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Abstract
Microstructural topology optimization (MTO) is the simultaneous optimization of macroscale topology and microscale
structure. MTO holds the promise of enhancing product-performance beyond what is possible today. Furthermore, with
the advent of additive manufacturing, the resulting multiscale structures can be fabricated with relative ease. There
are however two significant challenges associated with MTO: (1) high computational cost, and (2) potential loss of
microstructural connectivity. In this paper, a novel density-and-strain-based K-means clustering method is proposed to
reduce the computational cost of MTO. Further, a rotational degree of freedom is introduced to fully utilize the anisotropic
nature of microstructures. Finally, the connectivity issue is addressed through auxiliary finite element fields. The proposed
concepts are illustrated through several numerical examples applied to two-dimensional single-load problems.

Keywords Topology optimization · Microstructural optimization design · Clustering · Principal strain

1 Introduction

Topology optimization is a means of distributing material
within a design domain, to optimize performance (Bendsøe
and Sigmund 2004; Sigmund and Maute 2013). It is
now a mature field with multitude of methods, including
homogenization (Bendsøe and Kikuchi 1988; Hassani and
Hinton 1998), Solid Isotropic Material with Penalization
(SIMP) (Bendsøe 1989), level set approach (Sethian and
Wiegmann 2000; Wang et al. 2003), topological sensitivity
framework (Novotny et al. 2003; Deng and Suresh 2015;
2017), and evolutionary scheme (Xie and Steven 1993;
Yang et al. 1999). As an example of topology optimization,
Fig. 1a illustrates a compliance-optimized topology for a
structural problem, computed via SIMP.
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On the other hand, microstructural design is a technique
for the distribution of material, at a smaller scale,
to optimize material properties. Through microstructural
design, one can customize various material behavior
(Osanov and Guest 2016) including bulk/shear modulus
(Huang et al. 2011), Poisson’s ratio (Vogiatzis et al. 2017;
Xie et al. 2014), thermal expansion (Sigmund and Torquato
1997), elasticity tensor (Sigmund 1994), and other extremal
properties (Sigmund 2000). For example, Fig. 1b illustrates
an optimal microstructure, once again computed via SIMP,
for maximizing shear modulus.

Microstructural topology optimization (MTO) combines
topology optimization and microstructural optimization, for
simultaneously optimization of topology, at a macroscale,
and microstructures at a smaller scale. For example,
Fig. 1c illustrates an optimized MTO design. With the
advancement in additive manufacturing (Gao et al. 2015;
Liu et al. 2018b), such MTO designs can now be fabricated
with relative ease. However, there are several challenges
underlying MTO; the objective of this paper is to identify
and address some of these challenges.

To understand these challenges, consider a typical
MTO problem depicted in Fig. 2 where the objective is
to construct an optimal topology and compute optimal
microstructures over each macro finite element. This entails
the following: Given an initial topology and an initial set
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(a) (b) (c)

Fig. 1 Different design strategies. a Single scale design of short cantilever fixed on the left edge and loaded at the center of right edge. b 3 × 3
units of microstructures optimized for maximum shear stiffness. c MTO design using proposed method for same problem description as (a)

of (random) microstructures, (1) a microstructural analysis
(numerical homogenization) is performed for each distinct
microstructure, to extract the equivalent elasticity tensor
(Rodrigues and Guedes 2002), (2) the elasticity tensors
are then used to assemble a global stiffness matrix, (3)
a macroscale analysis is carried out, (4) followed by
sensitivity analysis, and (5) finally, the microdesign and
macrodesign variables are updated, subject to various
constraints. These five steps must be repeated numerous
times, making MTO “very demanding” (Coelho et al.
2008) and computationally “quite massive” (Rodrigues
and Guedes 2002). Efforts to reduce computational cost
can often lead to sub-optimal designs. Further, ensuring
topological connectivity between adjacent microstructures
is also non-trivial. For example, in Fig. 2, the two
microstructures with unit cells are not geometrically
compatible when adjacent.

Various strategies have been proposed to address these
challenges; these are reviewed in Section 2. In Section 3,
we provide a generic MTO formulation. We discuss
methods to alleviate the challenges in MTO by introducing
cluster-based MTO design, which leads to a discussion
on sensitivity analysis, and the proposed algorithm in
Section 4. In Section 5, several numerical examples
illustrate the proposed framework in context of two-
dimensional single-load problems. We conclude the paper
in Section 6, summarizing the current work and suggesting
future work with open challenges.

Fig. 2 Schematic of microstructural topology optimization

2 Literature review

As mentioned earlier, MTO poses two distinct challenges:
(1) high computational cost, and (2) lack of connectivity
between microstructures. Various strategies that have
been proposed to resolve these challenges are discussed
below.

2.1 Strategies to reduce computational cost

A simple strategy, specifically to reduce computational cost,
is to constrain all microstructures to be identical. A single
microstructure is then controlled by a set of microdesign
variables, with no macrodesign variables (Huang et al.
2013). Due to its simplicity, the computational cost is
significantly reduced, and connectivity can be guaranteed.
However, the performance of the resulting structure is very
poor, i.e., it is often much worse than a classic topology
optimized design (Li et al. 2018).

An extension of the above strategy is to use a single
microstructure, but also to include a density variable ρe over
each macroelement (Liu et al. 2008; Deng et al. 2013; Yan
et al. 2014). Then, the classic SIMP penalization function
f (ρe) = ρ

p
e can be used to control the presence or

absence of each microstructure. The performance improves
significantly with little or no additional computational
cost. However, an artificial volume constraint must be
imposed on the microstructures to avoid trivial solid/void
designs. This leads to diminishing performance with
decreasing microstructure’s volume fraction (Sivapuram
et al. 2016; Deng and Chen 2017). In other words, under
this formulation, the very use of microstructures lowers
performance!

