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A Review of Methods for the
Geometric Post-Processing of
Topology Optimized Models

Topology optimization (TO) has rapidly evolved from an academic exercise into an exciting
discipline with numerous industrial applications. Various TO algorithms have been estab-
lished, and several commercial TO software packages are now available. However, a major
challenge in TO is the post-processing of the optimized models for downstream applica-
tions. Typically, optimal topologies generated by TO are faceted (triangulated) models,
extracted from an underlying finite element mesh. These triangulated models are dense,
poor quality, and lack feature/parametric control. This poses serious challenges to down-
stream applications such as prototyping/testing, design validation, and design exploration.
One strategy to address this issue is to directly impose downstream requirements as con-
straints in the TO algorithm. However, this not only restricts the design space, it may
even lead to TO failure. Separation of post-processing from TO is more robust and flexible.
The objective of this paper is to provide a critical review of various post-processing methods
and categorize them based both on targeted applications and underlying strategies. The
paper concludes with unresolved challenges and future work. [DOI: 10.1115/1.4047429]
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1 Introduction

Various design optimization methods are used today to solve engi-
neering problems; these include size, shape, and topology optimiza-
tion. The focus of this paper is on topology optimization [1-3], which
often serves as a starting point for size and shape optimization.
Topology optimization (TO) has rapidly evolved from an academic
exercise into an exciting discipline with numerous industrial appli-
cations. Popular applications include optimization of aerospace
and aircraft components [4-9], automotive components [10-12],
biomedical devices [13—17], structure design [18-22], compliant
mechanisms [23-26], thermofluid applications [27-34], etc.

To illustrate the concepts behind TO, consider the structural
problem posed in Fig. 1 where the objective is to find the stiffest
topology, i.e., topology with the lowest compliance, within the
given design-space for 50% volume fraction.

This can be solved rapidly today, via any of the well-known TO
methods [35-44]. A typical optimized topology is illustrated in
Fig. 2.

Rapid generation of such optimized designs is particularly bene-
ficial during the early stages of the design process. However, one of
the drawbacks of TO is that the optimal topology, such as the one in
Fig. 2, is typically extracted as a faceted (triangulated) model, from
the underlying finite element mesh, independent of any specific TO
method. This extraction relies on classic isosurface methods such as
marching cubes [45], see Fig. 3.

The faceted models are often of poor quality, non-smooth, dense
and lack feature/parametric control. For example, the faceted model
in Fig. 3 contains over 25,000 triangles, where most of them are of
poor quality. This is often exacerbated in real-world problems. As
an illustration, for the TO challenge problem for an upright
design, posed during 2020 Topology Optimization Roundtable
Conference, Albuquerque [46], millions of elements are necessary
to capture critical features. This results in faceted model with mil-
lions of triangles (see Fig. 4). Such triangulated models are ill-suited
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for downstream applications such as prototyping/testing, design
validation, and design exploration.

Most TO commercial packages do not have automated tools for
post-processing. Post-processing is loosely defined here as the
process of converting the faceted TO models into other geometric
representations that are more suitable for various downstream appli-
cations. Such geometric representations include skeletal representa-
tion, simplified triangulated model, NURBS-representation, volume
decomposition, and so on. Thus, post-processing strategies can
range from simple remeshing to extraction of skeleton and fitting
of analytic surfaces. Some of the early commercial packages
relied on manual tracing of the TO model for reconstruction, i.e.,
the faceted models are superimposed over the design space, and
the geometry is reconstructed via sketching and Boolean operations.
This is laborious and error-prone. However, some commercial
systems are beginning to support post-processing with various
degree of success. The most common strategy used in commercial
systems is surface-based reconstruction (see Sec. 4 for a descrip-
tion). PTC Creo® uses subdivision technique, while Evolve® and
Rhino®, was MeshMixer® use Non-Uniform Rational B-Splines
(NURBS)-based reconstruction. Fusion 360 Generative Design
relies on T-splines to generate multiple watertight computer-aided-
design (CAD) models that satisfy designer’s requirements. None of
these tools efficiently generate a parametric feature-based CAD

Fig. 1 A structural problem over a design space
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Fi

g.2 An optimized topology

Fig. 3 The faceted representation with noisy and poor quality
triangles

Fig. 4 A TO model with millions of triangles

model that meets all downstream requirements discussed in the sub-
sequent section.

