
ESSENTIAL SELF-ADJOINTNESS OF THE WAVE OPERATOR

AND THE LIMITING ABSORPTION PRINCIPLE ON

LORENTZIAN SCATTERING SPACES
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Abstract. We discuss the essential self-adjointness of wave operators, as
well as the limiting absorption principle, in generalizations of asymptotically

Minkowski settings. This is obtained via using a Fredholm framework for in-

verting the spectral family first, and then refining its conclusions to show dense
range of �− λ, λ /∈ R, in L2

sc when acting on an appropriate subdomain.

1. Introduction

In this short note we discuss the self-adjointness of the wave operator on gen-
eralizations of Minkowski space, answering a question of Jan Dereziński. More
precisely, the setting is that of non-trapping sc-metrics, an extension of Lorentzian
scattering metrics introduced in [2] and studied in more detail in [9], [6] and [22],
with the Feynman propagator, whose role is discussed below, being particularly
closely examined in the latter two papers. These are Lorentzian analogues of the
Riemannian scattering metrics introduced by Melrose in [12]. The non-trapping
condition is a condition on null-geodesics on M , namely they should converge to a
replacement of the light cone at infinity in both the forward and backward direc-
tions. In fact, the signature of the metric makes no difference; the same conclusion
is true for non-trapping semi-Riemannian metrics of any signature, as the proof
goes through without any changes. Later on, we also discuss the limiting absorp-
tion principle, for which there is also a ‘non-trapping at energy λ’ condition which
is a condition on the limiting geodesics at infinity corresponding to the spectral
parameter being considered, see Section 2 for detail.

For the statement of the first result recall that for a (densely defined) unbounded
operator L self-adjointness is a symmetry plus an invertibility (for the operator
L± ι), or equivalently surjectivity statement; essential self-adjointness amounts to
a symmetry plus a dense range statement for the operator L± ι.
Theorem 1. Suppose (M, g) is a non-trapping Lorentzian sc-metric. Then �g is
essentially self-adjoint on C∞c (M◦).
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As far as the author is aware, the first general mathematically precise result
in this direction is that of Dereziński and Siemssen [5], see also [4], who assumed
time-translation invariance, though there is a long history in the physics literature
of treating the wave operator as at least a potentially self-adjoint operator. Note
that this time translation invariance means that the overlap of the present paper
with [5] is minimal. Our result also relates to recent/ongoing work of Nakamura and
Taira, see [15], with details of the directly relevant aspects being parts of works in
progress. In the work of Nakamura and Taira [15], the non-trapping condition (for
the purpose of essential self-adjointness) is replaced by a positive energy condition.

The key part of proving the theorem is to show that (�g ± ı)u = f is solvable
when f ∈ C∞c (M◦). Concretely, we take

D = {u ∈ H1,−1/2
sc ∩ L2

sc : �gu ∈ L2
sc},

the weighted scattering Sobolev spaces being recalled below, and then a straightfor-
ward regularization argument shows that C∞c (M◦) is dense in it and �g is symmetric
on it. The main point is thus to show that C∞c (M◦) ⊂ (�g ± ι)D ⊂ L2

sc and hence
(�g ± ι)D is dense in L2

sc. We do so by using a Fredholm framework for inverting
�g − λ on appropriate variable order Sobolev spaces discussed below; this in fact
works uniformly to the real axis in λ, thus giving the limiting absorption principle.
We then show additional regularity of the solution, proving Theorem 1.

The aforementioned Fredholm framework gives rise to the massive Feynman
propagators via the limiting absorption principle. Gérard and Wrochna studied
these in a different Fredholm setting in [8, 7], based in part on earlier work of Bär
and Strohmaier [1].

We finally comment on some generalizations. Considering electromagnetic po-
tentials A amounts to working with (−ıd−A)∗g(−ıd−A) + V . If A, V are real and
symbols of negative order (thus decaying) with values in one-forms, resp. scalars,
all our results and arguments are unaffected. If A, V are real and symbols of order
0 then essential self-adjointness (including its proof) is unaffected.

Working with the wave operator on differential forms of any (or all) form degree
or on tensors again does not affect the Fredholm theory; again adding to these
symmetric (on C∞c (M◦) with values in forms or tensors, with the L2-inner prod-
uct) first order operators with symbolic of negative order coefficients (such as the
electromagnetic terms above) does not affect the Fredholm theory either. In par-
ticular, the limiting absorption principle holds in the sense of Theorem 9, i.e. a
limiting resolvent exists, assuming that at λ ∈ R the a priori finite dimensional
nullspace of P = �g −λ and P ∗ is trivial. (Both of these have to be assumed to be
trivial: in Theorem 9, index 0 considerations mean that only one of these need to
be assumed.) However, the argument for showing the triviality of the a priori finite
dimensional nullspace of P = �g − λ, λ /∈ R, and its adjoint in Lemma 4 would be
affected since the inner product with respect to which the operator is symmetric is
no longer positive definite. However, if the operator has additional structure, the
nullspace may be shown to be trivial by other arguments, e.g. Wick rotations work
in the case of translation invariant metrics on Rn; the perturbation stability of the
Fredholm framework implies the same conclusion on perturbations of these in the
scattering category. Hence, in these cases (when the conclusion of Lemma 4 holds),
the essential self-adjointness also holds in the sense that all of the above statements
regarding D continue to hold.
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2. Background

We now recall some background. We refer to [12] for the introduction of scat-
tering, or sc-, structures, and to [17, 21] for another discussion which emphasizes
an Rn-based perspective localizing to asymptotic cones. Recall that on a manifold
with boundary M , the space of b-vector fields Vb(M) is the Lie algebra of smooth
vector fields tangent to ∂M (indeed, this is the definition even for manifolds with
corners, which will be used below for the compactified cotangent bundle), while
the space of scattering vector fields or sc-vector fields is Vsc(M) = xVb(M), where
x is any boundary defining function, i.e. a non-negative C∞ function on M , with
zero set exactly ∂M such that dx is non-zero at ∂M . Such vector fields are exactly
all smooth sections of a vector bundle, scTM , over M , called the scattering tan-
gent bundle, which over the interior M◦ is naturally identified with TM◦. Indeed,
notice that in a local coordinate chart, in which x is one of the coordinates, and
the other coordinates (coordinates on ∂M) are y1, . . . , yn−1, V ∈ Vsc(M) means

exactly that V = a0(x2∂x) +
∑n−1
j=1 aj(x∂yj ) with aj smooth in the chart, so x2∂x,

x∂y1 , . . . , x∂yn−1
give a local basis of smooth sections, and thus a local basis for