A natural generalization is to allow a finite number of
microstructures, rather than just one. For example, one
can assume that macroelements with physical proximity
share the same microstructural design, leading to the grid-
based clustering (Sivapuram et al. 2016; Nakshatrala et al.
2013; Ferrer et al. 2017). Although the connectivity among
neighboring microstructures in grid-based clustering can be
handled efficiently (Du et al. 2018), the clustering is far
from optimal (as will be demonstrated later on).
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Alternately, variable-thickness design optimization
(SIMP with p = 1) is first performed, and then macroele-
ments with similar density ρe are assumed to have the same
microstructural design (Li et al. 2018; Zhang et al. 2018;
Liu et al. 2018a), leading to a density-based clustering.
There are multiple methods for division of macroelements
into clusters. For example, uniform density clustering which
divides the range (0, 1] into R equal parts (Li et al. 2018),
or uniform size clustering where macroelements sorted
according to density are divided into equal sized clusters.
Similarly, one can divide macroelements based on principal
stress/strain directions (Xu and Cheng 2018). K-means
clustering (Lloyd 1982) or k-clustering algorithm identifies
already existing clusters in the given distribution of data
(Liu et al. 2018a) (e.g., density or principal stress direction)
and is likely to perform better than the uniform clustering
methods.

In general, with clustering, performance improves, with
a slight increase in computational cost (depending on the
number of clusters).

2.2 Strategies to ensure connectivity

Connectivity has been addressed by several researchers:
(1) if the microstructures are graded version of one parent
microstructures, connectivity can be easily guaranteed
(Wang et al. 2017a), (2) perturbation of coordinates may be
used to achieve connected optimized structures (Liu et al.
2017; Zhu et al. 2019), (3) alternately, passive (non-design)
microelements can be assigned to all microstructures for
connectivity (Zhou and Li 2008; Deng and Chen 2017;
Li et al. 2018), or, (4) a constraint on some connectivity
measure can be introduced (Du et al. 2018), and (5) finally,
if the microstructures are simple rotations of rectangular
voids, it may be possible to ensure connectivity (Pantz and
Trabelsi 2008; Groen and Sigmund 2018; Allaire et al.
2018). Use of parameterized rectangular voids renders
these techniques computationally efficient. Alexandersen
and Lazarov (2015) proposed an MTO technique without
length-scale separation for better analysis and connectivity
at an expense of high computational cost. A similar
approach was earlier used by Zhang and Sun (2006) to study
length-scale-related effect.

2.3 Alternate strategies

To solve both the computational complexity and the
connectivity issue, lattice structures are used where the
topology of the microstructure is fixed, but the lattice
parameters are varied to achieve desired properties (Hassani
and Hinton 1998; Cramer et al. 2016; Wang et al. 2017b).

However, the choice of the lattice topology is often
arbitrary, and the performance is typically sub-optimal.
Improved performance may be achievable by designing
lattice structures on-the-fly (Wang et al. 2017a) or by better
choice of lattice for the problem in hand, e.g., rectangular
void aligned along principal direction (Groen and Sigmund
2018; Allaire et al. 2018).

Yet another strategy is the use of rank-two laminates
(Francfort and Murat 1986; Avellaneda 1987; Jog et al.
1994) that are layers of solid interspersed with layers of
striped solid and void. Since the effective properties of these
laminates can be analytically computed, computational cost
is reduced significantly. Their optimality for 2-dimensional
compliance minimization problem has been demonstrated
(Avellaneda 1987; Allaire et al. 2018). However, these
laminates are not manufacturable.

The free material optimization (FMO) method has also
been proposed (Bendsøe et al. 1994; Kočvara et al. 2008)
where the objective is to first compute optimal elasticity
tensors for each macroelement. Once this is complete, the
next phase involves computing the microstructures that
have the desired elasticity tensors (Schury et al. 2012).
Realizability of the second phase is discussed in Milton and
Cherkaev (1995). Unfortunately, the second phase can be
computationally very demanding, and connectivity is not
guaranteed.

2.4 Paper contributions

In this paper, we show that the performance can be improved
significantly and consistently, by clustering elements based
on the underlying strain tensor and the SIMP density,
and adding a rotational degree of freedom. Connectivity
is tackled using an additional finite element analysis. The
main contributions of this paper are as follows:

1. Describing various MTO methods, including the
proposed one, as special cases of a single generic MTO
formulation.

2. While the importance of SIMP density, and strain
information for topology optimization, have been
identified by Jog et al. (1994) and Bendsøe et al. (1994),
we justify the importance of these two quantities for
MTO clustering and provide a framework for exploiting
them in MTO.

3. Similarly, while the concept of rotational degree of
freedom has been identified within the context of
microstructural design (Bendsøe and Kikuchi 1988),
we show that this concept can also be exploited
for reducing the design space and for improved
clustering.
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3Microstructural topology optimization
design

Recall that MTO involves several steps including
microstructural analysis, global stiffness matrix assembly,
and macroanalysis. In this section, the mathematics behind
these critical steps is described, together with typical design
variables, objective, and constraints. Finally, a unified
framework that captures popular MTO methods is also
presented.

3.1 Design variables

In MTO, the domain is discretized into N macroelements,
and each macroelement is further divided into M microele-
ments as illustrated in Fig. 3. There are typically two sets
of (SIMP) design variables (bounded by 0.001 and 1) cor-
responding to these elements, namely macrovariables and
microvariables, resulting in a total of (N + NM) design
variables. However, if a clustering strategy is used, several
macroelements are mapped to a single microstructure, and
they will share the same set of design variables. Conse-
quently, with clustering, the total number of design variables
will be reduced to (N + RM), where R is the number
of distinct microstructures. Henceforth, in the presence of
clustering, the mapping function from a macroelement n

to a microstructure r will be denoted by r = g(n). The
macrovariable will be denoted by ρn while the microvari-
able will be denoted by γr,m corresponding to microelement
m associated with a microstructure r .

