Learning in the Machine: To Share or Not to Share?

Jordan Ott?, Erik Linstead?, Nicholas LaHaye?, Pierre Baldi®*

¢Schmid College of Science and Technology
Chapman University
b Department of Computer Science
University of California, Irvine

Abstract

Weight-sharing is one of the pillars behind Convolutional Neural Networks and their suc-
cesses. However, in physical neural systems such as the brain, exact weight-sharing is ex-
tremely implausible. This raises the fundamental question of whether weight-sharing is really
necessary. If so, to which degree of precision? If not, what are the alternatives? The goal of
this study is to investigate these questions, primarily through simulations where the weight-
sharing assumption is relaxed. Taking inspiration from neural circuitry, we explore the use
of Free Convolutional Networks and neurons with variable connection patterns. Using Free
Convolutional Networks we are able to show that while weight-sharing is a pragmatic op-
timization approach, it not a necessity in computer vision applications. Furthermore, Free
Convolutional Networks are able to match and at times surpass the performance observed
in standard convolutional architectures when trained using properly translated data (akin
to video). In simulations on the CIFAR-10 dataset FCNs are able to achieve a validation
set accuracy of 77% vs 70% from the CNN.

Keywords: mneural networks, computer vision, convolution, weight sharing, overfitting,
neural development

1. Introduction

Digital simulations of neural network are successful in many applications but rely on a
fantasy where neurons and synaptic weights are objects stored in digital computer memories.
This fantasy often obfuscates some fundamental principles of computing in native neural
systems. To remedy this obfuscation, learning in the machine refers to a general approach
for studying neural computations where the physical constraints of physical neural systems,
such as brains or neuromorphic chips, are taken into consideration. When applied to single
neurons, learning in the machine can lead for instance to the discovery of dropout [1, 2.
When applied to synapses, learning in the machine can lead for instance to the discovery

*Corresponding author
Email addresses: ott109@mail.com (Jordan Ott), linstead@chapman.edu (Erik Linstead),
lahay100@mail.chapman.edu (Nicholas LaHaye), pfbaldi@ics.uci.edu (Pierre Baldi)

Preprint submitted to Neural Networks September 12, 2020

of local learning [3] and random backpropagation [4, 5, 6]. And when applied to layers of
neurons, as we do in this short paper, learning in the machine leads one to question the
fundamental assumption of weight sharing behind convolutional neural networks.

The technique of weight-sharing, whereby different synaptic connections share the same
strength, is a widely used and successful technique in neural networks and deep learning.
This is particularly true in computer vision where weight-sharing is one of the pillars be-
hind convolutional neural networks (CNNs) and their successes. Yet in any physical neural
system, for instance carbon- or silicon- based, exact sharing of connections strengths over
spatial distances is difficult to realize, especially on a massive 3D scale. In physical systems,
not only it is difficult to create identical weights at a given time point, but it is also very
difficult to maintain the identity over time, both during phases of development and learning
when the weights may be changing rapidly, or during more mature phases when weights
must retain their integrity against the microscopic entropic forces surrounding any physical
synapse. Furthermore, at least in the case of biology, given the exquisitely complex geome-
try of neuronal dendritic trees and axon arborizations, it is also implausible that they could
form large arrays of neurons with identically translated connection patterns. In short, not
only is it difficult to exactly share weights, but it is also difficult to exactly share the same
connection patterns.

Thus, paradoxically, while weight-sharing has proven to be very useful in computer vision
and other applications, it is extremely implausible in biological and other physical systems.
This raises the fundamental question of whether weight-sharing is really necessary. If so,
to which degree of precision? If not, what are the alternatives? The goal of this study
is to investigate these questions, primarily through simulations where the weight-sharing
assumption is relaxed.

