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HIGH DIMENSIONAL EXPANDERS

ALEXANDER LUBOTZKY

ABSTRACT. Expander graphs have been, during the last five
decades, the subject of a most fruitful interaction between pure
mathematics and computer science, with influence and applica-
tions going both ways (cf. [Lub94], [HLWO06], [Lubl2] and the
references therein). In the last decade, a theory of “high dimen-
sional expanders” has begun to emerge. The goal of the current
paper is to describe some paths of this new area of study.

0. INTRODUCTION

Expander graphs are graphs which are, at the same time, sparse and
highly connected. These two seemingly contradicting properties are
what makes this theory non trivial and useful. The existence of such
graphs is not a completely trivial issue, but by now there are many
methods to show this: random methods, Kazhdan property (T') from
representation theory of semisimple Lie groups, Ramanujan conjecture
(as proved by Deligne and Drinfeld) from the theory of automorphic
forms, the elementary Zig-Zag method and “interlacing polynomials”.

The definition of expander graphs can be expressed in several dif-
ferent equivalent ways (combinatorial, spectral gap etc. - see [Lub94],
[Kam17a]). When one comes to develop a high dimensional theorys; i.e.
a theory of finite simplicial complexes of dimension d > 2, which resem-
bles that of expander graphs in dimension d = 1, the generalizations
of the different properties are (usually) not equivalent. One is led to
notions like: coboundary expanders, cosystolic expanders, topological
expanders, geometric expanders, spectral expanders etc. each of which
has its importance and applications.

In §1, we recall very briefly several of the equivalent definitions of
expander graphs (ignoring completely the wealth of their applications).
These will serve as pointers to the various high dimensional generaliza-
tions.

In §2, we will start with the spectral definition. For this one needs
“discrete Hodge theory” as developed by Eckmann ([Ec44]). In this

sense the classical work of Garland [Gar73], proving Serre’s conjecture
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on the vanishing of the real cohomology groups of arithmetic lattices
of p-adic Lie groups, can be considered as the earliest work on high
dimensional expanders. His “local to global” method which treats the
finite quotients of the Bruhat-Tits building has been rediscovered in
recent years, with many applications, some of them will be described
in §2.

In §3, we turn our attention to Gromov’s topological and geometric
expanders (a.k.a. the topological and geometric overlapping proper-
ties). These quite intuitive directions were shown to be related to two
much more abstract definitions of coboundary and cosystolic (high di-
mensional) expanders. The last ones are defined using the language of
Fy-cohomology. Here also a “local to global” method enables to pro-
duce topological expanders from finite quotients of Bruhat-Tits build-
ings of p-adic Lie groups.

Section 4 will deal with random simplicial complexes, while in §5 we
will briefly mention several applications and connections with computer
science.

1. A FEW WORDS ABOUT EXPANDER GRAPHS

Let X = (V, E) be a finite connected graph with sets of vertices V
and edges E. The Cheeger constant of X, denoted h(X), is:
N )
A,Bcv min(|A], |B])
where the infimum runs over all the possibilities of disjoint partitions
V = AUB and E(A, B) is the set of edges connecting vertices in A to
vertices in B.

The graph X is e-expander if h(X) > e.

Let L?(V) be the space of real functions on V with the inner product
(f,g) = > deg(v)f(v)g(v) and L3(V') the subspace of those which are

veV
orthogonal to the constant functions. Similarly, L?(E) is the space of

functions on the edges with the standard inner product.

We fix an arbitrary orientation on the edges, and for e € E we denote
its end points by e~ and e". Let d : L*(V) — L*(E) be the map
(df)(e) = f(et) — f(e7) for f € L*(V) and A = d*d : L*(V) — L*(V)
when d* is the adjoint of d. The operator A is called the Laplacian of
the graph. One can show (cf. [Lub94, Chap. 4]), that it is independent
of the chosen orientation. One can check that

A=I1-M
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when M is the Markov operator on L?(V), i.e.,

1
(M) = G M%@} f().

The smallest eigenvalue of A is 0 and it comes with multiplicity one

if (and only if) X is connected, which we will always assume. The
eigenfunctions with respect to 0 are the constant functions and as A is
self adjoint, L3(V) is invariant under A and the spectral gap

A (X) = inf { <é{}§> f € Lg(V)}

is the smallest eigenvalue of A acting on L3(V).

The following result is a discrete analogue of the classical Cheeger
inequality (and its converse by Buser). This discrete version was proved
by Tanner, Alon and Milman (the reader is referred again to [Lub94,
Chap. 4] for a detailed history).

Theorem 1.1. If X is a finite connected k-reqular graph, then:
h*(X) 2h(X)
< X) <
oz SAhE) ==

We are usually interested in infinite families of k-regular graphs

(“sparse”). Such a family forms a family of expanders (i.e., h(X) > ¢
for the same ¢ > 0, for every X) if and only if \;(X) > & > 0 for
the same &’ for every X. lL.e., Theorem 1.1 says that expanders can be
defined, equivalently, either by a combinatorial definition or using the
spectral gap definition. Expressing this using the adjacency operator
A rather than the Laplacian A: being expanders means that the sec-
ond largest eigenvalue A\(X) of A is bounded away from k, which is the
largest one.

Strictly speaking the notion of expanders requires spectral gap only
in one side of the spectrum of A, but in many applications (e.g. if one
wants to estimate the rate of convergence of the random walk on X
to the uniform distribution) one needs bounds on both sides. Recall
that —k is also an eigenvalue of A iff X is bi-partite. We can now
define: A k-regular connected graph is Ramanujan if all eigenvalues A
of A are either A\ = £k or |A\| < 2v/k — 1. By the well-known Alon-
Boppana theorem, the bound 2v/k — 1 is the best one can hope for
for an infinite family of k-regular graphs. Let us recall that for the
k-regular infinite tree T' = T}, the classical result of Kesten asserts
that the spectrum of the adjacency operator on L*(T}) is exactly the
interval [—2vk —1,2vk —1]. In a way Kesten’s result lies beyond
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the Alon-Boppana theorem and there are many generalizations of this
philosophy (cf. [GrZu99)).

Ramanujan graphs were presented by Lubotzky-Phillips-Sarnak
[LPS88], Margulis [Mar88], Morgenstern and recently by Marcus-
Spielman-Srivastava [MSS15].

There are several other ways to define expanders. Let us mention
here one which has been observed only quite recently and has a natural
extension to high dimensional simplicial complexes.

Let X be a finite connected k-regular graph, with adjacency matrix
A, denote k = ¢+ 1 and

1(X) = max{|Al|[A ev.of A, \# +k}.