3.2 Objective and constraints

In MTO, the typical objective is to minimize compliance

C = uTKu

where K and u are global stiffness matrix and displacement
vector, respectively. This is subjected to a global volume
constraint:

v

N∑

n=1

(
ρn

M∑

m=1

γg(n),m

)
≤ V ∗ (1)

  N (here 128) Macro-elements    M (here 400) Micro-elements

Fig. 3 Illustration of macroelements and microelements in a rectangu-
lar domain

where v is the volume of a microelement, and V ∗ is the
desired design volume. An additional volume constraint is
often imposed on all microstructures to avoid trivial (fully
solid) designs:

v

M∑

m=1

γr,m ≤ v∗, ∀r ∈ {1 . . . R} (2)

There are variations to these generic constraints. For
example, in the case of a single microstructure, i.e., R =
1, the volume constraint on microvariables is necessarily
active. This simplifies Eq. 1 to v∗ ∑N

n=1 ρn ≤ V ∗, making
the global volume constraint independent of microdesign
variables.

3.3 Microstructure analysis and homogenization

An important step in MTO is to compute the homogenized
elasticity tensor for each distinct microstructure (Bendsøe
and Kikuchi 1988). First the elasticity tensor of a
microelement m is computed as Dr,m = (

γr,m

)p
D0 where

D0 is elasticity tensor of base material, and p is the SIMP
penalization factor. The elasticity tensors are then exploited
to assemble the microstructure stiffness matrix Kr . Three
independent force vectors f i=1,2,3

r corresponding to three
unit strains—two normal and one shear strain—are applied
as illustrated in Fig. 4. By solving the corresponding three
problems Kru

i
r = f i

r , the homogenized elasticity tensor
DH

r can be extracted (Liu et al. 2002). Note that these
three problems must be solved for each of the R distinct
microstructures.

3.4 Macroanalysis

Next, the homogenized elasticity tensor DH
r is either

directly used (Rodrigues and Guedes 2002; Nakshatrala
et al. 2013), or scaled (Liu et al. 2008; Deng et al. 2013;
Yan et al. 2014) via ρ

p
n DH

r , to compute the stiffness matrix
of each macroelement. In either case, these macroelement
matrices are assembled into a global stiffness matrix K .
Finally, the global problem Ku = f is solved, where f is
the external force. The design variables are suitably updated

(a) (b) (c)

Fig. 4 Homogenization by analyzing microstructure thrice
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(to be discussed later), and the process to repeated, until
convergence is reached.

3.5 Generic formulation

Given the above definitions, almost all existing MTO
(specifically, two scale) formulations can be captured via a
generic MTO problem statement as follows.

minimize
x

uTKu (3a)

subject to Ku = f (3b)

v

M∑

m=1

γr,m ≤ v∗ ∀r ∈ {1 . . . R} (3c)

v

N∑

n=1

(
ρn

M∑

m=1

γg(n),m

)
≤ V ∗ (3d)

0.001 ≤ xi ≤ 1 ∀i (3e)

Various MTO formulations can be interpreted as special
cases of the above formulation as in Table 1; references are
provided for each formulation type. As one can observe,
the design variables x, the constraints, and the definition of
elasticity matrix for macroelements are different for each
formulation. Performance with respect to classic topology
optimization has also been compared for different methods,
where performance less (greater) than 1 implies the MTO
formulation performs worse (better) than classic topology
optimization (performed using SIMP penalty p = 3). Two
popular alternatives not included in the table are as follows:
(1) variable-thickness design problem which has optimal
performance, but violates Hashin-Shtrikman (1962) bounds
and gives non-manufacturable design (Sigmund et al.
2016), and (2) the use of all design variables (NM) at one
scale; this will provide optimized manufacturable design

at a prohibitive computational cost. The above formulation
can be easily modified for multiple load cased by adding
equation for each load case in Eq. 3b and adding their
contribution to Eq. 3a as weighted sum.

Later in the paper we will compare the proposed formu-
lation (discussed next) against some of the formulations in
Table 1.

4 Proposedmethod

In this section, we discuss the proposed method whose main
highlights are as follows: (1) a simplified MTO formulation
that eliminates macrodesign variables and microvolume
constraints, (2) a “density-and-strain”-based clustering, (3)
exploiting rotation variables to increase the design space,
while enforcing connectivitiy.

4.1 Proposed clusteringmethod

The proposed MTO formulation is a simplified version of
the generic statement in Eq. 3:

minimize
γ 1,γ 2,...,γ R

uTKu (4a)

subject to Ku = f (4b)

v

N∑

n=1

M∑

m=1

γg(n),m ≤ V ∗ (4c)

0.001≤γr,m ≤1 1≤r ≤R, 1≤m≤M (4d)

Observe that, in the proposed formulation, there are no
macroSIMP variables ρn. As a direct consequence, a
single global volume constraint (see Eq. 4c) is sufficient;
eliminating the microstructure volume constraint, which
leads to better distribution of material. If κ(r) denotes
the cardinality of a microstructure r i.e. the number of

Table 1 Various MTO formulations as instances of the generic formulation

Problem type x Elasticity tensor (3c) (3d) Performance

Classic topology optimization1 ρ ρ
p
n D0 × √

1

Single microstructure optimization2 γ DH(γ )
√ × � 1

Single microstructure + macro-design3 ρ, γ ρ
p
n DH(γ )

