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Abstract

We study, using Mean Curvature Flow methods, 241 dimensional cosmologies with a positive
cosmological constant and matter satisfying the dominant and the strong energy conditions. If
the spatial slices are compact with non-positive Euler characteristic and are initially expand-
ing everywhere, then we prove that the spatial slices reach infinite volume, asymptotically
converge on average to de Sitter and they become, almost everywhere, physically indistinguish-
able from de Sitter. This holds true notwithstanding the presence of initial arbitrarily-large
density fluctuations and the formation of black holes.

1 Introduction and Set-up

The question of how likely it is for inflation to start has been discussed for many years,
almost since its original formulation. In fact, while it is clear that inflation does inflate away
inhomogeneities once it has started, its beginning seems to require approximate homogeneity
over an inflationary Hubble patch, i.e. a volume whose linear size is of the order of the Hubble
radius of the homogeneous inflationary solution (this coincides with the de Sitter radius, if the
inflationary phase is approximated with a de Sitter solution). This initial condition appears
very unlikely, and gives rise to what is the so-called ‘initial patch problem’ (see for example [1]).
This well-motivated expectation has been recently shown to be incorrect for some interesting



and non-trivial physical reasons. Ref. [2, 3] (see also [4]) have used a combination of numerical
and analytical techniques to show that, for most of the three-dimensional topologies, and
for a huge class of inhomogenous and anisotropic initial conditions, inflation will always
start somewhere on the manifold, notwithstanding the formation of localized black-holes.
Refs. [5, 6] have subsequently directly verified this on an extended range of initial conditions .
These results were made possible by recent developments in numerical relativity that allow
to handle singularities and horizons [7], and, in Mathematics, with theorems such as the
Thurston Geometrization Classification (see [8] Theorem 4.35 and [9, 10]), and techniques
like the Mean Curvature Flow (MCF) (see, for example [11]).

At this point, it appears clear that the inflationary ‘initial patch problem’; stating that it
is unlikely for inflation to start somewhere out of most inhomogeneous initial conditions, is
false. To argue that this is still a problem, requires one to find a reason why very peculiar
initial conditions are preferred.

In more detail, Ref. [3] used the Thurston Geometrization Classification and MCF to
show that, if there is a positive cosmological constant?, and matter satisfies the weak energy
condition, all initially-expanding 341 dimensional cosmological manifolds whose spatial sub-
manifolds have a ‘non-closed’ topology (in the sense defined in [3]), will have slices of ever-
growing volume. Moreover, these slices will contain a region where the expansion rate is
faster than the one of de Sitter space in FRW slicing with the same cosmological constant.
This is true even if locally singularities will form, such as black holes. It is quite remarkable
that one can obtain general results with limited assumptions on the initial conditions and
independently of the formation of singularities, where General Relativity (GR) breaks down.
These results, together with the regularity of MCF, strongly suggest that the 3-volume will
go to infinity and that the regions that keep expanding will become locally indistinguishable
from de Sitter space. In this paper we prove this statement in the simpler 2 4+ 1-dimensional
cosmology, postponing the—considerably more complicated—3+-1 case to a future publication
[12]. Since some of the results hold in any number of dimensions, we will keep the discussion
general at first, and specify to 2 4+ 1 dimensions only later.

Consider a cosmological spacetime, which is a (n + 1)-dimensional manifold that can
be foliated by n-dimensional Cauchy spacelike slices, M;. These slices have all the same
topology [13]. A timeslice M, has induced metric h,, = g, +n,n,, where g, is the spacetime
metric (we use the mostly-plus convention) and n, is orthonormal to M;, n,n* = —1, and
future-directed. The extrinsic curvature of these slices is defined as K, = h;"V,n,, satisfying
n*K,, = 0 and with trace K = W K,, = g""K,,, and traceless part o, = K,, — %Khw.

!This indeed confirms what was expected in [2]: once the initial conditions are taken from a general enough
class, since the system is very non-linear and even forms singularities, it explores the whole class of non-linear
solutions after a Hubble time.

2In this paper the inflaton potential is replaced by a cosmological constant. Therefore we do not address
issues like how likely it is for the inflaton to start sufficiently far away from the minimum of the potential.
In numerical studies [2, 5, 6] it was observed that once the initial conditions of the inflaton field are entirely
contained within the inflationary part of the potential, it behaves effectively like a cosmological constant.
This justifies and motivates our approximation.
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Figure 1: Pictorial depiction of Mean Curvature Flow. The new surface has larger or equal volume
than the previous one. Figure from [3].

(With our sign convention K > 0 corresponds to expansion.) We also define 02 = o, 0";
notice that o > 0, since o, is a tensor projected on the spatial hypersurfaces.

