tice beams, where klat = 2π/(λlat

√
2), and λlat is the

wavelength of the lattice beams. The lattice intensity
is ramped up adiabatically in the experiment, and the
single-particle Hamiltonian of the SOC lattice system be-
comes

Hsp = Hsoc + U0 sin2[klat(x− vt)]. (38)

In our experiment, the optical lattice amplitude is then
fixed at U0 = −1.4Elat, where Elat = h̄2k2lat/(2m).

Because the Hamiltonian Hsp is periodic, it features
a Bloch spectrum. First, we consider a stationary lat-
tice with v = 0. The spectrum for this case is shown
in Fig. 20(d) and can be understood in the following
way: We shift the SOC spectrum E±(kx) by integer
multiples of the reciprocal lattice vector 2nh̄klat in quasi-
momentum, where n = 0,±1,±2, . . .. Band gaps in the
Bloch spectrum appear wherever the intersections be-
tween E±(kx) and E±(kx + 2nklat) occur.

Next, we consider a translating optical lattice with v ̸=
0. In this case, the Hamiltonian Hsp is time dependent

Fig. 20 (a) Experimental scheme. The BEC (yellow
hashed) is confined in an optical dipole trap (solid green).
Two sets of laser beams are optically aligned to intersect the
BEC at a 45◦ angle for the generation of SOC (white ar-
rows) and a translating optical lattice (striped arrows). (b)
Raman coupling scheme in the F = 1 manifold of 87Rb with
detuning δ. (c) Typical band structure E±(kx) of HSOC with
the color (grey scale) indicating the spin-polarization, defined
as the relative population difference of the bare spin compo-
nents (|ψ↑|2 − |ψ↓|2)/(|ψ↑|2 + |ψ↓|2). The BEC is prepared at
the minimum of the lower band (circle). The arrows indicate
a possible two-photon coupling due to the lattice translat-
ing with negative (dashed) or positive (solid) velocity. (d)
Bloch spectrum of a stationary optical lattice in the presence
of spin–orbit coupling. The lines correspond to E±(kx) and
E±(kx + 2nklat), where n is an integer. The spin composi-
tion is encoded in the line color (grey scale). The parameters
used for (c) and (d) are h̄δ = 1.6 ERam, h̄Ω = 2 ERam with
the additional parameters U0 = −1.4Elat and v = 0 for (d).
Reproduced from Ref. [24].

in the lab frame. It is then better to go into a co-moving
frame where the optical lattice is stationary. This leads
to the stationary Hamiltonian

HM
sp =

p2x
2m

+ γpxσz +
h̄δ

2
σz +

h̄Ω

2
σx

+U0 sin2(klatx)− vpx (39)

in the co-moving frame. After a substitution P = px −
mv, one obtains H̄M

sp = P 2

2m +γPσz+(δ+2mγv/h̄) h̄2σz+
h̄Ω
2 σx + U0 sin2(klatx), where a constant energy term
mv2/2 has been dropped. Comparing the SOC terms
with the original Hsoc, we find that H̄M

sp is non-trivially
different from Hsoc due to the term δ + 2mγv/h̄, which
can be interpreted as an effective detuning of the Raman
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beams. This term depends on the frame velocity v and
signifies the broken Galilean invariance of the SOC BEC
[44].

In the experiment, we observe the dynamical stability
of the BEC as a function of the lattice velocity. After
loading a SOC BEC into the translating lattice at a ve-
locity v, the atoms are held for a variable time τ . For
each τ , the atom number in the BEC is measured. In
this way, we may get decaying behavior if the BEC is
unstable. A loss rate, used to characterize the dynamical
instability of the BEC, can be fitted to the measured de-
cay. Experimental results of the loss rates measured as
functions of lattice velocity are shown in the upper panel
of each plot in Fig. 21. Each panel corresponds to a dif-
ferent Raman detuning δ. For a 1D translating lattice,
there are two directions in which the lattice can move:
negative (blue circles) and positive (red triangles).

The results indicate that for different moving direc-
tions of the lattice, the dynamical stability is quite dif-
ferent. This can be seen especially in the case of negative
lattice motion. For example, for a large negative veloc-
ity there is an observable peak in the loss rate around

v = 9 mm/s in Fig. 21(a), while there is no such peak for
the positive direction. The location of this peak for the
negative motion depends on the detuning; the peak shifts
toward small velocities when the detuning is decreased
(as seen in Fig. 21).