So X is Ramanujan iff p1(X) < 2,/g. If X is bipartite, write V = V,UV}
where V) and V; are the two sides, and if not V = V5 = V;. Let

L3(X) ={f € L*(V)| Y _ f(v) =0, fori=0,1}.
veV;
So, u(X) is the largest (in absolute value) eigenvalue of A when acting
on L% (X). For X € [2,/q,q + 1] write A = ¢'/? + ¢P~D/? for a unique
p € [2,00], 50 A = 2,/q when p = 2.
Now, let m : T' = T}, — X be a covering map. For a fixed tqg € T,
let S, ={t e T}distance(t, to) =r} and for f € LE,(X) and t € T, let

f(t) = \S_lrl S f(m(s)) if r = dist(t,tg), i.e. f is the averaging of the
SESy
lift of f around t,.

Theorem 1.2 (Kamber [Kaml17a]). u(X) < X if and only if f €
LPYE(T) for all f € LE,(X),to € T, and € > 0. As a corollary X 1is
Ramanujan iff

f e L¥(T), Vto, Vf, Ve.

2. HIGH DIMENSIONAL EXPANDERS: SPECTRAL GAP

As described in §1, the notion of expander graphs can be expressed
via a spectral gap property of the Laplacian. This aspect has a natural
high dimension version, but to present it one needs the language of real
cohomology. Let us start by recalling the basic notations.

2.1. Simplicial complexes and cohomology. A finite simplicial
complex X is a finite collection of subsets, closed under inclusion, of
a finite set X(©, called the set of vertices of X. The sets in X are
called simplices or faces and we denote by X the set of simplices of
X of dimension ¢ (i-cells), which are the sets in X of size i + 1. So
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XD is comprised of the empty set, X(© - of the vertices, XV - the
edges, X® - the triangles, etc. Let d = dim X = max{i|X® # ()} and
assume X is a pure simplicial complex of dimension d, i.e., for every
F € X, there exists G € X with F C G. Throughout this discussion
we will assume that X(© = {v,... v,} is the set of vertices and we fix
an order v; < vy < ... < v, among the vertices. Now, if F' € X@ we
write F' = {vj,,...,v;,} with v, < vj, < ... <wv;,. fG € XV we
denote the oriented incidence number [F : G] by (—1)" if F\G = {v;,}
and 0 if G ¢ F. In particular, for every vertex v € X© and for the
unique face ) € XV [v: 0] = 1.

If F is a field then C*(X,F) is the F-vector space of the functions
from X to F. This is a vector space of dimension ’X (i)} over F where
the characteristic functions {eF } FeX (i)} serve as a basis.

The coboundary map 6; : C* (X, F) — C*™! (X, TF) is given by:

6:f)(F)= > [F:G]f(G).

Gex(®)

So, if f = e for some G € X@ ;e is a sum of all the simplices of
dimension i + 1 containing GG with signs 41 according to the relative
orientations.

It is well known and easy to prove that §;00; _; = 0. Thus B* (X,F) =
im §;_; - “the space of i-coboundaries” is contained in Z* (X, F) = ker §;
- the i-cocycles and the quotient H* (X,F) = Z! (X,F)/B" (X, F) is the
i-th cohomology group of X over F.

In a dual way one can look at C; (X, F) - the F-vector space spanned
by the simplices of dimension i. Let 0; : C; (X,F) — Ci—1 (X,F)
be the boundary map defined on the basis element F' by: O0F =
Soexen [F: G- G, ie. if F={v,...,v;,} then §;F =3"1_, (1)
{Vigs -+, 05,05} Again 0; o 941 = 0 and so the boundaries
B; (X,F) = im0;y; are inside the cycles Z; (X,F) = kerd; and
H; (X,F) = Z;(X,F)/B; (X,F) gives the i-th homology group of X
over F. As F is a field, it is not difficult in this case to show that
H; (X,F) ~ H (X,F).

In the next section, we will need the case F' = [Fy - the field of
two elements, but for the rest of Section 2 we work with F' = R.
In this case C'(X,R) has the natural structure of a Hilbert space,
where for f,g € C{(X,R), (f,g) = Y. deg(F)f(F)g(F), when

FeXx @
deg(F) = #{G € XY|G 2 F}. Now, C;(X,R) is the dual of C'(X,R)

in a natural way and we can identify them and treat the operators
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AP = 676, Adewn = 5,167 | and A; = AP 4 Adewn as operators from
C' to C, all are self-adjoint with non-negative eigenvalues. One may
check that

1

6@ = 3

> [F:Gldeg(F)f(F)
FeXx(i+1)
for f € C""1(X,R) and G € X@, 50 in the regular case &} is equal to
Oi+1 up to a constant multiple. Define Z; = ker §* ; and B; = im 6] (so
in the regular case Z; = Z;, B; = B;). The following proposition, going
back to Eckmann [Ec44], is elementary:

Proposition 2.1 (Hodge decomposition). C* = B' @ H' & B; when
H! = Ker(A;) is called the space of Harmonic cycles. In fact H' ~
H'(X,R). Note that A" vanishes on Z' = B' & H".

Definition 2.2. The i-dimensional spectral gap of X is \V(X) =
min{A|A e.v. of A;‘p’(Bi)l}. One may check that (Bt = Z;, and

as AP = 47 0 9;, we have

DY) — in |@?ﬁM}:(m{Mm%f
A<X)(m£w{ U6 I S)

Also, A" vanishes also on H?, so A (X) > 0 implies H'(X,R) = {0},
and the converse is also true.

For a k-regular graph (B°)t = Z; = L(X) and so A\;(X) that was
defined in §1 for a graph X, is A(¥(X) in the notations here. We define:

Definition 2.3. A pure d-dimensional simplicial complex will be called
e-spectral expander if for every i =0,...,d —1, A\O >¢.

Recall that the Alon-Boppana theorem asymptotically bounds the
spectral gap of k-regular graphs by that of their universal cover, the
k-regular tree. In higher dimension the situation is more involved:

Theorem 2.4 ([PR17]). For an infinite complex X, let \V(X) be the
bottom of the spectrum of A;P(X) on (B)*. Let {X,} be a family
of quotients of X, such that the injectivity radius of X,, approaches
infinity. If zero is not an isolated point in the spectrum of A;P(X), on
(GHE, then

lim inf {A@ (X))} < A\9P(X).

n—oo

Note that zero cannot be an isolated point in the spectrum of the
Laplacian of an infinite graph, since the constant function is not in L2
However, for complexes of higher dimensional this can happen, and in
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this case the Alon-Boppana principle can be violated (see [PR17, Thm.
3.10] for an example).

