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Abstract. We study the nonlinear stability of the (3 + 1)-dimensional Minkowski space-
time as a solution of the Einstein vacuum equation. Similarly to our previous work on
the stability of cosmological black holes, we construct the solution of the nonlinear initial
value problem using an iteration scheme in which we solve a linearized equation globally
at each step; here, due to the simpler geometry, the linear analysis is largely based on
energy and vector field methods originating in work by Klainerman. We work in a mildly
generalized harmonic coordinate gauge. The weak null condition of Lindblad and Rod-
nianski arises naturally as a nilpotent coupling of certain metric components in a linear
model operator at null infinity; in order to fix the geometry of null infinity throughout the
iteration scheme, we devise a hyperbolic formulation of Einstein’s equation which ensures
constraint damping.

Following Melrose’s work, we approach the analysis of the nonlinear equation at hand
on the noncompact domain R4 by studying controlledly degenerate equations on a suitable
compactification of R4 to a manifold with corners. Our compactification is adapted to the
bending of outgoing light cones; its boundary hypersurfaces are null infinity and (blown
up versions of) timelike and spacelike infinity. We show that, for polyhomogeneous initial
data, the metric has a full polyhomogeneous expansion on this compactification.

Finally, we relate the Bondi mass to a logarithmic term in the expansion of the metric
at null infinity and prove the Bondi mass loss formula.
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1. Introduction

We prove the nonlinear stability of (3 + 1)-dimensional Minkowski space as a vacuum
solution of Einstein’s field equation and obtain a precise full expansion of the solution, in a
mildly generalized harmonic gauge, in all asymptotic regions, i.e. near spacelike, null, and
timelike infinity. On a conceptual level, we show how some of the methods we developed
for our proofs of black hole stability in cosmological spacetimes [HV18, Hin18] apply in this
more familiar setting, studied by Christodoulou–Klainerman [CK93], Lindblad–Rodnianski
[LR05, LR10], and many others: this includes the use of an iteration scheme for the con-
struction of the metric in which we solve a linear equation globally at each step, keeping
track of the precise asymptotic behavior of the iterates by working on a suitable compacti-
fication M of the spacetime, and the implementation of constraint damping.
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The estimates we prove for the linear equations—which arise as linearizations of the
gauge-fixed Einstein equation around metrics which lie in the precise function space in
which we seek the solution—are largely based on energy estimates and a version of the
vector field method [Kla86]. The estimates are rather refined in terms of a splitting of the
symmetric 2-tensor bundle (different metric components behave differently at null infinity);
the vector fields we use are closely related to those in [Kla86, CK93, LR05, LR10]. In
our systematic approach, both the relevant notion of regularity (matching [Lin17]) and
the determination of the precise asymptotic behavior of the solution follow readily from
an inspection of the geometric and algebraic properties of the linearized gauge-fixed (or
‘reduced’) Einstein equation; correspondingly, once M and the required function spaces are
defined (§§2–3), the proof of stability itself is rather concise (§§4–6).

The weak null condition of Lindblad–Rodnianski [LR03] manifests itself in our lineariza-
tion approach as a nilpotent coupling of certain metric components for a linear model
operator at null infinity: the logarithmic growth (relative to the typical decay rate of r−1 of
waves on (3 + 1)-dimensional Minkowski space near null infinity) of one metric component
is rendered harmless due to its coupling (to leading order) only to a metric component g00

which governs the ‘long range’ behavior of outgoing light cones and which decays faster
than r−1 by a factor of r−γ for some γ > 0 (see the discussions in §§1.1.2 and 3.3). For
the reader already familiar with the weak null condition, we mention here that the better
decay of g00 in [LR10] (corresponding, roughly, to gLL in the reference) is a consequence of
the harmonic gauge condition being satisfied by the nonlinear solution, while in the present
paper we have decay of the (0, 0)-component of every iterate in our iteration scheme since
we arrange constraint damping, which, roughly speaking, ensures that our gauge condi-
tion is satisfied to high accuracy (in the sense of decay) even though we are only solving
‘nongeometric’ (linear) equations. (This makes constraint damping attractive for numerical
analysis, see [GCHMG05, Pre05] and Remark 1.2 below.)

We proceed to state a simple version of our main theorem, before returning to an in-
depth discussion of our approach, the relevant estimates, and the structure of the Einstein
equation in §1.1. Recall that in Einstein’s theory of general relativity, a vacuum spacetime is
described by a 4-manifold M◦ which is equipped with a Lorentzian metric g with signature
(+,−,−,−) satisfying the Einstein vacuum equation

Ric(g) = 0. (1.1)

The simplest solution is the Minkowski spacetime (M◦, g) = (R4, g),

g := dt2 − dx2, R4 = Rt × R3
x. (1.2)

The far field of an isolated gravitational system (M◦, g) with total (ADM) mass m is usually
described by the Schwarzschild metric

g ≈ gSm =
(

1− 2m

r

)
dt2 −

(
1− 2m

r

)−1
dr2 − r2

/g, r � 1, (1.3)

where /g denotes the round metric on S2; the Minkowski metric g = gS0 differs from this by

terms of size O(mr−1). In the study of weak nonlinear gravity in vacuum (in particular,
black holes are excluded), one then works with metrics g which are smooth extensions of
(a short range perturbation of) gSm to all of R4. Such spacetimes are asymptotically flat :
letting |t|+ |x| → ∞ in R4, the metric g (in a suitable gauge) approaches the flat Minkowski
metric g in a quantitative fashion.
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Suitably interpreted, the field equation (1.1) has the character of a quasilinear wave
equation; in particular, it predicts the existence of gravitational waves, which were recently
observed experimentally [LIG16]. Correspondingly, the evolution and long time behavior
of solutions of (1.1) can be studied from the perspective of the initial value problem: given
a 3-manifold Σ◦ and symmetric 2-tensors γ, k ∈ C∞(Σ◦;S2T ∗Σ◦), with γ a Riemannian
metric, one seeks a vacuum spacetime (M◦, g) and an embedding Σ◦ ↪→M◦ such that

Ric(g) = 0 on M◦, g|Σ◦ = −γ, IIg = k on Σ◦, (1.4)

where IIg denotes the second fundamental form of Σ◦, and where we use the embedding
Σ◦ ↪→M◦ to identify the tensors γ, k on Σ◦ with (tangential) tensors on the image of Σ◦ in
M◦. (The minus sign in (1.4) is due to our sign convention for Lorentzian metrics.) A fun-
damental result due to Choquet-Bruhat and Geroch [CB52, CBG69] states that necessary
and sufficient conditions for the well-posedness of this problem are the constraint equations
for γ and k,

Rγ + (trγ k)2 − |k|2γ = 0, δγk + d trγ k = 0, (1.5)

where Rγ is the scalar curvature of γ, and δγ is the (negative) divergence. Concretely, if
these are satisfied, there exists a maximal globally hyperbolic solution (M◦, g) of (1.4) which
is unique up to isometries. By the future development of an initial data set (Σ◦, γ, k), we
mean the causal future of Σ◦ as a Lorentzian submanifold of (M◦, g). Our main theorem
concerns the long time behavior of solutions of (1.4) with initial data close to those of
Minkowski space:

Theorem 1.1. Let b0 > 0. Suppose that (γ, k) are smooth initial data on R3 satisfying the
constraint equations (1.5) which are small in the sense that for some small δ > 0, a cutoff
χ ∈ C∞c (R3) identically 1 near 0, and γ̃ := γ− (1−χ)(−gSm)|{t=0},

1 where |m| < δ, we have∑
j≤N+1

‖〈r〉−1/2+b0(〈r〉∇)j γ̃‖L2 +
∑
j≤N
‖〈r〉1/2+b0(〈r〉∇)jk‖L2 < δ, (1.6)

where N is some large fixed integer (N = 26 works). Assume moreover that the weighted
L2 norms in (1.6) are finite for all j ∈ N.

Then the future development of the data (R3, γ, k) is future causally geodesically complete
and decays to the flat (Minkowski) solution. More precisely, there exist a smooth manifold
with corners M with boundary hypersurfaces Σ, I0, I +, I+, and a diffeomorphism of
the interior M◦ with {t > 0} ⊂ R4, as well as an embedding R3 ∼= Σ◦ of the Cauchy
hypersurface, and a solution g of the initial value problem (1.4) which is conormal (see
below) on M and satisfies |g− g| . (1 + t+ |r|)−1+ε for all ε > 0. See Figure 1.1. For fixed
ADM mass m, the solution g depends continuously on γ̃, k, see Remark 6.4.

If the normalized initial data (〈r〉γ̃, 〈r〉2k) are in addition E-smooth, i.e. polyhomogeneous
at infinity with index set E (see below), then the solution g is also polyhomogeneous on M ,
with index sets given explicitly in terms of E.

More precise versions will be given in Theorem 1.8 and in §6. The condition (1.6) allows
for γ̃ to be pointwise of size r−1−b0−ε, ε > 0; since b0 > 0 is arbitrary, this means that we
allow for the initial data to be Schwarzschildean modulo O(r−1−ε) for any ε > 0.

In Theorem 1.1, conormality is a (local) regularity notion on a manifold with corners M
which is equivalent to smoothness in M◦, but differs from it near ∂M: in the model case

1We use polar coordinates on R3 and define −gSm|t=0 := (1− 2m
r

)−1dr2 + r2
/g.
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M = [0,∞)px × Rqy, and with α ∈ Rp, a function u ∈ xαL∞loc(M) is called conormal relative
to the space xαL∞loc(M) if

V1 · · ·VNu ∈ xαL∞loc(M) ∀ N ∈ N,

where each Vj is one of the vector fields xk∂xk , ∂yl , 1 ≤ k ≤ p, 1 ≤ l ≤ q. (A typical

example of a conormal function is xβ, where β ∈ Rp, β ≥ α component-wise.) We say that
a distribution u is conormal if it is conormal relative to xαL∞loc(M) for some vector α ∈ Rp
of weights. In the context of Theorem 1.1, the weights are specified in Theorem 1.8 and
Remark 1.9 below; at this point we simply content ourselves with taking them to be 0 at
each hypersurface.