√ √
< 1

Unclustered microstructure optimization4 γ 1, γ 2, . . . , γ N DH(γ n)
√ × > 1

Clustered microstructures + macro-design5 ρ, γ 1, γ 2, . . . , γ R ρ
p
n DH(γ r )

√ √
< 1

Clustered microstructures + both constraints6 ρ, γ 1, γ 2, . . . , γ R DH(γ r )
√ √ � 1

Clustered microstructures7 γ 1, γ 2, . . . , γ R DH(γ r )
√ × � 1

1, Sigmund (2001); 2, Huang et al. (2013); 3, Liu et al. (2008), Deng et al. (2013), and Yan et al. (2014); 4, Rodrigues and Guedes (2002) and
Nakshatrala et al. (2013); 5, Sivapuram et al. (2016); 6, Li et al. (2018) and Zhang et al. (2018); 7, Nakshatrala et al. (2013), Ferrer et al. (2017),
and Liu et al. (2018a)
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Fig. 5 Schematic of density-based clustering

macroelements associated with a microstructure r then the
volume constraint can be expressed as follows:

v

R∑

r=1

(
κ(r)

M∑

m=1

γr,m

)
≤ V ∗ (5)

rendering the mapping function g(n) dispensable for
imposition of volume constraint.

4.2 Combined density-and-strain based clustering

In Section 2, we reviewed grid-based clustering and density-
based clustering. Here, we propose and justify a hypothesis
that a “combined density-and-strain”-based clustering will
lead to better performance. As a motivation, consider the
pure density-based clustering illustrated in Fig. 5 where a
variable thickness design optimization is first carried out;
then the resulting density distribution is used to cluster
macroelements. This method however disregards local
strain conditions. For example, as illustrated in Fig. 5, the
three macroelements “a, b, and c” with similar densities, but
potentially different strain characteristics, are grouped into
the same cluster. This, leads to sub-optimal microstructures,
as illustrated later on through numerical experiments.

The proposed hypothesis (of strain-and-density-based
clustering) is further supported by FMO (Bendsøe et al.
1994) where it is shown that the optimal elasticity

components at any location depends both on the local
principal strains εI and εII , and the SIMP density ρ, i.e.,

D11 = ρ
ε2
I

ε2
I + ε2

II

(6a)

D22 = ρ
ε2
II

ε2
I + ε2

II

(6b)

D12 = ρ
εI εII

ε2
I + ε2

II

(6c)

Further, observe that it is sufficient to consider the strain
ratio ε2

r = ε2
II /ε

2
I , where εII

2 ≤ εI
2 to ensure εr ∈ [0, 1].

Thus, in this paper, we consider the two scalars [ρ, ε2
r ]T

as a basis for clustering. In particular, we use Lloyd’s K-
means clustering algorithm (Lloyd 1982), together with K-
means++ initialization (Arthur and Vassilvitskii 2007). The
macroelements with density (obtained via variable thickness
design optimization) close to 0, or close to 1, are constrained
to two distinct clusters. The combined density-and-strain-
based clustering is shown in Fig. 6. Note that the optimal
periodic microstructure is not achievable when the principal
strains are of opposite signs (Allaire and Aubry 1999).
Therefore, the proposed clustering ignores differences in
the optimized designs based on signs of principal strains
(see Fig. 7 of Bendsøe and Sigmund (1999)). However, this
leads to sub-optimal clustering. This clustering can also be
performed on designs obtained via SIMP with penalization
higher than 1 or via rank-2 laminate (Francfort and Murat

Fig. 6 Schematic of combined density-and-strain-based clustering
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1986) design so as to not violate Hashin-Shtrikman bounds
(1962).

4.3 Microstructure rotation

Observe that, by definition within a given cluster, macroele-
ments have similar values for the density and principal-
strain ratio. However, the principal strain direction can
vary significantly within a cluster. Therefore, in order to
map the macroelements within a cluster to a single par-
ent microstructure, they must be rotated by an angle θn as
determined by the principal direction (see Fig. 7).

Rotating microstructures along principal direction (Ped-
ersen 1989) has two-fold advantage in clustering. The num-
ber of strain components is reduced from 3 to 2 (reducing
the dimension of the problem), and better performance can
be achieved with fewer clusters.

Further, due to this rotation, the elasticity tensor for each
macroelement must also be transformed as follows: Dn =
Q(θn)D

H(γ g(n))Q
T(θn) where rotation matrix Q(θn) is

given by

Q(θn) =
⎡

⎣
cos2(θn) sin2(θn) sin(2θn)

sin2(θn) cos2(θn) − sin(2θn)

− sin(2θn)/2 sin(2θn)/2 cos(2θn)

⎤

⎦ (7)

This amounts to carrying out two matrix-matrix multiplica-
tions for each macroelement, during each step of the opti-
mization process, followed by computing the corresponding

(a)

(b)

Fig. 7 a, b Rotation of microstructure by angle θn

element stiffness matrix. One can however significantly
reduce the computational cost through elemental stiffness
matrix KE templates. Specifically, at the start of the opti-
mization process, the following six templates are computed:

K̂ i = KE
(
D̂i

)
i = 1, . . . , 6 (8)

where

D̂1 =
⎡

⎣
1 0 0
0 0 0
0 0 0

⎤

⎦ , D̂2 =
⎡

⎣
0 0 0
0 1 0
0 0 0

⎤

⎦ , D̂3 =
⎡

⎣
0 0 0
0 0 0
0 0 1

⎤

⎦ ,

D̂4 =
⎡

⎣
0 1 0
1 0 0
0 0 0

⎤

⎦ , D̂5 =
⎡

⎣
0 0 1
0 0 0
1 0 0

⎤

⎦ , D̂6 =
⎡

⎣
0 0 0
0 0 1
0 1 0

⎤

⎦

Then, during optimization, given a homogenized and trans-
formed D matrix for each macroelement, the corresponding
elemental stiffness matrix can be efficiently computed as
follows:

KE (D) = D11K̂1 + D22K̂2 + D33K̂3

+D12K̂4 + D13K̂5 + D23K̂6 (9)

4.4 Connectivity of microstructures

Finally, we discuss the connectivity issue. Recall that all
microstructures within a cluster map to the same parent
microstructure, with possible rotation. If there is no rotation,
then the connectivity within the cluster can be easily
enforced (see Fig. 8a). However, in the presence of rotation,
connectivity is typically lost; see Fig. 8b.