the fibers of the vector bundle scTM . Hence, the aj are coordinates on the fibers
of scTM (locally), and thus x, y1, . . . , yn−1, a0, a1, . . . , an−1 are local coordinates
on the bundle scTM . There is a dual vector bundle, scT ∗M , called the scatter-

ing cotangent bundle, with local basis dx
x2 ,

dy1
x , . . . , dyn−1

x . A sc-metric of signature
(k, n−k) is then a smooth (in the base point p) non-degenerate symmetric bilinear
map scTpM×scTpM → R of signature (k, n−k). Equivalently, it is a smooth section
of scT ∗M⊗s scT ∗M (symmetric tensor product) of the appropriate signature. Then
L2
sc is the L2-space of the metric density of any sc-metric (either Lorentzian or Rie-

mannian, or of another definite signature), with all choices being equivalent in that
they define the same space and equivalent norms, and Hs,r

sc is the corresponding
weighted Sobolev space, so if s ≥ 0 is an integer then

Hs,0
sc = {u ∈ L2

sc(M) : ∀k ≤ s ∀V1, . . . Vk ∈ Vsc(M), V1 . . . Vku ∈ L2
sc},

and Hs,r
sc (M) = xrHs,0

sc (M).
As an example, M could be the radial compactification Rn of Rn, in which a

sphere Sn−1 is attached as the ideal boundary of Rn, so the compactification is
diffeomorphic to a closed ball. Concretely, a neighborhood of the boundary is
diffeomorphic to [0, ε)x × Sn−1, ε > 0, whose interior, (0, ε)x × Sn−1 is identified
with the subset {z ∈ Rn : |z| > ε−1} via the reciprocal spherical coordinate map,
(0, ε)×Sn−1 3 (x, ω) 7→ x−1ω ∈ Rn, where the sphere is regarded as a submanifold
of Rn to make sense of the map. Then any translation invariant metric of any
signature is (i.e. can be naturally identified with) a sc-metric of the same signature.
In fact, C∞(M) is then the space of classical (one-step polyhomogeneous) symbols

of order 0 on Rn, Ċ∞(M) (the space of C∞ functions on M vanishing to infinite
order at ∂M) is the space of Schwartz functions S(Rn), Vsc(M) is spanned by the
lift of translation invariant vector fields ∂zj , j = 1, . . . , n, over C∞(M), i.e. an
element of Vsc(M) is of the form

∑
aj∂zj with aj ∈ C∞(M), i.e. a classical symbol

of order 0, and similarly scT ∗M ⊗s scT ∗M is spanned by the lifts of dzi⊗s dzj with
C∞(M) coefficients. Correspondingly, L2

sc is the standard Lebesgue space, Hs,r
sc the

standard weighted Sobolev space.
More generally, a coordinate neighborhood of a point on the boundary of a

manifold with boundaryM can be identified with a similar coordinate neighborhood
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of a point on the boundary of Rn. Note that from the perspective of Rn, such a
neighborhood is asymptotically conic. Rather than following the above intrinsic
definitions, one could transplant the notions discussed above directly from Rn via
such an identification, exactly how standard notions on manifolds without boundary
are defined by identifying coordinate charts with open subsets of Rn; this is the
approach taken by [21, 17].

In particular, this gives a convenient way of introducing scattering pseudodif-
ferential operators Ψm,l

scc (M) by reducing to the case of Rn, or equivalently to an
appropriate uniform structure in the interior, Rn. (The notation Ψscc stands for
‘scattering conormal’; [12] uses Ψsc for ‘classical’ scattering; classical symbols are
the one-step polyhomogeneous ones.) In the present case these are simply quan-
tizations of (product-type) symbols of order (m, l), a ∈ Sm,l, i.e. C∞ functions on
Rnz × Rnζ such that for all α, β

|(Dα
zD

β
ζ a)(z, ζ)| ≤ Cαβ〈z〉l−|α|〈ζ〉m−|β|.

Note that as in [17, 21], the second, decay order, uses the opposite sign convention
than Melrose’s original definition [12]; thus, the space Ψm,l

scc (M) gets bigger with
increasing m, l. One also has variable order pseudodifferential symbols and oper-
ators. In this paper the relevant order is the second, decay order, which we must
allow to vary, thus l is in S0,0; for this purpose we also need to relax the type of the
symbol estimate and allow small power (more optimally logarithmic) losses: thus

the estimates for a ∈ Sm,lδ are, for fixed δ ∈ (0, 1/2), which could be taken small as
one wishes for our purposes,

|(Dα
zD

β
ζ a)(z, ζ)| ≤ Cαβ〈z〉l(z,ζ)−|α|+δ(|α|+|β|)〈ζ〉m−|β|+δ(|α|+|β|).

The standard concepts, such as the principal symbol, still work; in the present case

it lies in Sm,lδ /Sm−1+2δ,l−1+2δ
δ , and it is multiplicative, i.e. the principal symbol of

a product is the product of the principal symbols, of course with the appropriate
orders as usual. Since the choice of δ is usually irrelevant, we typically suppress
it in the subscripts. One can thus define the ellipticity, etc., as usual. Then the
elements of Ψ0,0

scc are bounded operators on all weighted Sobolev spaces Hs,r
sc , and

one can define variable order Sobolev spaces (with just r variable for notational
simplicity) by taking r0 < inf r, and A ∈ Ψs,r

scc elliptic, and saying

Hs,r
sc = {u ∈ Hs,r0

sc : Au ∈ L2
sc},

with the norm whose square is

‖u‖2Hs,r
sc

= ‖u‖2
H

s,r0
sc

+ ‖Au‖2L2
sc

;

see [17, 21] for details.
It is also important that in addition to principal symbols of products, we can

compute principal symbols of commutators. Concretely, if A ∈ Ψs,r
scc and B ∈ Ψs′,r′

scc

then

[A,B] ∈ Ψs+s′−1+2δ,r+r′−1+2δ
scc

and with a, resp. b, denoting the principal symbols of A, resp. B, its principal
symbol is the Poisson bracket 1

i {a, b} (which, recall, arises from the symplectic
structure on T ∗M◦). In the case of M being the radial compactification of Rn, this
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is simply

1

i
{a, b} =

1

i

n∑
j=1

(∂ζja)(∂zj b)− (∂zja)(∂ζj b).