2.2. Garland method. The seminal paper of Howard Garland
([Gar73], see also [Bor73]), can be considered as the first paper on
high dimensional expanders. It gave examples of spectral expanders,
by a method which bounds the eigenvalues of the simplicial complex
by the eigenvalues of its links. Garland’s method has been revisited in
recent years with various simplifications and extensions. Let us give
here one of them, but we need more definitions: If F is a face of X of
dimension 4, the link of F' in X denoted (kx(F), is

lkx(F) :={G € X|FUG € X,FNG = 0}.

One can easily check that if X is a pure simplicial complex of dimension
d, dim(lkx(F)) =d—i— 1.

Garland’s method can be conveniently summarized by the following
theorem. Note that if dim(X) = d and dim(F) = d — 2, then lkx(F)
is a graph.

Theorem 2.5 (Garland, cf. [GuWal6] ). If dim(X) = d and for every
face F of dimension d — 2, \O(lkx(F)) > ¢, then

ANEU(X)> 1 +de—d.

So, Garland’s method enables to give a fairly good bound on
A= (X) if all links of d — 2 faces are very good expanders. One
can use the result to bound also AV)(X) for j < d — 1, by replacing X
with its 7+ 1 skeleton, i.e., the collection of all the faces of X of dimen-
sion at most j + 1. In fact, even more: if the links of the (d — 2)-faces
are excellent expander graphs and the 1-skeleton is connected, then the
complex is spectral expander (cf. [Op17b]). In the next subsection, we
will explain Garland’s motivation and results. But in recent years his
method have been picked up in various different directions. Most of
them have to do with vanishing of some cohomology groups.

One of the nicest applications of Garland’s method is the work of Zuk
[Zu03], Pansu[Pa98] and Ballman-Swiatkowski [BaSw97]. The starting
point of these works is the well-known result that a discrete group I" has
Kazhdan property (T) iff H'(T", V) = {0} for every unitary represen-
tation of I' on any Hilbert space. These authors used Garland’s work
to deduce such a vanishing result for H' if " acts cocompactly on an
infinite contractible simplicial complex of dimension 2 all of whose ver-
tex links are very good expanders. The most amusing is Zuk’s method
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which enables (sometimes) to deduce property (') from a presentation
of I' by generators and relations. For example it shows property (7')
for some random groups (see also [KK13]). This is very different than
the way Kazhdan produced the first groups with property (7") and it
shows that property (7') is not such a rare property.

A work of a similar flavor but in a different direction is the work
of De Chiffre, Glebsky, Lubotzky, and Thom ([DGLT]). Recall first
(vaguely) the basic definition of “group stability”: Consider the degree
n unitary group U(n) with an invariant metric d,,. We say that a group
I' presented by a finite set of generators S with finitely many relations
R, is (U(n),d,)-stable if every almost representation p of I' into U(n)
is close to a representation p. By “almost” we mean that p(r) is very
close to the identity for every » € R and “close” means that p(s) and
p(s) are close w.r.t. d,, for every s € S. One can study these questions
w.r.t. different distance functions, e.g., the one induced by the Hilbert-
Schmidt norm, the operator norm or the L2norm, a.k.a. the Frobenius
norm.

Let us stick to the L?-norm. In [DGLT] it is shown that if H*(T', V) =
{0} for every unitary representation of I, then I' is (U(n), dy2)-stable.
Then the Garland method is used (along the line of the results men-
tioned above for H') to produce many examples of L?-stable groups
by considering actions on 3-dimensional infinite simplicial complexes,
whose edge-links are excellent expanders. This implies that many high
rank cocompact lattices in simple p-adic Lie groups are (U(n),dz2)-
stable. The most striking application is proving that there exists a
group which is not L?-approximated (the reader is referred to [DGLT]
for the definitions and exact results and to [T18] for background and
applications).

In [GuWal6], Gundert and Wagner used the Garland method to
estimate the eigenvalues of random simplicial complexes - see also §4.
For some stronger versions of Garland’s method - see [Op17al, [Op17b]
and the references therein.

2.3. Bruhat-Tits buildings and their finite quotients. Let K be
a non-Archimedean local field, i.e., K is a finite extension of Q,, the
field of p-adic numbers, or K is F,((t))-the field of Laurent power series
over a finite field F,. Let O be the ring of integers of K, M the (unique)
maximal ideal of O, and F, = O/M the finite quotient where ¢ = p*
for some prime p and ¢ € N. Let G be a K-simple simply connected
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group of K-rank r, e.g., G = SL,, in which case r = n — 1, and let
G =G(K).

Bruhat and Tits developed a theory which associates with G an in-
finite (if r > 1) contractible simplicial complex B = B(G) of dimension
r. Here is a quick description of it: G has r + 1 conjugacy classes
of maximal compact subgroups (cf. [PIRa91, Theorem 3.13, p. 150])
and a unique class of maximal open pro-p subgroups, called Iwahori
subgroups. The vertices of B are the maximal compact subgroups (so
they come with 7 4+ 1 “colors” according to their conjugacy class) and
a set of ¢ + 1 such vertices form a cell if their intersection contains an
Iwahori subgroup. This is an r-dimensional simplicial complex whose
maximal faces can be identified with G//I when I is a fixed Iwahori
subgroup (for more see [BrTi72], [PIRa91] and [Lub14] for a quick ex-
plicit description of B (SL,(Q,)). The case of B (SLy(K)), which is a
(¢ + 1)-regular tree, is studied in detail in [Se80]).

Let ' be a cocompact lattice in G, i.e., a discrete subgroup with
['\ G compact. Assume, for simplicity that I" is torsion free, a condition
which can always be achieved by passing to a finite index subgroup.
Such I' is always an arithmetic lattice if » > 2 by Margulis arithmeticity
Theorem ([Mar91]) and, at least if char(K) = 0, there are always such
lattices by Borel and Harder ([BoHa78]). When we fix K and G and
run over all such lattices in G, for example, over the infinitely many
congruence subgroups of I', we obtained a family of bounded degree
simplicial complexes, i.e. every vertex is included in a bounded number
of faces. These simplicial complexes, give the major examples of “high
dimensional expanders” discussed in this paper.

Garland’s method described in the previous subsection was devel-
oped by him in order to prove a conjecture of Serre asserting that if
r > 2, H(I',R) = {0} for every I" as above and every 1 <i < r — 1.
Indeed, the vertex links of the building B are the associated spherical
building over the finite field F, (for example, for G = SL,,, this is the
flag complex of the proper subspaces of F!). For such buildings, for ev-
ery cell F € X® 0<i<d-2,onehas A\ (¢k(F)) — 1 when ¢ — oo
(e.g. for G = SL3, we get the (¢ + 1)-regular “points to lines graph” of

the projective plane P(Fg), for which one can check that \y = 1 — 1.

