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ARTICLE INFO ABSTRACT

This study newly introduces a complementary cooperative algorithm considering generative adversarial network
(GAN)-Conditional Latent Space (CLS) combined with bidirectional long short-term memory (BLSTM) for im-
proved and efficient lithium-ion rechargeable battery state prediction. The GAN-CLS algorithm, which is an
advanced method of GAN, can generate corresponding images from an input label description. Long short-term
memory (LSTM) is a specific recurrent neural network (RNN) architecture that can predict sequences more
accurately than conventional RNNs. In terms of battery state prediction, the combination of two methods (GAN-
CLS and LSTM) surely provides more improved and efficient rechargeable battery state prediction in contrast to
conventional state predictors. The procedure of this study is as follows. First, we propose methods to enhance the
data from battery charge/discharge by converting prepared data to images; then, the GAN-CLS method is used to
generate corresponding battery data from previous images. Subsequently, the generated data is used to train the
BLSTM model. Finally, the trained model is used to predict the battery state. By various experiments and ver-
ification, it is concluded that the proposed study can be a good solution for rechargeable battery state prediction
(reduction of the time cost 50 times in modeling and 20 times in train/test, provision of a more accurate pre-

Keywords:

Battery state prediction

Generative adversarial network-CLS
Bidirectional-long short-term memory
Recurrent neural network
State-of-charge

diction mean square error (MSE) smaller than 0.0025 and the average MSE less than 0.0013).

1. Introduction

The state-of-charge (SOC) of the lithium-ion (Li-ion) battery is an
important evaluation index of a battery management system (BMS).
Therefore, performing an accurate measurement of the SOC is the main
concern in analyzing battery-pack performance. In general, the battery
pack is composed of hundreds and thousands of single cells for high
voltage and energy storage [1]. The characteristics of batteries are
different after undergoing several charge/discharge cycles. The BMS
test needs to be executed many times for desired model accuracy, even
though the characteristics of batteries are slightly different under the
same state-of health (SOH).

Coulomb counting is the basic method to measure SOC. In this
method, the current is integrated over time, and the integral is divided
by the capacity to obtain the SOC [2,3]. However, Coulomb counting
methods highly depend on the initial SOC estimation and the bias in the
current sensing. The conventional SOC estimation algorithm is
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represented by a Kalman filter [4,5]; however, the SOC-open circuit
voltage (OCV) characteristics of a battery have strong nonlinearity at
the beginning and end of the charge/discharge state [6-8]. The ex-
tended Kalman filter (EKF) [9-12] is proposed to deal with the problem
of predicting the SOC under the linear assumption of the Kalman filter.
However, the performance of the Kalman filter and its derivative ver-
sion depends on an accurate battery model, such as the conventional
Thevenin model or second Thevenin model [13]. Both models require
offline parameter identification, as well as measurement of the OCV,
and a determination of the time elapsed of the model. Jian Chen et al.
[14,15] proposed the use of the adaptive neuro-fuzzy and radial basis
function neural network as a nonlinear observer. In the experiment of
[14], the battery is discharged with a constant current in steps of 5% of
capacity and rested; then, the corresponding resistance R can be cal-
culated as the ratio of the instantaneous voltage drop U and current I.
Then, the parameters of the RC networks at the corresponding mea-
sured SOCs can be determined. Finally, the neural network is used to fit
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Nomenclature

GAN generative adversarial network
CLS conditional latent space

LSTM long short-term memory

RNN recurrent neural network

BLSTM  bidirectional-long short-term memory
SOC state-of-charge

BMS battery management system

SOH state-of-health

OoCv open circuit voltage

GA genetic algorithm

EKF extended Kalman filter

RBF radial basis function

RSMO  robust sliding-mode observer
ANN artificial neural network

BPNN back propagation neural network
CNN convolutional neural network
PCC Pearson's correlation coefficient
CCD constant current discharge