Writing coordinates on the fibers of the scattering cotangent bundle as τ, µ1, . . . , µn−1,
sc-dual to the coordinates x, y1, . . . , yn−1 discussed above, i.e. sc-covectors are writ-
ten as

τ
dx

x2
+
∑
j

µj
dyj
x

we have

(1)

{a, b} = Hab =x
(

(∂τa)
(
(x∂x + µ · ∂µ)b

)
−
(
(x∂x + µ · ∂µ)a

)
(∂τ b)

+
∑
j

(
(∂µj

a)(∂yj b)− (∂yja)(∂µj
b)
))
,

see [12, Equation (5.24)], as follows by a change of variables computation. Here Ha

is called the Hamilton vector field of a.
Finally, we need to discuss microlocalization. Since there are two different im-

portant behaviors, in the case of T ∗Rn these being |z| → ∞ and |ζ| → ∞, it is
even more useful to compactify phase space than in the usual microlocal analysis
setting, where using homogeneity in dilations of the fibers of the cotangent bundle
is an effective substitute. In the case of T ∗Rn, this compactified phase space is

scT ∗Rn = Rnz × Rnζ .

i.e. we compactify the position and the momentum space separately using the above
radial compactification. Thus scT ∗Rn is the product of two closed balls, and hence
it is a manifold with corners. The two boundary hypersurfaces are Rn × ∂Rn,
which is ‘fiber infinity’, where standard microlocal analysis takes place, and ∂Rn×
Rn, i.e. ‘base infinity’; these intersect in the corner ∂Rn × ∂Rn. The locus of
microlocalization is then

∂scT ∗Rn = ∂Rn × Rn ∪ Rn × ∂Rn;

thus the elliptic set, the characteristic set and the wave front set are subsets of this.
These notions immediately extend to general manifolds via the local coordinate

identifications. The general compactified phase space is the fiber-radial compacti-
fication scT ∗M of scT ∗M ; the locus of microlocalization is its boundary

∂scT ∗M = scT ∗∂MM ∪ scS∗M,

where scS∗M is fiber infinity, i.e. the boundary of the fiber compactification. One
can take x as a boundary defining function of base infinity scT ∗∂MM and (with
the local coordinate notation from above) ρ∞ = 〈(τ, µ)〉−1 = (|(τ, µ)|2 + 1)−1/2

as a defining function of fiber infinity, where |.| is the length with respect to any
Riemannian sc-metric. Relating to the above discussion of variable order spaces,
one may have e.g. the decay order as smooth function on scT ∗∂MM ; in order to
match with the previous definition one extends it to a smooth function on all of
scT ∗M , with all potential extensions resulting in exactly the same Sobolev space
as can be seen immediately from the definition.
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Note that in view of the vanishing factor x on the right hand side of (1), as well
as the one order lower than that of a homogeneity of

(2)

Ha =x
(

(∂τa)(x∂x + µ · ∂µ)−
(
(x∂x + µ · ∂µ)a

)
∂τ

+
∑
j

(
(∂µj

a)∂yj − (∂yja)∂µj

))
,

one may want to rescale Ha, factoring out this vanishing. In order to obtain a
well-behaved, namely smooth and at least potentially non-degenerate, vector field
on the compactification, one may consider

Ha,s,r = xr−1ρs−1∞ Ha.

If a is classical this becomes a smooth vector field tangent to the boundary of the
compactified space scT ∗M , and thus defines a flow on it (the Hamilton flow); for
general a the vector field is conormal of order (0, 0) as a vector field tangent to the
boundary, i.e. is in S0,0Vb(scT ∗M). Note that the defining functions we factored
out are defined only up to a smooth positive multiple (smooth on the compact
space, thus this means bounded from above and below by positive constants in
particular), and hence the rescaled vector field is only so defined, but such a change
merely reparameterizes the flow, which is irrelevant for considerations below. Radial
points of Ha are then points on the boundary of scT ∗M at which the Ha,s,r vanishes

(as a vector in T scT ∗M), thus are critical points of the flow. Note that at such
points Ha,s,r need not vanish as a b-vector field, so e.g. it may have a non-trivial x∂x
component (or the analogous statement at fiber infinity); indeed this non-vanishing
is what makes the radial point non-degenerate: in analytic estimates x∂x hitting
the weight xm of a commutant is what can give a contribution of a definite sign.

After these differentiable manifold structure type discussion in the sc-category,
we briefly discuss the geometry, namely metrics. For the purposes of the present
paper what we need is that the metric g is a Lorentzian (or more general pseudo-
Riemannian) sc-metric for which the Hamilton flow has a source/sink structure.
Thus, we need that there are submanifolds of scT ∗∂MM which are transversal to
scS∗∂MM and are normal sources (meaning normally to the submanifold they are
sources) L−, resp. sinks L+, of the Hamilton flow of the dual metric function, G
(the principal symbol of �g); here the source/sink is understood in a non-degenerate
sense for the Hamilton vector field HG,2,0. Notice that this means that ρ∞∂τG > 0
at sources and ρ∞∂τG < 0 at sinks (in the sense of bounded away from 0) by (2).
The definition of a non-trapping sc-metric g is then that g is a sc-metric (of some
signature) such that all integral curves of HG inside the characteristic set {G = 0}
at scS∗M (i.e. fiber infinity), except those contained in L±, tend to L+ (indeed,
necessarily to L+ ∩ scS∗M) in the forward and L− in the backward direction. We
call a sc-metric non-trapping at energy λ if it is non-trapping in the sense above,
and in addition, all integral curves of HG inside the λ characteristic set {G = λ}
at scT ∗∂MM (i.e. base infinity), except those contained in L±, tend to L+ in the
forward and L− in the backward direction.

The class of non-trapping Lorentzian sc-metrics is a much larger class of metrics
than that of Lorentzian scattering metrics introduced in [2, Section 3.2]. Indeed
the latter class also demands that at fiber infinity L± be halves of the (scattering)
conormal bundles of submanifolds S± of ∂M , locally given by v = 0 within x = 0,
at which the metric has a certain model form, generalizing that of the Minkowski



ESSENTIAL SELF-ADJOINTNESS OF THE WAVE OPERATOR 7

metric on the radial compactification. This implies the source/sink structure at
sc-fiber infinity, see [2, Section 3.6], which is in the b-setting at fiber infinity for a
conformal multiple of the operator, but by homogeneity considerations the results
are completely analogous for our sc-setting. Concretely, the model form of g is

v
dx2

x4
−
(dx
x2
⊗ α

x
+
α

x
⊗ dx

x2

)
− g̃

x2
,

with α = 1
2 dv + O(v) + O(x) a smooth one-form on M near v = x = 0, and

g̃ a smooth symmetric 2-cotensor on M which is positive definite on the joint
annihilator of dx and dv, and L± at sc-fiber infinity are given by the boundary of
the span of dv

x at v = 0, x = 0. Indeed, G at the span of dv
x at v = 0, x = 0 is,

modulo quadratically vanishing terms,

−4vγ2 − 4τγ,

where we write sc-one-forms as

τ
dx

x2
+
γ dv + η dw

x
,

w local coordinates on S±, cf. [2, Equation (3.18)]; the radial sets are thus τ = 0,
η = 0, x = 0, v = 0, and, taking ρ∞ = |γ|−1 locally,