Va
See [Gar73, BaSw97, EvKal6]). One therefore can deduce from Theo-
rem 2.5 that if ¢ > ¢(G), then A\ (X) > &' forevery i = 1,...,7—1 and
every finite quotient X of B = B(G). In particular, all these quotients

are spectral expanders as defined in Definition 2.3.
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This also implies Serre’s conjecture if ¢ is sufficiently large (see Def-
inition 2.2). Serre’s conjecture has been proved in full since then
(cf. [CaT4] and [BoWa80, Chap. XI]) by representation theoretic meth-
ods, but Garland’s method has its own life in various other contexts.

In Section 1, Theorem 1.2, we saw that expander graphs can also be
defined as “L,-expanders” for a suitable 2 < p € R. This definition can
be extended to high dimensional simplicial complexes and is especially
suitable in the context of this subsection.

Let B be one of the Bruhat-Tits buildings described above and 7 :
B — X the covering map. Let f € L3(X (")), i.e. a function orthogonal
to the constants on the r-cells of X (one can consider also i-cells for
0 < i < r, but we stick to these for simplicity of the exposition, the
reader is referred to [Kam17b] for a more general setting). Now, using
the notion of W-distance on B™, when W is the affine Weyl group
of G, one can define for a fixed ¢, € B™, a function f on B - the
r-faces of B, as follows: For t € B"), let f(t) = ﬁ ;q f(m(s)) when

SESE

Se = {s € B"|W-distance (s, to) = W-distance (¢,t,)}.

Definition 2.6. We say that X is L,-expander if for every ¢, and f as
above f € LP*¢(B)) for every ¢ > 0.

Applying Oh’s result [Oh02] which gives the exact rate of decay of
the matrix coefficients of the unitary representations of G, the so-called
“quantitative property (7)”, Kamber deduced that X as above are
always L,-expanders when p = p(G) according to the following table.

WA, | B,|C,| D, neven | D,,nodd| Es | E; | Es | Fy | Go
p|2n|2n|2n| 2(n—1) 2n 16 |18 29 (11| 6

Let us stress that this is not just an abstract result. From this fact,
we can deduce non-trivial inequalities on the eigenvalues of various
“Hecke operators” acting on the faces of X. The reader is referred to
[Kam17b] for more in this direction.

2.4. Ramanujan complexes. Ramanujan graphs stand out among
expander graphs as the optimal expanders from a spectral point of
view (cf. [Val97]). These are the finite connected k-regular graphs X
for which every eigenvalue A of the adjacency matrix A = Ax satisfies
either |\| = k or |A\| < 2v/k — 1. The first constructions of such graphs
were presented as an application of the works of Deligne (in charac-
teristic zero) and Drinfeld (in positive characteristic) proving the so
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called Ramanujan conjecture for GLy (see [Lub94] for a detailed sur-
vey). Recently, a new (non-constructive) method has been presented
in [MSS15].

It is therefore not surprising that following the work of Laurent Laf-
forgue [Laf02] (for which he got the Fields Medal) extending Drinfeld’s
work from GLs to GLg4, general d, several mathematicians have started
to develop a high dimensional theory of Ramanujan simplicial com-
plexes, cf. ([CSZ03], [Li04], [LSV05al, [LSV05b], [Sar07]). One may
argue what is “the right” definition of Ramanujan complexes (see the
above references and [KLW10], [Kanl6], [Fil6], [Kam17b], [LLP17]).
This topic deserves a survey of its own. Here we just briefly point
out some directions of research which came out in the work of several
mathematicians.

In the context of X = I'\ B where B a Bruhat-Tits building associated
with G = G(K) as in §2.3, and I" a cocompact lattice acting on it, the
most sensible definition seems to be the following:

Definition 2.7. In the notation above, I' \ B is called a Ramanu-
jan complex if every infinite dimensional irreducible [-spherical G-
subrepresentation of L*(T'\ G) is tempered.

Recall that I is the Iwahori subgroup defined above, a representation
is I-spherical if it contains a non-zero I-fixed vector and it is tempered
if it is weakly-contained in L?(G).

This definition can be expressed also in other ways; it is Ls-expander
in the notations of [Kam17b] and Definition 2.6 above. It can also be
expressed in a combinatorial-spectral way. For the group SLs, in which
case B is a (¢ + 1)-regular tree and X = I'\ B is a (¢ + 1)-regular
graph, this definition is equivalent to the graph being Ramanujan
graph. Ramanujan complexes are also optimal among high-dimensional
expanders (see [Li04], [LSV05a] and [PR17]). For most applications so
far (such as the geometric and topological expanders to be presented
in §3) one does not need the full power of the Ramanujan property
and quantitative Property (T') (&4 la Oh [Oh02], see §2.3) suffices. On
the other hand the study of the cut-off phenomenon of Ramanujan
complexes in [LLP17] did use the full power of the Ramanujan prop-
erty. The same can be said about the application of Ramanujan graphs
and Ramanujan complexes to the study of “golden gates” for quantum
computation (see [PS17] and [PS18]), where the Ramanujan bounds
give a distribution of elements in SU(2) with “optimal entropy”.
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The Ramanujan graphs of [LPS88] (a.k.a. the LPS-graphs) have also
been used to solve other combinatorial problems. For example they
give the best (from a quantitative point of view) known examples of
“high girth, high chromatic number” graphs. After finding the appro-
priate high dimensional notions of “girth” and “chromatic number”,
these results can indeed be generalized to the Ramanujan complexes
constructed in [LSV05b], (see [LMOT7], [GP14], [EGL15]).

Ramanujan graphs can be characterized as those graphs whose as-
sociated zeta functions satisfy “the Riemann Hypothesis (RH)” - see
[Lub94], for an exact formulation and references. An interesting direc-
tion of research is to try to associate to high dimensional complexes

¢

suitable “zeta functions” with the hope that also in this context the

Ramanujaness of the complex can be expressed via the RH. For this di-
rection or research - see [Sto06], [KaLil4], [DK14], [KLW10], [Kan16],
[Kam17b] and [LLP17].

3. GEOMETRIC AND TOPOLOGICAL EXPANDERS

In this chapter we will describe a phenomenon which is truly high di-
mensional; the geometric and topological overlapping properties which
lead to geometric and topological expanders. The latter call for
coboundary and cosystolic expanders.