A survey was conducted among users of a free topology optimi-
zation service [47], sponsored by the National Science Foundation.
One of the questions posed to the users was: Rank what would you
like topology optimization software to include in order of prefer-
ence? Five specific choices were provided, with one open choice.
Among the 85 responses received, 49% choose: Generate feature-
based CAD model of the optimized design; see Fig. 5. Lack of auto-
mated tools for model reconstruction can be a serious detriment to
broader acceptance and proliferation of TO.

Researchers have proposed several strategies and methods to
address this challenge. Prior to discussing these strategies, we con-
sider three important downstream applications in Sec. 2 and

2hllp://www.nsf.gov
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Fig. 5 Results from a survey of TO users

summarize their requirements. Then, in Sec. 3, we consider pro-
posed methods that attempt to meet these downstream requirements
by directly incorporating them as constraints in the TO algorithm.
These direct methods, however, have limitations. In Sec. 4, we con-
sider post-processing methods that rely on a combination of design
rules and computational algorithms. For pedagogical reasons, these
are further categorized based on the underlying dimension. Conclu-
sions and future work are discussed in Sec. 5.

2 Downstream Applications

In this section, we consider three representative downstream
applications, namely, prototyping, validation and (design) explora-
tion, as illustrated in Table 1. These three applications are represen-
tative and not exhaustive. Further, since the requirements for these
applications overlap, these are best represented via a Venn diagram
as in Fig. 6. For example, “feature control” is essential for design
exploration, but not necessary for validation and prototyping.
However, “retaining critical features” is essential for all three appli-
cations. These requirements are further elaborated below and will
be used later to evaluate different post-processing methods and
strategies.

2.1 Prototyping. The simplest downstream application is pro-
totyping and testing; the objective is to fabricate the TO model for
testing, inspection, and evaluation. A primary requirement is that
critical features, edges, and surfaces must be retained for repeatable
testing. For example, if a load is applied on a cylindrical feature in
the initial design, then this surface will be critical for prototyping
and testing. Second, non-critical surfaces must be smooth, both
for aesthetic and testing purposes. Finally, the recovered model
must meet the constraints of the fabrication process. For example,
for conventional milling, tool accessibility is important; for
certain additive manufacturing processes, overhang surfaces must
be avoided, and so on. However, parametric representation of the
model, for example, is not critical for prototyping. For the topology
optimized design of clevis from Table 1(a), a manufactured part
with all critical features is shown in Table 1(b).

2.2 Design Validation. The second critical application is
design validation where the TO model must be validated through
analysis methods such as finite element analysis (FEA). FEA
models used within TO are often vastly simplified, for example,
they often rely non-conforming voxel mesh to accelerate FEA. To
support rigorous FEA-based design validation, retaining critical
features is once again important. In addition, one must be able to
create a high-quality mesh that conforms to critical surfaces and fea-
tures. This is more stringent than smoothness requirements for pro-
totyping. Specifically, the recovered model should not contain sharp
geometric features that could lead to erroneous simulation results.
Finally, the reconstructed model must be functionally equivalent
to the TO model in that the behavior of the reconstructed model
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Table 1

Typical downstream applications of topology optimized designs
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Fig. 6 Requirements of model for different downstream
applications

Fig. 7 Geometry reconstruction using skeleton

should not differ significantly from that of the TO model (see
Table 1(c).