x−1|γ|−1HG

= |γ|−1
(
− 4γ(x∂x + γ∂γ + η∂η) + (8vγ2 + 4τγ)∂τ − (8vγ + 4τ)∂v + 4γ2∂γ

)
= −4 sgn(γ)x∂x

there as a b-vector field, so γ > 0 is the sink, γ < 0 the source. (But note that
only the part at fiber infinity is in the characteristic set for λ 6= 0!) In the class
of Lorentzian scattering metrics one also demands global properties, such as that
{v > 0, x = 0} has two connected components C± (‘spherical caps’ in Minkowski
space, and though they may not be spherical in any sense, we continue calling them
so in general) with S± as their respective boundaries, while {v < 0, x = 0} = C0

has two boundary components S±.
The ‘non-trapping at energy λ’ condition played no role in [2], since that paper

considered the wave equation (λ = 0) and rescaled the wave operator to a b-
operator, for which the non-trapping condition is exactly the above sc-non-trapping
condition; this rescaling is possible and the non-trapping claim holds since the dual
metric G is necessarily a homogeneous quadratic polynomial on the fibers of scT ∗M ,
unlikeG−λ for non-zero λ. However, for the particular example of Minkowski space,
it is straightforward to check that the source-sink structure and the non-trapping
condition hold for any non-zero real λ, with the characteristic set connected for
λ < 0 and having two connected components when λ > 0. Indeed, using Euclidean
variables (z, ζ), ζ is constant along the Hamilton flow, while z moves along a straight
line in the direction of the tangent vector G(ζ), so the radial set at scT ∗∂MM (with
∂M considered as the ‘sphere at infinity’ identified with the unit Euclidean sphere)
is where the direction z

|z| (with |z| the Euclidean metric length) of z is that of

±G(ζ); note that the characteristic set is where G(ζ, ζ) = λ, with the intersection
of the two giving an (n − 1)-dimensional submanifold in scT ∗∂MM with ζ ∈ (Rn)∗

satisfying G(ζ, ζ) = λ a coordinate along it, and the source is where z and G(ζ) are
anti-aligned, the sink is where they are aligned. Since the propagation estimates
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are stable under perturbations, see [16, Section 2.7], they also hold for sc-metrics
that are suitably close (in C∞) to the Minkowski metric.

3. Fredholm theory and essential self-adjointness

In our proof of the main theorem we focus on the Lorentzian case of signa-
ture (1, n − 1) for the sake of being definite in terminology; the general pseudo-
Riemannian case barely differs, except that the only reasonable problems are the
Feynman and anti-Feynman problems, but they are also the only ones that matter
below. In all of our discussions below we assume that the metrics are non-trapping
sc-metrics.

In order to get started, we first recall that (assuming M is connected – other-
wise the statement is for each connected component) for λ > 0 the Klein-Gordon
operator P = �g − λ ∈ Ψ2,0

sc has four Fredholm problems, see [20], as well as
[21, Section 5.4.8] for a detailed discussion, corresponding to the characteristic
set having two connected components. (This follows from the characteristic set
{ζ : G(ζ, ζ) = λ}, G = g−1, having two connected components fiberwise: this
fiberwise characteristic set is the two-sheeted hyperboloid.) Indeed, in each con-
nected component of the characteristic set one can choose the direction in which one
propagates estimates for P , and then for P ∗ using dual spaces one propagates the
estimates in the opposite direction, resulting in 22 possibilities. Concretely, these
are the retarded, advanced, Feynman and anti-Feynman, Fredholm problems; the
direction of propagation is encoded by the use of appropriate weighted Sobolev type
spaces. Concretely, these are based on variable order Sobolev spaces Hs,r

sc , where
s is constant, r variable, a function on scT ∗∂MM , monotone along the rescaled
Hamilton flow, and satisfies the inequalities r > −1/2 at the radial points from
which estimates are propagated, r < −1/2 at the radial points to which estimates
are propagated, and

(3) Ys−1,r+1 = Hs−1,r+1
sc , X s,r = {u ∈ Hs,r

sc : (�g − λ)u ∈ Hs−1,r+1
sc },

with
P = �g − λ : X s,r → Ys−1,r+1

Fredholm. Here the threshold value −1/2 for the Sobolev order arises from the
radial point estimates for formally self-adjoint P ; in general, for an operator P ∈
Ψm,l

sc with P = P ∗ with the same characteristic set geometry as ours, the threshold
order is l−1

2 , see [21, Proposition 5.26] (where the geometry, namely the role of m, l

are reversed). Note also that the target space, Ys−1,r+1 loses one order, i.e. requires
one extra order of regularity, in both senses relative to what one would expect given
a domain Hs,r

sc and an elliptic element of Ψ2,0
sc (namely Hs−2,r

sc ) necessitating the
modification of Hs,r

sc to arrive at X s,r. Our P is not elliptic of course, and this is
the real principal type loss of one order relative to elliptic estimates, going back in
this manner to Hörmander’s theorem on propagation of singularities [10].

To fix terminology we make the definition:

Definition 2. The function spaces in (3) with s constant, r a function on scT ∗∂MM ,
monotone along the rescaled Hamilton flow, are called

(i) Feynman, if r > −1/2 at the radial sources L− and r < −1/2 at the radial
sinks L+,

(ii) anti-Feynman, if r > −1/2 at the radial sinks L+ and r < −1/2 at the
radial sources L−.
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Corresponding to the above discussion, the Fredholmness of P on these spaces
relies on the non-trapping nature of the bicharacteristic flow within the charac-
teristic set, which has two parts: the part at fiber infinity, in scS∗M , which is
independent of λ, and the part at spatial infinity, scT ∗∂MM , which does depend on
λ. In particular, these non-trapping conditions are perturbation stable, and hold
for the Minkowski (as well as translation invariant pseudo-Riemannian on Rn) met-
rics. Note that the choice of s, r with r satisfying the above constraints is irrelevant;
and the nullspace automatically lies in the intersection of all these spaces; thus in
particular for elements u of the nullspace of P , WFsc(u) is a subset of the radial
points towards which the estimates are propagated.

If λ < 0 (and n = dimM ≥ 3), then due to the behavior of the characteristic
set at base infinity, the characteristic set has only one connected component (the
characteristic set {ζ : G(ζ, ζ) = λ} has one connected component fiberwise: this
fiberwise characteristic set is the one-sheeted hyperboloid.), and correspondingly
only two of these problems remain: Feynman and anti-Feynman problems. Note
that the Cauchy problem (or retarded/advances problems) is still solvable, but the
solution will typically grow exponentially, thus it does not exist as far as polynomi-
ally weighted Sobolev spaces (our world in this paper) are concerned. (For λ = 0
we still have the four problems, but in weighted b-Sobolev spaces, see [6], which we
do not discuss here.)