3.1. Geometric and Topological overlapping. Our story begins
with a result of Boros and Fiiredi [BF84], at the time two undergrad-
uates in Hungary, who proved the following result, as a response to a
question of Erdos: If P is a set of n points in R?, then there exists a
point z € R? which is covered by (% — 0(1)) (3) of the (%) affine tri-
angles determined by these points. Shortly afterward Bérany [Bar82]
proved the d-dimensional version: For every d € N, 30 < Cy € R, such
that if P C R? with |P| = n, then there exists z € R? which is covered
by at least Cy ( d_’il) of the ( dil) affine simplices determined by these
points.

While 2/9 is optimal for d = 2, it is not known what are the optimal
Cy’s, neither what is their rate of convergence to 0, when d goes to
infinity.

Barany’s result can be rephrased as: Let ASf” be the complete d-
dimensional simplicial complex on n vertices (i.e. the collections of all
subsets of [n] of size at most d + 1) and f : AY — RY an affine map.
Then there exists z € R? which is covered by at least Cd( " ) of the

d+1
images of the d-dimensional faces.
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In [Grol0], Gromov proved the following amazing result: Barany’s
theorem above is true for every continuous map f : AW 5 RE In fact,
he proved it with constants C; € R which were better than what was
known before for affine maps. The reader is encouraged to draw the
2-dimensional case to realize how surprising and even counter-intuitive
this theorem is! Gromov also changed the point of view on these types
of results; rather than thinking of them as properties of R?, think of
them as properties of the simplicial complex X. Let us now define:

Definition 3.1. A d-dimensional pure simplicial complex X is said
to be e-geometric (resp. e-topological) expander if for every affine
(resp. continuous) map f : X — R there exists 2 € R? such that
e-proportion of the images of the d-cells in X (@, covers the point z.

So Bérany (resp., Gromov) Theorem is the claim that A the com-
plete simplicial complex of dimension d on n vertices, is Cj-geometric
(resp., Cy-topological) expander.

Let us look for a moment at the case of dimension one to see why
we call this property “expander”: If X = (V| F) is an expander graph
and f : X — R any continuous map, choose a point z € R such that
the two disjoint sets

A={veV|f(v) <z} and B={v e V|f(v) >z}
W
many edges in F which connect A and B. The image of each such an

are of size approximately By the expansion property, there are
edge under f must pass through z by the mean value theorem. Hence
X is also a topological expander.

We should mention that a topological expander graph X does not
have to be an expander graph. Moreover, it does not even have to be
connected. For example, assume X is a union of a large expander graph
and another small (say of size o(|X|)) connected component. Then X
is a topological expander even though it is not an expander graph.

Anyway, Gromov and Barany Theorems refer to the complete sim-
plicial complexes: note how difficult is the case d > 2 and how triv-
ial it is to prove that the complete graph is an expander. Gromov
also proved that some other interesting simplicial complexes are d-
dimensional topological expanders, e.g., the flag complexes of d + 2
dimensional vector spaces over finite fields or more generally spherical
buildings of simple algebraic groups over finite fields (cf. [LMMI16]).
All these examples are not of bounded degree. Recall (see also Defi-
nition 4.1 below) that we say that a family of d-dimensional simplicial
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complexes are of bounded degree (resp. bounded upper degree) if for
every vertex v (resp., every face F' of dimension d — 1) the number
of faces containing it is bounded. The non trivial aspect of expander
graphs in dimension one is the construction of such graphs of bounded
degree.

Gromov [Grol0] put forward the basic questions: Let d > 2, are
there bounded degree d-dimensional geometric/topological expanders?

The existence of geometric expanders of bounded degree was shown
by Fox, Gromov, Lafforgue, Naor and Pach [FGLNP12] in several ways
- most notably are two: the random method which we will come back
to in §4 and the second is by showing that for a fixed d, if ¢ is a
large enough (depending on d) and fixed, the Ramanujan complexes
described in §2.4 are geometric expanders of bounded degree. A more
general version was given by Evra [Ev17] .

Theorem 3.2. Given 2 < d € N, there exists gy = qo(d) and € = ¢(d)
such that for every q > qo, if K is a non-Archimedean local field of
residue degree q and G a simple K -algebraic group of K-rank d, then the
finite quotients of B = B(G(K)) - the Bruhat-Tits building associated
with G = G(K) - are all e-geomelric expanders.

Theorem 3.2 is deduced in [Ev17] in a similar way as the proof in
[FGLNP12] using a “mixing lemma” and a classical convexity result of
Pach [Pac98]. The mixing lemma is deduced there from Oh’s “quantita-
tive property (7') (JOh02]). The language of L,-expanders described in
§2 gives a systematic way to express this. (Compare also to [PRT16]).
The fact that we have an € = £(d) which is independent of ¢, provided
q > qo, (which is more than one needs in order to answer Gromov’s
geometric question) is due to the fact that for a fixed d € N, one has
the same p in the table in §2.3. which works for all groups of rank d.

The question of bounded degree topological expanders is much more
difficult and will be discussed in the next subsections.

3.2. Coboundary expanders. As of now there is only one known
method (with several small variants) to prove that a simplicial complex
X is a topological expander. This is via “coboundary expander” which
requires the language of cohomology as introduced in §2.1, but this
time with Fs-coefficients.



HIGH DIMENSIONAL EXPANDERS 15

Let X be a finite d-dimensional pure simplicial complex, define on it
a weight function w as follows: for F' € X® let

w(F) = {G e X9|G 2 F}|.

1
d+1
(i) X
One could work with a number of different weight functions, but this
one is quite pleasant, for example, it is a probability measure on X ®;

one easily checks that > w(F) = 1. Now for f € C'(X,Fy), de-
Fex(®
note ||f| = > w(F) . We can now define the important notion of
(FEXO|F(F)£0}
“coboundary expanders” - a notion which was independently defined by

Linial-Meshulam [LMO06] and Gromov [Grol0] (in both cases without
calling it coboundary expanders).

Definition 3.3. Let X be as above:

(a) For 0 < i < d — 1, define the ith coboundary expansion #;(X) of
X as:
Oi
Xz min 101
recivs ||[f]]
where [f] = f + B is the coset of f w.r.t. the i-coboundaries and

N[l = m%n llgll. (Note that ||[f]|| is the “normalized distance” of
elf
f from BY). Let A (X) = min{A;(X)|i=0,...,d—1}.

(b) The complex X is said to be e-coboundary expander if A (X) > «.

A few remarks are in order here:

(i) The reader can easily check that if X is a k-regular graph, then
A(X) = 2. h(X) where h(X) is the Cheeger constant of the
graph as defined in §1. So, indeed the above definition extends
the notion of expander graphs.