2.3 Design Exploration. The final application, and often the
lofty goal, is design exploration and productization. This is the
most demanding since the reconstructed model must be (easily)
editable by the designer to meet various functional and

Journal of Computing and Information Science in Engineering

manufacturing constraints. The model must allow parametric
changes (for example: increasing thickness of a strut), suppres-
sion/inclusion of features and be compatible with popular CAD
packages (see Table 1(d).

3 Constrained Optimization

Although the objective of this paper is to survey post-processing
methods, we briefly review strategies for imposing downstream
requirements directly as constraints within the TO algorithm. This
serves two purposes: (1) if the downstream requirements are suffi-
ciently simple, a constraint based TO may be sufficient and (2) to
highlight the deficiencies of constraint-based strategies.

Researchers have largely focused on including prototyping and
design exploration requirements in TO. We are not aware of strate-
gies to incorporate validation/analysis requirements (for example,
high-quality surface mesh) into TO. However, due to the overlap
in requirements, many of the techniques discussed below can
directly assist in efficient validation. The reader is referred to
Ref. [48] for a broader discussion on constrained based TO.

3.1 Prototyping Constrained Topology Optimization.
Researchers have proposed several methods to incorporate proto-
typing, i.e., manufacturing, constraints directly into TO to minimize
post-processing. Harzheim and Graf [49,50] provide a review of
early work on TO for cast parts. Liu and Ma [51] present a more
recent survey on manufacturing focused TO. Zuo et al. [52] incor-
porated machining constraints, while Li et al. [S3] imposed extru-
sion constraints, and Lui et al. [54] have explored symmetry and
pattern repetition constraints in topology optimization. Li et al.
[55] incorporated multidirectional molding constraints in TO for
cast parts. Vatanabe et al. [56] incorporated constraints such as
minimum size, symmetry, extrusion, turning, casting, forging, and
rolling into the optimization.

Lui and Ma [57] performed least-square fitting of 2.5D and 3D
machining-based features over the evolving boundary, while
Groen and Sigmund [58] used homogenization method for generat-
ing manufacturable microstructure based designs. Amir et al. [59]
proposed an approach for simultaneously satisfying physics based
constraints (compliance, volume) as well as kinematics-based con-
straints (manufacturing, accessibility). There has been significant
interest recently in incorporating additive manufacturing (AM)
[60] constraints in TO [61]. Doutre et al. [62] compare existing
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state-of-art tools to obtain CAD models from TO, specifically for
AM. Lui and To [63] have used feature fitting on the TO design
for additive manufacturing. Leary et al. [64] identify boundaries
that require supports in additive manufacturing; these boundaries
were then modified to generate support-free structures. Amir and
Suresh [65] used topological sensitivity to incorporate AM support
structure constraints in TO. Similarly, Mass and Amir [66] and Gar-
aigordobil et al. [67,68] incorporated overhang constraints.

A minimum-member size for additive manufacturing has been
used as a constraint in TO by Kwok et al. [69]. Thin features and
volume of support structures have been added as constraints by
Mhapsekar et al. [70]. Qian [71] added undercut control and
minimal overhang angle as constraints in SIMP-based TO.

Similarly, Mezzadri et al. [72] and Matthijs [73] designed self-
supporting support structures using TO for additive manufacturing
of parts. Chandrasekhar et al. [74] proposed a methodology to
incorporate build direction and fiber orientation into a TO formula-
tion for short fiber-reinforced polymers components. Stuben et al.
[75] use multiscale TO to generate 2D designs for additive manu-
facturing. See the work by Lui et al. [76] for an extensive review
on TO for AM.