Furthermore, the critical velocity for the first onset of
the instability at low velocities is also different for the
two directions. This becomes much clearer for small val-
ues of δ. For example, in Fig. 21(d), the critical velocity
is approximately 0.4 mm/s for the negative direction and
0.8 mm/s for the positive direction. The general conclu-
sion of these experimental observations is as expected
due to the lack of Galilean invariance: the loss rates for
negative and positive lattice motions are not the same.

In the following, we present a detailed theoretical ex-
planation of these experimental results. According to the
experimental procedure, an effective dispersion relation
should be developed as a function of the lattice velocity v.
Initially, the BEC is prepared in the ground state of the
SOC band E−(kx) of Hsoc. Due to the SOC, the BEC in
such a ground state has a finite quasimomentum, kmin.
When adiabatically ramping up the translating lattice

Fig. 21 Dynamical instability of the SOC BEC as a function of lattice velocity with (a–d) h̄δ/ERam = {3.2, 1.6, 0.8, 0.4},
respectively. The strength of the dynamical instability is measured experimentally by the loss rate of atoms in the BEC
(upper panels), while theoretically it is represented by the largest growth rate of the Bogoliubov excitations (lower panels).
Each resonance (vertical line) is labeled with the number of photons generating the band edge, and where underlined integers
denoting resonances between the upper and lower spin–orbit bands. The solid red triangles (open blue circles) indicate the
positive (negative) direction of the lattice motion. Reproduced from Ref. [24].
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intensity, the quasimomentum of the BEC is approxi-
mately conserved [170]. Therefore, we fix the quasimo-
mentum to be kmin and the only remaining changeable
parameter in HM

sp is v.
The effective dispersion, EM (kmin, v), can be taken

from the Bloch spectrum of HM
sp at kmin. The results are

shown in Fig. 22(a) for h̄δ = 1.6 ERam, h̄Ω = 2 ERam,
and U0 = −1.4Elat, where ERam = (h̄kRam)2/(2m). An
obvious feature of the effective dispersion relation is its
asymmetry with respect to a sign change of the lattice
velocity. The physical origin of this asymmetry is in the
breaking of Galilean invariance.

The thick green line in Fig. 22(a) shows the location
in the effective band structure to which a BEC is loaded
in the experiments by starting at the minimum of the
lower SOC band and adiabatically ramping up the inten-
sity of the moving lattice. To identify further the avoided
crossings that a BEC may encounter for various lattice
velocities, we label the avoided crossings by integers 2n
according to the underlying multi-photon process. Un-
derlined numbers 2n are used to identify resonances oc-
curring between the lower and upper spin–orbit bands.
It is interesting to note that the ordering of the band
gaps is not straightforward and that the positions of the
band gaps are not equally spaced. The exact ordering
and positions strongly depend on chosen parameters δ,
Ω, and the ratio klat/kRam.

For comparison, Fig. 22(b) presents the analogous
band structure for a BEC in a translating lattice without
SOC. As is well known in this case, the effective band
structure and BEC location (thick green line) are sym-
metric with respect to the direction of the motion, the
band edges are equally spaced, and the effective disper-

Fig. 22 Effective band structure as a function of the lat-
tice velocity. The thick green lines indicate the position at
which the BEC is placed in the experiments. (a) A BEC
with SOC and h̄δ = 1.6ERam as shown in Fig. 21(b). (b) A
BEC without SOC. The numbers in the graphs indicate the
order of the associated multi-photon resonances. Reproduced
from Ref. [24].

sion relation recovers the well-known Bloch spectrum.
From the above theoretical analysis, we know the loca-

tion of the BEC as a function of lattice velocity, i.e., we
know which Bloch wave we should use for different lat-
tice velocities. The Bloch spectrum and nonlinear Bloch
wave are calculated by solving the 1D Gross–Pitaevskii
equation in dimensionless form. Then, to model the ex-
perimental observation of the dynamical instability, we
perform the BdG analysis. The detail Gross–Pitaevskii
equations and BdG are presented in the supplementary
material of Ref. [24]. The growth rate of excitations in the
system is estimated as the largest imaginary value of any
eigenvalues of the BdG equations, as this will dominate
the growth. We use this growth rate to describe qual-
itatively the experimental loss rate measurement. The
calculated results are shown in the lower panels of the
plots in Fig. 21.