2. Origins and Functions of Weight-Sharing

Before addressing the question of its necessity, it is useful to briefly review the origins
and functions of weight-sharing. The concept of weight-sharing can be traced back to the
neurophysiological work of Hubel and Wiesel [7] on the cat visual cortex, suggesting the
existence of entire arrays of neurons dedicated to implementing simple operations, such as
edge detection and other Gabor filters, at all possible image locations. The ideas proposed by
Hubel and Wiesel were systematically used by Fukushima who proposed the neocognitron
architecture for computer vision, essentially a convolutional neural network architecture
with Hebbian learning. However, Hebbian learning alone applied to a feedforward CNN
cannot solve vision tasks [3]. Solving vision tasks requires feedback channels and learning
algorithms for transmitting target information to the deep synapses, and this is precisely
what is achieved by backpropagation, or stochastic gradient descent. Successful CNNS for
vision problem trained by backpropagation were developed already in the late 80s and 90s
8,9, 10].

Substantial improvements in the size of the training sets and the available computing
power, have led to a new wave of successful implementations in recent years, [11, 12, 13, 14],
as well as applications to a variety of specific domains, ranging from biomedical images

2

Figure 1: Unlike typical convolutional layers, where the same filter is applied across all possible locations,
free convolutional layers maintain a separate filter at each location. The above figures are examples of
FCN layers on a 9x9 input space. Each 3x3 subregion of the input is covered with a distinct filter, as
shown in the diagram on the left. The top square represents the output obtained from applying the filter
to the corresponding input region. The diagram on the right depicts free convolutional layers with variable
connection patterns, where the x’s represent connections that are absent. In this example 12, out of the 91
connections are missing, creating a variable connection probability of roughly 0.15, whereas in the figure on
the left there are no absent connections.

(15, 16, 17, 18, 19, 20] to particle physics [21, 22, 23]. Older [24] as well as more recent
work [25, 26] has also shown that not only convolutional neural networks rival the object
category recognition accuracy of the primate cortex, but also seem to provide the best match
to biological neural responses, at least at some coarse level of analysis.

It is worth pointing out that weight-sharing is sometimes used in other settings, for
instance when Siamese Networks are used to process and compare objects [27, 9, 28|, which
also includes Siamese CNNs for images. Finally, a different kind of weight-sharing that will
not concern us here, is obtained when a recurrent network is unfolded in time. In this case,
weight-sharing occurs over time and not over space.

In terms of functions, weight-sharing is typically associated with two main but different
purposes. The first is to reduce the number of free parameters that need to be stored or
updated during learning. This can be important in applications where storage space is
limited (i.e. cell phones), or where training data is limited and overfitting is a danger. The
second function is to apply the exact same operation at different locations of the input
data, to process the data uniformly and provide a basis for invariance, typically translation
invariant recognition in CNN architectures.

3. Free Convolutional Networks

Relaxing the weight-sharing assumption in CNNs yields a Free Convolutional Network
(FCN). In FCNs, the weights of a filter at a specific location are not tied to the weights of
the same filter at a different location (see Figure 1). Thus naturally FCNs have far more
parameters than the corresponding CNN and slower to train on a digital machine. However

3

Figure 2: MNIST examples of data augmentation (left). CIFAR-10 examples of data augmentation (right).

this is not a concern here as our primary goal is not to improve the efficiency of CNNs
deployed on digital machines, but rather to understand the consequences of relaxing the
weight sharing assumption inside a native neural machine.

Furthermore, it is highly implausible that a given neuron will share the exact same
dendritic tree with a neighboring neuron [29], thus in addition to neighboring neurons of
the same layer not having exactly the same weights, we would like to consider also the
possibility of them not having the exact same receptive field pattern. Thus, in addition to
plain FCNs, FCNs with variable connection patterns are implemented in the simulations
below. Variable connection patterns can be achieved in many ways. Here, for simplicity,
a random percentage of connections are set to zero once for all (Figure 1) [Note: this is
very different from dropout where different sets of weights are randomly set to 0 at each
presentation of a training example]. The x’s in the right image of Figure 1 correspond to
missing synaptic connections between neurons that are set to zero and never trained.

By running simulations comparing CNNs and FCNs (with and without variable con-
nection patterns), we seek to answer the following questions in regards to weight-sharing:
Is weight-sharing necessary? Is weight-sharing necessary to prevent overfitting? Is weight-
sharing necessary to ensure translational invariant recognition? Can good performance be
achieved without weight-sharing? If weight-sharing is not necessary, are translational invari-
ant training sets necessary? Does approximate or exact weight-sharing emerge in a natural
way? Can even better performance be achieved without weight-sharing?