Now, if λ is made complex, of course the usual principal (and even the sub-
principal!) symbol are not affected, and correspondingly estimates at fiber infinity,
scS∗M , are unchanged over M◦. However, the estimates at scT ∗∂MM become more
delicate.

Namely, in this region one has a non-real principal symbol (since λ is part of
it). Thus, by the usual propagation estimates (these are the ones used for ‘complex
absorption’) one can propagate estimates in the forward direction along the HRe p

flow when Imλ ≥ 0, and in the backward direction when Imλ ≤ 0. (See [21,
Section 5.4.5] and [17], as well as the usual microlocal analysis version in [16,
Section 2.5].) Of course, the operator is elliptic at finite points (not at scS∗M)
of scT ∗∂M when Imλ > 0; the point is that the estimates work at the corner (fiber
infinity at ∂M), and they work uniformly in λ even as Imλ→ 0. This propagation
works for any s, r (s a priori relevant only when one is at fiber infinity at ∂M),
including variable r, when r is monotone decreasing in the direction in which the
estimates are propagated.

Notice that corresponding to the ellipticity at finite points, for these estimates,
as well as the ones below, the only relevant non-trapping condition is the basic
one concerning bicharacteristics at fiber infinity, scS∗M , i.e. the ‘non-trapping at
energy λ’ condition is only relevant when one wants to let λ to the real axis, as we do
below for the limiting absorption principle (but not for the essential self-adjointness
discussion), and then the relevant condition is non-trapping at the limiting energy
λ.

Most importantly though one needs to get radial point estimates, however. For
real λ 6= 0 these are two estimates, see [21, Section 5.4.7] and [17], as well as the
usual microlocal analysis version in [16, Section 2.4]. The first, high ‘regularity’
(where here this means decay), which gives a ‘free’ estimate at the radial point, is
of the form

‖Qu‖Hs,r
sc
≤ C(‖Q1Pu‖Hs−1,r+1

sc
+ ‖Q1u‖Hs′,r′

sc
+ ‖u‖HM,N

sc
)
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when r > r′ > −1/2, s, s′,M,N arbitrary (one usually considers s′,M,N very
large and negative; these are background error terms with relatively compact prop-
erties), Q elliptic at the radial set, with wave front set in a small neighborhood,
Q1 elliptic on WF′(Q) and bicharacteristics from all points in the intersection of
WF′(Q) and the characteristic set tend to L in the appropriate (forward/backward)
direction depending on the sink/source nature, remaining in Ell(Q1). The second,
low ‘regularity’ (where again here this means decay), which allows one to propagate
estimates into the radial point from a punctured neighborhood, is of the form

‖Qu‖Hs,r
sc
≤ C(‖Q2u‖Hs,r

sc
+ ‖Q1Pu‖Hs−1,r+1

sc
+ ‖Q1u‖Hs′,r′

sc
+ ‖u‖HM,N

sc
)

when r < −1/2, s, s′, r′,M,N arbitrary (one considers s′, r′,M,N very large and
negative), Q elliptic at the radial set, with wave front set in a small neighbor-
hood, Q1 elliptic on WF′(Q) and bicharacteristics from all points in WF′(Q) inter-
sected with the characteristic set which are not in L, tend to L in the appropriate
(forward/backward) direction depending on the sink/source nature, remaining in
Ell(Q1), and intersect Ell(Q2) at some point in the opposite direction along the
flow, still remaining in Ell(Q1).

Now allowing λ complex, say Imλ ≥ 0, one can only propagate estimates in the
forward direction along the HRe p-flow, and correspondingly one obtains the high
regularity estimates only at the sources, the low regularity ones at the sinks (with
sources and sinks reversed for Imλ ≤ 0). These estimates in fact become stronger
than the ones above, cf. the complex absorption arguments in [21, Section 5.4.5]
and [17], namely one can in addition control a term ‖Qu‖

H
s−1/2,r+1/2
sc

, i.e. one

that is stronger in the sense of decay (though not differentiability) than that on
Qu above. This results from an extra term 〈Ǎ∗ ImλǍu, u〉 = Imλ‖Ǎu‖2 in the

estimate, in addition to the commutator terms, 〈[Ǎ∗Ǎ,�]u, u〉, with Ǎ ∈ Ψ
m′/2,l′/2
scc ,

s = (m′ + 1)/2, r = (l′ − 1)/2. Thus the estimates are
(4)
‖Qu‖Hs,r

sc
+ Imλ‖Qu‖

H
s−1/2,r+1/2
sc

≤ C(‖Q1Pu‖Hs−1,r+1
sc

+ ‖Q1u‖Hs′,r′
sc

+ ‖u‖HM,N
sc

)

r > r′ > −1/2, s, s′,M,N arbitrary, and

(5)
‖Qu‖Hs,r

sc
+ Imλ‖Qu‖

H
s−1/2,r+1/2
sc

≤ C(‖Q2u‖Hs,r
sc

+ ‖Q1Pu‖Hs−1,r+1
sc

+ ‖Q1u‖Hs′,r′
sc

+ ‖u‖HM,N
sc

)

when r < −1/2, s, s′, r′,M,N arbitrary.
Now, taking r with −1/2 < r at the sources, −1/2 > r > −1 at the sinks,

monotone along the flow, s > 1/2, this in particular gives:

Proposition 3. (See [21, Section 5.4.8] for the real λ version.) Suppose λ 6= 0.
Then for s, r as above corresponding to either the Feynman spaces (Imλ ≥ 0) or
anti-Feynman spaces (Imλ ≤ 0), the operator

P : X s,r → Ys−1,r+1

is Fredholm, with

Ys−1,r+1 = Hs−1,r+1
sc , X s,r = {u ∈ Hs,r

sc : Pu ∈ Hs−1,r+1
sc }.

One can interpret the estimates (4)-(5), as well as the analogous real principal
type estimates in the characteristic set between the radial points as additional
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regularity estimates giving that in fact

(6) X s,r = {u ∈ Hs,r
sc ∩Hs−1/2,r+1/2

sc : Pu ∈ Hs−1,r+1
sc }.