(ii) The definition of ¢;, and especially the fact that the minimum
runs over f € C%\ B’ looks unnatural at first sight, but if we
recall that ||[f]|| is exactly the “norm” of the element in f + B’
which is closest to B, we see that this corresponds to going over
(B%)* when we consider real coefficients. Moreover as pointed out
in §2, over R,

(AL ) 15
(f, ) 11

and so the definition of #; here is “the characteristic 2 analogue”

of the spectral gap defined in Definition 2.2. For the connection
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between the spectral gap and the coboundary expansion - see
[SKM14], [PRT16] and [GS15].
(iii) Also here it is easy to see that %;(X) > 0 iff H(X,Fy) = {0}.
A basic result proved independently in [LM06], [MWO09] and [Grol0)]
is:

Theorem 3.4. for the complete d-dimension complex A,&d),fbi(A%d)) >
1 —o04(1) for everyi=0,...,d—1.

Here is Gromov fundamental result on the connection between
coboundary expanders and topological expanders:

Theorem 3.5. Coboundary expanders are topological expanders,
namely, for every d € N and 0 < ¢ € R, there exists €' = e'(d,e) > 0
such that if X is a d-dimensional complex which is an e-coboundary
expander then it is an e'-topological expander.

Now, combining Theorem 3.5 with Theorem 3.4, one deduces that
AW are topological expanders as mentioned in §3.1.

But these are of unbounded degree. Naturally, as the finite quotients
of the high rank Bruhat-Tits building are spectral and geometric ex-
panders, one tends to believe that they are also topological expanders.
This is still an open problem. Let us say right away that in general
these quotients (and even the Ramanujan complexes) are not cobound-
ary expanders. As was explained in [KKL16] for many of the lattices
[ in simple p-adic Lie groups, H(T'\ B,F,) # {0} since it is equal to
HY(T',Fy) =T'/[T,T]T? (since B is contractible) and the latter is often
non-zero. Thus #;(I'\ B) = 0 and I\ B is not a coboundary expanders.

Still, one can overcome this difficulty. For this we need another
definition:

Definition 3.6. A d-dimensional complex X is called e-cosystolic ex-

pander, if for every i = 0,...,d — 1, one has 1;(X) > ¢ and 1;(X) > ¢

P PPl
vilX) = i Al

when:

where [f] = f + Z' and
IT/11 = min{|lg]l [g € [£1}

and

pi = min |7
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For later use, let us denote p(X) = ming;(X) and v(X) =
min v;(X). So, X is e-cosystolic expansion if u(X) > ¢ and v(X) > e.
So, X is “e-cocycle expander”; it may not be coboundary expander if
H' # {0} (for some i =0,...,d — 1) but at least every representative
of a non-trivial cohomology class is “large”.

An extension of Gromov’s Theorem 3.5 is given in [DKW16]:

Theorem 3.7. Cosystolic expanders are topological expanders.

It is natural to conjecture that the Ramanujan complexes and more
generally the quotients of the high rank Bruhat-Tits buildings, while
not coboundary expanders, in general, are still cosystolic expanders.
But also this is open. What is known is a somewhat weaker result
which still suffices to answer, in the affirmative, Gromov’s question on
the existence of bounded degree topological expanders. The following
theorem was proved by Kaufman-Kazhdan-Lubotzky [KKL16] for d <
3 and by Evra and Kaufman [EvKal6] for general d.

Theorem 3.8. Fiz 2 < d € N, then there exists ¢ = e(d) > 0 and
g = qo(d) such that if K is a local non-Archimedean field of fixed
residue degree ¢ > qo and G = G(K) with G simple K -group of K-rank
d, then the (d—1)-skeletons Y of the finite (d-dimensional) quotients X
of the Bruhat-Tits building B = B(G) form a family of bounded degree
(d — 1)-dimensional e-cosystolic expanders.

As this Theorem holds for every d, it solves Gromov’s problem, but
in a somewhat unexpected way. We do believe that X in the theorem
are also cosystolic expanders and not just Y.

Evra and Kaufman in [EvKal6], give a quite general combinatorial
criterion to deduce a result like Theorem 3.8. They prove that if X is
a d-dimensional complex of bounded degree all of whose proper links
(i.e. lkx(F) for every face F # () are coboundary expanders, and all
the underlying graphs of all the links (including (kx (0) = X)) are “very
good” expander graphs, then the (d — 1)-skeleton of X is a cosystolic
expander. The reader is referred to [EvKal6] for the exact quantitative
formulation. It is in spirit an “Fy-version” of Garland’s local to global
method described in §2.2. It will be interesting to strengthen this result
to the same level as Garland’s, i.e., to assume only that the proper links
are coboundary expanders and connected and X is connected. It will
be even more interesting if one could deduce (even with the current
hypothesis) that X itself is a cosystolic expander. This will show that
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the d-dimensional Ramanujan complexes are topological expanders and
not merely their (d — 1) skeletons as we now know.

The issue discussed in this section is only the tip of the iceberg.
There are many more interesting problems (see [Grol0], [GrGul2]) e.g.
every d-dimensional complex can be embedded in (2d 4 1)-dimensional
Euclidean space, but only some can be embedded in 2d. Prove that
high dimensional expanders (in some or any of the definitions) can not.

4. RANDOM SIMPLICIAL COMPLEXES

As mentioned briefly above, the easiest way to prove existence of
bounded degree expander graphs is by random methods. One may
hope that this can be extended to the higher dimensional case of d-
dimensional simplicial complexes. But, here the problem is much more
difficult. In fact, as of now, there is no known “random model” for d-
dimensional simplicial complexes of bounded degree (in the strong sense
- see below) which gives high dimensional topological expanders. This
is surprising as the existence of such topological expanders is known
by now by ([KKL16], [EvKal6]) as was explained in §3. One may start
to wonder if such a model exists at all, or maybe topological bounded
degree expanders of high dimension are very rare objects. Perhaps there
is a kind of rigidity phenomenon analogue to what is well known by
now in Lie theory and locally symmetric spaces: While there are many
different Riemann surfaces (parameterized by Teichmiiller spaces), the
higher dimensional case is completely different and rigidity results say
that there are “very few” and mainly the ones coming from arithmetic
lattices.