This can be addressed by morphing microstructures
(Pantz and Trabelsi 2008; Allaire et al. 2018; Groen and

(a)

(b)

Fig. 8 a Arrangement of microstructures without rotation. b Desired
rotations of microstructure
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Sigmund 2018) using a continuously varying coordinate
system oriented along principal strain directions. Observe
that the strain directions are computed at the center of
each macrocell and are therefore discontinuous, and must
be smoothed. Moreover, the rotational symmetry of the
direction field is handled using connected component
labelling (Groen and Sigmund 2018).

Let the desired coordinate transformation be represented
by x̃(x, y) and ỹ(x, y) for every point (x, y) in the design
domain. The gradients of this transformation are set equal
to the principal strain directions n1 and n2, where

n1 =
[

cos(θ)

sin(θ)

]
, n2 =

[− sin(θ)

cos(θ)

]

i.e.,

∇x̃ = n1, ∇ỹ = n2 (10)

In theory, these gradients only exist if curl of n1 and n2

vanishes everywhere in the domain Allaire et al. (2018), but
this limitation can be disregarded in practice (see Fig. 13
and its explanation in Allaire et al. (2018) ). Prior works
by Allaire et al. (2018) and Groen and Sigmund (2018)
consider a cosine function formulation that only applies to
microstructures with rectangular voids. Here, we consider a
variation of this concept that applies to any microstructure.

First, we impose the gradient constraint in a weak sense
using a finite element formulation. In other words, the
coordinate transformation fields x̃ and ỹ are described using
standard finite element basis function N with unknown
values ˆ̃x and ˆ̃y defined at the nodes. The gradient of the
basis function is defined as B = ∇N . This leads to a pair of
linear systems:

K̆ ˆ̃x = F̆1, K̆ ˆ̃y = F̆2 (11)

where

K̆ =
∫

�

BTBd�

F̆1 =
∫

�

BTn1d�

F̆2 =
∫

�

BTn2d�

The two linear systems have the same stiffness matrix but
different force vectors. The use of a finite element formu-
lation used here (and also in Groen et al. (2019) applied
to triangle wave function) simplifies the computation, and
the resulting fields are free from oscillations as observed in
finite difference formulation (Groen and Sigmund 2018).

Further, unlike the cosine (Allaire et al. 2018; Groen
and Sigmund 2018) or triangle wave (Groen et al. 2019)
formulation, in this paper, the coordinate transformation is

used directly to obtain a morphed set of microstructures.
Every quad (x̃1, ỹ1, x̃2, ỹ2) such that (x̃2 − x̃1 = Δx), (ỹ2 −
ỹ1 = Δy) is mapped with a microstructure where (Δx, Δy)

is the size of a macroelement. This microstructure g(n)

corresponds to the macroelement n with center closest to
the center of the quad. These centers are computed in (x, y)

as opposed to (x̃, ỹ) used for quad identification. Figure 9
a demonstrates the morphed microstructures generated by
using the above concept. The region marked in the figure
corresponds to a quad which maps one microstructure.

The above formulation restricts isocontours of x̄ and
ȳ to be equispaced, leading to their digression from
desired path especially near regions of convergent principal
strain directions. This is overcome by having a scalar
associated with n1 and n2 which dictates the convergence
or divergence of isocontours. We choose er as suggested
by Allaire et al. (2018) and solve for r using an equation
identical to Fig. 10a except that the right hand side becomes
[− ∂θ

∂y
, ∂θ

∂x
]T instead of n1 or n2. As we do not eliminate

singularities in strain field, which usually occurs in void
region, we add weight w which is 0.01 in void regions
(Groen and Sigmund 2018) and one everywhere else. Finite
element formulation as described earlier is used first for the
solution of w∇r = w[− ∂θ

∂y
, ∂θ

∂x
]T followed by the solution

of modified Eq. 10 i.e. w∇x̄ = wern1 and w∇ȳ = wern2.
Figure 9 b illustrates the morphed microstructures generated
by using the modified equations.

As the isocontour spacing is no longer uniform, they must
be properly scaled. Based on our experience, a scaling factor
of 2Δx/||∇x̄|| for x̄ and 2Δy/||∇ȳ|| for ȳ is suggested.
This factor is problem dependent and needs to be chosen
properly to avoid too coarse or too dense quads. Note that
even for the same parent microstructure, the size of the

(a)Without scalar parameter r.

(b)With scalar parameter r.

Fig. 9 a, b Morphed microstructures using the continuously varying
coordinate system. Highlighted region is mapping of one quad
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quad determines the feature size which varies significantly
throughout the domain. Note the variation in the size of
microstructures from left (compressed) to right (expanded)
in Fig. 9b as compared with Fig. 9a.