MSE mean square error

D discriminator network in the GAN
G generator network in the GAN

2 low-dimension noise vector in the GAN
L likelihood function

KL Kullback-Leibler divergence

G optimization generator in the GAN

JS Jensen-Shannon divergence

Xt input state (input x in time t) in the LSTM
[ cell state in the LSTM

I temporal cell state in the LSTM

h, hidden state in the LSTM

fi forget gate in the LSTM

i memory gate in the LSTM

o, output gate in the LSTM

m, memory cell outputs in the LSTM

Ye output state (output y in time t) in the LSTM

o sigmoid function in the LSTM

b; bias vector of input gate in the LSTM

by bias vector of forget gate in the LSTM

b, bias vector of cell activation vectors in the LSTM

b, bias vector of output gate in the LSTM

by, bias vector of output state in the LSTM

® element-wise product of the vector in the LSTM

¢ output activation function in the LSTM

Wi weight matrix from input state x to the input gate i in the
LSTM

Wim weight matrix from memory cell output m to the input
gate i in the LSTM

w; weight matrix from cell state ¢ to the input gate i in the
LSTM

Wee weight matrix from input state x to the forget gate f in the
LSTM

weight matrix from memory cell output m to the forget
gate f in the LSTM

weight matrix from cell state ¢ to the forget gate f in the
LSTM

weight matrix from input state x to the cell state ¢ in the
LSTM

weight matrix from memory cell output m to the cell state
¢ in the LSTM

weight matrix from input state x to the output gate o in the
LSTM

weight matrix from memory cell output m to the output
gate o in the LSTM

weight matrix from cell state ¢ to the output gate o in the
LSTM

weight matrix from memory cell output m to the output
state y in the LSTM

FEFEFRESS

the curve, and the Thevenin model is used to estimate the SOC. This
method can yield an accurate estimation if the battery has the same
SOH. Han et al. [16] used the genetic algorithm (GA) to identify the
battery capacity and analyze the battery age model under different test
temperatures. In [17], a radial basis function (RBF) neural network
(NN) was used to learn the bounds of the uncertain dynamics of the
battery equivalent circuit model. Then, the outputs of the RBF NN were
used to estimate the SOC based on a robust sliding-mode observer
(RSMO). However, this requires tremendous testing under different
temperatures to identify the model parameters. Other SOC estimation
methods are established on machine learning strategies, which en-
compass artificial neural networks (ANNs), fuzzy NNs, back propaga-
tion neural networks (BPNNs), and adaptive fuzzy NNs [18-22]. These
data-oriented approaches treat the battery model as a black box, with
requiring knowledge of the battery internal structure. The battery
model is treated in the weights of NNs. A large amount of experimental
data is required to train the NNs for high accuracy. In addition, it is

Table 1
A summary of the lithium-ion battery state prediction methods.

difficult to balance the model precision and generalization perfor-
mance. Furthermore, it necessitates tremendous computing workload
and resource consumption. A summary of the lithium-ion battery state
prediction methods is listed in Table 1.

In this study, a method involving the use of GAN-CLS (called as
matching-aware discriminator) to generate the required data, rather
than running experiments, is adopted [23]. In this method, measured
data with different SOH are padded with zeros at the end, such that all
data are of the same length. Then, the vectors are reshaped as 2-di-
mensional images, and convolutional neural network (CNN) is used to
extract the rough and detailed features as needed. For the original GAN,
the random data with fixed distribution were used to generate the de-
sired distribution. However, battery SOC-OCV characteristics vary with
different SOH, which means that the SOC-OCV characteristics exhibit a
different distribution. In the GAN-CLS model, the discriminator in GAN
receives the generated data and corresponding SOH, such that the input
data includes the corresponding SOH information. The performance of

Methods

Advantages

Disadvantages

Coulomb counting

Kalman filter, extended Kalman filter Accuracy
Fuzzy neural network
Genetic algorithm
Sliding model observer

Accuracy

Easy implementation

No model needed

Accuracy, Robustness

- Inaccuracy due to error accumulation

- Dependency on the initial SOC values

- High computational cost

- Needs identification of model parameters
- Needs of large amount of data

- Very high computational load

- Nonlinear, hard implementation
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Fig. 1. Structure of Thevenin model (one resistance and two RC-ladders).

the generated data was tested based on a significance test, using the
best data to represent the experimental data. The generated data are
used to train the bidirectional-LSTM (BLSTM) networks that operate on
the input sequence in both directions to facilitate optimal decision-
making for the current input [24,25]. As a result, the GAN-CLS gen-
erates high-quality pseudo-experimental data, which can be used for
BMS or fault-detection simulation. The proposed methods reduce the
time cost 50 times in modeling and 20 times in train/test. The results
show a predicted mean square error (MSE) smaller than 0.002. The
proposed methods significantly reduce the time and resource cost.