Before continuing the discussion of Theorem 1.1, we remark that the assumption that
all weighted norms in (1.6) are finite is only needed to conclude the conormality of g. If
one is only interested in controlling a finite number of derivatives of g, we only need to
require the finiteness of finitely many weighted norms (1.6) (as can be seen by inspecting
the Nash–Moser theorem we use in our nonlinear iteration).

Next, E-smoothness is a refinement of conormality: the assumption of E-smoothness, i.e.
polyhomogeneity with index set E ⊂ C×N0, means, roughly speaking, that 〈r〉γ̃ (similarly
〈r〉2k) has a full asymptotic expansion as r →∞ of the form

〈r〉γ̃ ∼
∑

(z,k)∈E

r−iz(log r)kγ̃(z,k)(ω), ω = x/|x| ∈ S2, γ̃(z,k) ∈ C∞(S2;S2T ∗R3), (1.7)

with Im z < −b0, where for any fixed C, the number of (z, k) ∈ E with Im z > −C is finite.
(That is, 〈r〉γ̃ admits a generalized Taylor expansion into powers of r−1, except the powers
may be fractional or even complex—that is, oscillatory—and logarithmic terms may occur.
A typical example is that all z are of the form z = −ik, k ∈ N, in which case (1.7) is an
expansion into powers r−k, with potential logarithmic factors.) The polyhomogeneity of g
on the manifold with corners M means that at each of the hypersurfaces I0, I +, and I+,
the metric g admits an expansion similar to (1.7), with r−1 replaced by a defining function
of the respective boundary hypersurface (for example I +) such that moreover each term
in the expansion (which is thus a tensor on I +) is itself polyhomogeneous at the other
boundaries (that is, at I + ∩ I0 and I + ∩ I+). We refer the reader to §2.2 for precise
definitions, and to Examples 7.2 and 7.3 for the list of index sets for two natural classes of
polyhomogeneous initial data.

Christodoulou [Chr02] showed that, generically, one can only expect the metric g, suitably
rescaled to a non-degenerate metric on a compactification of R4, to be of class C1,α, α < 1,
due to the presence of logarithmic terms in the expansion of certain geometric quantities
at null infinity; polyhomogeneity of the metric (rather than smoothness of a conformal
multiple down to I +) is thus the best one can hope for, and this is what we establish here.
(We also prove that the metric is indeed conformal to a non-degenerate metric of class C1,α,
α < min(b0, 1), down to I +; see Remark 8.12).

If the initial data do not have a full polyhomogeneous expansion, but only a partial
expansion (containing only finitely many terms) plus a sufficently regular remainder decay-
ing faster than the terms in the expansion, the solution g will itself have a finite partial
expansion at each boundary hypersurface, plus a faster decaying remainder; we shall not,
however, record results of this nature here.
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Σ

M

I0 I0

I + I +

I − I −

I+

I−

Σ
i0 i0

i+

I + I +

I − I −

i−

Figure 1.1. Left: the compact manifold M (solid boundary), containing
a compactification Σ of the initial surface Σ◦. The boundary hypersurfaces
I0, I +, and I+ are called spatial infinity, (future) null infinity, and (fu-
ture) timelike infinity, respectively. One can think of M as the blow-up of a
Penrose diagram at timelike and spatial infinity. A global compactification
would extend across Σ to the past, with additional boundary hypersurfaces
I − (past null infinity) and I− (past timelike infinity). Right: for compari-
son, the Penrose diagram of Minkowski space.

Applying a suitable version of this theorem both towards the future and the past, we
show that the maximal globally hyperbolic development is given by a causally geodesi-
cally complete metric g, with analogous regularity and polyhomogeneity statements as in
Theorem 1.1, on a suitable manifold with corners whose interior is diffeomorphic to R4

(and contains Σ◦), which now has the additional boundary hypersurfaces I − and I−; see
Theorem 6.7 and the end of §7.

Like many other approaches to the stability problem (see the references below), our
arguments apply to the Einstein–massless scalar field system Ric(g) = |∇φ|2g, �gφ = 0,
with small initial data for the scalar field in order to obtain global stability. They also give
the stability of the far end of a Schwarzschild black hole spacetime with any mass m ∈ R,
i.e. of the domain of dependence of the complement of a sufficiently large ball in the initial
surface, without smallness assumptions on the data: in this case, we control the solution
up to some finite point along the radiation face I +. See Remark 6.6.

The compactification M only depends on the ADM mass m of the initial data set;2 for
the class of initial data considered here, the mass gives the only long range contribution
to the metric that significantly (namely, logarithmically) affects the bending of light rays:
for the Schwarzschild metric (1.3), radially outgoing null-geodesics lie on the level sets of
t− r− 2m log(r− 2m). Concretely, near I0 ∪I +, M will be the Penrose compactification
of the region {t/r < 2, r � 1} ⊂ R4 within the Schwarzschild spacetime, i.e. equipped with
the metric gSm, blown up at spacelike and future timelike infinity. As in our previous work
[HV18, Hin18] on Einstein’s equation, we prove Theorem 1.1 using a Newton-type iteration
scheme (more precisely: Nash–Moser) in which we solve a linear equation globally on M at

2By the positive mass theorem [SY79, Wit81], we have m ≥ 0, but we will not use this information. In
fact, our analysis of the Bondi mass, summarized in Theorem 1.10 below, implies the positive mass theorem
for the restricted class of data considered in Theorem 1.1.
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each step. While this approach brings many advantages (cf. Remark 1.3), a disadvantage
of using a Nash–Moser iteration is the typically rather large number of derivatives needed
compared to other approaches.

We do not quite use the wave coordinate gauge as in Lindblad–Rodnianski [LR10, LR05],
but rather a wave map gauge with background metric given by the Schwarzschild metric
with mass m near I0 ∪I +, glued smoothly into the Minkowski metric elsewhere; this is a
more natural choice than using the Minkowski metric itself as a background metric (which
would give the standard wave coordinate gauge), as the solution g will be a short range
perturbation of gSm there. This gauge, which can be expressed as the vanishing of a certain
1-form Υ(g), fixes the long range part of g and hence the main part of the null geometry at
I +. In order to ensure the gauge condition to a sufficient degree of accuracy (i.e. decay)
at I + throughout our iteration scheme, we implement constraint damping, first introduced
in the numerics literature in [GCHMG05], and crucially used in [HV18]. This means that
we use the 1-form encoding the gauge condition in a careful manner when passing from the
Einstein equation (1.1) to its ‘reduced’ quasilinear hyperbolic form: we can arrange that for
each iterate gk in our iteration scheme, the gauge 1-form Υ(gk) vanishes sufficiently fast at
I + so as to fix the long range part of g. In order to close the iteration scheme and control
the nonlinear interactions, we need to keep precise track of the leading order behavior of
the remaining metric coefficients at I +. We discuss this in detail in §1.2.

Remark 1.2. Fixing the geometry at I + in this manner, the first step of our iteration
scheme, i.e. solving the linearized gauge-fixed Einstein equation with the given (nonlinear)
initial data of size δ, produces a solution with the correct long range behavior and which is
δ2 close to the nonlinear solution in the precise function spaces on M in which we measure
the solution. (Subsequent iteration steps give much more accurate approximations since
the convergence of the iteration scheme is exponential.) This suggests that our formulation
of the gauge-fixed Einstein equation could allow for improvements of the accuracy of post-
Minkowskian expansions—which are iterates of a Picard-type iteration scheme as in [LR10,
Equation (1.7)]—used to study gravitational radiation from isolated sources [Bla14].

The global stability of Minkowski space was established, building in particular on [Kla86,
Chr86], in the monumental work of Christodoulou–Klainerman [CK93] for asymptotically
Schwarzschildean data (similar to those in (1.6) but with b0 ≥ 1

2 , though requiring only
N = 3 derivatives) and precise control at null infinity, with an alternative proof using double
null foliations by Klainerman–Nicolò [KN03a]; and more recently in [LR05, LR10] using the
wave coordinate gauge, for initial data as in Theorem 1.1 (but requiring only N = 10 deriva-
tives on the initial data). Friedrich [Fri86] (see [Fri91] for the Einstein–Yang–Mills case)
established non-linear stability, using a conformal method, for a restrictive class (shown to
be nonempty in [Cor00]) of initial data, but with precise information on the asymptotic
structure of the spacetime. Bieri [BZ09] studied the problem for a very general class of data

which are merely decaying like 〈r〉−1/2−δ for some δ > 0—thus more slowly even than the
O(r−1) terms of Schwarzschild—and even less regularity than Christodoulou–Klainerman;
in this case, the ‘correct’ compactification on which the metric has a simple description
will have to depend on more than just the ADM mass (this is clear e.g. for the initial data
constructed by Carlotto–Schoen [CS16], which are nontrivial only in conic wedges); Bieri
and Chruściel [BC16, Chr17] construct a piece of I + for the data considered in [BZ09]
but without a smallness assumption. Further works on the stability of Minkowski space
for the Einstein equations coupled to other fields, in the wake of [CK93, LR05, LR10],
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include those by Speck [Spe14] on (a generalization of) the Einstein–Maxwell system, Tay-
lor [Tay16], Lindblad–Taylor [LT17], and Fajman–Joudioux–Smulevici [FJS17] for both the
massless and the massive Einstein–Vlasov system. We also mention Keir’s very general
quasilinear results [Kei18] which in particular imply the global solvability for small data of
the gauge-fixed Einstein equation in harmonic coordinates (but without constraint damp-
ing) even when the gauge condition is violated, albeit at the expense of losing the precise
asymptotic control at null infinity. The global stability for a minimally coupled massive
scalar field was proved by LeFloch–Ma [LM15] and Wang [Wan16].

The present paper contains the first proof of full conormality and polyhomogeneity of
small nonlinear perturbations of Minkowski space in 3+1 dimensions. Lindblad–Rodnianski
also established high conormal regularity, see [LR10, Equation (1.14)], though, in the con-
text of the present paper, on the compactification corresponding to Minkowski rather than
on M , and hence with a loss in the decay rates. This was improved by Lindblad [Lin17]
who proved sharp decay for the metric at null infinity (albeit in a slightly different gauge),
and uses them to establish a relationship between the ADM mass and the total amount of
gravitational radiation. The decay in [Lin17] corresponds to the leading order decay which
we prove at I +; we improve this by proving definite decay rates towards the leading order
terms at I +, and we strengthen the decay rate towards I+ to t−1; in fact, we show decay
at a faster rate to an O(t−1) leading order term, see the proof of Theorem 8.14. (Neither
improvement requires polyhomogeneous initial data.)