In particular, this lets one solve Pu = f , f ∈ Ċ∞(M), up to finite dimensional
obstacles, namely one gets that the solution u (which exists in the complement of a
finite dimensional subspace) is almost in L2, namely u ∈ H0,−ε

sc for all ε > 0. Indeed,

we have that if Pu = f , f ∈ Ċ∞(M), with u ∈ X s,r as above, then u ∈ H s̃−1/2,r̃+1/2
sc

for all s̃ and for all r̃ < −1/2, thus in H∞,−εsc for all ε > 0.
This is not quite sufficient, however, since we want to conclude u ∈ L2

sc, and
also that there are no finite codimension issues (i.e. we have invertibility and not
just Fredholmness) so, for Imλ > 0, one needs to do a borderline estimate, with
r = −1/2 at the sink (everywhere else one is in L2 already), which corresponds to
l′ = 0. Note that such an estimate cannot work when Imλ = 0, and thus cannot be
uniform in Imλ when Imλ > 0. The key point is that in this case the commutator
[Ǎ∗Ǎ,�] will have principal symbol at scS∗M for which the normally main term
(arising from the weight) vanishes at L.

It suffices for us to consider m′ = l′ = 0, in which case the situation is very
simple: we will take Ǎ to be microlocally the identity near the sinks, i.e. to have
WF′sc(Id−Ǎ) disjoint from the sink. (Such microlocalizers play an important role in
the proof of asymptotic completeness in the N -body setting; a partially microlocal
version is the work of Sigal and Soffer [14] and Yafaev [23], see [19] for a discussion.)

Since WFsc(u) is in the sink when f ∈ Ċ∞(M) by the propagation estimates
(first regularity at the radial source, propagated along the Hamilton flow to the

complement of the sink), for u ∈ Hs′,r′

sc (with e.g. r′ = r + 1/2 from above, so < 0
but close to 0 allowed) the pairing 〈u, [Ǎ∗Ǎ,�]u〉 makes sense if 2r′− l′+1 ≥ 0 and
2s′−m′−1 ≥ 0, which holds with l′ = m′ = 0 if r′ < 0 is close to 0 and s′ = 1, say.
Furthermore, a regularized version, with the regularization being used to expand
the commutator, remains bounded: for this one uses an additional regularizer factor
(1 + εx−1)−δ

′
with δ′ = −2r′ > 0 so that for ε > 0 even 〈u,�Ǎ∗Ǎu〉 makes sense,

cf. φt(ρ
−1
0 ) of [21, Equation (5.61)] for the regularizer choice. The regularizer gives

the correct sign in the commutator as it behaves exactly the same way as if one
had a more decaying weight, i.e. as if l′ < 0, since

HG,2,0x
−2l′(1 + εx−1)−δ

′
= ρ∞x

−1HGx
−2l′(1 + εx−1)−δ

′

=
(
− 2l′ + δ′

εx−1

1 + εx−1

)
x−2l

′
(1 + εx−1)−δ

′
(ρ∞x

−2HGx),

with both terms in the big parentheses being ≥ 0 when l′ ≤ 0. Then the Imλ

term gives an estimate for ‖Ǎu‖2, which is an estimate for u in H
m′/2,l′/2
sc = L2

sc as

desired. In particular, if u ∈ X s,r and Pu ∈ Ċ∞(M) then u ∈ L2
sc.

Lemma 4. Suppose that Imλ > 0, and consider the Feynman Fredholm problem
P : X s,r → Ys−1,r. Then KerP and KerP ∗ (on the dual space) are trivial.

Analogous statements hold for Imλ < 0 for the anti-Feynman Fredholm problem.

Proof. We have already seen that elements of KerP and KerP ∗ lie in L2
sc. Thus,

formally the lemma follows from

0 = 〈Pu, u〉 − 〈u, Pu〉 = 〈(P − P ∗)u, u〉 = −2ı〈Imλu, u〉 = −2ı Imλ‖u‖2,
but the issue is that 〈P ∗u, u〉 does not actually make sense a priori due to the too
weak a priori differentiability of u when the unweighted spaces are used (all we
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know is that u ∈ L2
sc, so P ∗u ∈ H−2,0sc only, unless we use P − P ∗ ∈ Ψ0,0

scc, but even
then we need to justify the integration by parts (because the adjoint a priori puts
us in dual spaces)!), so we need to have a more careful, if standard, regularization
argument.

Namely, we take Λt ∈ Ψ−∞,0scc , t ∈ [0, 1] such that the family is uniformly bounded
in Ψ0,0

scc and converges to Id in Ψε,0
scc, ε > 0, as t→ 0, and thus strongly on L2

sc. Then
we have for t > 0, if u ∈ L2

sc and Pu ∈ L2
sc,

0 = 〈Pu, u〉 − 〈u, Pu〉 = lim
t→0

(
〈ΛtPu, u〉 − 〈Λtu, Pu〉

)
= lim
t→0

(
〈ΛtPu, u〉 − 〈P ∗Λtu, u〉

)
= lim
t→0

(
〈ΛtPu, u〉 − 〈ΛtP ∗u, u〉 − 〈[P ∗,Λt]u, u〉

)
= lim
t→0

(
〈ΛtPu, u〉 − 〈Λt(P + 2ı Imλ)u, u〉 − 〈[P ∗,Λt]u, u〉

)
= −2ı Imλ〈u, u〉 − lim

t→0
〈[P ∗,Λt]u, u〉.

Now, P ∗ ∈ Ψ2,0
scc, so [P ∗,Λt] is uniformly bounded in Ψ1,−1

scc , and it converges
to [P ∗, I] = 0 in Ψ1+ε,−1+ε

scc for ε > 0, thus strongly as a bounded operator

H
1/2,−1/2
sc → H

−1/2,1/2
sc . Correspondingly, if in addition u ∈ H

1/2,−1/2
sc , then the

last term vanishes, and we conclude that u = 0. But we have seen that in the
Feynman spaces this holds, namely u ∈ H∞,−εsc for all ε > 0, so we conclude that
‖u‖2 = 0 and thus u = 0 as well.

The analogous argument also holds for P ∗ on the anti-Feynman space, which
proves that P ∗ is also injective. �

Corollary 5. Suppose Imλ 6= 0. The operator P : X s,r → Ys−1,r+1 is indeed
invertible (not just Fredholm) and moreover we have for f ∈ Ċ∞(M) that u =
P−1f ∈ L2

sc as well.

We take

D = {u ∈ H1,−1/2
sc ∩ L2

sc : �gu ∈ L2
sc}.

In fact, more generally consider

Ds′,r′ = {u ∈ Hs′,r′

sc ∩ L2
sc : �gu ∈ L2

sc}, s′ ∈ [1, 2], r′ ∈ [−1/2, 0),

so Ds′,r′ ⊂ D = D1,−1/2 for all s′ ∈ [1, 2], r′ ∈ [−1/2, 0). Any choice of s′, r′ in this
range would suffice for the proof of Theorem 1, with D being perhaps the simplest,
but the other spaces give some slightly more precise intermediate results.