2. Battery model and network architectures
2.1. Conventional battery model

Equivalent-circuit models of battery cells are widely used in SOC
estimation. Among these models, Fig. 1 shows the improved Thevenin
model. Egs. (1) through (3) represents the mathematical expressions of
the second order model [26].

WO _ GO

dt R,Cpa /G 'e))
w® U
T = RCCL, + lL(t)/CC (2)
U(t) = Upe(t) = Roir(t) — Up(t) — U.(1) 3)

Thevenin model has the polarization resistance R, and polarization
capacitor C,, U, is voltage on capacitance C,, i(t) is charge/discharge
current. C. and R, are concentration polarization capacitance and
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Fig. 2. Experimental voltage drop with a pulse current and its definition.

concentration polarization resistance, U, is open circuit voltage, Uy, is

defined as voltage on capacitance C,,, i (t)/U,, are the charge/discharge

AUpe(

current and terminal voltage. Assuming dt() ~ 0, taking time the

derivative of Uy(t) gives

dU; (¢ 1 1
i) _ _ UL() + - Upa (1)
dt Rpe Cpc Rpa Cpa Ry Cpc
dig (t
B P S ir(t) + L Uoe = Ro L)
RpcCpe  Cpe Cpa RpcCpe dt 4

The EKF algorithm can be employed for SOC estimation based on
above circuit model. But, it strongly depends on the accuracy of the
battery model parameters. Generally, in order to acquire experimental
data for an identification of the model parameters, the pulse power
characterization test (HPPC) has been conducted. Fig. 2 shows the
terminal voltage response of the battery during the HPPC test at SOC
95%. As displayed in Fig. 2, when a pulse discharge current is applied, a
voltage drop defined as AU=|U;-Up|, has appeared. Then, the re-
sistance R, can be given by Ro=AU/i(t) and other parameters can be
similarly obtained. Unfortunately, it is very infeasible in practical ap-
plication. According to different operational conditions such as tem-
perature and aging, it is not easy to sustain a good battery performance.

Fig. 3 shows two examples of varied battery electrical character-
istics under different temperature effect, especially low (0°C) and high
(50°C), then all different voltage curves are easily checked. According
to varied electrical characteristics caused by temperature and aging
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Fig. 3. Voltage comparison of battery electrical characteristics varied by low (0°C) and high (50°C) temperature effects. (a) For OCV, (b) For discharge capacity.
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Fig. 4. Generative adversarial networks (GAN) architecture.

effects, it is surely inevitable that more increased parameter combina-
tions should be used for SOC estimation, e.g. 2500 parameter relations
in model due to different 50 temperature and 50 aging conditions. This
makes the EKF empirically impossible and inefficient.

2.2. Generative adversarial networks (GAN)

The generative adversarial network scheme was proposed by
Goodfellow in 2014 [27]. It consists of a discriminator network D and a
generator network G. The goal of generator G is to maximize the
probability of D making a mistake, and the goal of training dis-
criminator D is to maximize the probability of distinguishing the gen-
erator images. The input of the generator is random data z from a fixed
distribution, such as a Gaussian distribution, and the output of gen-
erator is the same distribution of real samples. The inputs of the dis-
criminator are real and generator data, and the output is a value in (O,
1). The two networks compete during training; GANs are designed to
reach Nash equilibrium, which means that the probability of the dis-
criminator making a mistake is 50%.