Previously, polyhomogeneity was established in spacetime dimensions ≥ 9 for the Ein-
stein vacuum and Einstein–Maxwell equations, for initial data stationary outside of a com-
pact set, by Chruściel–Wafo [CW11]; this relied on earlier work by Chruściel- Leski [C L06]
on the polyhomogeneity of solutions of hyperboloidal initial value problems3 for a class
of semilinear equations, and Loizelet’s proof [Loi08, Loi06] of the electrovacuum extension
(using wave coordinate and Lorenz gauges) of [LR05]; see also [BC07]. Lengard [Len01]
studied hyperboloidal initial value problems and established the propagation of weighted
Sobolev regularity for the Einstein equation, and of polyhomogeneity for nonlinear model
equations. In spacetime dimensions 5 and above, Wang [Wan10, Wan13] obtained the lead-
ing term (i.e. the ‘radiation field’) of g − g at I +, and proved high conormal regularity.
Baskin–Wang [BW14] and Baskin–Sá Barreto [BSB15] defined radiation fields for linear
waves on Schwarzschild as well as for semilinear wave equations on Minkowski space. For
initial data which are exactly Schwarzschildean outside a compact set and in even spacetime
dimensions ≥ 6, a simple conformal argument, which requires very little information on the
structure of the Einstein(–Maxwell) equation, stability and smoothness of I + were proved
by Choquet-Bruhat–Chruściel–Loizelet [CBCL06]; see also [AC05] for a different approach
in the vacuum case. The construction of the required initial data sets as well as questions
of their smoothness and polyhomogeneity were taken up in the hyperboloidal context by
Andersson–Chruściel–Friedrich [ACF92] and extended in [AC93, AC96], see also [CL00].
Paetz and Chruściel [CP15, Pae14] studied this for characteristic data; we refer to Corvino
[Cor00], Chruściel–Delay [CD03], and references therein for the case of asymptotically flat
data sets.

The backbone of our proof is a systematic treatment of the stability of Minkowski space as
a problem of proving regularity and asymptotics for a quasilinear (hyperbolic) equation on a

3This means that the initial data are posed on a spacelike but asymptotically null hypersurface transversal
to I +.
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compact, but geometrically complete manifold with corners M . That is, we employ analysis
based on complete vector fields on M and the corresponding natural function spaces, which
in this paper are b-vector fields, i.e. vector fields tangent to ∂M , and spaces with conormal
regularity or (partial) polyhomogeneous expansions; following Melrose [Mel93, Mel96], this
is called b-analysis (‘b’ for ‘boundary’). The point is that once the smooth structure (the
manifold M) and the algebra of differential operators appropriate for the problem at hand
give a simple background on which to do analysis;4 we will give examples and details in
§1.1. In this context, it is often advantageous to work on a more complicated manifold
M if this simplifies the algebraic structure of the equation at hand. While this point of
view has a long history in the study of elliptic equations, see e.g. [MM87, Mel93, Sch91,
Maz91, GSS00], its explicit use in hyperbolic problems is, to a large part, rather recent
[Mel94, Vas00, MW04, MVW13, BVW15, BVW16, HV15, Hin16, HV16, HV18]. We also
point out that fixing the smooth structure on M , one gains the

A (clean) description of polyhomogeneous expansions, in particular at the transitions
between different regimes such as near I0∩I + or I +∩I+, requires working on a manifold
with corners. More generally, it is often easier to define function spaces on M◦ by working
uniformly up to ∂M , and decay rates from the perspective of M◦ can be encoded as orders
of vanishing at ∂M (the latter making sense since M is equipped with a smooth structure).5

Working in a compactified setting furthermore makes the structures allowing for global
existence clearly visible in the form of linear model operators defined at the boundary
hypersurfaces. Among the key structures for Theorem 1.1 are the symmetries of the model
operator L0 at I +, which is essentially the product of two transport ODEs, as well as
constraint damping and a certain null structure, both of which are simply a certain Jordan
block structure of L0, with the null structure corresponding to a nilpotent Jordan block.
At I+, the model operator will be closely related (via a conformal transformation) to the
conformal Klein–Gordon equation on static de Sitter space, which enables us to determine
the asymptotic behavior of g there via resonance expansions from known results on the
asymptotics of conformal waves on de Sitter space.

A closely related reason for viewing a global problem (i.e. to be solved, at first glance, on a
noncompact set) as a (degenerate) problem on a compact manifold with boundary or corners
is that asymptotic data of the solution become restrictions of the solution to boundary
hypersurfaces: it was for the purpose of giving a simple and conceptually clean description
of the radiation field of scalar, electromagnetic, or gravitational waves, and also of solutions

4This is akin to how making use of the notion of a smooth manifold allows one to study PDE in an
invariant, coordinate-free manner. Indeed, viewing a global PDE, a priori on a noncompact space, as
a (typically degenerate) PDE on a compactification M (typically a compact manifold with boundary or
corners), one frees oneself from any particular local coordinate expression, and, for instance, gains the
flexibility of being able to work with the local coordinate system (or, more narrowly, a set of boundary
defining functions) appropriate for calculations in the region/asymptotic regime of interest. Moreover,
if one defines function spaces by using only the smooth structure on M (and possibly using some extra
data, such as fibrations of boundary hypersurfaces), it becomes simple to verify whether estimates, done in
convenient local coordinates, do give estimates of the invariantly defined function spaces.

5As an example, reminiscent of the behavior of linear waves on Minkowski space near null infinity,
consider the space X of smooth functions on [1,∞)r which for any N ∈ N can be written as an N -th degree
polynomial in 1/r, without constant term, plus a O(r−N ) remainder. Passing to the compactification I,
which is diffeomorphic to a closed interval, with boundary defining functions (r− 1)/r for the left endpoint
and x := 1/r for the right endpoint (thus the point x = 0 is a rigorous definition of ‘r = ∞’), we simply
have X = xC∞(I): smooth functions on I vanishing simply at the right endpoint x = 0.
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of the full nonlinear Einstein equation, that Penrose introduced his compactifications and
diagrams. (These restrictions may solve interesting equations by themselves, as is the case
for the Bondi mass loss formula at I +, and in the case of the scattering argument which
we will use at I+ to prove the vanishing of the final Bondi mass at the future boundary of
I +.) While a compactified perspective is often not strictly necessary for the description
of asymptotic data and relations between them, it is usually conceptually advantageous,
and brings to light the key features of a PDE problem which may be difficult to detect
from the noncompact point of view, cf. the references above. (For example, finding the
linearized version of the weak null structure of Lindblad–Rodnianski does not require any
careful inspection, but simply the calculation of a partial Jordan block decomposition of a
coefficient of a model operator defined at null infinity.)

We also note that the symmetries and dynamical/geometric features of (asymptotically)
Minkowski metrics relevant in each of these regimes are different. Hence, we find it advanta-
geous to adapt our descriptions of coordinates, operators, and function spaces to the various
asymptotic regimes and symmetries of the problem, rather than e.g. working throughout
with standard (t, x)-coordinates on R4: the latter seem to be most useful for capturing
the (approximate) translation-invariance of wave equations on (asymptotically) Minkowski
spacetimes—which does not play a role in the stability proof—while scaling, boosts and
rotations, while of course expressible in (t, x) coordinates, become very simple on M , simply
becoming smooth vector fields on M with some extra properties, such as tangency to ∂M .

While the manifold M is compact, our analysis of the linear equations (arising from a
linearization of the gauge-fixed Einstein equation) on M lying at the heart of this paper is
not a short-time existence/regularity analysis near the interiors of I0, resp. I+, but rather a
global in space, resp. global in time analysis. (Conformal methods such as [Fri98] bringing
I0 to a finite place have the drawback of imposing very restrictive regularity conditions
on the initial data.) At I +, we use a version of Friedlander’s rescaling [Fri80] of the
wave equation, which does give equations with singular (conormal or polyhomogeneous)
coefficients; but since I + is a null hypersurface, conormality or polyhomogeneity—which
are notions of regularity defined with respect to (b-)vector fields, which are complete—are
essentially transported along the generators of I +. At the past and future boundaries of
I +, i.e. at I0 ∩ I + and I + ∩ I+, the two pictures fit together in a simple and natural
fashion. We discuss this in detail in §§1.1.1 and 1.1.3.

We reiterate that our goal is to exhibit the conceptual simplicity of our approach, which
we hope will allow for advances in the study of related stability problems which have a
more complicated geometry on the base, i.e. on the level of the spacetime metric, on the
fibers, i.e. for equations on vector bundles, or both. In particular, we are not interested
in optimizing the number of derivatives needed for our arguments based on Nash–Moser
iteration.

Following our general strategy, one can also prove the stability of Minkowski space in
spacetime dimensions n+ 1, n ≥ 4, for sufficiently decaying initial data, with the solution
conormal (or polyhomogeneous, if the initial data are such), thus strengthening Wang’s
results [Wan13]. There are a number of simplifications due to the faster decay of linear
waves in R1+n: the compactification M of R1+n does not depend on the mass anymore and
can be taken to be the blow-up of the Penrose diagram of Minkowski space at spacelike
and future timelike infinity; we do not need to implement constraint damping as metric
perturbations no longer have a long range term which would change the geometry of I +;
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and we do not need to keep track of the precise behavior (such as the existence of leading
terms at I +) of the metric perturbation. We shall not discuss this further here.