We will use the MCF of codimension-one spacelike surfaces in Lorentzian manifolds. This
is defined as the deformation of a slice as follows: y*(z, ) is, at each A, a mapping between
the initial spatial manifold My, (which is parametrized by x) and the global spacetime, My x
[0, Ao) = M,,4+1. The evolution under the change of A is given by (see for instance [14])

L, ) = Knt(y7) 1)
d\ ’ ’
where n# is the future-oriented vector orthonormal to the surface of constant .
Using the first variation of area formula

LologVh =K , (2)

one gets the variation of v/ under the flow: %\/_ = K2Vh. Therefore the total spatial
volume V' = [, d"zv/h satisfies

ﬂ:/d%\/ﬁf(?zo, (3)
d\
where A is the affine parameter of the deformation. Hence after the deformation, the new
surface has either strictly larger or equal volume (see Fig. 1). MCF has been very much
studied in the context of Riemannian manifolds, but there is quite a large literature also for
the Lorentzian (or semi-Riemannian) one, see [11].

The use of MCF is particularly useful in our context because of the following two proper-
ties. First, in the Lorentzian case, this flow is endowed by many regularity properties [11], as
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it is quite intuitive from the fact that the maximization of the volume stretches the surface,
making it smoother. Second, when spacelike crushing spacetime singularities [15] form, the
mean curvature flow remains at a finite distance from them [3]. Again, this follows intuitively
from the fact that the MCF tends to maximize the spatial volume. Therefore, MCF is a
mathematical tool that allows us to explore the spacetime manifold without assuming the
absence of crushing singularities 3.

While the results of [2; 3] might be enough to dispense of the inflationary initial-patch
problem, they convincingly suggest a stronger result: in the presence of a positive cosmolog-
ical constant, for the ‘non-closed’ topologies and with some mild conditions on the matter
stress-tensor, initially everywhere-expanding manifolds will always become asymptotically in-
distinguishable from de Sitter space almost everywhere, independently of the initial conditions.

Let us give some intuition of why this should be true. Since, from [3], some regions must
keep expanding with a fast expansion rate, we expect that some region of the MCF-surface
will grow in volume, while some others, in front of a crushing singularity, will stop evolving.
As the volume grows, inhomogeneities and the matter density dilute away, the cosmological
constant dominates, and the expanding regions become locally indistinguishable from de
Sitter space. The MCF slices will therefore reach infinite volume, while only some regions,
with vanishing relative volume, will not converge to de Sitter space (hence the specification
‘almost everywhere’).

We provide here the proof of this statement in 2+1 dimensions, where the topology of the
spatial manifolds has stronger implications on their geometry. Even though this is physically
of limited interest, the theorem we will obtain is rather compelling and many of the results
we will discuss are useful for the 3+1 case, the case of ultimate interest [12].

Notation and conventions. The Riemann tensor is defined through (V,V,—-V,V w, =
R, ws, the Ricci tensor by R, = R ,,7, the Ricci scalar by R = R}". The Einstein equa-

1 pov >
tions are given

1
Ry, — gguvR = 81G (T — Mgy ) (4)

where A is the cosmological constant and 7}, is the stress-energy tensor of all the other forms

of matter. The Ricci scalar associated with the induced metric £, on the n-dimensional slices
is denoted by ™ R.

2 Asymptotic behavior of 241 dimensional manifolds

We will prove a theorem that requires the following assumptions:

3Technically, however, we need to assume, as we will do in this paper, the absence of finite-volume sin-
gularities, i.e. that the expanding spacetime simply comes to an end on some spacelike surface that is not
a zero-volume crunch (see [3]). Such finite-volume singularities seem to us highly artificial and unphysical
on general grounds, and can probably be forbidden with appropriate conditions on the stress-energy tensor,
see [16].



e There is a “cosmology”, which is defined as a connected n + 1 dimensional spacetime
M, 1 with a compact Cauchy surface. This implies that the spacetime is topologically
R x M where M is a compact n-manifold, and that it can be foliated by a family of
topologically identical Cauchy surfaces M, [13]. We fix one such foliation, i.e. such a time
function ¢, with ¢ € [ty, +00), and with associated lapse function N: N~2 = —9,t0"t,
N > 0. We consider manifolds that are initially expanding everywhere, i.e. there is an
initial slice, My,, where K > 0 everywhere (for example this holds if one has a global
crushing singularity in the past).

e There is a positive cosmological constant and matter that satisfies the Dominant En-
ergy Condition (DEC) and the Strong Energy Condition (SEC). The DEC states that
—T*, k" is a future-directed timelike or null vector for any future-directed timelike vec-
tor k#. The DEC implies the Weak Energy Condition (WEC), T}, k*k” > 0 for all
time-like vectors k*. The SEC, in n + 1 dimensions, reads: (7}, — ﬁgm,T)k:“k:” >0
for any future-directed timelike vector k*.

e We will also need a technical assumption, see Definition 1: the only spacetime singu-
larities are of the crushing kind [15] (thus singularities that have zero spatial volume).
Physically, these are the only singularities that are believed to be relevant.

e Our main result is for the case n = 2. In this case, the topology of the spatial 2-
manifolds must not be “closed”, meaning that the Euler characteristic is non-positive
(in the case of the sphere, one additional assumption is required, as we discuss later).