Fig. 4 shows the GAN architecture. The generator creates a high-
dimension distribution of samples based on the low-dimension noise
vector z. This means that the sample features are included in vector z.
Assuming a battery charge or discharge with constant current, the
distribution of measured data can be represented as U,,(x). The goal is
to train a generator, which can create distribution Ug(x; 0)Ug(x; 6)
based on the random input vector, with the target 6 calculated by
likelihood function L,

m
L=]] U0

i=1 %)
where x' is the i sample from the real measured characteristic point.

The maximum likelihood estimation of 6 is given by

o* = argmaxHUG(x‘ 6) & argmax log HUG(x’ 0) ©
i=1 6 i=1

= argmax H logUs (x'; 0) ~ argmaxExNUm [log Us (x; 6)] *
i=1

There is no change that subtract
S User () 10gUpey () dx. f Uper (108U (x) dX. Upey (X)10gUpey(x)dx  from

éq. (6), because it is écqual to a constant value.
s argmGaXf Uper ()10gUsg (x; 6)dx — [ Upey (X)10gUpe, (x) dx

Y69 gy = argmin KL Uy () [| U (x; )
o) C ®)

= argmax /' Uy (x)lo0g

where KL is the Kullback-Leibler divergence [28].

Real
Discriminator —» Loss
Fake
Us(X) = | Uprior (@) [1,=x192
[ ’ ©)
Lo = 0U(z) #x
G(z) 1 U(Z) =X (10)

The U,ior(2) is a prior distribution, the generated distribution is U,
(2), D is defined as a function that measures the difference between the
U.(2) and U,(x), and the function V is given by

V(G, D) = Ex-fyo, 0[10gD(X)] + Ez~tz,p[log(1 — D(G(2)))] an
The optimization generator model G* is given by

G* = i V (G, D
arg mclnmg.x ( ) a2)

The objective function is
Bl () (108D (X)] + Ezy[log(1l — D(G()))]
13)

Eq. (12) can be treated as two functions: First, we consider the
optimal discriminator D for any given generator G. Then, optimal
generator G for a given random vector z is expressed as

m;IXV(G, D) = Exntfyoy 0[10gD (X)] + Ez~tz(»[log(1 — D(G(2)))]

mlnmax V(G,D) =
G

a4

minV (G, D) = Fr-u;cllogl = D(G(@)))] .

2.3. Conventional long short-term memory (LSTM)

Recurrent neural networks (RNN) is a method in modeling se-
quential data, particularly in the case of a subset of sequential da-
ta—time-series data. Fig. 5 shows the RNN architecture, where A re-
present the networks, x, is the input x in time ¢, h, hs the output of the
networks, the weights of networks are tuned by backpropagation
through time. RNN can well solve problems such as sentimental ana-
lysis, key term extraction, speech recognition, and machine translation;
however, the RNN structure has some drawbacks, such as vanishing
gradient and exploding gradient. LSTMs were first introduced to over-
come the vanishing and exploding gradient problems [29]. The building
block of an LSTM is a memory cell. The values associated with the

@Q@@@

ool v

Fig. 5. Recurrent neural network (RNN) architecture.
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Fig. 6. Long short-term memory (LSTM) architecture.

©

recurrent edge is called a cell state. The LSTM is one category of RNN,
which contains input xX;, cell state c, temporal cell state ¢, hidden
state h, hdn recurrent hidden layer, forget gate f,, memory gate i,
memory cell output m,, and output gate o,.

Fig. 6 shows the unfolded structure of a modern LSTM architecture.
The compact forms of the equations for the forward pass of an LSTM
unit with a forget gate are as follows.

Input gate i, is responsible for updating the cell state as

ip = o (WX, + Wipmy_y + Weeeiy + by) (16)

Forget gate f, fiallows the memory cell to reset the cell state, de-
ciding which information is allowed to pass through or suppress. It is
computed as Eq. (16), and the cell state at time t is computed in
Eq. (17). Output gate o, Odecides how to update the values of hidden
units.

fi = o(Wgx, + Wiy + Wyeei_q + by) a7
c=f Ocor+ iy ©gWexy + Wopemy_q + be) (18)
or = 0 (Woxxy + Wommy—1 + Woeer + by) 19)
my =0, © h(c) (20)
% = ¢(Wymm; + by) (21

where the W terms denote weight matrices, W, Wy, W, are diagonal
weight matrices for peephole connections, o is the sigmoid function, b
bdenotes the bias vector, ©® is the element-wise product of the vectors,
¢ is the output activation function. In addition, activation of cell in-
putting and outputting are used as g and h respectively.