After generating the design, a full-scale analysis is
performed as a verification step. However, low-volume
fraction regions with compressed microstructures may
exhibit disconnectedness (see Fig.10a) which will lead
to a singular stiffness matrix. Therefore, a 10× finer
discretization (in both direction) of the design domain is
used to arrive at final design (as shown in Fig. 10b), which
is then agglomerated in a mesh with (NM) elements (as
shown in Fig. 10c) to enable full-scale analysis. In the
full-scale analysis, elements are penalized with a penalty
parameter of 3 to prevent performance over-estimation
(Hashin and Shtrikman 1962). This two-step approach
obviates post-processing of disconnected features.

As a final comment on connectivity, observe that
microstructures with their axes oriented along principal
directions, when optimized, give rise to Vigdergauz-
like structures (Vigdergauz 1989; 1994; Bendsøe and
Sigmund 1999) illustrated in Fig. 11. In other words,
if a microstructure exists (with non-zero density and
principal stress ratio), the boundary of the microstructure
is always solid. Thus, we can force the boundary of such
microstructures to be a non-design region, as illustrated
in Fig. 12. This ensures connectivity between clusters as
well. There may be regions not fully solid or void with one
principal stress vanishing, then the non-design regions of a
microstructure ensure connectivity at the cost of rendering
it non-optimal.

(a)Mapping on original discretization of NM elements.

(b)Mapping on 10x finer discretization i.e. 100NM

100NM

elements.

(c)Agglomeration of elements on NM elements.

Fig. 10 Agglomeration to ensure connectivity for full-scale analysis

(a) (b) (c)

Fig. 11 Microstructure design for volume fraction of 0.5 and principal
stress ratio a σII

σI
= 0.1, b σII

σI
= 0.5, and c σII

σI
= 1

4.5 Sensitivity analysis and design update

We now develop the sensitivity equations; the sensitivity of
compliance C with respect to the microdesign variable γr,m

is given by:

∂C

∂γr,m

= uT ∂K

∂γr,m

u + 2uTK
∂u

∂γr,m

(12)

where the symmetry of global stiffness matrix K has been
exploited. We will assume that the load is design inde-
pendent. Therefore, from the governing equation Ku = f ,
we have

K
∂u

∂γr,m

= − ∂K

∂γr,m

u

Substituting this in Eq. 12 leads to

∂C

∂γr,m

= −uT ∂K

∂γr,m

u (13)

One can express this as a sum over all the macroelements

∂C

∂γr,m

= −
N∑

n=1

uT
n

∂KE
n

∂γr,m

un (14)

Exploiting Eq. 9, the derivative of an elemental stiffness
matrix can be expressed as

∂KE
n

∂γr,m

= K̂1

(
∂Dn

∂γr,m

)

11
+ K̂2

(
∂Dn

∂γr,m

)

22

+K̂3

(
∂Dn

∂γr,m

)

33
+ K̂4

(
∂Dn

∂γr,m

)

12

+K̂5

(
∂Dn

∂γr,m

)

13
+ K̂6

(
∂Dn

∂γr,m

)

23
(15)

 

Non-design 

region

Fig. 12 Proposed non-design elements (shown in dark color) for
ensuring connectivity
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where Dn = Q(θn)D
H
r (γ r )Q

T(θn). Finally, due to the
mapping

∂Dn

∂γr,m

=
{

Q(θn)
∂DH

r

∂γr,m
QT(θn), if r = g(n)

0, otherwise
(16)

Sensitivity of homogenized elasticity tensor is derived using
the periodicity of microstructure (Liu et al. 2002). The
sensitivity of the volume constraint in Eq. 5 is given by
vκ(r).

To avoid checker-boarding (Jog et al. 1994), the
following sensitivity filter (Sigmund 2007) is used

∂̃C

∂γr,m

= 1

γr,m

∑

i∈Θm

Wmiγr,i

∂C

∂γr,i

(17)

where Wmi is cone type signed distance function, and
Θm is the set of neighboring microelements. Note that
the filters used for MTO must account for periodicity of
microstructures (Xu and Cheng 2018). Further, in order to
obtain solid/void designs, the filter radius is decreased from
4 to 1 (relative to micro-element width), in steps of 0.5, each
time the relative change in compliance drops below 1×10−4

in two consecutive iteration; this is an accepted practice in
SIMP to arrive at solid/void designs (Sigmund 2007).

The ratio of sensitivities of objective and volume
constraint is contained in the term

B(i)
r,m = −

⎛

⎝
(

∂̃C

∂γr,m

)(i) /
Λ(i)vκ(r)

⎞

⎠
η

(18)

where Λ(i) is the Lagrange multiplier corresponding to
the volume constraint, η is the damping parameter set to
0.5, and i is current iteration index. The design update is
carried out using the well-known optimality criteria method
(Sigmund 2001) utilizing Eq. 18

γ (i+1)
r,m =

⎧
⎪⎪⎨

⎪⎪⎩

max
(
γ

(i)
r,m−ζ, γ

)
if γ

(i)
n B

(i)
r,m ≤ max

(
γ

(i)
r,m − ζ, γ

)

min
(
γ

(i)
r,m+ζ, 1

)
if min

(
γ

(i)
r,m + ζ, 1

)
≤ γ

(i)
r,mB

(i)
r,m

γ
(i)
r,mB

(i)
r,m otherwise

(19)

As is well known, microstructural designs are non-unique; a
small move parameter ζ prevents multiple holes appearing
and disappearing during optimization, improving stability;
here, the move parameter is set to 0.05. The lower limit γ

on design variables is 0.001. The Lagrange multiplier Λ(i)

is updated in an inner loop using binary search to satisfy the
volume constraint (Sigmund 2001).

4.6 Algorithm

A flowchart depicting the proposed algorithm is illustrated
in Fig. 13. The algorithm can be divided into three distinct
phases, and these are described below.