One of the reasons behind the particular ranges of s′, r′ is the following lemma,
which implies that for f ∈ Ċ∞(M), P−1f lies in Ds′,r′ :

Lemma 6. For either sign of Imλ, and corresponding choices of s, r (only r de-
pends on the sign of Imλ) as above with the slightly stronger requirements s ≥
1/2 + s′, while r > −1/2 + r′, with r < −1/2 at the low regularity radial points (so

the sinks if Imλ > 0), we have X s,r ∩ L2
sc ⊂ Ds′,r′ .

Remark 7. The smaller the space Ds′,r′ (i.e. the bigger s′, r′ are), the stronger
the conclusion, though at the cost of stronger hypotheses on s, r (which however
do not really matter for our purposes, the only important fact is that there exist
compatible s, r). However, as we cannot take r′ = 0, we do not have an ‘optimal’
choice of order.
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Note that the existence of the function r requires the upper bound on r′, namely
r′ < 0; the first sentence of the proof below also requires r′ ≥ −1/2.

Proof. First, if u ∈ X s,r∩L2
sc then (�g−λ)u ∈ Hs−1,r+1

sc ⊂ L2
sc (as r > −1/2+r′ ≥

−1 and s ≥ 3/2) implies �gu ∈ L2
sc. Next, by (6), u ∈ Hs−1/2,r+1/2

sc . Since r takes
values in (−1/2 + r′,∞), so r + 1/2 in (r′,∞), and since s′ ≤ s − 1/2, we have

H
s−1/2,r+1/2
sc ⊂ Hs′,r′

sc . This proves the lemma. �

We have the following basic analytic facts about Ds′,r′ ; this lemma requires lower
bounds on s′, r′.

Lemma 8. The space Ds′,r′ is a Hilbert space with Ċ∞(M) dense in it and �g
symmetric on it.

Proof. First, Ds′,r′ is a Hilbert space in the standard manner with squared norm

‖u‖2
Ds′,r′ = ‖u‖2

Hs′,r′
sc

+ ‖u‖2L2
sc

+ ‖�gu‖2L2
sc
,

and the inclusion Ds′,r′ ⊂ D is continuous.
Moreover, Ċ∞(M) is dense inDs′,r′ since using Λ̃t ∈ Ψ−∞,−∞scc uniformly bounded

in Ψ0,0
scc, converging to Id in Ψε,ε

scc for all ε > 0, we have [�g, Λ̃t] uniformly bounded in
Ψ1,−1

scc , converging to 0 in Ψ1+ε,−1+ε
scc , thus strongly as a map H1,−1

sc → H0,0
sc = L2

sc.

Hence Ċ∞(M) 3 Λ̃tu → u in L2
sc, as well as in Hs′,r′

sc and �gΛ̃tu = Λ̃t�gu +

[�g, Λ̃t]u→ �gu in L2
sc as Ds′,r′ ⊂ H1,−1

sc . See [13, Appendix A] for a more general

discussion on spaces like Ds′,r′ ; in the present context [21, Section 4] would be the
relevant setting, but the present statement is not proved there, though the proof of
[13, Lemma A.3] applies, mutatis mutandis.

Furthermore, �g is symmetric on D since

〈�gu, u〉 − 〈u,�gu〉 = lim
t→0
〈Λ̃t�gu, u〉 − 〈Λ̃tu,�gu〉

= lim
t→0
〈Λ̃t�gu, u〉 − 〈�gΛ̃tu, u〉

= lim
t→0
〈Λ̃t�gu, u〉 − 〈Λ̃t�gu, u〉 − 〈[�g, Λ̃t]u, u〉

= − lim
t→0
〈[�g, Λ̃t]u, u〉.

Indeed, as noted above [�g, Λ̃t] is uniformly bounded in Ψ1,−1
scc , converging to 0

in Ψ1+ε,−1+ε
scc , thus strongly as a map H

1/2,−1/2
sc → H

−1/2,1/2
sc , so for u ∈ D ⊂

H
1,−1/2
sc ⊂ H

1/2,−1/2
sc the right hand side tends to 0 and we have the desired

conclusion of symmetry. This immediately implies the general s′, r′ case since
Ds′,r′ ⊂ D. �

Proof of Theorem 1. In the proof given in the next paragraph, we can replace D
by Ds′,r′ , and the proof remains valid without any other changes.

We have that �g : D → L2
sc is a continuous map, C∞c (M◦) is dense in D (by

virtue of Ċ∞(M) being so), and �g is a symmetric operator. In order to prove that
�g is essentially self-adjoint, it suffices to prove that for λ /∈ R, �g − λ has a dense

range in L2
sc. But Ċ∞(M) is dense in L2

sc, so it suffices to show that for Imλ 6= 0

and f ∈ Ċ∞(M) there exists u ∈ D such that (�g − λ)u = f . But choosing s, r
as in Lemma 6, it follows from Corollary 5 that under these conditions there exists
u ∈ X s,r such that (�g − λ)u = f , and moreover u ∈ L2

sc, so as X s,r ∩ L2
sc ⊂ D
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by Lemma 6, the desired conclusion follows. This proves that �g is essentially
selfadjoint on C∞c (M◦), namely proves Theorem 1. �

4. The limiting absorption principle

The limiting absorption principle is an immediate consequence of our discussion.
Namely, under the assumption of g being non-trapping at energy λ for the limiting
λ (or interval of λ’s, if one wishes), the estimates for �g−λ on the Feynman spaces
are uniform in Imλ ≥ 0, and similarly on the anti-Feynman spaces in Imλ ≤ 0; and
indeed, for λ ∈ R, �g − λ is Fredholm on either one of these spaces. Furthermore,
when Imλ 6= 0, the operator is invertible, thus index 0, and this is stable under
perturbations (even of the kind we discussed), cf. [16, Section 2.7], which also
discusses continuity in the weak operator topology. In particular, the limit is the
(anti-)Feynman propagator, up to finite dimensional nullspace issues on the limiting
space. Thus,

Theorem 9. Suppose λ ∈ R \ {0}, g is a non-trapping sc-metric which is non-
trapping at energy λ and �g − λ has trivial nullspace on either the Feynman or
the anti-Feynman function spaces. Then limε→0(�g − (λ± ıε))−1 exist in the weak
operator topology on the Feynman (+), resp. anti-Feynman (−) function spaces,
and is the Feynman, resp. anti-Feynman propagator, i.e. the inverse of �g − λ on
the appropriate function spaces.