3. Methods

3.1. Advanced generative adversarial networks (GAN)-conditional latent
space (CLS)

To solve the problem that the GAN cannot create the data corre-
sponding to the label, the auxiliary classifier GAN (AC-GAN) is pro-
posed. Fig. 7 shows the GAN-CLS architecture, which is similar to AC-
GAN, whereby the discriminator receives the generated data and cor-
responding information (additional parameters such as SOH, tempera-
ture, charge cycles and shocks) instead of only the generated data. The
SOC-OCV characteristics have a different distribution under different
SOH, thus, in this experiment, SOH and charge cycles added to both the

P
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Fig. 7. Generative adversarial networks (GAN)-Conditional latent space (CLS)
architecture.
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discriminator and generator models to make the discriminator be
matching-aware, which means that the discriminator can judge be-
tween the corresponding information and the x distribution.

The objective function of GAN is modified as:

Ex by~ Upey ey [108D (X, )] + Bty (2),h~Upew (h)
V (G, D) = % [log(1 = D(G(z, h)), )] + Eghy~Uge(ey[log(l — D(x, b)) + log
D, h))]
(22)

where h is the embedding of the SOH and charge cycles, and U, (x, h)
is the distribution density function of the samples from the OCV, in
which x and h are matched. U, (x, h) is the distribution density func-
tion of the samples from OCV consisting of SOH and OCV with mis-
matched corresponding information.

There is one last problem that needs to be solved: The Nash equi-
librium, assumed in GAN networks, is an ideal state that does not occur
in the real training process. If the discriminator is over-trained, the
generator cannot learn the effective gradient, and vice-versa. Changing
the original generator loss yields

Bz t,0llog(1 = D(G(2)))] = Ezevy[—log(l — D(G(z)))] (23)
The goal is to minimize the loss function
KL (Upew () 1U5 (x5 6)) = 2JS (Upew () 1 U (x; 6)) (23)

where JS is the Jensen-Shannon divergence. For reference, there are
three changes to Wasserstein Generative Adversarial Networks (WGAN)
structures [30].

® The sigmoid activation is removed from the last layer of the dis-
criminator

® The log operation is removed from both the generator and dis-
criminator loss function

® A gradient penalty or clipping methods are used when the dis-
criminator parameters are updated.

3.2. Bidirectional-long short-term memory (BLSTM)

Fig. 8 shows the BLSTM architecture, it consists of the forward
LSTM layer and the backward layer, which can predict data with past
and current information. It utilizes two-time direction, in which input
data from the past and future of the current time frame can be used. In
the LSTM structure, the information flows from the backward layer to
the forward layer. On the contrary, in BLSTM, information flows from
the backward layer to the forward layer and from the forward layer to
the backward layer, using hidden states. For the processing of battery
charge/discharge, the accurate SOC depends on past conditions, similar
to the LSTM.

Ye+1 Yt Ye+1

t t t

g (9] g
S - -
hiq / \ hy / \ hip1 / \

Forward layer LST™M LST™M LSTM
(]— = =
\ -1 \ hy \ heyi
Backward layer LSTM LSTM LSTM «——
Hidden! Hidden Hidden
layer layer layer
@4 1) Ty Ty

Fig. 8. Bidirectional-long short-term memory (BLSTM) architecture.
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Fig. 9. Experimental equipment for proposed approach.