1.1. Aspects of the systematic treatment; examples. Consider a nonlinear partial
differential equation P (u) = 0, with P encoding boundary or initial data as well, whose
global behavior one wishes to understand for high regularity data which have small norm;
denote by Lu := DuP the linearized operators. In the present problem, P will be the map
assigning a metric to the value of the (gauge-fixed) Einstein operator on it, as well as its
pair of initial data. Our strategy, with references to their implementation for the present
problem, is:

1. fix a C∞ structure, that is, a compact manifold M , with boundary or corners, on
which one expects the solution u to have a simple description (regularity, asymptotic
behavior)—see §2.1 for the definition of the compactification of R4 on which we will
work;

2. choose an algebra of differential operators and a scale of function spaces on M , say
X s,Ys, encoding the amount s ∈ R of regularity as well as relevant asymptotic
behavior, such that for u ∈ X∞ :=

⋂
s>0X s small in some X s norm, the operator

Lu lies in this algebra and maps X∞ → Y∞ :=
⋂
s>0 Ys—see §§2.2 and 3.1 for the

function spaces we will use: conormal sections of certain vector bundles together
with certain leading order terms at null infinity; and §3.2 for the verification of the
mapping property;

3. show that for such small u, the operator Lu has a (right) inverse

(Lu)−1 : Y∞ → X∞ (1.8)

on these function spaces—see §§4, 5, discussed below;
4. solve the nonlinear equation using a global iteration scheme, schematically

u0 = 0; uk+1 = uk + vk, vk = −(Luk)−1(P (uk)); u = lim
k→∞

uk ∈ X∞. (1.9)

See §6.
5. (Optional.) Improve on the regularity of the solution u ∈ X∞, provided the data

has further structure such as polyhomogeneity or better decay properties, by using
the PDE P (u) = 0 directly, or its approximation by linearized model problems in
the spirit of 0 = P (u) ≈ L0u + P (0) and a more precise analysis of L0. See §7,
where we prove the polyhomogeneity for asymptotically Minkowski metrics.

We stress that steps 1 and 2 are nontrivial, as they require significant insights into the
geometric and analytic properties of the PDE in question, and are thus intimately coupled
to step 3; the function spaces in step 2 must be large enough in order to contain the solution
u, but precise (i.e. small) enough so that the nonlinearities and linear solution operators
are well-behaved on them.

Note that if one has arranged 3, then the iteration scheme (1.9) formally closes, i.e. all
iterates uk lie in X∞ modulo checking their required smallness in X s. Checking the latter,
thus making (1.9) rigorous, is however easy in many cases, for example by using Nash–
Moser iteration [Ham82, SR89], which requires (Lu)−1 to satisfy so-called tame estimates;
these in turn are usually automatic from the proof of (1.8), which is often ultimately built
out of simple algebraic operations like multiplications and taking reciprocals of operator
coefficients or symbols, and energy estimates, for all of which tame estimates follow from the
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classical Moser estimates. The precise bookkeeping, done e.g. in [HV16], can be somewhat
tedious but is only of minor conceptual importance: it only affects the number of derivatives
of the data which need to be controlled, i.e. the number N in (1.6); in this paper, we shall
thus be generous in this regard.

As a further guiding principle, which applies in the context of our proof of Theorem 1.1,
one can often separate step 3, i.e. the analysis of the equation Luv = f , into two pieces:

3.1. prove infinite regularity of v but without precise asymptotics—see §4, where we
accomplish this using simple energy estimates;

3.2. improve on the asymptotic behavior of v to show v ∈ X∞—see §5, where we use
integration along approximate characteristics as well as spectral theory/normal op-
erator arguments for this purpose.

The point is that a ‘background estimate’ from step 3.1 may render many terms of Lu
lower order, thus considerably simplifying the analysis of asymptotics and decay; see e.g.
the discussion around (1.22).

Remark 1.3. Let us compare this strategy to proofs using bootstrap arguments, which
are commonly used for global existence problems for nonlinear evolution equations as e.g.
in [CK93, LR10, Luk13]. The choice of bootstrap assumptions is akin to choosing the
function space X∞ (and thus implicitly Y∞) in step 2, while the consistency of the bootstrap
assumptions, without obtaining a gain in the constants in the bootstrap, is similar to
proving (1.8). However, note that the bootstrap operates on a solution of the nonlinear
equation, whereas we only consider linear equations; the gain in the bootstrap constants
thus finds its analogue in the fact that one can make the iteration scheme (1.9) rigorous, e.g.
using Nash–Moser iteration, and keep low regularity norms of uk bounded (and vk decaying
with k) throughout the iteration scheme. In the context in particular of Einstein’s equation,
a bootstrap argument has the advantage that the gauge condition is automatically satisfied
as one is dealing with solutions of the nonlinear equation; thus the issue of constraint
damping does not arise, whereas we do have to arrange this. In return, we gain significant
flexibility in the choice of analytic tools for the global study of the linearized equations
(e.g. methods from microlocal analysis, scattering theory), as used extensively in [HV18];
bootstrap arguments on the other hand are strongly tied to the character of P (u) as a
(nonlinear) hyperbolic (or parabolic) and differential operator, or at least to its locality in
‘time’, and it is much less clear how to exploit global information (e.g. resonances).

Before discussing Einstein’s equation in §1.2, we first describe this strategy for scalar
nonlinear wave equations on Minkowski space. The most significant part of the work
required to implement this strategy is the analysis of the linear operators called Lu above;
we thus begin in §1.1.1 by explaining how we obtain estimates for solutions of linear wave
equations on Minkowski space in a manner that will work for linearizations of the gauge-
fixed Einstein equation in §4. In §1.1.2, we then put a few examples of nonlinear scalar
equations into the abstract general framework described above, including a discussion of
polyhomogeneity (step 5 above) in §1.1.3.

1.1.1. Linear waves in Minkowski space. For step 1, we seek a convenient compactification
M of R4. The goal, from the PDE perspective, is for the asymptotic behavior of linear
waves on R4 to have a simple description on M ; closely related to this is that the asymptotic
behavior of natural geometric objects such as (null)geodesics should be simple. Consider
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first ‘null infinity’: a (rescaled) linear wave on R4 has a limit as r → ∞ along any null-
geodesic, e.g. the one defined by t − r = s0, ω = ω0 ∈ S2 (using polar coordinates on R3)
for (s0, ω0) ∈ R× S2. Thus, we want to define M in such a way that a sequence of points,
with r →∞, along such a ray has a unique limit in M ; that is, one boundary hypersurface
of M should be equal to (the closure6 of) all such limiting points, with a bijection between
(s0, ω0) and points in (the interior of) this boundary hypersurface, and such a boundary
hypersurface then deserves the name I +. (The interior of I + is thus (I +)◦ ∼= R × S2.)
The radiation field is then the restriction of the rescaled wave, extended from R4 to M by
continuity, to I + ⊂ ∂M (or (I +)◦ in standard terminology).

For other asymptotic regimes, there are a number of choices one can make on Minkowski
space: the Penrose diagram, or the conformal embedding of Minkowski space into the
Einstein universe give two (closely related) compactifications of R4 in which future timelike
and spacelike geodesic rays have limit points. In order to facilitate the generalization to
compactifications of asymptotically Minkowskian spacetimes in §2, we choose to work with
a compactification in which the closure of the set of these limiting points, called future
timelike infinity I+ and spacelike infinity I0, are 3-dimensional (rather than 2-dimensional,
as in the Penrose compactification); coordinates in their interiors are x/t with |x/t| < 1,
t−1 = 0 in (I+)◦, and (t/r, ω) with |t/r| < 1, r−1 = 0 in (I0)◦.

At future timelike infinity I+, the asymptotic behavior of waves is governed, quite gener-
ally on suitable asymptotically Minkowski spacetimes, by quantum resonances [BVW15];7

also, nonlinear interactions are much simpler to deal with than near I +. (This is a further
reason to keep (I +)◦ and (I+)◦ separate: it keeps the delicate analysis at I + separate
on M from the more straightforward analysis at I+. The analysis at I0 is even simpler.)
We also point out that it is a specific feature of exact Minkowski space that one can ‘blow
down’ I+; that is, suitably rescaled linear waves are smooth directly on the Penrose com-
pactification, and the blow-up of timelike infinity i+ and spacelike infinity i0 in the Penrose
diagram, as in Figure 1.1, is not required; on more general asymptotically Minkowski space-
times on the other hand, one needs to resolve i+ and i0 via real blow-up, obtaining I+ and
I0, in order to exhibit linear waves as polyhomogeneous (read: having a simple asymptotic
description) functions on the compactification.

Thus, we begin by defining R4:

Definition 1.4. The radial compactification of R4 is defined as

R4 := R4 t ([0, 1)R × S3)/ ∼, (1.10)

where ∼ identifies (R,ω), R > 0, ω ∈ S3, with the point R−1ω ∈ R4. The quotient carries
the smooth structure in which the smooth functions are precisely those which over R4 (the

6We also want to capture the asymptotics of the radiation field itself, leading us to consider the limits
s0 → ±∞ of such limiting points.

7See [BVW15, Theorem 1.1] for the rough theorem. Here, quantum resonances σj ∈ C are poles of
the meromorphic continuation of the resolvent of an asymptotically hyperbolic Laplacian (plus a potential)

arising naturally by Mellin-transforming the wave operator, or rather L as in (1.13), in (t2 − r2)1/2; linear
waves then have expansions into tiσjaj(x/t) for suitable distributions aj , smooth in |x/t| < 1. For present
purposes, one can deduce the asymptotic behavior of linear waves equivalently by relating the linear scalar
wave equation to the conformal wave equation on static de Sitter space and the asymptotics of its solutions;
see §5.2. Even so, we shall use spectral theoretic methods to accomplish the latter.
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interior of R4) are smooth in the usual sense, and which over [0, 1)R × S3
ω are smooth in

(R,ω) down to R = 0.

The function ρ := (1 + t2 + r2)−1/2 ∈ C∞(R4) is a boundary defining function, i.e.

∂R4 = ρ−1(0) with dρ nondegenerate everywhere on ∂R4. Letting v = (t− r)/r away from
r = 0, all future null-geodesics tend to S+ = {ρ = 0, v = 0}, and we then define M as the

closure of t ≥ 0 within the blow-up8 [R4;S+] of R4 at S+ (see Figure 1.1), i.e. the smooth
manifold obtained by declaring polar coordinates around S+ to be smooth down to the
origin. We refer to the front face I + of this blow-up as null infinity or the radiation face;
it has a natural fibration by the fibers of the map I + → S+, which we call the fibers of
the radiation face/null infinity/I +. (The interior of a typical fiber is equal to Rs0 × {ω0}
for some fixed ω0 ∈ S2.)