3.2 Design Exploration Constrained Topology
Optimization. Next, we consider strategies to include design
exploration requirements into TO. Bendsoe and Rodrigues [77]
explored the idea of using TO models as a precursor to shape opti-
mization in 2D. The study by Olhoff et al. [78] was one of the ear-
liest to propose CAD-integrated TO to reduce design lead time.
Zhou and Wang [79] combined CSG with topology/shape optimiza-
tion to generate free-form geometric designs. Chen et al. [80] pro-
posed a B-spline-based method for combined shape and topology
optimization. Tang and Chang [81] presented an integrated
approach to combine topology optimization and shape optimization
using B-splines to represent the boundaries. Lin and Chao [82] used
image processing to convert the gray-scale results of TO to obtain a
parametric geometry in 2D. Zhang and Kwok [83] performed TO
over a parametrized 2D mesh obtained by mapping a 3D domain
onto a 2D domain. The optimized results are then mapped back
to obtain a 3D geometry. Similarly, Christiansen et al. [84] com-
bined shape and topology optimization for 3D structures using
explicit shape representation.

Another popular strategy to support design exploration is to
directly incorporate design features during TO. Guo et al. [85]
and Zhang et al. [86,87] have used moving morphable components
to represent the boundaries of TO designs. The size, shape, and ori-
entations of these components are used as variables during topology
optimization to generate designs with predefined features. Bell et al.
[88] and Norato et al. [89] used parametrically defined bars, while
Zhang et al. [86] used parametrically defined bars and plates to
obtain TO designs. Lin et al. [90] used NURBS to represent the
boundary of features arising during TO. Holes represented by
NURBS are inserted in the design domain, and their control
points are used as design variables to generate parametrically
defined TO geometry. Gao et al. [91] replaced discrete density
field by NURBS and then imposed user defined geometric con-
straints during topology optimization of beams and plates. Zhang
et al. [92] traced the topological changes in the geometry using
B-Splines to construct free-form shapes. Norato [93] used union
of 2D super-shapes to generate free-form geometry.

Da et al. [94] used bi-directional evolutionary structural optimi-
zation (BESO) with level set function to generate results with
smooth boundaries. Jahangiry and Tavakkoli [95], Kang and
Youn [96], Seo et al. [97], and more recently, Gai et al. [98] have
used spline-based isogeometric analysis for Topology Optimiza-
tion. Gao et al. [99] have used density distribution function
(DDF) for isogeometric topology optimization to obtain smooth
NURBS surface in 2D and 3D.

More recently, machine learning algorithms have been applied
toward post-processing of TO models. For example, Sosnovik
and Oseledets [100] trained their neural network using image

060801-4 / Vol. 20, DECEMBER 2020

segmentation to obtain final designs from intermediate results of
TO, thereby reducing the computational effort. Shen and Chen
[101] and Rawat and Shen [102] proposed a conditional generative
adversarial network (GAN) to incorporate design constraints such
as minimum radius in TO of planar structures. Lei et al. [103]
used support vector regression (SVR) and K-nearest-neighbor
(KNN) models to predict topology optimized designs.

3.3 Benefits and Limitations. Adding downstream con-
straints directly into TO eliminate the need for expensive post-
processing. Indeed, this may be a practical and viable option in
simple scenarios. However, there are several limitations to these
strategies:

(1) Reduced design space: Adding constraints necessarily
reduces the design space, and consequently, the performance
of the optimized design.

(2) Computational challenge: Adding constraints can signifi-
cantly increase the cost of TO; furthermore, the optimization
may even fail if improper constraints are imposed.

(3) Lack of generality: The strategies are often limited in scope;
for example, the extension of feature-based strategy to 3D is
an open challenge, and not all manufacturing processes can
be imposed as a constraint. Further, most methods involve
manual intervention and expertise to generate the CAD
geometry.

(4) Lack of flexibility: Finally, since constraint-based strategies
often target a particular application, exploring other options
is often not viable once the optimization is complete.

Thus, one must resort to post-processing of TO models, and this
is discussed next.

4 Post-processing Strategies

As one can expect, different post-processing strategies fulfill dif-
ferent requirements. For example, if the downstream application is
finite element analysis, then post-processing the surface mesh,
while imposing geometric and quality constraints may be sufficient.
On the other hand, for design exploration, recreating a CAD-
compatible parametric model will be necessary and so on.