Let us comment on the physical restrictions implied by the above hypotheses. The SEC
and the DEC are satisfied by non-relativistic matter, radiation and the gradient energy of a
scalar field 4. The inflationary potential violates SEC and if the potential is negative some-
where also DEC is violated. However, in our setup the inflationary potential is represented by
the positive cosmological constant, which is a good approximation in the inflationary region
of the potential.

We also comment on the definition of a crushing singularity, as we adopt a slight gener-
alization of the Definitions 2.10 and 2.11 in [15]. Our definition will agree with theirs in the
case of asymptotically flat spacetimes.

Definition 1 Analogously to Definition 2.9 of [15], a future crushing function t is a globally
defined function on M, 1 such that on a globally hyperbolic neighborhood N'N {t > ¢y}, t is
a Cauchy time function with range co < t < 400 (cy > 0 is a constant), and such that the

4For SEC indeed

1 v
T,ul/ = u¢au¢ - 59#1}(8@5)2 = (Tl“’ — ngli IT) kPEY = (8¢ . k)2 >0. (5)



level sets S, = {t = ¢}, with ¢ > ¢y, have mean curvature K < —c. > We shall say that a
Cosmology has potential singularities only of the crushing kind if there is an open set N such
that, outside N, the inverse of the lapse of the t foliation, N7', is bounded, and such that
N contains a Cauchy slice and admits a future crushing function t and, for any given c, in
{t <c}, N7 is bounded.

In physical terms, this N corresponds to a subset of the interior of black holes, and we are
requiring that any possible pathology takes place only for £ — oo.
Under these assumptions, we will prove the following:

Theorem 1 The spatial volume goes to infinity. At late times, i.e. for large values of the
MCF affine parameter A, the spacetime converges, on average, to de Sitter space; and there
are arbitrarily large regions of space-time that are physically indistinguishable from de Sitter

space.

Proof of the theorem

Existence of the flow: We first establish the existence of MCF for arbitrary flow parameter

A
The MCF evolution of K (see for example [14]) is given by ¢
dK 1
-~ AK+ K (K* = K}) +0°K + RiMnn"K =0, (9)
n

where A is the Laplacian operator on the surface, K3 = —=167GA > 0, and

R = 8xG <TW - 9“”1T) . (10)

For example in a Schwarzschild-de Sitter spacetime in the standard coordinates, one could take f to be a
function of r for r close to 0, so the level sets S. would be r = const.

6One can get this equation similarly to the derivation of the Raychauduri equation, bearing in mind that
we are not following geodesics orthogonal to the surface.

% =Kn*Vo (V") = Kn*V, Vot — R, Fnn*K = KV, (n*Von") — KV, n*Van! — Rayn®n’K =
=KV, (n*Vn*) — KK, K" — Ry ,n®n’K .
(6)
Imposing that n* remain perpendicular to the surface one gets
KnVon* =h"V, K . (7)
Therefore

KV, (nVant) =V, (M'V,K) =V, Kn®Vn* = AK -V, (h*'V, K)ntn, — V,Kn*Vont = AK , (8)

where in the last step, to obtain the Laplacian on the surface, we separated the covariant derivative in the
components parallel and orthogonal to the surface. Plugging this expression in eq. (6) one obtains eq. (9)
after separating the contribution of the cosmological constant and the traceless part of K, .
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The SEC gives
RiMntn” > 0. (11)

It is worthwhile to mention two properties of the evolution under MCF. First, if a surface
is spacelike, it remains so: in fact the local volume form is non-decreasing under MCF, but
it would vanish if the surface became null anywhere (see for example [3]). Second, it also
preserves the property that K > 0 everywhere (see e.g. [11], Proposition 2.7.1). Intuitively,
this is because the flow stops in any region where K approaches zero.

Since M, is compact, K (x,\) has a maximum at each A, K,,(\) = Max, K (x,\). Let us
observe the evolution of this point. Intuitively, if K,,(\) > Kj, then all terms of (9) but the
first are non-negative (around a maximum the Laplacian is non-positive), which implies that
the maximum is non-increasing with affine time, as long as it is larger than K. This suggests
that K, () is bounded by a quantity that goes to K as A — oo. Indeed this can be proven
rigorously, and we can also bound the rate of convergence:

Theorem 2 Let M), be smooth compact spacelike hypersurfaces satisfying the MCF equations,
in an interval [A\i, Xo], inside the smooth (n + 1)-dimensional Lorentzian manifold M, ;.
Suppose also there exists a point (x, ), with Ay < XA < Ay, such that K(xz,\) > Ky, then we
have

Kn(Aa) < Ky + e # KR 0 (K (0) — Ky) (12)

so the maximum, if larger than Ky, decays exponentially fast towards K with a rate given
by the cosmological constant.