We can equivalently describe M by giving a list of local coordinate patches and how
(pieces of) R4 are glued to them. We describe two exemplary coordinate charts here: the
first one is

[0, 1)ρ0 × [0, 1)ρI × S2
ω,

and we identify (ρ0, ρI , ω) for ρ0, ρI > 0 with the point (t, x) ∈ R×R3 for t = ρ−1
0 (ρ−1

I −1),

x = ρ−1
0 ρ−1

I ω. Thus,

ρ0 = (r − t)−1, ρI = (r − t)/r; (1.11)

then I0, resp. I + is locally given by ρ0 = 0, resp. ρI = 0; thus, this chart describes a
neighborhood of I0 ∩I +, i.e. the transition from spacelike to null infinity. (For example,
{ρ0 = 0, ρI = c} for some fixed c ∈ (0, 1) consists of the points ‘at (spacelike) infinity’ of a
spacelike cone in Minkowski space, while {ρ0 = c, ρI = 0} consists of the points ‘at (null)
infinity’ of a null cone.) See Figure 1.2.

The second coordinate chart is

[0, 1)ρ̃I × [0, 1)ρ+ × S2
ω,

and (ρ̃I , ρ+, ω) for ρ̃I , ρ+ > 0 is identified with (t, x) for t = ρ−1
+ (ρ̃−1

I + 1), x = ρ̃−1
I ρ−1

+ ω;
thus

ρ̃I = (t− r)/r, ρ+ = (t− r)−1. (1.12)

(Now {ρ̃I = c, ρ+ = 0} for c ∈ (0, 1) consists of the points ‘at (future timelike) infinity’
of a timelike cone in Minkowski space.) When the coordinate system in which we work is
clear, we simply write ρI instead of ρ̃I .

To motivate a preliminary choice of function spaces for step 2, recall that the behavior
of solutions of �gu := −u;µ

µ near I + can be studied using the Friedlander rescaling

L := ρ−3�gρ. (1.13)

8The prototypical example of a blow-up is that of the origin in Rn: we have [Rn; {0}] ∼= [0,∞)r × Sn−1,
i.e. the origin in Rn is resolved, and r = 0 is no longer merely a point, but a full (n−1)-sphere. The front face
of this blow-up is {r = 0} ∼= Sn−1, and the blow-down map is the map (r, ω) 7→ rω: it is a diffeomorphism
in r > 0, but at r = 0 collapses an (n− 1)-sphere to a single point (the origin). In the setting of interest for
us, the blow-up [M ;X] of an embedded boundary submanifold X ⊂ ∂M is, in a similar manner, the union
(M \X) t SN+X of the complement of X and the inward pointing spherical (i.e. the quotient by the R+

action in the fibers of the) normal bundle of X in M . See the local coordinate descriptions below, as well
as [Mel96, Chapter 5] for a detailed discussion of blow-ups.



STABILITY OF MINKOWSKI SPACE 15

t

r
1 2 3 4 5

1

2

3

ρ 0
=

1

ρ 0
=

1
2

ρ 0
=

1
3 ρI = 1

ρI = 2
3

ρI = 1
2

ρI

ρ0

(0, 0)

I0 (ρ0 = 0)

I + (ρI = 0)

Figure 1.2. Illustration of the coordinate chart (1.11). Shown are a number
of level sets of ρ0 (red dashed lines) and ρI (blue dashed lines) projected
onto the (t, r) plane. Indicated on the top right is the (ρ0, ρI , ω) coordinate
system including the boundary hypersurfaces I0 and I + which are glued
onto R4.

This operator has smooth coefficients down to the interior (I +)◦ of null infinity: it is
equal to the conformal wave operator �ρ2g − 1

6Rρ2g, and ρ2g is a smooth, nondegenerate

Lorentzian metric down to (I +)◦: in local coordinates ρ = r−1 ≥ 0, x1 = t − r ∈ R,
ω ∈ S2 near (I +)◦, we have ρ2g = −2 dx1 dρ − /g + ρ2(dx1)2. Thus, solutions of Lu = 0,

with C∞c (R3) initial data, are smooth up to I + and typically nonvanishing there. We shall
refer to this reasoning as Friedlander’s argument below. (A more sophisticated version of
this observation lies at the heart of Friedrich’s conformal approach [Fri83] to the study of
Einstein’s equation.) However, for more general initial data, and, more importantly, in
many nonlinear settings (see §§1.1.2 and 1.2 below), smoothness will not be the robust
notion, and we must settle for less: conormality at ∂M . Namely, let Vb(M) denote the
Lie algebra of b-vector fields, i.e. vector fields tangent to the boundary hypersurfaces of M
other than the closure Σ of the initial surface Σ◦ = {t = 0}, a function u on M is conormal
iff it remains in a fixed weighted L2 space on M upon application of any finite number of
b-vector fields. For M defined above, Vb(M) is spanned over C∞(M) by translations ∂t and
∂xi as well as the scaling vector field t∂t+x∂x, boosts t∂xi +xi∂t, and rotation vector fields



16 PETER HINTZ AND ANDRÁS VASY

xi∂xj − xj∂xi .9 (Note however that the definition of Vb(M) depends only on the smooth
structure of M .10)

Let us now explain how to obtain a background estimate, step 3.1 above, for the forcing
problem Lu = f with trivial initial data. First, we can estimate u in H1 on any compact
subset of R4 ∩ {t ≥ 0} by f on another compact set. Then, on a neighborhood of (I0)◦

which is diffeomorphic to [0, 1)ρ0 × (0, 1)τ × S2, where

ρ0 := r−1, τ := t/r,

with ρ0 a local boundary defining function of I0, this problem roughly takes the form(
D2
τ − (ρ0Dρ0)2 − /∆

)
u = f, (1.14)

where we use the standard notation

D =
1

i
∂, i =

√
−1. (1.15)

In (1.14), /∆ = ∆/g ≥ 0 is the Laplacian on S2, and f has suitable decay properties making

its norms in the estimates below finite. This is a wave equation on the (asymptotically)
cylindrical manifold [0, 1)ρ0 × S2. Let

U0 = {0 ≤ τ ≤ c, ρ0 ≤ 1}, c ∈ (0, 1).

For any weight a0 ∈ R, we can run an energy estimate using the vector field multiplier
ρ−2a0

0 ∂τ and obtain

‖u‖ρa0
0 H1

b(U0) . ‖f‖ρa0
0 L2

b(U0) (1.16)

for f supported in U0; see Figure 1.3. Here L2
b is the L2 space with respect to the b-density

dτ dρ0

ρ0
|d/g|, the weighted L2

b norm is defined by ‖f‖ρa0
0 L2

b
= ‖ρ−a0

0 f‖L2
b
, and H1

b is the space

of all u ∈ L2
b such that V u ∈ L2

b for all V ∈ Vb(M); in U0, Vb(M) is spanned (over C∞(M)
by ∂τ , ρ0∂ρ0 , /∇, so we let

‖u‖ρa0
0 H1

b(U0) := ‖u‖ρa0
0 L2

b(U0) + ‖∂τu‖ρa0
0 L2

b(U0) + ‖ρ0Dρ0u‖ρa0
0 L2

b(U0) + ‖ /∇u‖ρa0
0 L2

b(U0).

In order to obtain a higher regularity estimate, one can commute any number of b-vector
fields through (1.14); the estimate (1.16) only relies on the principal (wave) part of L;
lower order terms arising as commutators are harmless. Thus, f ∈ ρa0

0 H
∞
b (weighted L2

b-
regularity with respect to any finite number of b-vector fields) implies u ∈ ρa0

0 H
∞
b , with

estimates.

The same conclusion holds for the initial value problem for Lu = 0 with initial data
which near I0 are (u|τ=0, ∂τu|τ=0) = (u|t=0, r∂tu|t=0) = (u0, u1), uj ∈ ρa0

0 H
∞
b (R3), where

R3 is the radial compactification of R3, defined analogously to (1.10), which has boundary

9In the coordinate chart (1.11), Vb(M) is spanned by ρ0∂ρ0 = −t∂t − r∂r, ρI∂ρI = −r(∂t + ∂r), and
rotation vector fields. In the chart (1.12), Vb(M) is spanned by ρI∂ρI = −r(∂t + ∂r), ρ+∂ρ+ = −t∂t − r∂r,
and rotation vector fields. It is then straightforward to check, in either of these two coordinate systems, that
translations, scaling, and boosts are linear combinations, with C∞(M) coefficients, of these vector fields.

10The smoothness of elements of Vb(M) on the compactification M in particular constrains their growth
as one leaves every compact set of R4. As ‘counterexamples’, one can check that the vector field t3∂t,
expressed in local coordinates near ∂M , is singular near any point of ∂M (though of course it is smooth
on R4!); similarly, the vector field t∂t is singular at I + in the sense that it does not extend, by continuity
from R4, to be tangent to I + as is required from b-vector fields on M ; it is, on the other hand, a smooth
b-vector field down to (I0)◦ and (I+)◦.
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defining function ρ0 = r−1. The assumption (1.6) on the size of initial data is a smallness
condition on ‖〈r〉γ̃‖

ρ
b0
0 HN+1

b

+ ‖〈r〉2k‖
ρ
b0
0 HN

b

.

U0 U0I0

I +

I+

I +

I0
U0 U0

i0 i0

i+

I + I +

Figure 1.3. The domain U0 on which the energy estimate (1.16) holds.
Left: as a subset of M . Right: as a subset of the Penrose compactification.