4. Data and Methods

In the simulations, we focus exclusively on computer vision tasks. We evaluate various
free and shared weight networks on two well known benchmark dataset: the handwritten
digit dataset, MNIST [30], as well as the CIFAR-10 object dataset [31].

In the case of free weights, we consider using data augmentation by translating images
horizontally and vertically to potentially compensate for the lack of translation. Due to

4

Method MNIST CIFAR-10
Parameters Data set size Parameters Data set size

CNN 1,199,882 58,333 6,447,562 50,000

FCN* 12,051,082 3,733,312 21,735,434 4,050,000

FCN 12,051,082 58,333 21,735,434 50,000

FCN™f 11,982,551 3,733,312 21,647,846 4,050,000

FCN 11,982,551 58,33 21,647,846 50,000

Table 1: Number of parameters in each network as well as the amount of training examples available to
the network at each fold of training. The data set size can be calculated by the amount of vertical and
horizontal translation performed on the original training data (i.e. horizontally translating one image by
zero to ten pixels creates ten additional training samples). * Data augmentation was used during training.
 Variable Connection patterns with ten percent probability.

the local receptivity of free weight networks, individual filters learn features solely within
their receptive field. More or less translationally invariant data should allow filters to learn
more or less the same features. In practice, during training, images were shifted horizontally
and vertically by a random amount (0-25%) of the width and height respectively. Shifting
images by more than 25% often causes the object of interest to partially leave the image
frame. Points outside the boundaries of the input are filled according to the nearest pixels.
Figure 2 shows examples of augmentation results on MNIST and CIFAR-10. All simulations
were completed using six-fold cross validation, which allowed for roughly 10,000 images in
every fold validation set. Simulations were implemented in Keras [32] with a Tensorflow [33]
backend using NVIDIA GeForce GTX Titan X GPUs with 12 GB memory.

4.1. Networks

Five networks were trained on each dataset, ten in total. A CNN without data augmen-
tation, a FCN with and without data augmentation, and a variable connection pattern FCN
with and without data augmentation. Table 1 provides the size of each data set as well as
the amount of parameters each network contains.

For simplicity, the architecture of these networks are very similar, except that convolu-
tional layers are replaced by free convolutional layers in both FCNs. The activation func-
tions, pooling layers, softmax layer, as well as the number of filters in each layer remain the
same across all networks. Visualizations of these networks can be seen in Figures 3 and 4.
It is important to note that there is no architectural difference between the networks that
are trained with data augmentation and those trained without.

For weight initialization we use the Xavier initialization [34]. The weights of each filter
are drawn from a uniform distribution (Equation 1), where x;, represents the number of
incoming connections to the filter and x,, is the number of outgoing connections. The
value, x;, + Tou, is the same for all filters in corresponding layers of FCNs and LCNs. This
allows CNN and FCN filters to be drawn from the same initial distributions.

V6 V6]

-)
\/xin + Lout \/mzn + Lout
5}

U

(1)

max_pooling2d_3: MaxPooling2D

input:

(None, 24, 24, 64)

output:

(None, 12, 12, 64)

input: (None, 28, 28, 1)
epnyZd Aimpt: InputLayer output: | (None, 28, 28, 1) input: | (None, 28, 28, 1)
e = locally_connected2d_3_input: InputLayer e
output: | (None, 28, 28, 1)
S it input: (None, 28, 28, 1)
ComESEamE output: | (None, 26, 26, 32) input: | (None, 28, 28, 1)
. locally_connected2d_3: LocallyConnected2D —
output: | (None, 26, 26, 32)
e e input: (None, 26, 26, 32)
activation_ /. Activation 7 -
= . input: | (None, 26, 26, 32
output: | (None, 26, 26, 32) activation_10: Activation i)
output: | (None, 26, 26, 32)
— input: | (None, 26, 26, 32)
convad_ a8 Lony. input: (None, 26, 26, 32)
output: | (None, 24, 24, 64) locally_connected2d_4: LocallyConnected2D
output: | (None, 24, 24, 64)
A
o o input: | (None, 24, 24, 64) !
activation_8: Activation input: | (None, 24, 24, 64)
output: | (None, 24, 24, 64) activation_11: Activation -
output: | (None, 24, 24, 64)

max_pooling2d_4: MaxPooling2D

input:

(None, 24, 24, 64)

output:

(None, 12, 12, 64)

activation_9: Activation

input: | (None, 12, 12, 64)
flatten_3: Flatten -
output: (None, 9216)
input: | (None, 9216)
dense_3: Dense
output: | (None, 128)
input: | (None, 128)

output:

(None, 128)

Softmax: Dense

input:

(None, 128)

output:

(None, 10)

input: (None, 12, 12, 64)
flatten_4: Flatien
output: (None, 9216)
input: | (None, 9216)
dense_4: Dense
output: | (None, 128)
input: | (None, 128)
activation_12: Activation
output: | (None, 128)

input:

(None, 128)

Softmax: Dense
output:

(None, 10)

Figure 3: Networks for MNIST dataset. Shared weight network(left) and free weight network (right).

input: (None, 32, 32, 3)

output: | (None, 32, 32, 3) input: {None, 32, 32, 3)
locally_connected2d_1_input: InputLayer
output: | (None, 32, 32, 3)

conv2d_l1_input: InputLayer

input: (None, 32, 32, 3)

conv2d_1: Conv2D

output: | (None, 30, 30, 32) input: (None, 32, 32, 3)

locally_connected2d_1: LocallyConnected2D
output: | (Nene, 30, 30, 32)

input: (None, 30, 30, 32)

: input: None, 30, 30, 32)
output: | (None, 30, 30, 32) activation_4: Activation 2 (
output: | (None, 30, 30, 32)

activation_l: Activation

input: | (None, 30, 30, 32)

conv2d_2: Conv2D St 2
_) put: | (None, 30, 30, 32)
output: | (None, 28, 28, 64) locally_connected2d_2: LocallyConnected2D
output: | (None, 28, 28, 64)
Y
input: | (None, 28, 28, 64) /
activation_2: Activation input: | (None, 28, 28, 64)
output: | (None, 28, 28, 64) activation_5: Activation
output: | (None, 28, 28, 64)
input: | (None, 28, 28, 64) -
max_pooling2d_1: MaxPooling2D . . input: | (None, 28, 28, 64)
output: | (None, 14, 14, 64) max_pooling2d_2: MaxPooling2D

output: | (None, 14, 14, 64)

input: | (None, 14, 14, 64)
output: (None, 12544) flatten_2: Flaiten

flatten_1: Flatten input: | (None, 14, 14, 64)

output: (None, 12544)

input: | (None, 12544) input: | (None, 12544)

dense_1: Dense

e
output: (None, 512) donsgiAplionse

output: (None, 512)

o L input: | (None, 512) input: | (None, 512)
activation_3: Activation activation_6: Activation
output: | (None, 512) output: | (None, 512)
input: | (None, 512) input: | (None, 512)
Softmax: Dense Softmax: Dense
output: | (None, 10) output: | (None, 10)

Figure 4: Networks for CIFAR-10 dataset. Shared weight network(left) and free weight network (right).

MNIST CIFAR-10

Mean Median | Mean Median | Mean Median | Mean Median
Test Test Aug Aug Test Test Aug Aug
Acc Acc Test Test Acc Acc Test Test
CNN 98.984 | 99.031 | 64.882 | 65.008 | 70.33 70.28 60.149 | 60.238
FCN* 98.654 | 98.706 | 98.592 | 98.582 | 76.85 76.595 | 76.123 | 75.973
FCN 95.503 | 98.564 | 59.901 | 60.875 | 67.818 | 67.77 58.068 | 58.098
FCNT* 98.633 | 98.616 | 98.553 | 98.562 | 77.015 | 76.960 | 76.043 | 75.997
FCNT 97.038 | 98.641 | 61.434 | 62.203 | 67.663 | 67.675 | 57.913 | 57.948

Method

Table 2: Results of the six-fold cross validation experiments. FCN weights were initialized with the Xavier
initialization per individual filter, so that they would match CNN weights. Columns for each data set
correspond to: Mean accuracy on non-augmented test set; Median accuracy on non-augmented test set; Mean
accuracy on augmented test set; Median accuracy on non-augmented test set. Each filter was initialized using
the Xavier Uniform initialization. CNN and FCN weights were drawn from the same uniform distribution.
“Data augmentation was used during training. TVariable Connection patterns with ten percent probability.