Post-processing strategies can be classified based on the under-
lying dimension as in Table 2. Specifically, if the post-processing
is based on first extracting a lower-dimensional skeleton, it is
classified as 1D. If the strategy relies directly on post-processing
the triangulated surface, it is classified as 2D. Finally, if the strat-
egy relies on volume decomposition of the TO model, it is classi-
fied as 3D. Similar classification strategies have been proposed
by Fabio et al. [104] for reconstruction of geometry from cloud
data points and by Thakur et al. [105] for CAD model
simplification.

4.1 Skeleton Based (One-Dimensional). As stated earlier,
skeleton-based post-processing is largely limited to thin beam-like
TO designs (see Table 2(a,d,g)). In addition, two recurring chal-
lenges here are as follows: (1) robust handling of junctions where
skeletal branches meet and (2) extraction of cross sections.

4.2 Surface Based (Two-Dimensional). The second, and
probably the most common, category of post-processing is
surface reconstruction. There are three fundamentally different
surface-based methods: remeshing, sub-division, and surface-
fitting. In remeshing, one directly creates an improved triangulation
from TO triangulation. In sub-division, a predefined set of rules are
used to recreate a discretized surface (triangles and quads) that best
fits the original surface. Finally, in surface-fitting, the triangulation
is replaced by a parametric surface (such as NURBS) or analytical
surface (such as a cylinder). A typical example demonstrating the
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Table 2 Proposed classification of geometric post-processing techniques

Classification Skeletal (1D) Surface (2D) Volume (3D)
Underlying Reconstruction via skeleton Surface fitting and/or mesh simplification =~ Volume decomposition and
Technique approximation
Reconstruction ;
process
(a) TO Design of a Table (¢) TO Design of a Table
(d) Skeleton extraction (e) Surface fitting (f) Volume Decomposition
(g) Sweep cross-section for geometry (h) Remesh surface for geometry (i) Boolean addition of decomposed
reconstruction reconstruction volumes
Strengths Well suited for beamlike models Relies on popular remeshing methods Ideal for suppressing small features.
Applicable to all downstream applications Applicable to all TO models Easy to retain critical features
Weaknesses Handling of junctures Stitching of gaps, and retaining sharp Not suited for complex TO models
features
NO suitable for all TO models Automation Automation

2D-based approach of geometric post-processing has been shown in
Table 2(b,e,h).

4.2.1 Remeshing. Remeshing creates an improved triangula-
tion from a potentially noisy triangulation or sampled (scanned)
data [106]. There are two popular methods of remeshing: implicit
and explicit, and there are several implementations; for example,
see PMP [107] and Instant-Meshes [108]. Implicit remeshing
methods rely on constructing a smooth scalar field from the
input triangulation; the scalar field is then used to recreate a high-
quality re-triangulation. For example, Kazdhan et al. [109] pro-
posed the Poisson reconstruction method to generate water-tight
meshes.

Fig.8 Remeshing of triangular meshes using screened Poisson
surface reconstruction

Journal of Computing and Information Science in Engineering

Implicit methods often result in undesirable smoothening of
sharp edges. Attene et al. [110] proposed an edge-sharpener algo-
rithm while Nielson [111] used dual marching cubes to recover
shape features from the triangulated models. Thomos et al. [112]
modified marching cubes tables for topological guarantees.
Although implicit methods are robust, numerically stable, and gen-
erate water-tight models, they can be computationally expensive
and are non-local, i.e., small defects in one region can affect the tri-
angulation globally.

Explicit remeshing methods often rely on Delaunay triangula-
tion of point data [113,114]. Dey and Goswami [115] proposed
a water-tight remeshing algorithm. Explicit methods are local
and easy to implement but are less stable [116]. Figure 8 illustrates

Fig. 9 NURBS surface fitting with control points

DECEMBER 2020, Vol. 20 / 060801-5
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remeshing of triangulated surface into a triangular/quad mesh.
This reconstruction was performed using Poisson surface recon-
struction [109] implemented in Meshlab® v2016.12; the processed
geometry is smoother and contains a fewer number of triangles/
quads.