Re-defining ρ = r−1 near S+, a neighborhood of I0 ∩ I + is diffeomorphic to [0, 1)ρ0 ×
[0, 1)ρI × S2, where (as in (1.11))

ρ0 := −ρ/v = (r − t)−1, ρI := −v = (r − t)/r (1.17)

are boundary defining functions of I0 and I +, respectively. (Thus, a function bounded by
ρa0

0 ρ
aI
I decays like r−a0 near (I0)◦ and like r−aI near (I +)◦.) The lift of L to M is singular

as an element of Diff2
b(M) but with a very precise structure at I +: the equation Lu = f

is now of the form (
2∂ρI (ρ0∂ρ0 − ρI∂ρI )− /∆

)
u = f (1.18)

modulo terms with more decay; here, ignoring weights, ρI∂ρI ∼ ∂t+∂r and ρ0∂ρ0−ρI∂ρI ∼
∂t−∂r are the radial null vector fields. Assuming f vanishes far away from I +, we can run
an energy estimate using V = ρ−2a0

0 ρ−2aI
I V0 as a multiplier, where V0 = −cρI∂ρI + ρ0∂ρ0 is

future timelike in M \I + if we choose c < 1; note that V0 is tangent to I0 and I + (and
null at I +); it is necessary to arrange this tangency for compatibility with our conormal
function spaces, but it comes at the expense of giving control at I + that is weaker (but
more robust, i.e. holds for a larger class of spacetimes) than the smoothness following from
Friedlander’s argument. A simple calculation, cf. Lemma 4.4, shows that for aI < a0 and
aI < 0,

‖u‖ρa0
0 ρ

aI
I L2

b
+ ‖(ρ0∂ρ0 , ρI∂ρI , ρ

1/2
I

/∇)u‖ρa0
0 ρ

aI
I L2

b
. ‖ρIf‖ρa0

0 ρ
aI
I L2

b
in UI , (1.19)

see Figure 1.4, where L2
b is the L2 space with integration measure dρ0

ρ0

dρI
ρI
|d/g|. The as-

sumptions on the weights are natural: since ∂t − ∂r transports mass from I0 to I +, we
certainly need aI ≤ a0, while aI < 0 is necessary since, in view of the behavior of linear
waves discussed after (1.13), the estimate must apply to u which are smooth and nonzero
down to I +. In (1.19), derivatives of u along b-vector fields tangent to the fibers of the
radiation face are controlled without a loss in weights, while general derivatives such as

spherical ones lose a factor of ρ
1/2
I .11 When controlling error terms later on, we thus need

to separate them into terms involving fiber-tangent b-derivatives and general b-derivatives,
and check that the coefficients of the latter have extra decay in ρI ; see §2.4.

11This is to be expected: indeed, letting x := ρ
1/2
I , the rescaled metric x−2(ρ2g) is an edge metric

[Maz91], i.e. a quadratic form in dρ0
ρ0

, dx
x

, dθ
a

x
, with θa coordinates on S2, for which the natural vector fields

are precisely those tangent to the fibers of I +, that is, ρ0∂ρ0 , x∂x = 2ρI∂ρI , and x∂θa = ρ
1/2
I ∂θa .
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UI UI

I0

I +

I+

I +

I0 UI UI

i0 i0

i+

I + I +

Figure 1.4. The domain UI on which the energy estimate (1.19) holds.

From (1.18), L ∈ ρ−1
I Diff2

b(M) is equal to the model operator

L0 := 2∂ρI (ρ0∂ρ0 − ρI∂ρI )

modulo Diff2
b(M) (i.e. ignoring second order differential operators, such as /∆, which are

sums of at most twofold products of b-vector fields). The commutation properties of this
model are what allows for higher regularity estimates:12 (ρI times) equation (1.18) com-
mutes with ρ0∂ρ0 (scaling), ρI∂ρI (roughly a combination of scaling and boosts), and spher-
ical vector fields which are independent of ρ0 and ρI .

13 In the end, we obtain u ∈ ρa0
0 ρ

aI
I H

∞
b

when f ∈ ρa0
0 ρ

aI−1
I H∞b .

Lastly, near I+, one can use energy estimate with weight ρ−2aI
I ρ

−2a+
+ , a+ < aI large

and negative, multiplying a timelike extension of the above V0; higher regularity follows
by commuting with the scaling vector field ρ+∂ρ+ , where ρ+ is a defining function of I+,
and elliptic regularity for C(ρ+Dρ+)2 − L, C > 0 large, in I+ away from I +, which is a
consequence of the timelike nature of the scaling vector field ρ+∂ρ+ in (I+)◦. See Figure 1.5.
Note that it is only at this stage that one uses the asymptotically Minkowskian nature of the
metric in a neighborhood of all of I+; when dealing with a more complicated geometry, as
e.g. in the study of perturbations of a Schwarzschild black hole, establishing this part of the
background estimate (as well as the more precise asymptotics at I+ discussed momentarily)
becomes a major difficulty.

I0

I +

I+

I +

I0

i0 i0

i+

I + I +

Figure 1.5. The neighborhood (shaded) of I+ on which we use a global
(in I+) weighted energy estimate.

12See the discussion after (1.28) for an even stronger statement.
13We briefly sketch the argument: denoting the collection of these vector fields—which span Vb(M)

locally—by {Vj}, this gives L(Vju) = Vjf + [L, Vj ]u with [L, Vj ] ∈ Diff2
b (modulo multiples of L which

arise for V = ρI∂ρI , and which we drop here), which is one order better in the sense of decay than the a
priori expected membership in ρ−1

I Diff2
b due to these commutation properties. Write [L, Vj ] = CjkVk with

Cjk ∈ Diff1
b and apply the estimate (1.19) to Vju; then the additional forcing term [L, Vj ]u obeys the bound∑

k ‖ρICjkVku‖ρa0
0 ρ

aI
I
L2

b
.

∑
k ‖Vku‖ρa0

0 ρ
aI−1

I
H1

b

, which close to I + is bounded by a small constant times

the left hand side of (1.19), with Vju in place of u and summed over j, due to the gain (of at least 1
2
) in

the weight in ρI .
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Putting everything together, we find that

f ∈ ρa0
0 ρ

aI−1
I ρ

a+
+ H∞b (M), f ≡ 0 near Σ =⇒ u ∈ ρa0

0 ρ
aI
I ρ

a+
+ H∞b (M), (1.20)

for aI < min(a0, 0) and a+ < aI .
14

For nonlinear applications, the information (1.20) on u is not sufficient: the decay rate
at I + is limited, and we do not have a good decay rate at I+ either, cf. the discussion of
ρa0

0 ρ
aI
I following (1.17). Let us thus turn to step 3.2 and analyze Lu = f for f , vanishing

near Σ, having more decay,

f ∈ Y∞ := ρb00 ρ
−1+bI
I ρ

b+
+ H∞b (M); b+ < bI < b0, bI ∈ (0, 1). (1.21)

The background estimate (1.20) gives u ∈ ρb00 ρ
−ε
I ρ

a+
+ H∞b for all ε > 0. Near I0 ∩I + then,

the conormality of u allows for equation (1.18) to be written as

ρI∂ρI (ρ0∂ρ0 − ρI∂ρI )u = 1
2(ρIf + ρI /∆u) ∈ ρb00 ρ

bI
I H

∞
b on UI , (1.22)

i.e. L effectively becomes the composition of (linear) transport equations along the two
radial null directions. See Figure 1.6. Integration of ρ0∂ρ0 − ρI∂ρI is straightforward, while
integrating ρI∂ρI , which is a regular singular ODE with indicial root 0, implies that u has
a leading order term at I +; one finds that

u = u(0) + ub; u(0) ∈ ρb00 H
∞
b (I +), ub ∈ ρb00 ρ

bI
I H

∞
b (M) near I0 ∩I +,

which implies the existence of the radiation field.15 The procedure to integrate along
(approximate) characteristics to get sharp decay is frequently employed in the study of
nonlinear waves on (asymptotically) Minkowski spaces, see e.g. [LR10, §2.2], [Lin17], and
their precursors [Lin90, Lin92].

I0

I +

−ρI∂ρI

ρ0∂ρ0 − ρI∂ρI

Figure 1.6. The integral curves of the vector fields ∂t + ∂r ∼ −ρI∂ρI and
∂t− ∂r ∼ ρ0∂ρ0 − ρI∂ρI . Integration along the former gives the leading term
at I +, while integration along the latter transports weights (and polyho-
mogeneity) from I0 to I +.

At I + ∩ I+, the same argument works, showing that u(0) and ub are bounded by Cρ
a+
+

and CρbII ρ
a+
+ near I+ (i.e. by t−a+ as t → ∞ with r/t in compact subsets of [0, 1)). Im-

proving this weight however does not follow from such a simple argument. Indeed, at
I+, the behavior of u is governed by scattering theoretic phenomena: the asymptotics are
determined by scattering resonances of a model operator at I+, namely the normal oper-
ator of the b-differential operator L at I+, obtained by freezing its coefficients at I+, see

14Proving this estimate for large, negative, but nonexplicit a+ is easy, while obtaining an explicit value
of a+ does require explicit straightforward (albeit lengthy) calculations. We accomplish this in §4.3 by
identifying L with the conformal wave operator on static de Sitter space for a suitable choice of ρ.

15For rapidly decaying f , one can plug this improved information into the right hand side of (1.22),
thereby obtaining an expansion of u into integer powers of ρI and recovering the smoothness of u at I +.
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equation (2.2). We thus use the arguments introduced in [Vas13], see also [HV15, Theo-

rem 2.21], based on Mellin transform in ρ+, inversion of a ‘spectral family’ L̂(σ), which is
the conjugation of the model operator (called ‘normal operator’ in b-parlance) of L at I+

by the Mellin transform in I+, with σ the dual parameter to ρ+, and contour shifting in
the inverse Mellin transform to find the correct asymptotic behavior at I+: the resonances

σ ∈ C, which are the poles of L̂(σ)−1, give rise to a term ρiσ+ v, v a function on I+, in
the asymptotic expansion of u. (See §§5.2 and 7 for details.) The resonances can easily
be calculated explicitly in the present context, and they all satisfy −Imσ ≥ 1 > b+. The
upshot is that

f ∈ Y∞ ⇒ u ∈ X∞ :=
{
χu(0) + ub : u(0) ∈ ρb00 ρ

b+
+ H∞b (I +), ub ∈ ρb00 ρ

bI
I ρ

b+
+ H∞b (M)

}
,

(1.23)
where χ cuts off to a neighborhood of I +.