4.2. Variable Connection Patterns

We also implemented variable connection patterns in FCNs. At the start of training
a chosen percentage of weights are randomly set to 0. These missing weights do not con-
tribute to the output of the layer and their values are never updated during backpropagation
training. The resulting connection patterns are maintained throughout training and testing.
There are multiple options for implementing neurons with variable connection patterns. For
computational simplicity, the implementation used in this paper is to turn off connections
within each square filter given some probability. In simulations we use a missing connection
probability of ten percent.

Using neurons with variable connections results in fewer total network parameters. As
a result we add additional filters to free convolutional layers to compensate for this (Table
1). This allows FCNs with variable connection patterns to have roughly the same num-
ber of parameters as standard FCNs. Neurons with variable connection patterns are only
implemented in free weight simulations.

5. Results

We report the percent error on the normal and augmented validation sets of each fold
in Figures 5 and 6. Table 2 shows the mean and median accuracy of the six-fold cross
validation experiments for both the MNIST and CIFAR-10 datasets. Over the course of
training, the highest validation set accuracy was recorded and averaged with the highest
validation set accuracy of the other five folds. Refer to the supplementary material for
graphs on training accuracy, validation set accuracy, augmented validation set accuracy
and validation set loss. Supplementary material can be found on the web at: https:
//github.com/mlat/weightsharing

Percent Error on Normal and Augmented Validation Sets

Percent Error on Normal and Augmented Validation Sets

mmm Normal 50 mmm Normal
[Augmented [Augmented
a0
30 J
g 5
w 20 B w
10 1
0
1 2 3 4 5 6
Fold
Percent Error on Normal and Augmented Validation Sets Percent Error on Normal and Augmented Validation Sets
e Normal 30 1 e Normal
175 4 e Augmented e Augmented

Percent Error on Normal and Augmented Validation Sets

mmm Normal 50 1 mm Normal
50 1 o Augmented o Augmented
40 401
304 307

204

10 4

Percent Error on Normal and Augmented Validation Sets

204

104

Figure 5: Percent error on the normal and augmented validation set of each fold. The left column shows
MNIST results, from top down: CNN trained without augmentation, FCN trained with augmentation, and
FCN trained without augmentation. The right column shows CIFAR-10 results, from top down: CNN, FCN
trained with augmentation, and FCN trained without augmentation.

Percent Error on Normal and Augmented Validation Sets

s Normal

1.75 1 e Augmented
1.50 4
125
E 1.00

w
0.75
0.50 1
0.25
0.00-
1 2 3 4 5 6
Fold
Percent Error on Normal and Augmented Validation Sets
mmm Normal

50 4 e Augmented
40 4
- 30

£
w
20
10 A
o4
1 2 3 4 5 6

Percent Error on Normal and Augmented Validation Sets

254

204

Error

154

10 4

e Normal
e Augmented

Percent Error on Normal and Augmented Validation Sets

204

104

mm Rormal
e Augmented

Figure 6: Percent error on the normal and augmented validation set of each fold, for networks with variable
connection patterns. The left column shows MNIST results, from top down: FCN trained with augmentation,
and FCN trained without augmentation. The right column shows CIFAR-10 results, from top down: FCN
trained with augmentation, and FCN trained without augmentation. Neurons with variable connection
patterns are only implemented in free weight simulations.

10

5.1. Is weight-sharing necessary?

Reducing the number of parameters leads to networks that are faster to train and smaller
to store. Thus exact weight sharing can be necessary in three situations: (1) when space is a
constraint in a digital simulation; when learning time is a constraint in a digital simulation;
or (2) when large translated (akin to video) training sets are not available. However, weight
sharing is not necessary in a physical neural system that has access to translated training
data. In particular FCNs, while not necessarily practical for digital simulations, achieve
accuracies comparable to CNNs when trained with augmented data or video.