Notice that if no point (z,A) as in the hypotheses of the theorem exists, then the maxi-
mum K, (), with A} < X < Ay, is automatically < Kj.

Proof: For an (n+1)-dimensional Lorentzian manifold, eq. (9) can be put in the following
form

1
ONK — Kp) — A(K — Kp) + —K(K + Kp)(K — Kp) + non-negative terms = 0.  (13)
n
Multiply by e**, where « is a real constant, to obtain

(MK — Ky)) — A(e® (K — Ky)) + % (K(K + Kp) —na)e(K — Ky)

+non-negative terms = 0 . (14)

Let us think of this as an equation for W = e**(K — K,). Consider the compact interval
[A1, A2] X M, and notice that, by assumption, W is positive at one point here. Then, since W
is continuous and the interval is compact, the maximum of W is attained, and this is > 0 as,
by hypothesis, K > K, at one point. At the maximum, if this is not at A = Ay, the first term
of the equation is > 0 (it is 0 if the maximum is in the interior of the interval and > 0 if it is in
A2), the second > 0 as well (with the — sign included), the third > 0 provided 0 < a < 2K3
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(since K > K, at the maximum), the rest > 0, so we obtain 0 > 0, a contradiction. The
conclusion is that the maximum is attained at A = \;, and so

Km()\Q) - KA S eia(/bi)\l)(Km()\l) - KA) ) (15)

which, by choosing o = %K?\, ends the proof of Theorem 2.

There is powerful theorem for the MCF of codimension-one spacelike surfaces in Lorentzian
manifolds that guarantees the regularity of the flow and therefore the existence of the MCF
as long as it is contained in a compact regular region of the spacetime manifold. In detail:

Theorem 3 [14, 17] Let M, be a smooth (n + 1)-dimensional Lorentzian manifold sat-
isfying the WEC. Let My be a compact smooth spacelike hypersurface in M, 1. Then there
exists a unique family (My) of smooth compact spacelike hypersurfaces satisfying the MCF
equations, in an interval [0, \g) for some Ao > 0 and having initial data My. Moreover, if
this family stays inside a smooth compact region of M, then the solution can be extended
beyond \g.

We are now going to show that, given our hypotheses, we can apply this theorem and
show that the flow exists for arbitrarily large A\. We will first show that as long as the flow
stays sufficiently far from crushing singularities, i.e. outside one of the level set of £, S., then,
for bounded A, it stays in a compact region (Theorem 4). Then we are going to show that
there is a ¢ such that for bounded A (hence for all A’s) the flow cannot meet S. (Theorem 5).
Hence the hypotheses and therefore the conclusions of Theorem 4 are always satisfied and the
flow exists globally for arbitrary .

One can always choose the global time function ¢ in such a way that N~! is bounded over
the whole manifold, except potentially as we approach the crushing singularities. Since they
can be reached in a finite proper time, N will typically go to zero there. The unit vector
perpendicular to the global time surfaces is NO,t; it forms an angle with the unit vector
perpendicular to the MCF surfaces n*: v = N9t n*, v > 1.7 As discussed above, the MCF
gives at each A\ a mapping between the initial spatial manifold (parametrised by z) and the
global spacetime, My x [0, A\g) = M,,41. Let u(x, ) be the value of ¢ at the image of (x,\)
under the flow. To prove that the flow does not get to infinity at finite A means to have a
bound on the growth of u as a function of A\. This is given by the following theorem.

Theorem 4 Let ¢ > ¢y, with ¢y given in Definition 1. There exists a constant C' > 0
(depending on the sup;... N=1 and supyy, K) such that the following holds.
Let o > 0. Provided that M) is int < ¢ for all X € [0, \), we have

u(z, \) < supu(z,0)+ CA (16)

for all x and X < Ag.

"The crucial step in proving the existence theorem 3 is to show that v cannot diverge in a compact region
of the manifold [14, 17].



We remark that if My is in £ < ¢ for all A > 0, then we can apply the theorem with any
Ao > 0, with C independent of Ay, hence the estimate of the theorem holds for all A > 0.