4.2.2  Fitting. The objective of surface fitting is to replace the tri-
angulation with either analytical primitives such as planes, spheres,
cylinders, etc., or parametric surfaces such as NURBS. The tech-
niques discussed below are often used in the context of scanned
data [117] but directly apply to TO post-processing (especially para-
metric surface fitting). Figure 9 demonstrates smoothing and fitting
of the TO model using NURBS. The fitting was performed using
Rhino® 6, released in February 2018. Control points generated
through surface fitting provide local control over the surface.

Fitting primitives only applies when the underlying surface is
analytic. Several methods have been proposed to fit analytic sur-
faces. Yi and Kim [118] fit basic geometric features such as lines,
arcs, circles, fillets, extrusion, and sweep on boundary extracted
from a topology optimized design. Reference [119] proposed
Globfit algorithm to recover a set of locally fitted primitives. Schna-
bel et al. [120] proposed an efficient RANSAC algorithm to recover
analytic shapes from noisy input models.

In parametric surface fitting, NURBS are often used to fit the tri-
angulation. Joshi et al. [121] created an open source tool that fits a
NURBS surface over the mesh using least square fitting. Non-
design features are then added manually to the resulting surfaces.
Continuity between multiple patches was not discussed. Lui et al.
[122] used adaptive B-spline fitting of the surface. The resulting
geometry is a smooth parametric model suitable for further shape
optimization and targeted for additive manufacturing. Chacon
et al. [123] developed a software tool that fits B-Splines on the
boundaries of 2D Topology optimized designs and converts them
to IGES format for CAD compatibility.

Koguchi and Kikuchi [124] used marching cube based iso-
surface extraction algorithm to construct biquartic surface splines.
The parametric model preserves all critical features such as flat sur-
faces and sharp edges. The resulting geometries require further pro-
cessing to make them manufacturable.

Marsan and Dutta [125] extracted smooth contours layer-by-
layer. These contours are then used to fit spline surfaces with C1
continuity. This method works for post-processing of models with
holes/branches, but it fails to retain critical features and surfaces.
Yoely et al. [126] use B-splines to represent the boundaries of topol-
ogy optimized designs for generating parametric 2D geometries.
Similarly, Zhang et al. [92] make use of closed B-Splines curves
to trace optimum topology in 2D geometries.

WAL

A common challenge in surface fitting are gaps between surfaces.
Various hole-filling approaches have been proposed. Zhao et al.
[127] proposed an advancing front method. Branch et al. [128]
used a local radial basis function to fill the space with B-spline sur-
faces. Curless et al. [129] used volumetric diffusion method to fill
gaps. Liepa [130] combined remeshing and fairing method to
smoothly bridge surface meshes.

4.2.3  Subdivision. Subdivision surfaces were introduced as an
alternative to NURBS modeling. A subdivision surface is a repre-
sentation of smooth surface over a piece wise linear polygon mesh
similar to Bezier curve in 2D. A smooth surface is achieved by
iterative subdivision scheme, defined by a set of rules. Geometry
reconstruction based on subdivision surfaces is illustrated in
Fig. 10 using PTC Creo® 6.0.1.0. The subdivision is semi-
automated and the surface maintains connectivity with non-design
features, while retaining critical surfaces and edges. Catmull-Clark
subdivision [131] creates new vertex points using the face points
and edge points. These new vertex points are then connected for
each quadruple to create new face quadrilaterals. Though this
method generates aesthetically pleasing surfaces, planar surfaces
are often destroyed. Doo and Sabin [132] subdivision surfaces
are created by replacing each vertex with face. The new faces
created at the vertices are not necessarily planar. Few other
subdivision-based surface generation methods include Loop
[133], mid-edge subdivision [134]. Subdivision surfaces offer a
high level of user control and can reproduce sharp edges and
corners. Despite these advantages, maintaining second-order beha-
vior near singularities is a major challenge for subdivision sur-
faces, and for complex shapes, it is almost impossible to remove
mesh singularities.