5.2. Is weight-sharing necessary to prevent overfitting?

Weight sharing can help mitigate overfitting in the regime of small training sets. Both
CNNs and FCNs will overfit on small, non-augmented data sets, but FCNs more so. Contin-
uously increasing the number of samples in the dataset using augmentation prevents models
from overfitting training sets. Large, translationally invariant datasets, like those produced
here through data augmentation, are essential for free weight networks to achieve good per-
formance and avoid overfitting. If this constraint can be met, overfitting can be mitigated
without weight-sharing.

5.8. Is weight-sharing necessary to ensure translational- invariant recognition?

Learning translationally invariant representations is tested by using augmentation on the
validation set. Table 2 shows the performance of different models on the augmented test
set. Error bars for each of the six-fold cross-validation experiments are displayed in Figure
5 and 6. Great disparity between validation accuracy and augmented validation accuracy
would signal that the network is not capable of translationally invariant recognition. For
example, the FCN trained on MNIST data without augmentation has nearly a forty percent
gap between validation set accuracy and augmented validation set accuracy. We are able to
show that neurons with variable connection patterns are capable of learning translationally
invariant representations. Referencing the results in Table 2 and Figure 6 we can see the
proximity between the accuracy on the non augmented test set and the augmented one. For
standard FCNs, the results show there is less than a 2% gap between the validation accuracy
and augmented validation accuracy of a FCN trained with data augmentation, proving that
FCNs can learn translationally invariant representations when provided with sufficient data.
Thus exact weight-sharing is not necessary to ensure translational-invariant recognition. As
can be expected, approximate weight sharing emerges naturally when training FCNs with
properly augmented data. (see below)

5.4. Can good performance be achieved without weight-sharing?

FCNs are able to achieve high accuracy scores on two standard computer vision bench-
mark datasets. In the case of MNIST, we see from Table 2 that FCNs, trained on augmented
data, achieve a mean accuracy of 98.59%, only slightly less than the 98.98% mean accuracy
achieved by standard CNNs. On the more complicated CIFAR-10 dataset, FCNs are able to
outperform CNNs by a margin of 6-7% depending on the utilization of augmented test sets
and variable connection patterns. The validation set accuracy observed in our simulations

11

show that a FCN is able to meet or exceed the accuracy of a standard CNN on both bench-
mark datasets when able to take advantage of augmented data for training. Thus, again
there is not a fundamental necessity of weight-sharing to attain satisfactory performance.

5.5. Does approximate or exact weight-sharing emerge in a natural way?

Analysis of the weights (not shown) shows that exact weight-sharing does not emerges
even with translationally augmented data. However, as can be expected, with translationally
augmented data two similar units do see roughly the same training data and therefore, except
for initial differences and other random fluctuations such as the order in which samples are
presented, do converge to roughly the same weights. In short, approrimate but not exact
weight-sharing emerges in a natural way with translationally augmented training data.

5.6. If weight-sharing is not necessary, are translational invariant training sets necessary?

Weight sharing is not a necessity in computer vision tasks, as FCNs have demonstrated
high classification accuracy on two benchmark datasets. As alluded to previously, transla-
tionally invariant datasets are necessary to combat overfitting and achieve translationally
invariant recognition. The consequences of non-translationally invariant data sets is shown
in Figures 5 and 6. The classification accuracy, on augmented test sets, of FCNs with and
without neurons with variable connection patterns drops significantly when a translation-
ally invariant training set is not provided. However, when translationally invariant data
sets are available the accuracy of FCNs on normal and augmented test sets is within 2%.
Using translationally invariant datasets yields better results in validation set and augmented
validation set accuracy, specifically in FCNs.

6. Conclusion

The use of exact weight sharing was somewhat paradoxically inspired by biology and the
work of Hubel and Wiesel. In digital simulations of neural networks, weight-sharing provides
an efficient solution for both parameter reduction and translational-invariant recognition in
neural networks. In digital simulations, CNNs are more compact, faster to train, and more
robust against overfitting than FCNs.