Proof: Consider the function U(x,\) = u(z, \) — C\ in the compact set M x [0, A\o]. U
attains the max somewhere, say at (1, A\;). Now, for fixed A\, the max of U is attained where

the max of u is attained, so z; is in fact one of the maximum locations of u for parameter A,
and thus v = 1 there. On the other hand,

ou
Z_KNWw-C. 1
o v—C (17)

In particular, at the maximum {zy, A, }, we have

Z—Z =KN'-C, (18)
{z1,M1}
and if this max is attained at A\; > 0, then
ou
— >0 (19)
a)\ {171)\1}

(it is 0 if the maximum is in the interior of the interval and > 0 if it is at Ag). So, at the
point {z1, A1}, we must have
C<KN'. (20)

But for large enough C, this contradicts the previous bounds on K (theorem 2) and on N~
By choosing C' > supy, 5y K - supj<.. N~1 the max of U is attained at \; = 0. As we will
show later, on the initial surface My, K,,(0) > K, and therefore, by theorem 2, supy, 5, K <
Supy, a—o} . The claim follows.

We now show the rather intuitive fact that the flow stays away from the crushing singular-
ities, and therefore, given our hypothesis on the nature of the singularities, stays away from
these (see also [3, 18]):

Theorem 5 If the initial surface of the flow has K > 0, then M), stays away from a crushing
singularity.
More precisely, for any ¢ > co > 0 such that My is in {t < c}, the flow remains in {t < c}.

Proof: Suppose, for the sake of contradiction, that there exists an affine parameter A > 0
at which the MCF surface intersects the level-surface S. of  (see Fig. 2); let Ay be the infimum
of the set of these values of \.

We claim that M),NS,. is non-empty: if A; > Ag with lim; A; = A\g and M), NS, non-empty
(which exists by the definition of Ag), let z; € My, NS and let y; be the corresponding point
in the initial surface My; by the compactness of M, a subsequence converges to some yy € My,
and then by the continuity of the MCF, the image of y, at affine parameter )\ is xg, the limit,

9



Crushing Singularity

M, v

Figure 2: Geometry of theorem 5. The surface of MCF at the hypothetical A\g where it becomes
tangent to a level-surface S, of f = ¢ > 0. £ is the time function associated to the crushing singularity.

along the subsequence, of the x;, which is thus in S.N M), (as S, is closed). At Xq the surface
is actually tangent to S, at the point z( since necessarily z is a maximum of £ along M,,, so
that df is conormal to M), at zg, as it is to S.. Moreover, S, has, by definition 1, extrinsic
curvature everywhere < —c < 0.

Bartnik [19] gives us a useful expression for the Laplacian of the restriction, 4, of a time-like
function, f, to a spacelike surface, S. We have (see eq. (2) of [14]):

At = KgN~'9 4 divVi (21)

where Kg is the extrinsic curvature of the surface, N is the lapse in the -coordinates,  is the
angle between the normal vector and the gradient of £, V is the gradient in the ambient space,
and div of a vector is the trace of the projection on the surface of the covariant derivative of
that vector®. We are going to apply this formula to the two surfaces that are tangent to each
other at (g, 7o): the MCF one at parameter )\, and a level-set of ¢, S. (in this case @ is a
constant).
When we apply it to the MCF surface at parameter )\, at the tangent point xg, i.e. M), N
S., we have
At = KN7'0 4 divVi . (25)

8This formula can be easily derived. Consider the gradient of the height function projected on the surface
Ve = V"t = (¢" + n'n”)0,t = 0"t + oN"Ink . (22)

We can now take a second derivative and trace it on the surface
At =V, V"t = hiV, Vi = hiV,0"t + kY, (6N 'n*) = divVi+ N 'K | (23)

where
divVt = hl’:?l,a“f. (24)
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When we apply it to S, at the same point, we have
0=K.N '+ divVi, (26)

where K, is the extrinsic curvature of S., and where we used that the Laplacian on the surface
vanishes as the surface is at constant . Notice that at this point the two surfaces are tangent
and therefore the normal vectors of the two surfaces are the same. Taking the difference
between (25) and (26), we have

A= (K - K)N7'%. (27)

For fixed )\p, at the tangent point xy, if it existed, the height would reach a maximum, which
would imply Aé < 0. However, K — K. > 0, as K > 0, given that MCF preserves the
property that K > 0 (see e.g. [11], Proposition 2.7.1), and K. < —c¢ < 0 by definition of S,.
Therefore the left-hand side of (27) is non-positive, while the right-hand side is positive. We
have reached a contradiction, and the theorem is proved.

Notice, as a corollary, one can prove the stronger statement that the MCF cannot cross
any level set with ¢ > ¢y. This follows from the argument above, if one proves that that initial
surface cannot cross the level set. This again can be shown by contradiction. If the initial
surface crosses level sets with ¢ > ¢y one can take the maximum ¢ for which this happens.
This level set is now tangent to the initial surface and one runs into contradiction using the
same argument above.

For any Ao > 0 such that the flow is defined for affine parameter A € [0, \y),  remains
bounded above by Theorem 5, so by Theorem 4 the height function is bounded by an affine
function of A. Hence, the MCF remains in a compact region of the manifold for A < A\g: by
theorem 3 the MCF can be extended beyond Ay, and thus exists for arbitrarily large A.