The first phase starts with initialization and discretization
of design domain with macroelements and microelements.
Then, variable-thickness design optimization is performed
over the macroelements. This is followed by computation
of principal strain ratio and principal directions. The SIMP
density and the principal strain ratio are exploited to
perform K-clustering. This divides the macroelements into
R clusters. The microdensity variables for each of the R

clusters are initialized as in Fig. 14, where the difference
between the two regions is 0.2, while the mean density of
the microstructures is matched with the SIMP density. This
ensures that the sensitivity values do not vanish everywhere.

In the second phase, homogenization carried out for each
of the R microstructures, followed by macroanalysis. The
sensitivity is computed and filtered using Eq. 17; the design
variables are updated as described earlier. This process is
repeated until either the change in microvariables is small
(here, 0.005), or the relative change in objective is small
(here, 5 × 10−6 ).

When the optimization terminates, the algorithm enters
the third phase where the microstructures are morphed and
mapped on a ten times finer mesh to ensure connectivity.
Then, a final analysis of the mapped design is performed
by agglomeration, as described earlier. In the following
examples, the compliance values obtained using full-scale
analysis are reported in parenthesis along with the values
obtained using homogenization approach.

5 Numerical examples

5.1 Microstructural design validation

We consider an example from Zhang and Sun (2006) where
the rectangular design domain, illustrated in Fig. 15, is
fixed on the left edge and a uniform shear load is applied
on the right edge. The domain is discretized into 16 × 10
(macro) elements which are then clustered into 10 different
horizontal layers. The top and bottom layers are made solid
as in Zhang and Sun (2006), and the remaining layers have
a distinct microstructure, leading to a total of 8 different
microstructures (using grid-based clustering to be consistent
with the published result in Zhang and Sun (2006)). Each
macroelement is divided into 1600 microelements. The
Young’s modulus is 1000, and Poisson’s ratio is 0.3. No
connectivity is enforced among different microstructures.
The compliance is minimized for an overall volume fraction
of 0.6.
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Fig. 13 Flowchart of proposed
MTO algorithm

Discretize design domain into
macro and micro elements

Perform variable-thickness design
optimization over macro-elements

Evaluate principal strain

Perform k-clustering to find R clusters

Initialize micro-design variables
for each of R microstructures

Compute elasticity tensors via ho-
mogenization for R microstructures

Macro-analysis using rotated elasticity tensors

Perform sensitivity analy-
sis and update design variables

Is termination criteria met?

Compute x̄ and ȳ for connectivity

Map microstructures

No

Yes

Phase 1 (Clustering)

Phase 2 (Optimization)

Phase 3 (Connectivity)

The design obtained by Zhang and Sun (2006) is
illustrated in Fig. 16a, while the design obtained via the
proposed method is illustrated in Fig. 16b. The compliance
for the design in Zhang and Sun (2006) was reported as
172171.8, while the compliance of the proposed design
is 145583. For comparison, a full-scale analysis was
performed on the final design with 0.25 million elements,

Fig. 14 Microstructure initialization

resulting in a compliance of 147806. Thus, in this case,
homogenization leads to an error of less than 2%. The
difference can be attributed to the filtering method; the
method used here leads to a distinct solid/void design,
resulting in a lower compliance value. No finer mesh
mapping is required because of the absence of any morphing
in this example.

Fig. 15 Design domain and microstructure from Zhang and Sun
(2006)
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(a)

(b)

Fig. 16 Design comparison: a as illustrated in Zhang and Sun (2006),
and b obtained via proposed method

Fig. 18 Convergence history for the three types of clustering

5.2 Comparison of clusteringmethods

We will now compare the proposed density-and-strain-
based clustering against grid-based clustering and density-
based clustering. Observe that the clustering method only
affects phase 1 of the algorithm. The design domain is an L-
bracket (see Fig. 17a), discretized into 1600 macroelements
where each macroelement is further divided into 1600

Fig. 17 L-bracket to perform
cluster-based MTO. a Design
domain; grid-based clustering:
b clusters and c design; density-
based clustering: d density from
variable-thickness design
optimization, e clusters, and f
design; combined density-and-
strain-based clustering: g density
from variable-thickness design
optimization and principal
strain, h clusters, and i design (a) (b) (c)

(d) (e) (f)

(g) (h) (i)
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Table 2 L-bracket:final
objective and computation
time; the quantity within
parenthesis is obtained by a
full-scale analysis of the final
design, without
homogenization

Clustering type Final objective Iterations Computation time (s) Avg. Time per iteration (s)

Grid 3096.4 (3238.7) 115 592 6.1

Density 1936.4 (2086.50) 67 424 6.3

Density-and-strain 1717.3 (2056.02) 48 586 12.2

microelements. The Young’s modulus is 10 and Poisson’s
ratio is 0.3; the number of clusters R is chosen to be 12 and
desired global volume fraction is 0.5.

For grid-based clustering, adapting from Sivapuram et al.
(2016), the domain is divided into 12 regions as illustrated
in Fig. 17b. The optimized design is given in Fig. 17c.
For density-based clustering, first, variable-thickness design
optimization is carried out (see Fig. 17d). This is used
to form clusters as illustrated in Fig. 17e, resulting in
the design shown in Fig. 17f. Finally, using the proposed
density-and-strain-based method, the clusters are formed as
illustrated in Fig. 17h, while Fig. 17 i illustrates the final
design.

The convergence plots for the three cases are illustrated
in Fig. 18. The staircase shape obtained in convergence history

is due to the change in sensitivity filter radius. The compli-
ances and computational costs are summarized in Table 2.
As expected, the compliance from the proposed method
is better than the other two using homogenization with
no significant increase in computational cost. The mesh
for full-scale analysis consists of 2.56 million elements.