However, exact weight sharing is implausible in biological and other physical neural
systems. We have examined alternatives to weight-sharing, such as free convolutional net-
works, where the weight-sharing assumption is relaxed. FCNs trained with translationally
augmented datasets have been shown to match and possibly even surpass standard CNNs in
validation set accuracy. Data augmentation has been proven to be a necessity as a means to
avoid overfitting and train FCNs capable of translationally invariant recognition. Thus, in
environments where data is plentiful and computational resources are able to cope with the
large number of parameters that result from abandoning weight-sharing, FCNs provide an
alternative to CNNs that can achieve potentially superior performance and higher fidelity
to physical systems. During development and throughout life, primate brains have access
to plenty of translated visual data, due to objects moving in the visual field, or to apparent
motion induced by head or eye movements. Furthermore, computational issues associated

12

with having to train an FCN rather than a CNN vanish in a physical system where synapses
learn in parallel. Finally, fine tuning of the synaptic weights of each neuron in the same
filter family, possibly throughout one’s life time, is likely to be necessary to compensate for
small anatomical, physiological, or other fluctuations and lead to better performance.

References

1]

[17]

[18]

N. Srivastava, G. E. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout: a simple way
to prevent neural networks from overfitting., Journal of Machine Learning Research 15 (1) (2014)
1929-1958.

P. Baldi, P. Sadowski, The dropout learning algorithm, Artificial Intelligence 210C (2014) 78-122.

P. Baldi, P. Sadowski, A theory of local learning, the learning channel, and the optimality of backprop-
agation, Neural NetworksTo appear.

T. P. Lillicrap, D. Cownden, D. B. Tweed, C. J. Akerman, Random synaptic feedback weights support
error backpropagation for deep learning, Nature Communications 7.

P. Baldi, Z. Lu, P. Sadowski, Learning in the machine: Random backpropagation and the deep learning
channel, Artificial Intelligenceln press. Also: arXiv:1612.02734.

P. Baldi, Z. Lu, P. Sadowski, Learning in the machine: the symmetries of the deep learning channel,
Neural Networks 95 (2017) 110-133.

D. H. Hubel, T. N. Wiesel, Receptive fields, binocular interaction and functional architecture in the
cat’s visual cortex, The Journal of physiology 160 (1) (1962) 106.

Y. L. Cun, B. Boser, J. Denker, D. Henderson, R. Howard, W. Hubbard, L. Jackel, Handwritten digit
recognition with a back-propagation network, in: D. Touretzky (Ed.), Advances in Neural Information
Processing Systems, Morgan Kaufmann, San Mateo, CA, 1990, pp. 396-404.

P. Baldi, Y. Chauvin, Neural networks for fingerprint recognition, Neural Computation 5 (3) (1993)
402-418.

J. Schmidhuber, Deep learning in neural networks: An overview, Neural Networks 61 (2015) 85-117.
A. Krizhevsky, 1. Sutskever, G. E. Hinton, Imagenet classification with deep convolutional neural net-
works, in: Advances in neural information processing systems, 2012, pp. 1097-1105.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke, A. Rabinovich,
Going deeper with convolutions, in: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, 2015, pp. 1-9.

R. K. Srivastava, K. Greff, J. Schmidhuber, Training very deep networks, in: Advances in Neural
Information Processing Systems, 2015, pp. 2368—2376.

K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, arXiv preprint
arXiv:1512.03385.

D. Cires, A. Giusti, L. M. Gambardella, J. Schmidhuber, Deep neural networks segment neuronal
membranes in electron microscopy images, in: Advances in neural information processing systems,
2012, pp. 2843-2851.

V. Gulshan, L. Peng, M. Coram, M. C. Stumpe, D. Wu, A. Narayanaswamy, S. Venugopalan, K. Widner,
T. Madams, J. Cuadros, et al., Development and validation of a deep learning algorithm for detection
of diabetic retinopathy in retinal fundus photographs, Jama 316 (22) (2016) 2402-2410.

J. Wang, Z. Fang, N. Lang, H. Yuan, M.-Y. Su, P. Baldi, A multi-resolution approach for spinal
metastasis detection using deep siamese neural networks, Computers in Biology and Medicine 84 (2017)
137-146.

J. Wang, H. Ding, F. Azamian, B. Zhou, C. Iribarren, S. Molloi, P. Baldi, Detecting cardiovascular
disease from mammograms with deep learning, IEEE Transactions on Medical Imaging 36 (5) (2017)
1172-1181.