Marinov et al. [135] recently used non-uniform rational Catmull-
Clark (NURCC) surfaces [136] to convert generative design models
to editable B-rep models. The triangular mesh is separated out from
the non-design solids and is approximated via NURCC surfaces.
Replacing triangular meshes with quad mesh makes it easier for
local editing of shapes. Non-design solid geometries are then
merged with the NURCC surfaces to construct watertight models.
Although the authors use generative design, the same concept
could be applied to TO models. This is a significant step toward
the automated generation of parametric CAD geometry from TO
in product design workflow.

4.3 Volume Based (Three-Dimensional). The primary idea
in volume-based post-processing is to reconstruct the model
through volume decomposition and Boolean operations. For
example, Hsu an Hsu [137] and Shu et al. [138], extract

Ypology Optimization

\P‘ost-processing

Subdivision Surface

Fig. 10 Geometry reconstruction on TO design with sub-division
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representative cross sections from the topology optimized designs.
The boundary points are used as control points to create B-spline
boundary curves. Parametric 3D solids are created in a CAD
using sweeps through these boundary curves. This method fails if
there is a significant difference in the shape/topology between
two successive boundary curves. Cuilliere et al. [139,140] separate
out the non-design features from the design domain. The optimized
design is then merged with the non-design features to obtain the
final geometry. This method retains critical features from the
initial geometry. Connectivity between design and non-design fea-
tures is a challenge since they are highly dependent on the mesh
size. Furthermore, due the use of unstructured mesh, symmetry is
lost in the optimized design. Larsen and Jensen [141] used 2D
shape template fitting to create sweep geometries. These 3D solid
bodies constructed using sweep are subtracted from the initial
design domain. The algorithm requires manual intervention to fit
different shapes. Recently, Du et al. [142] proposed InverseCSG
algorithm to convert 3D models to CSG trees. An example demon-
strating the 3D geometric reconstruction using volumetric decom-
position has been shown in Table 2(cf;i).

The methods discussed above work directly on the TO models.
Alternately, one can also work with the voids (negative space) as
illustrated in Fig. 11. This approach is preferable if the negative
components are simpler to approximate than the full TO design.
Furthermore, critical features can be easily retained. This post-
processing strategy on topology optimized designs is currently
being developed as a research tool within Pareto [40]. Volume-
based methods are effective only if the TO design can be decom-
posed into simpler sweep-representable volumes. Furthermore,
automatic identification of source/target profiles and sweep path is
non-trivial.

5 Conclusions

Topology optimization continues to grow in importance and is
being increasingly adopted by the industry to accelerate design.
However, one of the roadblocks is the efficient and automated post-
processing of topology optimized models for various downstream
applications. In this paper, we identified three major applications
and their requirements. For simple designs, it may be possible to
include downstream requirements as constraints in topology optimi-
zation. However, in more complex scenarios, post-processing is
unavoidable. Various post-processing strategies were reviewed
and classified based on the implicit dimension.

Journal of Computing and Information Science in Engineering

It is evident that research gaps remain. In skeletal-based (1D)
methods, computing the cross section, merging of skeletal branches,
and handling of pathological cases require significant manual inter-
vention. In addition, skeletal methods largely apply to tubular
models.

Surface-based (2D) methods are the most advanced and promis-
ing. Among them, triangle-to-quad mesh conversion is the most
popular since quad meshes are easier to edit. However, in practice,
editing of quad-meshes requires carefully defined geometric con-
straints. Other challenges include presence of gaps between quad-
patches and retaining critical features.

Volume-based methods(3D) require TO models to be
decomposed to simpler disjoint volumes. While they offer unique
advantages over the other two, we are not aware of robust imple-
mentations of 3D methods.
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