For later use as a simple model for constraint damping, consider a more general equation,

Lγu ≡ ρ−3(�g − 2γt−1∂t)(ρu) = f, (1.24)

for γ ∈ R; near I + and I0, this now roughly takes the form(
2ρ−1

I (ρI∂ρI − γ)(ρ0∂ρ0 − ρI∂ρI )− /∆
)
u = f.

Once the conormality of u is known, integrating the first vector field on the left gives
a leading term ργI , which is decaying for γ > 0. (One can show that the background
estimate (1.20) holds for aI < γ, but even an ineffective bound aI � 0 would be good
enough, as the transport ODE argument automatically recovers the optimal bound.)

Remark 1.5. Note that for small γ, the normal operator of Lγ at I+ is close to the normal

operator for γ = 0, hence one would like to conclude that mild decay ρ
b+
+ , b+ < 1, at I+

still holds in this case. This is indeed true, but the argument has a technical twist: Lγ
does not have smooth coefficients at I + as a differential operator (unlike L in Friedlander’s
argument) due to the presence of derivatives which are not tangential to S+. However, we

still have Lγ ∈ Diff2
b(R4); we thus deduce asymptotics at I+ via normal operator analysis

on the blown-down space R4, analogously to [BVW15, BVW16]. See §5.2.

Remark 1.6. The improved decay at I + translates into higher b-regularity of u on the
blown-down space R4, as we will show in Lemma 5.7; in the language of [BVW15, Proposi-
tion 4.4], this corresponds to a shift of the threshold regularity at the radial set by γ coming
from the skew-symmetric part of Lγ .

1.1.2. Non-linearities and null structure. Equipped with this understanding of linear waves,
we now discuss steps 2–4 of the abstract strategy of §1.1. In particular, we will show how
the absence of a ‘null structure’ for a semilinear wave equation well-known to exhibit finite-
time blow-up manifests itself from the global, Newton iteration scheme perspective; we will
also discuss examples of equations that do satisfy a null condition, of the type arising when
studying the linearization of the gauge-fixed Einstein equation.

To begin, recall that if u is conormal on M , then its derivatives along ∂0 := ∂t + ∂r or
size 1 spherical derivatives r−1 /∇ have faster decay by one order at I +, whereas its ‘bad’
derivative along ∂1 := ∂t − ∂r does not gain decay there; indeed, modulo vector fields with
more decay at I +, we calculate near I0 ∩I + using (1.17)

∂0 = −1
2ρ0ρI ρI∂ρI , ∂1 = ρ0(ρ0∂ρ0 − ρI∂ρI );
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note the extra factor of ρI in ∂0. All these derivatives gain an order of decay at I0, hence
the structure of nonlinearities is relevant mainly at I +; let us thus restrict the discussion to
a neighborhood of I0 ∩I +. (Similar considerations apply to a neighborhood of I+ ∩I +.)
Consider the nonlinear equation �gu− (∂1u)2 = f , or rather the closely related equation

P (u) = Lu− ρ−1(∂1u)2 − f, f ∈ Y∞ small, (1.25)

with L given by (1.13); this is well-known to violate the null condition introduced by
Christodoulou [Chr86] and Klainerman [Kla86]. From our compactified perspective, the
issue is the following. For u ∈ X∞, the linearization Lu = L − 2ρ−1(∂1u)∂1 is, to leading
order as a b-operator,

2ρ−1
I (ρI∂ρI − ∂1u)(ρ0∂ρ0 − ρI∂ρI ),

so the indicial root at I + is shifted from 0 to ∂1u|I + . Therefore, a step Luv = −P (u)
in the Newton iteration scheme (1.9) does not give v ∈ X∞. A Picard iteration, solving
L0v = −P (u) would, due to the leading term of ρ−1(∂1u)2 of size ρ−1

I , cause v to have a
logarithmic leading term when integrating the analogue of (1.22). Neither iteration scheme
closes, and this will remain true for any modification of the space X∞, e.g. if one allowed
elements of X∞ to have leading terms involving higher powers of log ρI . In fact, solutions
of global versions of this equation blow up in finite time [Joh81].

Assuming initial data to have sufficient decay, the nonlinear system Luc1 = 0, Lu1 −
ρ−1(∂1u

c
1)2 = 0 on the other hand can be solved easily if we design the function space X∞

in step 2 to encode a ρ0
I leading term for uc1 at I +, as in (1.23), and two leading terms, of

size log ρI and ρ0
I , for u1. Extending this model slightly, let γ > 0, recall Lγ from (1.24),

and consider the system for u = (u0, u
c
1, u1),

P (u) =
(
Lγu0, Lu

c
1 − ρ−1(∂1u0)2, Lu1 − ρ−1(∂1u

c
1)2
)

= 0; (1.26)

which is a toy model for the nonlinear structure of the gauge-fixed Einstein equation with
constraint damping, as we will argue in §1.2. Only working in (I +)◦, i.e. ignoring weights
at I0 and I+ for brevity, the above discussions suggest taking bI ∈ (0, γ) and working with
the space16

X∞ = {u = (u0, u
c
1, u1) : (u0, u

c
1 − u

c(0)
1 , u1 − u(1)

1 log ρI − u(0)
1 ) ∈ ρbII H

∞
b (M)}, (1.27)

where u
c(0)
1 , u

(1)
1 , u

(0)
1 ∈ C∞((I +)◦) are the leading terms. Then

P : X∞ → Y∞ = {f = (f0, f
c
1 , f1) : (f0, f

c
1 , f1 − ρ−1

I f
(0)
1 ) ∈ ρ−1+bI

I H∞b },

where f
(0)
1 ∈ C∞((I +)◦). The linearization Lu of P around u ∈ X∞ then has as its model

operator at I +

L0
u = 2ρ−1

I (ρI∂ρI −Au)(ρ0∂ρ0 − ρI∂ρI ), Au =

γ 0 0
0 0 0

0 ∂1u
c(0)
1 0

 , (1.28)

which has a (lower triangular) Jordan block structure, with all blocks either having positive
spectrum (the upper 1 × 1 entry) or being nilpotent (the lower 2 × 2 block). Thus, by
integrating ρI∂ρI − Au, we conclude that for Luv = −P (u), we have v ∈ X∞, thus closing

16Here as well as in the previous example, one could of course work with much less precise function
spaces since the full nonlinear system is lower triangular; for the Einstein equation on the other hand, we
will need this kind of precision.



22 PETER HINTZ AND ANDRÁS VASY

the iteration scheme (1.9). A background estimate as well as its higher regularity version,
which is the prerequisite for L0

u being of any use, can be proved as before. Error terms
arising from commutation with Au have lower differential order and can thus be controlled
inductively; that is, only the commutation properties of the principal part of L0

u matter for
this.

Remark 1.7. A tool for the study of the long time behavior of nonlinear wave equa-
tions on Minkowski space introduced by Hörmander [Hör87] is the asymptotic system, see
also [Hör97, §6.5] and [LR03]: this arises by making an ansatz u ∼ εr−1U(t−r, ε log r, ω) for
the solution and evaluating the ε2 coefficient, which gives a PDE in 1 + 1 dimensions in the
coordinates t−r and ` := ε log r which one expects to capture the behavior of the nonlinear
equation near the light cone; if the classical null condition is satisfied, the PDE is linear,
otherwise it it nonlinear. The weak null condition [LR03] is the assumption that solutions
of the asymptotic system grow at most exponentially in `, and for the Einstein vacuum
equation in harmonic gauge, solutions are polynomial (in fact, linear) in `. The latter finds
its analogue in our framework in the nilpotent structure of the coupling matrix in (1.28).
(However, quasilinear equations with variable long-range perturbations, see the discussion
around (1.35), cannot be treated directly with our methods, corresponding to the difficulty
in assigning a geometric meaning to the asymptotic system in such situations.) For works
which establish global existence of nonlinear equations even when the asymptotic system
has merely exponentially bounded (in `) solutions, we refer to Lindblad [Lin92, Lin08] and
Alinhac [Ali03].

1.1.3. Polyhomogeneity. Consider again equation (1.14) near (I0)◦, now assuming that f

is polyhomogeneous. For simplicity, let f = ρiz0 fz + f̃ , where fz ∈ C∞(∂R4), z ∈ C, and f̃

decays faster than the leading term, so f̃ ∈ ρb00 H
∞
b with b0 > − Im z. A useful characteri-

zation of the polyhomogeneity of f is that the decay of f improves upon application of the
vector field ρ0Dρ0 − z in the notation (1.15). The solution u satisfies u ∈ ρa0

0 H
∞
b for any

a0 < − Im z; but u′ := (ρ0Dρ0 − z)u solves17

Lu′ = (ρ0Dρ0 − z)f = (ρ0Dρ0 − z)f̃ ∈ ρ
b0
0 H

∞
b ,

so u′ ∈ ρb00 H
∞
b . This is exactly the statement that u has the form u = ρiz0 uz + ũ for some

uz ∈ C∞(∂R4), ũ ∈ ρb00 H
∞
b . If f has a full polyhomogeneous expansion, an iteration of this

argument shows that u has one too, with the same index set.

Near the corner I0 ∩I + then, one can proceed iteratively as well, picking up the terms
of the expansion at I + one by one, by analyzing the solution of the product of trans-
port equations in equation (1.22) when the right hand side has a partial polyhomogeneous
expansion at I +: the point is that ρ0∂ρ0 − ρI∂ρI transports expansions from I0 to I +,
ultimately since it annihilates ρiz0 ρ

iz
I . See Lemmas 7.5–7.7.

To obtain the expansion at I+, we argue iteratively again, using the resonance expansion
obtained via normal operator analysis as in the proof of [HV15, Theorem 2.21]. One needs
to invert the normal operator family of L on spaces of functions which are polyhomogeneous
at the boundary ∂I+, which is easily accomplished by solving away polyhomogeneous terms
formally and using the usual inverse, defined on spaces of smooth functions, to solve away
the remainder; see Lemma 7.8.