Let us now leave aside such a speculation and give a brief background
and a short account of the known results:

Erdos and Rényi initiated the study of random graphs in their sem-
inal paper [ER60]. Their model is the following: Let n € N and
p € [0,1], the random model X (n,p) is the graph X with vertex set
[n] = {1,...,n} and where for every 1 < i # j < n, the edge {i,j} is
in X with probability p, independently of all other edges. They then
study the properties of such graphs when n — oo (and p can be changed

with n). For example, their first famous result is that pg = 105 “is a

threshold for the connectedness of X € X(n,p). Namely, for every
e>0,ifp < (1- z—:)lo% then almost surely (a.s.) such an X is not
connected, i.e. Prob. (X € X(n,p) : X connected) — 0. On the

n—o0

other hand, if p > (1 + 5)1"% then X is a.s. connected.
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Why is p = 105" the threshold? Recall the “coupon collector prob-
lem” which asserts that if elements of [m] = {1,...,m} are chosen
independently at random with repetition, it will take ¢ = mlogn steps
to choose them all. In our process p(g) edges are chosen, and hence
2p (g) vertices. Now, if p < lo% then less than 210%%2 = nlogn vertices
are chosen. So w.h.p there is an isolated vertex! The amazing point in
the Erdos-Rényi result is the fact that once we cross the threshold, not
only are there no isolated vertices, but the graph is connected, and, in
fact, even an expander.

This was the starting point of a very elaborate (and very important)
theory of random graphs studying more and more delicate properties
of such X € X(n,p).

In [LMO6] Linial and Meshulam initiated such a theory for 2-
dimensional simplicial complexes. A theory which shortly afterward
was extended in [MWO09] to the general d-dimensional case. The model
studied X¢(n,p) (nowadays called the Linial-Meshulam model for ran-
dom d-dimensional simplicial complexes) is the following: X € X%(n, p)
is a d-dimensional complex with [n] as the set of vertices, X contains
the full (d —1)-skeleton, i.e., every subset of [n] of size at most d is in X
and a subset of size d + 1 is in X with probability p, independently of
the other d-cells. So X1(n,p) is exactly the Erdos-Rényi model. Now,
for d > 2, such an X is always connected. But, note that X € X(n, p)
is connected if and only if H°(X,F,) = {0}, so Linial, Meshulam and
Wallach study for d > 2 and X € X%(n,p), when H*}(X,F,) = {0}
and proved the following far reaching generalization of the Erdos-Rényi
theorem.

Theorem 4.1 ([LMO06] for d = 2, [MWO09] for all d). The threshold
for the homological connectivity, i.e. the vanishing of H¥"*(X,Fy) for
X € X%(n,p) is pp = Loan,

T~ on

The heuristic here for &ng" is similar to the one above: The process

picks p(dil) d-cells and hence (d + 1)p(d_’:1) (d — 1)-cells. So, if p <

dh’% less than (d + 1)‘“?" (dil) ~ (1) log((%)) (d — 1)-cells are chosen

and so there is a (d — 1)-cell 7 with no d-cell containing it. Hence

the coboundary of e, - the characteristic function of 7 - is zero, i.e.
e € Z971(X,Fy). On the other hand e, is not a coboundary (note
that in the complete d-dimensional complex §(e;) # 0, so it is not even
a cocycle) and hence H (X, F,) # {0}. Again the interesting aspect
of the Linial-Meshulam-Wallach result is that once the threshold is
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passed, not only does H? (X, F,) vanish, but X is even a coboundary
expander.

A nice theory of random complexes has started to emerge (see [Kal4]
and the references therein). As our main interest here is in expanders,
we refer mainly to [LMO06], [MW09], and [DK12], noting that the results
there imply (just like in the case of graphs) that above the threshold the
complexes are not only homologically connected but also coboundary
expanders and therefore topological expanders. The papers [GuWal6]
and [KR16] bring in a very detailed study of the spectrum of the higher
dimensional Laplacians A; action on C*(X,R) for random X.

But our main interest is in bounded degree complexes. Recall that
Bollobas [Bo82] and others (see [W099] for a comprehensive survey)
have developed a theory of random k-regular graphs (for a fixed k)
which also got a lot of attention. This model, for k£ > 3, gives almost
surely expander graphs of bounded degree.

One would like to have such a model for d-dimensional complexes.
But first, what do we mean by bounded degree? There are two natural
meanings in the literature, which coincide for d = 1.

Definition 4.1. A pure d-dimensional simplicial complex X is of de-
gree at most k if every vertex of it is contained in at most k cells of
dimension d (and so in at most 27 - k cells of any dimension). It is of
upper-degree at most k, if every face of dimension d — 1 is contained in
at most k cells of dimension d.

A natural model of bounded degree simplicial complexes Y¢(n, k) is
given in [FGLNP12]: Assume, for simplicity, that (d + 1)|n and take
a random partition of [n] into 25 subsets each of size d + 1. Choose
independently £ such partitions and let Y be the simplicial complex
obtained by taking its cells to be all these k 75 subsets as well as all
their subsets. The case d = 1 boils down to the standard model of

Bollobas.

Theorem 4.2 ([FGLNP12]). For every fized d € N, kg = ko(d), such
that for every k > ko, a complex Y € Y%(n, k) is almost surely d-
dimensional geometric expander.

This theorem is very promising at first sight, but unfortunately,
Y € Y%n, k) is typically neither coboundary expander nor topolog-
ical expander. To visualize this think about the d = 2 case: When £ is
fixed and n very large, for a typical Y € Y?(n, k), every edge of Y is
contained in at most one triangle. So, homotopically ¥ looks more like
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a graph and one can map it into R? with only small size overlapping
points.

So, altogether, this is a nice model which certainly deserves further
study (e.g. what is the threshold for ky = k¢(d) in Theorem 4.37)
but it will not give us the stronger versions of expansion (topological,
cosystolic, coboundary etc.). As hinted at the beginning of this section,
it is still a major open problem to find a random model (if such at all
exists) of d-dimensional bounded degree simplicial complexes which
will give, say, topological expanders.

The situation with bounded wupper degree is better: In [LM15]
Lubotzky and Meshulam gave a model for 2-dimensional complexes
of bounded upper degree (using the theory of Latin squares) and it
was shown to produce coboundary expanders (and so also topolog-
ical expanders). This was generalized to all d by Lubotzky-Luria-
Rosenthal [LLR15], with a slight twist of the construction, replacing
the Latin squares by Steiner systems and using the recent breakthrough
of Keevash [Keel4] on existence of designs. Let us briefly describe the
general model Wd(n, k).