4. Experiments and verification
4.1. Test bench description

This approach used LG Chem. middle-power 18650-HE4 cylindrical
lithium-ion batteries that has a rated capacity of 2.5Ah for experiments.
Compared to the rated capacity (2.5Ah) and its nominal C-rate
(1C=2.5A), this battery has more maximum discharge current (20A,
8C-rate). Namely, because of middle-power/energy characteristics, the
cathode material of this battery is basically NiMnCoO, (NMC). For re-
ference, according to the three different ratios of Ni:Mn:Co, it is possible
to produce various NMC batteries (Ni:Mn:Co = 5:2:3, 6:2:2, and 8:1:1).
In case of the 18650-HE4 battery, conventional NMC (not Ni rich) is
used (Ni:Mn:Co = 5:2:3). A few of the batteries are used as seeds for the
GAN to learn the battery-state distribution. Fig. 9 shows experimental
equipment that include a thermal chamber and test bench. The lithium-
ion battery has a nominal capacity of 2.5Ah. In the test, the maximum
charging voltage is set to 4.2V, and the cutoff voltage is set to 2.5V. The
test is carried out in a thermal chamber, which avoids the temperature
effect during the charge-discharge cycles. The discharging and charging
current of 1.25A applied to the battery has slight fluctuation. The
battery's terminal voltage, current, and SOC states are recorded every 5s
(0.2Hz sample rate).

4.2. Experimental rechargeable battery data processing

Generating reliable and effective battery data is the key factor to
obtaining highly credible simulation results. Therefore, the different
battery state is used to analyze precision under different operating
conditions. Fig. 10 shows a comparison of the estimated terminal vol-
tages of nine cells under the same operating conditions. The voltage
exhibits only a slight difference when the cells are under same SOH. The
cells discharge at an SOC interval of 5%, and the corresponding current
is shown in Fig. 11. Figs. 10 and 12 show large errors at the beginning
and approaching the end of discharge, particularly at the end of dis-
charge.

To use the proposed GAN-CLS networks, the battery state data must
be reshaped to 2-D images. Then, the different filter sizes are used to
extract the rough and detailed feature, and the extracted feature and its
corresponding SOH are combined as input data for the discriminator,
such that the matching-aware discriminator can be obtained. Figs. 13
and 14 show the battery discharge characteristics (OCV-SOC and pulse
power characterization respectively), and corresponding color and gray
images.

4.3. Experimental verification and discussion

The network is trained under 10 generators for each discriminator.
Fig. 15 shows the generated images at different epochs; SOC-OCV use
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Fig. 17. Mean square error (MSE) prediction of nine rechargeable cells with
different SOH.

Table 2
Average time elapsed of 10 generated datasets in each epoch.
Epoch 1 2 3 4 5 6
Time(s) 4.8627 4.7005 4.7529 4.7730 4.7369 4.7044
Table 3

Comparison of the reliability and validity performance (Error mean, MSE and
PCC) of six rechargeable cells.

Cell 1 2 3 4 5 6

Error mean -0.0976 0.0030 -0.0242 0.0298 0.0321 0.0193
MSE 0.0112 0.0000 0.0007 0.0009 0.0010 0.0003
PCC 0.9967 0.9999 0.9995 0.9997 0.9997 0.9998

gray color and pulse power characterization use color; the results are
relatively poor for the pulse power characterization test cases. The al-
gorithms generate images that match the SOH, but small layers for the
pulse power characterization are exhibited in the GAN-CLS algorithm
due to the more complex distribution.

Fig. 16 shows the loss of generator and discriminator which both
converge to 0, the generator has slight jitter. Using the generated bat-
tery information (including terminal voltage, current, SOH, and cycles)
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to train the BLSTM, the trained networks are then used to predict the
experimental data. Fig. 17 shows the prediction error in 9 random cells
with different SOH. The results show a predicted MSE smaller than
+ 0.002 * 0.002.
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In this study, we propose the use of the GAN-CLS algorithm to
generate battery discharge state data and the BLSTM to predict the
battery state. Table 1 lists the average time elapsed of 10 generated
datasets. Compared with conventional methods, the elapsed time is
significantly reduced. Conventional experiments also require the pur-
chase of many batteries for experimental purposes. The proposed
methods only require 10 to 30 sets of experimental data to train the
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networks, resulting in the generation of thousands of pseudo-experi-
mental data; thus, the prediction model will have high precision and
generalization performance. Table 2 demonstrates the elapsed time of
the training network in each epoch. The internal networks are set to 40
generators cycles and 10 discriminators cycles, the general convergence
performance is less than 60 epochs, the total GAN-CLS training time
(include CNN preprocess) is less than 750s. The time to generate 120
desired data is ignored because it only takes 100-120ms (with Intel
Core i7-9700K Desktop Processor 8 Cores and GeForce RTX 2080Ti
Graphics Card), comparing with the experiment modeling time of more
than 30000s. Generally, the proposed methods significantly reduce the
time cost. The reliability and validity performance are listed in Table 3,
with the generated data compared with true data. PCC is the Pearson's
correlation coefficient. The generated data is shown to have high si-
milarity.