Remark 10. The argument of [22, Proposition 3.1] applies with minor notational
changes (corresponding to the b-setting employed there and the sc-setting employed
here) to prove that the primed wave front set of the Schwartz kernel of (�g − (λ±
ı0))−1 is in the backward/forward flowout of the diagonal of the cotangent bundle
T ∗M◦ over the interior of M .

Of course, it is still a question whether the nullspace of �g−λ is trivial; the set of
λ for which it is, is necessarily open by stability. Again, this stability is true even for
the relatively drastic kind of perturbations we have which change the domain space
(since the space depends strongly on λ via the condition (�g−λ)u ∈ Hs−1,r+1

sc ); the
point is that the relevant estimates on fixed spaces, with fixed relatively compact er-
ror terms are perturbation stable. Interestingly, cf. the discussion of [20, Section 4],
adopting arguments of Isozaki [11] from N -body scattering as done in [18, Proof
of Proposition 17.8], which are valid after minor modification in this setting as we
discuss below, any element of the nullspace of �g − λ in either the Feynman or the

anti-Feynman spaces in fact lies in Ċ∞(M):

Proposition 11. On both the Feynman and anti-Feynman function spaces the
nullspace of P = �g − λ is a subspace of Ċ∞(M).

Proof. The arguments following [11] rely on using the commutant

χε(x) = ε−2r−1
∫ x/ε

0

φ(s)2s−2r−2 ds,

where φ ∈ C∞(R) is such that φ = 0 on (−∞, 1], 1 on [2,∞), and where r ∈
(−1/2, 0). Notice that χε is supported in M◦ (namely in x ≥ ε) and

[x2∂x, χε] = x2∂x(χε) = x−2rφ(x/ε)2.
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Thus, while the family {χε : ε ∈ (0, 1)} (considered as a family of multiplication
operators) is not (uniformly) bounded in any symbol space, as (using s′ = εs) for
any l

supxlχε ≥ χε(1) ≥
∫ 1

2ε

φ(s′/ε)2(s′)−2r−2 ds′ =
1

2r + 1
((2ε)−2r−1 − 1)→∞

as ε→ 0 since −2r− 1 < −2(−1/2)− 1 = 0, its commutator with x2∂x is bounded
in symbols of order 2r. This gives, by (1), that the principal symbol of ı[P, χε] is,
with p denoting the principal symbol of P ,

Hpχε = (∂τp)x
2∂x(χε);

note that the x2∂x component of Hp is exactly ∂τp, so at a source, resp. sink,
manifold of the boundary, ∂τp < 0, resp. ∂τp > 0, i.e. at such a manifold this
commutator has a definite sign. While the lower order terms, which here means
just the 0th order terms as P is a differential operator, involve further derivatives of
χε, they only involve at least first derivatives of χε and thus the lower order terms
will also be bounded in symbols of order 0, 2r − 1. Thus,

(7) ı[�g − λ, χε] = ±φ(x/ε)(B∗B + E)φ(x/ε) + Fε,

where B ∈ Ψ
1/2,r
scc , with principal symbol elliptic at the sources/sinks (depending

on the choice of ±, with + for sinks), E ∈ Ψ
1/2,r
scc having disjoint wave front set

from these, and {Fε : ε ∈ (0, 1)} is uniformly bounded in Ψ0,2r−1
scc .

Now consider u ∈ KerP on X s′,r′ , where s′ may be taken arbitrarily high and
r′ arbitrarily high except in a neighborhood of the source/sink in accordance with
the sign in ± above, where r′ ∈ (−1,−1/2) (‘arbitrarily high’ is in the sense that
the nullspace is independent of such choices). Then 〈φ(·/ε)Eφ(·/ε)u, u〉 remains

bounded as on WF′sc(E), u is microlocally in H∞,∞sc = Ċ∞(M), while 〈Fεu, u〉 also

remains bounded since u ∈ H∞,−1/2−δ
′

sc for all δ′ > 0 and 2r − 1 < −1, so one can
choose δ′ > 0 with 2(−1/2− δ′)− (2r − 1) > 0. On the other hand, for ε > 0,

〈ı[�g − λ, χε]u, u〉 = 〈ıχεu, (�g − λ)u〉 − 〈ı(�g − λ)u, χεu〉 = 0

since χε is compactly supported in M◦, so the integration by parts is justified.
Correspondingly, one deduces that Bφ(·/ε)u is uniformly bounded in L2

sc, and thus
by the standard weak-* convergence argument Bu ∈ L2

sc, proving that even at the
source/sink where we did not have a priori knowledge of membership of u in a

subspace of H
∞,−1/2
sc , in fact, u ∈ H∞,rsc for all r ∈ (0,−1/2). Then the standard

radial point estimate, see [17, 21], implies that in fact u is microlocally in H∞,∞sc

even there; in combination with the other a priori knowledge, we conclude that
u ∈ Ċ∞(M). �

Remark 12. Notice that this argument used crucially that Pu = 0; since χε is
not uniformly bounded on any weighted Sobolev space, 〈χεu, (�g − λ)u〉, 〈(�g −
λ)u, χεu〉 would not remain bounded as ε→ 0 otherwise even if, say, Pu ∈ Ċ∞(M).

Also notice that the argument crucially relies that we are taking either the Feyn-
man or the anti-Feynman space, so the points at which we do not have a priori decay
are either all sources or all sinks, thus there is a single definite sign in (7), arising
for the common source, or sink, nature of them. For other Fredholm problems, the
elements of the nullspace are not necessarily in the ‘trivial space’, Ċ∞(M).
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Thus, the absence of embedded eigenvalues depends on a unique continuation
argument at infinity, namely that the rapid decay (infinite order vanishing) at ∂M
of an element of KerP implies its vanishing nearby.

In the case of non-trapping Lorentzian scattering metrics (possibly long range),
as in [2, 3], if one assumes that the there is a boundary defining function ρ of M

such that, say, near the past ‘spherical cap’ C−, dρρ2 , is timelike (which for instance is

true on perturbations of Minkowski space), for λ > 0 energy estimates imply that,

being an element of Ċ∞(M), an element of this nullspace vanishes identically at first
near C−, and then the non-trapping condition implying global hyperbolicity, see
[9, Section 5] in this setting for this implication, vanishes globally, so the nullspace
is indeed trivial.

An analogous conclusion holds by a Wick rotation argument, see [6], for the
Minkowski metric, as well as pseudo-Riemannian translation invariant metrics, and
again the perturbation stability implies that the conclusion also holds for their
perturbations in the sc-category.

We finally remark that the λ = 0 Fredholm problem was studied in [6]; one
can also discuss the limiting absorption principle there, under somewhat stronger
conditions than we needed here, but we defer it to future work.
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