Let < ¢ < n be natural numbers and A € N. An (n, g, r, \)-design
is a collection S of g-element subsets of [n] such that each r-element
subset of [n] is contained in exactly A elements of S. Given n,d € N, an
(n, d)-Steiner system is an (n,d+1,d, 1)-design, namely, a collection S
of subsets of size d 4+ 1 of [n], such that each set of size d is contained
in exactly one element of S. Using the terminology of simplicial com-
plexes, an (n,d)-Steiner system can be considered as a d-dimensional
simplicial complex of upper degree one. Recently, in a groundbreak-
ing paper [Keeld|, Peter Keevash gave a randomized construction of
Steiner systems for any fixed d and large enough n satisfying certain
necessary divisibility conditions (which hold for infinitely many n € N).
From now on, we will assume that given a fixed d € N, the value of n
satisfies the divisibility condition from Keevash’s theorem.

Keevash’s construction of Steiner systems is based on randomized
algorithm which has two stages. We will explicitly describe the first
stage and use the second stage as a black box.

Given a set of d-cells A C ( d[ﬂ), we call a d-cell 7 legal with respect
to A if there is no common (d — 1)-cell in 7 and in any cell in A.
Non-legal cells are also called forbidden cells.
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In the first stage of Keevash’s construction, also known as the greedy
stage, one selects a sequence of d-cells according to the following pro-
cedure. In the first step, a d-cell is chosen uniformly at random from
( d[ﬂ). Next, at each step a legal d-cell (with respect to the set of
d-cells chosen so far) is chosen uniformly at random and is added to
the collection of previously chosen d-cells. If no such d-cell exists the
algorithm aborts. The procedure stops when the number of (d — 1)-
cells which do not belong to the boundary of the chosen d-cells is at
most n?% for some fixed d; > 0 which only depends on d. In partic-
ular, if the algorithm does not abort the number of steps is at least
((Z) —nd=%)/(d+1) > n?/(2(d+ 1)!).

In the second stage, Keevash gives a randomized algorithm that adds
additional d-cells in order to cover the remaining (d — 1)-cells that are
not contained in any of the d-cells chosen in the greedy stage. We
do not need to go into the details of this algorithm. The important
thing for us is that with high probability the algorithm produces an
(n, d)-Steiner system.

Fix k € Nand let Sy, ..., Sk be k independent copies of (n, d)-Steiner

systems chosen according to the above construction, and let X be the
k

d-dimensional simplicial complex whose d-cells are | S;, so X contains
i=1

the complete (d — 1)-skeleton and it is of upper degree at most k.

We can now state the main result of [LLR15]:

Theorem 4.3. Fiz d € N, there exists kg = ko(d) and € = e(d), such
that for every k > ko, a random complex W € W(n, k) is almost surely
an e-coboundary expander, and hence also a topological expander.

It will be of great interest to study various other properties of this
model. For example, find the threshold for ky(d) (the estimates ob-
tained from [LLRI15] are huge and it will be very interesting to give
more realistic upper bound, note that for d = 1, ko(d) = 3). Another
interesting problem is to study m(W)-the fundamental group of W;
when is it hyperbolic? has property (7')7 trivial? The model W be-
haves w.r.t. the model X as Bollobas” model w.r.t. Erdos-Rényi, and
this suggests many further directions of research on these bounded up-
per degree complexes.

5. HIGH DIMENSIONAL EXPANDERS AND COMPUTER SCIENCE

In recent years high dimensional expanders have captured the in-
terest of computer scientists and various connections and applications
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have popped up. Most of these works are in their infancy. We will give
here only a few short pointers on these developments, with the hope
and expectation that the future will bring much more.

Probabilistically Checkable Proofs: The PCP theorem, proven
in the early 90’s (cf. [AS, ALMSS]), is a cornerstone of modern com-
putational complexity theory stating that proofs can be written in a
robust locally-testable format. PCPs are related to many areas within
theoretical computer science ranging from hardness of approximation
to delegation and efficient cloud computing.

The basic PCP theorem can be proven using an expander-graph-
based construction [Din07]. For stronger PCPs; e.g. with unique con-
straints, or shorter proof length, or with lower soundness error, stronger
forms of expansion seem to be needed, in particular high dimensional
expansion might play a pivotal role. Dinur and Kaufman [DK17] ex-
plore replacing the standard direct product construction (also known
as parallel repetition [Raz98|) by a much more efficient bounded-degree
high dimensional expanders as constructed in [?]. Direct products are
ubiquitous in complexity, especially as a useful hardness amplification
construction, and bounded-degree high dimensional expanders may po-
tentially be useful in many of those settings.

Locally testable codes: LTCs are an information-theoretic analog
of PCPs. These error correcting codes have the additional property
that it is possible to locally test whether or not a received word is close
to being a codeword. Unlike many problems in coding theory, this is a
property that random codes do not have. This makes it even more chal-
lenging to settle the problem whether LTCs can have both linear rate
and distance. The current best construction comes from a PCP and
its rate is inverse poly-logarithmic [B-SS08, Din07]. High dimensional
expanders naturally yield locally testable codes, whose parameters are
unfortunately sub-optimal.

Property testing: The central paradigm in property testing is the
interplay between local views of an object and its global properties.
The object can be a codeword, an NP-proof, or simply a graph. This
theory generalizes both PCPs and LTCs and has significant practical
applications. It was an unexpected discovery that high dimensional ex-
panders (and especially the cohomological/coboundary expanders men-
tioned above) fit very naturally into this theory [KL14]. Specifically,
theorems about high dimensional expanders readily translate to results
on property testing.
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Quantum computation and quantum error correcting codes:
Sipser and Spielman [SS96] showed how extremely good expander
graphs yield excellent LDPC error-correcting codes. However, the ex-
istence of LDPC quantum error-correcting codes (even inexplicitly) re-
mains a major open problem. Recent work by Guth and Lubotzky
[GuLul4] is a step in this direction, which is related to our topic: Ev-
ery simplicial complex gives a “homological error correcting code” (see
[BMO07], [Ze09]) but in general they are of poor quality. High dimen-
sional coboundary expanders are related to local testability of codes
(see [AELD]).

Another basic problem in quantum computation seeks a finite uni-
versal set of quantum gates that can efficiently generate an arbitrary
unitary matrix in U(n) to desired accuracy. This is solved by Kitaev
and Solovay’s classical algorithm, but non-optimally. The generators
of Lubotzky-Phillips-Sarnak’s Ramanujan graphs [LPS86] fare better,
but come with no efficient generative algorithm. Following the break-
through of Ross-Selinger [RS16], the case n = 2 is essentially solved in
a recent work by Sarnak and Parzanchevski [PS17] who came up with
optimal (a.k.a. golden) gates and an explicit generative algorithm based
on Ramanujan graphs. In ongoing work they use higher dimensional
Ramanujan complexes to find such “golden gates” for higher n [PS18].
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