As a side comment, we finally notice that the existence of the flow and the fact that the flow
stays away from crushing singularities, 7.e. Theorems 2,3,4,5, remain true even if, instead of a
positive cosmological constant and matter satisfying SEC, one has a non-constant scalar-field
potential (which violates SEC), as long as the potential energy has positive upper and lower

bounds A; and A;. In fact, Theorem 2 holds by substituting Ky — K, = /-"5167G A, and
noticing that a negative potential satisfies SEC °. Similarly, Theorem 4 holds by replacing

In fact, one can write eq. (9) as

dK 1 2 2 2 D(m v

v AK+ K (K- KR) +o K+R{n'n"K =0,
with

167G

R™ =87G (T,w - g’“’T) +
n n—1

nyo — 1

Guv (V(¢) - A2) )

where T}, is the part of the stress tensor that satisfies SEC. Given the upper bound on V' (¢), Rfﬂf)n“n” >0,
and Theorem 2 follows.
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sup,y, K with supy, \, K, as in this case, by Theorem 2, K has a bounded sup on the flow, but
it is not guaranteed that this is attained on the initial surface. These observations represent
the starting point for a possible generalization of the results that we are going to discuss next
to the case of a full-fledged slow-roll inflationary model.

So far, our results are valid in any number of dimensions, n > 2. From now on, we specify
to the particular case of 241 dimensions.

Infinite Volume: Now that we have proven that the flow exists for all \’s, we are going
to prove that the manifold reaches infinite volume. We will do so by proving that M) reaches
infinite volume. We start by noticing that, by using the Gauss-Codazzi relation (see for
instance [20], eq. (E.2.27)), Einstein’s equations, contracted with n#n” give:

1 1
@R + §K2 —o? = §Ki +167GT,,n"n" . (28)
We consider an initial surface that is expanding, K > 0 everywhere. Under MCF the

volume evolves as

d
% = / d*ovh K* = / d*zvVh (327GT " n” + K3 + 20> —2- PR) >

(29)

> K3 / d>avh -2 / *2vVhPR = K3V — 8y .
Here we have used that, by WEC, T},,n*n” > 0. The Euler characteristic is positive only for
the sphere, zero for the torus and negative for the rest. For xy < 0 the volume goes to infinity.
This establishes the first sentence of theorem 1. In the case of the sphere (x = 2) one has to
compare the two terms at the initial conditions: if the A term wins

167

V(0) > K (30)
the volume goes to infinity.
The explicit solution of (29) reads
VO > X i (1) - BTX (31)
~ KR KX )
For all topologies except the sphere, x < 0, one has
2 87TX K2

A) > a1 — —2— KX 2
V(A) >V(0)e < KJQ\V(O)+O<€ )| — oo, (32)

independently of the size of the initial volume.

Notice that the rate at which V' goes to infinity is larger or equal than the one of the FRW
slices of de Sitter space. We now prove that, at late times, the volume goes to infinity with
the same rate as these slices of de Sitter. In fact, for manifolds where the Euler characteristic

12



Y is non-positive, there must be a point where PR < 0. At that point, since 0> > 0 and
Tn#n” > 0 (by the WEC), eq. (28) implies that K > K, at that point (this is the argument
of [3] in 241 dimensions). The hypotheses of Theorem 2 therefore always hold in our case '°.
This implies that eq. (12) bounds the maximum to be K, up to an exponentially small

quantity. For the volume, we therefore have

Ccil‘)f /d2x\/_ h K? < /dzw\/ﬁ Kn(A)? < /de\/_ (KA + (Kn(0) = Ka) eKi/\>2

= (K + (5, (0) ) ) V(). (33)
Thus

vy < v(0) - GBI 2 rgn o (2(2 ) e (o))

~ V() e(%( Kp +1>272) . KXA (1 +O(e —KRA )) ) (34)

Combining with (32), and keeping track of the signs of the subleading corrections in both
equations, we obtain an expression for the volume that is valid at all times:

1< VY () (35)
= V(0)eF

Notice that by ‘restarting’ the flow at sufficiently large A, K,,(0) gets arbitrarily close to Kj,
so that the volume grows at late enough times as the FRW slicing of de Sitter space with
arbitrary precision.