Through the digital numbers labeling the avoided
crossings in Fig. 22(a), we know that the anomalous peak
in Fig. 21(b) comes from the two-photon resonance 2
between EM

− (kmin, v) and EM
+ (kmin − 2klat, v) (i.e., the

lattice resonance between the lower and upper spin–orbit
bands). For comparison, the large loss feature near v = 2
mm/s is due to the 2-photon resonance within the lowest
spin–orbit band. Even though both of these loss features
arise from two-photon couplings, the 2 feature is weaker.
This is in part due to the reduced overlap of the spin com-
position between EM

− (kmin, v) and EM
+ (kmin − 2klat, v).

In the positive direction of lattice motion, the 2 res-
onance occurs at EM

− (kmin, v) = EM
+ (kmin + 2klat, v).

This only happens at large velocities. For example, in
the case of h̄δ = 1.6 ERam, such a resonance occurs at
v = 21.6 mm/s. At such large velocities, the kinetic en-
ergy of a BEC completely dominates and the effect of the
lattice is diminished. In this regime, the BEC behaves
homogeneously. We know that for a homogeneous BEC,
there is no dynamical instability. Thus, the anomalous
peaks depicted in Fig. 21 are only observed for negative
lattice motion and are not expected for positive lattice
motion.

Finally, we comment that the dynamical instabilities
are most significant near a band gap. This can be seen
clearly in Fig. 21, where the peaks are outstanding at 2
and 2 photon resonance gaps. The dynamical instability
of the system may thus be used as an experimental tool
to calibrate the position of the band gaps.

In conclusion, we have studied both theoretically and
experimentally the properties of the dynamical instabil-
ities of a SOC BEC in a translating optical lattice. It
is found that the instability depends on both the lattice
velocity and the direction of motion, indicating a lack of
Galilean invariance in the system. Finally, we note that a
full ground state phase diagram in the SOC lattice BEC
system was analyzed in a recent study [171].
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We make one final comment. So far, we have discussed
only 1D SOC. The 1D model is easily realized in experi-
ments and is already exhibiting many exotic phenomena.
However, in solid-state systems, the most common types
of SOC are Rashba- and Dresselhaus-coupling, both of
which typically are 2D. Compared to 1D SOC, the 2D
case can exhibit topological properties (such as a nonzero
Berry curvature and Chern number, Majorana fermions,
etc.). This is in contrast to 1D SOC, which does not
lead to topology. Motivated by the generation of topol-
ogy and by the well-established studies of 2D SOC in
condensed matter systems, there are strong theoretical
[10, 172–176] and experimental efforts [30, 35, 36] in the
cold atom community to prepare 2D SOC atomic sys-
tems. The phase diagram of a 2D SOC BEC possesses
more features than the analogous 1D picture and the
dynamics also differs, such as dipole oscillations [52].

6 Conclusion

In conclusion, we have reviewed our contributions to
the theoretical and experimental advances in the field of
SOC BECs and discussed some of the rich physics that
can be found in this experimentally accessible system.
The ground state of the system possesses three possible
phases, depending on the SOC parameters. The transi-
tion between the plane wave phase and the conventional
BEC phase is of Dicke-type type (and therefore a second
order transition), which means that the system can be
mapped to a Dicke model. Because SOC BECs are easy
to access experimentally, they are, therefore, good can-
didates to explore other effects related to Dicke physics
as well. The transition between the plane wave phase
and the striped phase is a first order transition and can
be investigated by looking at the collective excitations
of the ground state in the plane wave phase. Here, the
excitation spectrum features a roton-like minimum and
its softening can be used to detect the phase transition
point. Even though this roton-like structure stems from
a single particle spin–orbit coupling effect, its softening
relates deeply to the physics of supersolids. Hence, it can
be used to understand this phenomenon. Our experimen-
tal measurements show the existence of these roton-like
excitations by performing Bragg spectroscopy. Other col-
lective excitations in a trapped case, such as quadruple
oscillations, are also investigated to identify the phase
transitions in the ground state. Furthermore, we have
discussed the possibility that sudden quenching of the
SOC parameters can lead to collective dynamics that
can simulate the so-called Zitterbewegung, ZB, which
is a well-known effect in relativistic physics. For a SOC
BEC in an optical lattice, we have shown the existence of
isolated flat bands in the lowest Bloch band and system-

atically investigated the dynamical stability, indicating
the existence of a broken Galilean invariance in the sys-
tem.
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