A. Esteva, B. Kuprel, R. A. Novoa, J. Ko, S. M. Swetter, H. M. Blau, S. Thrun, Dermatologist-level
classification of skin cancer with deep neural networks, Nature 542 (7639) (2017) 115-118.

13

[20]
[21]

[22]

G. Urban, P. Tripathi, T. Alkayali, M. Mittal, F. Jalali, W. Karnes, P. Baldi, Deep Learning Achieves
near Human-level Polyp Detection in Screening Colonoscopy, GastroenterologyIn revision.

P. Baldi, K. Bauer, C. Eng, P. Sadowski, D. Whiteson, Jet substructure classification in high-energy
physics with deep neural networks, Physical Review D 93 (9) (2016) 094034.

A. Aurisano, A. Radovic, D. Rocco, A. Himmel, M. Messier, E. Niner, G. Pawloski, F. Psihas, A. Sousa,
P. Vahle, A convolutional neural network neutrino event classifier, Journal of Instrumentation 11 (09)
(2016) P09001.

URL http://stacks.iop.org/1748-0221/11/i=09/a=P09001

P. Sadowski, B. Radics, Ananya, Y. Yamazaki, P. Baldi, Efficient antihydrogen detection in antimatter
physics by deep learning, Journal of Physics Communications 1 (2) (2017) 025001.

URL http://stacks.iop.org/2399-6528/1/1=2/a=025001

D. Zipser, R. A. Andersen, A back-propagation programmed network that simulates response properties
of a subset of posterior parietal neurons, Nature 331 (6158) (1988) 679-684.

C. F. Cadieu, H. Hong, D. L. K. Yamins, N. Pinto, D. Ardila, E. A. Solomon, N. J. Majaj, J. J. DiCarlo,
Deep neural networks rival the representation of primate it cortex for core visual object recognition,
PLOS Computational Biology.

URL https://doi.org/10.1371/journal.pcbi.1003963

D. L. K. Yamins, H. Hong, C. F. Cadieu, E. A. Solomon, D. Seibert, J. J. Di-
Carlo, Performance-optimized hierarchical models predict neural responses in higher vi-
sual cortex, Proceedings of the National Academy of Sciences 111 (23) (2014) 8619-8624.
arXiv:http://www.pnas.org/content,/111/23/8619.full.pdf, doi:10.1073/pnas.1403112111.

URL http://www.pnas.org/content/111/23/8619.abstract

J. Bromley, J. W. Bentz, L. Bottou, I. Guyon, Y. LeCun, C. Moore, E. Sackinger, R. Shah, Signature
verification using a siamese time delay neural network, International Journal of Pattern Recognition
and Artificial Intelligence 7 (4).

M. Kayala, P. Baldi, Reactionpredictor: Prediction of complex chemical reactions at the mechanistic
level using machine learning, Journal of Chemical Information and Modeling 52 (10) (2012) 2526-2540.
Y.-N. Jan, L. Y. Jan, Branching out: mechanisms of dendritic arborization, Nat Rev Neurosci 11 (5)
(2010) 316-328.

URL http://dx.doi.org/10.1038/nrn2836

Y. LeCun, C. Cortes, MNIST handwritten digit database [cited 2016-01-14 14:24:11].

URL http://yann.lecun.com/exdb/mnist/

A. Krizhevsky, V. Nair, G. Hinton, Cifar-10 (canadian institute for advanced research).

URL http://www.cs.toronto.edu/~kriz/cifar.html

F. Chollet, et al., Keras, https://github.com/fchollet/keras (2015).

M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean,
M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens,
B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, X. Zheng, TensorFlow: Large-scale machine learning on
heterogeneous systems, software available from tensorflow.org (2015).

URL http://tensorflow.org/

X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, in:
Y. W. Teh, M. Titterington (Eds.), Proceedings of the Thirteenth International Conference on Artificial
Intelligence and Statistics, Vol. 9 of Proceedings of Machine Learning Research, PMLR, Chia Laguna
Resort, Sardinia, Italy, 2010, pp. 249-256.

URL http://proceedings.mlr.press/v9/glorot10a.html

14