Stress Tensor: We are now going to show that 7}, becomes small in most of the volume.
Eq. (12) gives an upper bound on the quantity [ dPxvh K2

/ avh K? < K2V ()) (1 + <KKEO) — 1) e—KiA)z . (36)

Let us now integrate (28) over the MCF surface and use the inequality above:

1 Ko, ?
dry + KRV [ 1+ 0, e KN — /d% ho?® >
2 Ky

1
> 5KﬁV(A) + 167G / d*zv'h Tjntn” . (37)

10Tn the case of the torus one can have )R = 0 everywhere, which allows K < K, everywhere. Still, all
our conclusions hold, as can be seen from the sentence below the formulation of Theorem 2. Notice, however,
that this is a particularly simple case: eq. (28) would imply K = K, and o, = 0. Also T,,,n"n* = 0 and
this would imply T},, = 0 because of the DEC (see the discussion below). Therefore, one has the flat slicing
of de Sitter space.
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This implies
167rG/d291:\/E Tntn” + /de ho®<c, (38)

where ¢; is a non-negative constant. Given that ¢? > 0 and T,,n*n” > 0, this implies
167rG/d2x\/E Tntn” <cp, /d% ho?><e . (39)

Then o? and GT,,n*n" can be K3 - O(1) at most for a physical volume that grows with
A no more than a constant, and, similarly, wherever o and GT),n*n” grow with A, the
associated physical volume must decrease accordingly. Therefore, in almost-all of the ever-
growing volume, o2 and GT),,n*n” have to be at most of order K3 - O(B*Ki’\).

Because of the DEC, T, n#n” is at least as large as the magnitude of any other component
of the stress tensor in an orthonormal frame where n* is the timelike vector. We therefore
define an associated vielbein e, such that g,, = e“aeybnab; with 7,, being the Minkowski
metric. We choose e, = n,. By DEC, we have

/d%\/ﬁ 167G ‘Twe“ae”b’ < /d%\/ﬁ 167G T,n'n” < ¢ . (40)

We therefore see that in almost-all of the ever-growing volume, 7}, has to be at most of
order K% - O(e K%Y — 0.

Ricci and Riemann Tensor: We can now show that the Ricci tensor converges in almost
all of the volume, to the one of de Sitter space. In fact, we can take the Einstein equations,
contract them with e#®e”?

K2
Ruveuaeyb = |87G (T} — Tgp) + 7[\9/“/ e . (41)

2
Let us write R, as R,, = Rus, + 0R,,, where Rg,, = %gw is the Ricci tensor of de
Sitter space with cosmological constant A. We obtain

SR, e’ = 87G (Tyy — Tg,u) €™ . (42)

We can now use the bound (40)
/d%\/ﬁ ‘(5Rm,e““e”b| = /dzx\/ﬁ G ‘Twe’“e”b —Tn®| <e¢ . (43)

Therefore, as for 7),,, R, can be non-exponentially-vanishing at most for a physical volume
that grows with A no more than a constant. In almost-all of the ever-growing volume, 017,
has to be at most of order K3 - O(e %),

We are now ready to show that the Riemann tensor tends to the one of de Sitter in the
same sense as the Ricci tensor. This is so because, in 241 dimensions, the two are proportional
to each other:

1
R,uz/po = Gup Rya + Gvo R,up — Guo Rl/p ) Rua - 5 (g,upgl/o - g,uagz/p) R. (44)
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We therefore conclude that, apart for an infinitesimally small fraction, whose physical volume
is at-most-finite, in all the rest of the ever-growing volume, the Riemann tensor becomes
arbitrarily close to the one of de Sitter. Once averaged over the volume, this implies that on
average the Riemann tensor becomes the one of de Sitter space. This proves the first part of
the second sentence of Theorem 1. Notice that it is straightforward to verify that one can
reach the same conclusions also for the case of the sphere provided the initial volume satisfies
the inequality (30) .

Physical equivalence with de Sitter space: We are now ready to show the last part of
Theorem 1, i.e. that there are regions of arbitrarily large physical volume which are physically
indistinguishable from de Sitter space. By physical indistinguishable we mean that the result
of any measurement, with arbitrary but finite accuracy, is the same as done in de Sitter space,
at sufficiently large A. Let us start the discussion within classical physics and later consider
quantum mechanical effects.

So far, we have shown that for A — oo, the volume of the region where the stress tensor and
the geometric quantities do not converge to de Sitter is at most finite. Given that the physical
volume goes to infinity, this means that all quantities converge to de Sitter on average. The
most general situation still allowed by our theorem is represented pictorially in Fig. 3 at a
given \. There can be regions of no-convergence to de Sitter with finite physical volume (for
example the regions where black holes form!?), and also other regions whose physical volume
shrinks to zero that densely populate the whole volume. In particular our results do not imply
that there are regions of arbitrarily large volume that pointwise converge to de Sitter.