The modeling processing (include parameters identification and
training data collection) is time consuming to the most conventional
SOC estimation methods. The experiment run 10 times with 3 different
SOH condition batteries, the ten batteries are used in each time. Fig. 18
shows the time cost comparison of experimental modeling and GAN-
CLS modeling, the purposed methods have 50 times less time cost than
the conventional modeling. Fig. 19 shows the BLSTM methods (include
train and prediction time) have 20 times less time cost than the EKF
methods. The generated data are normalized to accelerate the rate of
convergence of the networks. Using 500 generated datasets in each
epoch to train the BLSTM, the tremendous amount data ensures that the
MSE is low from the start, as shown in Fig. 20. The training process is
conducted for every 12 datasets with the batch of size 60, continuously.
Fig. 21 shows the training MSE for 1000 Epochs; the MSE has a dis-
tribution caused by the fluctuation of the generated data. Fig. 22 de-
monstrates that the BLSTM can predict the data with high accuracy.

Each voltage generalization ability in the EKF and proposed ap-
proach is compared with a real measured voltage obtained at low (0°C)
and high temperatures (50°C) (Fig. 23). According to the comparison
among three voltages under 0°C (left figure), it is shown that two
methods have a good similar performance on voltage prediction. Un-
fortunately, the right figure clearly shows the increased voltage pre-
diction errors of two methods under 50°C(0°C=50°C), especially the
EKF. As previously mentioned in Section 2.1, the EKF significantly
depends on the accuracy of model parameters (correct parameter
identification) as well as the predetermined noise covariance. Thus,
incorrect parameter identification and environmental variables may
result in remarkable errors and divergence on battery voltage predic-
tion. As shown in Fig. 23(b), it is not easy to predict the battery voltage
in the EKF unless we re-identify the model parameters obtained at 50°C
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Fig. 23. Voltage generalization ability in the EKF and proposed approach compared with a real measured voltage obtained at low (0°C) and high (50°C) temperatures.

(a) Voltage prediction at 0°C, (b) Voltage prediction at 50°C.
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and used these values in the EKF. In comparison with real measured
voltage at 50°C, the prediction error in the EKF is larger than that of the
proposed approach.

The theoretical analysis ensures the validity of the combined
methods. The experiment shows that our methods can also generate a
corresponding image according to the given SOH. However, there are
still some limitations of our method. In some cases, the generated re-
sults are not plausible. The generated images have some layers and are
not entirely clean. In future work, we will seek solutions to these pro-
blems.

5. Conclusions

This paper combines the deep learning technologies of GAN-CLS
and BLSTM to estimate the state of batteries. The proposed methods
only require a few CNN processed experiment datasets to train the
GAN-CLS. The trained networks can generate extremely valid data in
contrast to the alternative of running many repeated experiments. The
generated data with high PCCs are used to train the BLSTM. The ana-
lysis is carried out considering both time cost and error. The time cost
results suggest that the GAN-CLS can train and generate data 50 times
than experiments, the BLSTM can train and test 20 times than con-
ventional methods. while limitations result from the fluctuation of the
networks. The results show a predicted maximum MSE smaller than
0.0025 and the average MSE less than 0.0013. The MSE results suggest
that the proposed networks have high accuracy and generalization, and
the proposed methods significantly reduce time and material cost
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