For further validation, consider a bridge problem shown
in Fig. 19a. The Young’s modulus is 2.1×105 and Poisson’s
ratio 0.3. The design domain is shown in Fig. 19b having a
point force of 1000, whereas the contours of x̃ and ỹ along
with the principal directions are shown in Fig. 19c to e. The
optimization results are shown for density (see Fig. 19h) and
density-and-strain-based (see Fig. 19k) clustering methods
with objective values 418.08 (490.53) and 342.26 (466.95),
respectively. The improved compliance values in these

Fig. 19 Bridge problem:
a problem domain, b design
domain; Auxiliary fields:
c direction n1 and x̄, d direction
n2 and ȳ, e x̄ and ȳ; density-
based clustering: f density from
variable-thickness design
optimization, g clusters, and
h design; combined density-and-
strain-based clustering: i density
from variable-thickness design
optimization and principal
strain, j clusters, and k) design

(a) (b)

(c) (d) (e)

(f) (g) (h)

(i) (j) (k)
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Fig. 20 Short cantilever fixed on the left edge and loaded on the center
of right edge. Length of line of load = 8

two examples validate the superiority of density-and-strain-
based clustering over density-based clustering. The full
scale analysis is performed on a 800 × 1600 mesh.

5.3 Effect of number of clusters and comparison
against SIMP design

Here, we compare and show the benefit of proposed method,
against variable thickness and SIMP (p = 3) designs;
we will also study the effect of the number of clusters.
As an example, we consider a short cantilever beam with
mid-edge load on the right edge illustrated in Fig. 20. The
domain is discretized into 800 macroelements, where each
macroelement is subdivided into 1600 microelements. The

Young’s modulus is 2.1 × 105, Poisson’s ratio is 0.3, and
desired volume fraction is 0.5.

The designs from variable-thickness and SIMP (p =
3) optimization performed on macroelement discretization
are illustrated in Fig. 21 a and b, respectively. Designs
obtained for various choices of number of clusters using
the proposed method are illustrated in the Fig. 21c to f.
Table 3 summarizes the results for different cases. An
increase in compliance in full-scale analysis (performed on
a 800 × 1600 mesh) is expected since we are distorting
the generated microstructures. However, the large disparity
in the two numbers may be attributed to a lot of gray
elements and imperfect morphing, which requires further
work. Notice that the increase in number of clusters
enhances the performance, but it does not approach the
variable thickness design or surpass SIMP (p = 3)
design in full-scale analysis. This is attributed to clustering
performed only once at the start of the optimization process.
Dynamic clustering may lead to improved performance and
will be pursued in future. Further, the poor performance
for 3 cluster case is due to the assignment of all the
macroelements to one cluster except for those assigned to
the two constrained ( with variable thickness design density
close to 0 or 1) clusters. As expected, the average time per
iteration increases with increase in the number of clusters.
In case of no-clustering, i.e., clusters equal to number of
macroelements (800 in this case), the average time per
iteration blows up to 22 min.

Fig. 21 a Variable-thickness
design. b SIMP (p = 3) design.
Designs with different number
of clusters: c R = 3, d R = 5,
e R = 10, and f R = 15

(a) (b)

(c) (d)

(e) (f)
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Table 3 Compliance for short cantilever beam with mid-edge load

Figure Type Number of clusters Compliance Iterations Avg. time per iteration (s)

21a Variable thickness design – 10.335 82 0.03

21b SIMP (p = 3) design – 11.86 51 0.06

21c Clustered design 3 12.07 (14.10) 49 5.57

21d Clustered design 5 11.49 (13.0) 49 5.73

21e Clustered design 10 11.38 (12.84) 58 5.82

21f Clustered design 15 11.34 (12.74) 50 5.96

6 Conclusion

In this paper, a generic MTO formulation is provided which
encompasses most of the MTO problems in published lit-
erature. The challenges associated with MTO such as large
computational cost and loss of connectivity due to the pres-
ence of microstructures are tackled in the proposed method.
This comprises three distinct phases: clustering, optimiza-
tio, and connectivity. In the first phase, a novel combined
density-and-strain-based clustering method is proposed to
divide macroelements into a pre-defined number of clusters.
During the next phase, rotated microstructures are opti-
mized for minimizing the compliance. These rotations are
based on principal directions. In the final phase, connectiv-
ity of rotated microstructures is ensured by solving a pair
of linear system to define a transformation field. This field
is used to project computed microstructures into the design
domain.

The proposed clustering method is demonstrated to
perform well for small number of clusters. Its superiority
as compared with other clustering methods has been
demonstrated. K-clustering is used to tackle clustering
of two-dimensional parameter involving density ρ and
principal strain ratio (εII /εI )

2. The anisotropic nature
of microstructures is effectively utilized by adding the
rotational degree of freedom. A simpler method of handling
microstructure connectivity for rotated microstructures
is proposed as compared with existing methods. The
effectiveness of proposed method is also manifested by
fewer number of iterations required for convergence.

There are certain aspects of the work which needs to
be pursued in future. Starting with a dynamic clustering
scheme to redistribute clusters according to evolving design
and strain field, which is likely to improve the performance
further. A smooth variation is not obtained in the presence
of singularity in strain directions as shown by Allaire
et al. (2018) and therefore, the auxiliary coordinate system
distorts in the neighborhood of singularity. An approach
to identify and handle these singularities will be dealt
in future along with extending this work to 3D and for
objectives other than compliance. Since density-and-strain-
based clustering and principal-strain-based rotation may

not be applicable to non-compliance problems, alternate
strategies need to be explored.

7 Replication of results

The MATLAB code and data files required to replicate
results presented here are available at http://www.ersl.wisc.
edu/software/MTO Code.zip.
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