In fact, it is easy to come up with a counterexample to show that pointwise convergence
cannot be true in general. Imagine an alien civilisation which, for unknown reasons, wants
to prevent pointwise convergence to de Sitter. At a certain time they put one spaceship in
each Hubble volume, so that there are no large regions which are close to de Sitter. As time
goes on, they divide their spaceships in smaller and smaller spaceships (one can assume all
pieces have the same mass density), keeping one piece in each Hubble patch. Notice that they
can do this without the need of superluminal travel, so that everything satisfies the energy
conditions that we assumed. Since energy is conserved the spaceships become of smaller and
smaller mass as time goes on. However in the exact place where each spaceship is sitting
there is no convergence to de Sitter, so that one does not have pointwise convergence in
any Hubble patch. This shows one does not have in general pointwise convergence without
further assumptions. This counterexample is, however, still quite benign. Given that the
spaceships are becoming smaller and smaller, any observation with arbitrary small but finite
precision will eventually give the same results as in de Sitter. The solution becomes physically
indistinguishable from de Sitter.

"Notice that in this case one could have K,,(\) < K, everywhere, but all our conclusions still apply in
light of the sentence below the formulation of Theorem 2.

12Gtatic black holes do not really exist in 2+ 1 dimensions, but generically crunching singularities will form.
We loosely refer to these as black holes.
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Regions of no convergence with finite physical volume.

Regions of no convergence with physical volume going to zero.

Figure 3: Pictorial representation of the surface of MCF at a given A\ time. The green circles
represent regions whose physical size is equal to the Hubble volume. The white regions are extremely
close to de Sitter space, while black regions are far from it. Only a fraction of the Hubble patches
that goes to zero can be populated by regions of no-convergence to de Sitter that have finite physical
volume, all the other Hubble patches can be populated by regions of non-converge whose physical

volume goes to zero.

Unfortunately we cannot conclude that this is always what happens. One can imagine
that the regions with finite physical volume that do not converge to de Sitter move around in
a way that any observer at arbitrarily large A, sooner or later, is sensitive to them and realize
he/she is not in de Sitter. One cannot exclude this scenario albeit it looks unlikely 3.

Fortunately these worrisome scenarios are excluded once quantum mechanics is taken into
account. Consider for example the counterexample with the alien spaceships. One cannot
define the position of an object with mass m with a precision better than its Compton
wavelength \. = h/mc. This corresponds to a maximum density of order m?* in natural units.
Since the spaceships go on splitting, the mass of each one goes to zero. This implies, once
quantum mechanics is taken into account, that also the energy density goes to zero. When the
energy density becomes parametrically smaller than the one of the cosmological constant, the

131t is tempting to say that the regions that converge to de Sitter (up to corrections of vanishing physical
volume) will be screened by an event horizon from the other regions that do not converge to de Sitter.
However this seems hard to prove. One could imagine that, instead of localised spaceships, the regions of
no-convergence with vanishing physical volume are filamentary structures that connect each Hubble patch to
far-away regions of finite physical volume that do not converge to de Sitter. Since one does not have pointwise
convergence to de Sitter along these structures, one could imagine that these filaments are enough to allow
the regions that do not converge to de Sitter to wander around and sooner or later visit any Hubble patch.
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alien spaceships become (pointwise) small perturbations and one has pointwise convergence to
de Sitter. The same holds for massless particles: if one has a total energy F, all the massless
particles have wavelength larger than 1/F so that it is impossible to create an energy density
higher than E*. (The same logic applies if matter is distributed in filaments or sheets.) Since
the total energy of matter is finite, eq. (40), while the volume goes to infinity, the energy in
these regions goes to zero '*. Therefore, once quantum mechanics is included, one concludes
that the spacetime pointwise converges to de Sitter except for a finite region. Notice that once
a sufficiently large region of space is pointwise close to de Sitter, it will become completely
insensitive to the rest of space due to the existence of an event horizon. This shows that
observers in this region will be in de Sitter forever.

3 Conclusions

We proved that a 241 dimensional cosmology with a positive cosmological constant, under the
assumptions stated at the beginning of Section 2, asymptotically converges to de Sitter, in the
sense that there are regions of infinite volume that become closer and closer to de Sitter. This
is probably as close as one can get to the notion of a de Sitter no-hair theorem [21]. Starting
from a finite initial volume one gets an infinite volume of de Sitter space. This addresses
the ‘initial patch problem’: one does not need quasi homogeneous initial conditions on an
inflationary Hubble patch for inflation to start. Notice that our arguments are immune from
the so-called measure problem: under our assumptions, the probability of having inflation
somewhere is one. Of course the measure problem may return if one tries to estimate how
likely inflation is for a set of observers: for instance if we populate the initial surface with a
homogeneous density of observers, it may be that most of them will end up in black holes.

The natural continuation of this work is to prove the same statements in the 3+1 case.
Work is in progress in this direction [12]. One could also try to relax some of the assumptions of
the theorem, for instance the one that requires that the initial surface is expanding everywhere,
or the approximation of the inflaton potential as a cosmological constant.
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14Perhaps more simply, one can conclude that since the energy of each region goes to zero, these regions
cannot have asymptotically-vanishing physical volume because of quantum mechanics, and so cannot densely
populate the whole volume, against the hypothesis.
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