17Commutator terms have improved decay at ρ0 = 0 as before, hence are dropped here for clarity.
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1.2. Analysis of Einstein’s equation. For Einstein’s equation, the strategy outlined in
§1.1 needs to be supplemented by a preliminary step, the choice of the nonlinear operator P ,
which in particular means choosing a gauge, i.e. a condition on the solution g of Ric(g) = 0
which breaks the diffeomorphism invariance; by the latter we mean the fact that for any
diffeomorphism φ of M , φ∗g also solves Ric(φ∗g) = 0. Following DeTurck [DeT82], the
presentation by Graham–Lee [GL91], and [HV18], we consider the gauge-fixed Einstein
equation

P0(g) = Ric(g)− δ̃∗Υ(g) = 0, (1.29)

where δ̃∗ is a first order differential operator with the same principal symbol (which is
independent of g) as the symmetric gradient (δ∗gu)µν = 1

2(uµ;ν + uν;µ); we comment on the

choice of δ̃∗ below. Further, the gauge 1-form is

Υ(g; gm)µ := (gg−1
m δgGggm)µ = gµνg

κλ(Γ(g)νκλ − Γ(gm)νκλ), (1.30)

where δg is the adjoint of δ∗g , i.e. the (negative) divergence, Gg = 1 − 1
2g trg is the trace

reversal operator, and gm is a fixed background metric; we write Υ(g) ≡ Υ(g; gm) from
now on. This is a manifestly coordinate invariant generalization of the wave coordinate
gauge, where one would choose gm = g to be the Minkowski metric on R4 and demand that

a global coordinate system (xµ) : (M◦, g) → (R4, g) be a wave map. (Friedrich describes
Υ(g) = 0 and more general gauge conditions using gauge source functions, see in particular
[Fri85, Equation (3.23)].)

Two fundamental properties of P0(g) are: (1) P0(g) is a quasilinear wave equation, hence
has a well-posed initial value problem; (2) by the second Bianchi identity—the fact that
the Einstein tensor Ein(g) := GgRic(g) is divergence-free—the equation P0(g) = 0 implies
the wave equation

δgGg δ̃
∗Υ(g) = 0 (1.31)

for Υ(g), which thus vanishes identically provided its Cauchy data are trivial; we call

δgGg δ̃
∗ the gauge propagation operator. Therefore, solving (1.29) with Cauchy data for

which Υ(g) has trivial Cauchy data is equivalent to solving Einstein’s equation (1.1) in the
gauge Υ(g) = 0.

Since we wish to solve the initial value problem (1.4), we need to choose the Cauchy
data for g, i.e. the restrictions g0 and g1 of g and its transversal derivative to the initial
surface Σ◦ as a Lorentzian metric on M◦ such that γ is the pullback of g0 to Σ◦ and k
is the second fundamental form of any metric with Cauchy data (g0, g1); note that k only
depends on up to first derivatives of the ambient metric, hence can indeed be expressed
purely in terms of (g0, g1). These conditions do not determine g0, g1 completely, and one
can arrange in addition that Υ(g) vanishes at Σ◦ as a 1-form on M . Provided then that
P0(g) = 0, with these Cauchy data for g, holds near Σ◦, the constraint equations at Σ◦ can
be shown to imply that also the transversal derivative of Υ(g) vanishes at Σ◦ (see the proof
of Theorem 6.3), and then the argument involving (1.31) applies.

If the initial data in Theorem 1.1 are exactly Schwarzschildean for r ≥ R � 1, the
solution g is equal (i.e. isometric) to the Schwarzschild metric in the domain of dependence
of the region r ≥ R; more generally, for initial data which are equal to those of mass m
Schwarzschild modulo decaying corrections, we expect all outgoing null-geodesics to be bent
in approximately the same way as for the metric gSm. Thus, we should define the manifold
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M in step 1 so that I + is null infinity of the Schwarzschild spacetime. Now, along radial
null-geodesics of gSm, the difference t− r∗ is constant, where

r∗ = r + 2m log(r − 2m) (1.32)

is the tortoise coordinate up to an additive constant, see [Wal10, Equation (6.4.20)]. Corre-

spondingly, we define the compactification mR4 near t ∼ r∗ such that ρ = r−1 is a boundary
defining function, and mv := (t − r∗)/r is smooth up to the boundary; mM is defined by
blowing this up at S+ = {ρ = 0, mv = 0}. (This is smoothly extended away from t ∼ r∗ to

a compactification of all of R4.) Thus, mR4 and the Minkowski compactification R4 = 0R4

are canonically identified by continuity from R4, but have slightly different smooth struc-
tures; see §2.3 and [BVW16, §7].) The interior of the front face I + of the blow-up is
diffeomorphic to Rs × S2, where s := mv/ρ = t− r∗ is an affine coordinate along the fibers
of the blow-up. We denote defining functions of I0 (the closure of {ρ = 0, mv < 0} in mM),
I +, and I+ (the closure of {ρ = 0, mv > 0} in mM) by ρ0, ρI , and ρ+, respectively.

It is then natural to fix the background metric gm to be equal to gSm near I0 ∪I + and
smoothly interpolate with the Minkowski metric near r = 0 (which is nonsingular there,
unlike gSm). We then work with the gauge Υ(g; gm) = 0, and seek the solution of

P (h) := ρ−3P0(g) = 0, g = gm + ρh, (1.33)

with h to be determined; the factors ρ are introduced in analogy with the discussion of the
scalar wave equation (1.13).18 Here, ρ is a global boundary defining function of mR4; one
can e.g. take ρ = r−1 away from the axis r/t = 0, and ρ = t−1 near r/t = 0. Now, due to the
quasilinear character of (1.29), the principal part of Lh := DhP depends on h: it is given
by 1

2�g. Thus, one needs to ensure that throughout the iteration scheme (1.9), the null-
geometry of g is compatible with mM , in the sense that the long range term of g determining
the bending of light rays remains unchanged. To see what this means concretely, consider
a metric perturbation h in (1.33) which is not growing too fast at I +, say |h| . ρ−εI for
ε < 1/2 (that is, |h| . rε when t − r∗ remains in a bounded interval); one can then check
that, modulo terms with faster decay at I +,

�g = 2ρ−1
I

(
ρI∂ρI + 2ρ0h00(ρ0∂ρ0 − ρI∂ρI )

)
(ρ0∂ρ0 − ρI∂ρI ) near I0 ∩I +, (1.34)

which identifies
h00 = h(∂0, ∂0), ∂0 = ∂t + ∂r∗ , (1.35)

as the (only) long range component of h; see the calculation (3.15).19 Indeed, the first
vector field in (1.34) is approximately tangent to outgoing null cones, so for h00 6= 0 at
I +, outgoing null cones do not tend to (I +)◦. (Rather, if h00 > 0, say, they are less
strongly bent, like in a Schwarzschild spacetime with mass smaller than m.) Whether or
not h00 vanishes at I + depends on the choice of gauge. A calculation, see (A.5), shows
that the gauge condition Υ(g) = 0 implies the constancy of h00 along I +; but since
h00 is initially 0 due to gm already capturing the long range part of the initial data, this

18Note that we use gm in two distinct roles: once as a background metric in the gauge condition, and
once as a rough first guess of the solution of the initial value problem which (1) already has the correct long
range behavior at null infinity and (2) is globally close to a solution of the Einstein vacuum equation if m
is small. See also Remark 6.6.

19In the case that h00 vanishes at I +, the approximate null directions ρI∂ρI and ρ0∂ρ0 − ρI∂ρI have
the same form as in the discussion surrounding (1.22), however, due to our choice of compactification mM ,
they are now the radial null directions of Schwarzschild with mass m. (Integration along these more precise
characteristics was key in Lindblad’s proof of sharper asymptotics in [Lin17].)
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means that h00|I + = 0 indeed—provided that P (h) = 0 with Cauchy data satisfying the
gauge condition, as we otherwise cannot conclude the vanishing of Υ(g). We remark that
Υ(g) = 0 implies the vanishing of further components of h, namely r−1h0a ≡ h(∂0, r

−1∂θa)
and r−2/gabhab, hab := h(∂θa , ∂θb), which we collectively denote by h0; see (3.4) and (3.11),
where the notation h0 =: π0h is introduced.

As we are solving approximate (linearized) equations at each step of our Newton-type
iteration scheme in step 4, we thus need an extra mechanism to ensure that Υ(g), g =
gm + ρh, is decaying sufficiently fast at I + to guarantee the vanishing of h00 at I +.
This is where constraint damping comes into play. Roughly speaking, if one only has an

approximate solution of P0(g) ≈ 0, then we still get δgGg δ̃
∗Υ(g) ≈ 0; if one chooses δ̃∗

carefully, solutions of this can be made to decay at I + sufficiently fast so as to imply the
vanishing of h00. We shall show that the choice

δ̃∗u = δ∗gmu+ 2γ dtt ⊗s u− γ(ιt−1∇tu)gm, γ > 0,

accomplishes this.20 As a first indication, one can check that 2δgmGgm δ̃
∗ has a structure

similar to (1.24) with γ > 0, for which we had showed the improved decay at I +.

Regarding steps 2 and 3 of our general strategy, the correct function spaces can now be
determined easily (after some tedious algebra): solving L0u = 0, where Lh = DhP as usual,
one finds that u0 = π0u, so in particular the long range component u00 of u decays at I +,
while the remaining components, denoted uc0, have a size 1 leading term at I +, just like
solutions of the linear scalar wave equation. This follows from the schematic structure

ρ−1
I

(
ρI∂ρI −

(
γ 0
0 0

))
(ρ0∂ρ0 − ρI∂ρI )

(
u0

uc0

)
of the model operator at I + in this case. However, for such u then, solutions of Luu

′ =
−P (u) have slightly more complicated behavior. Indeed, the model operator at I + has
a schematic structure similar to (1.28), acting on (u′0, (u

′)c11, u
′
11), where we separate the

components of (u′)c0 into two sets, one of which consists of the single component

u′11 = u(∂1, ∂1), ∂1 = ∂t − ∂r∗ , (1.36)

while (u′)c11 captures the remaining components, which are u01, r−1u1b, and the part
r−2(uab − 1

2/gab/g
cducd) of the spherical part of u which is trace-free with respect to /g. Cor-

respondingly, we need to allow u′11 to have a logarithmic leading order term, just like the
component called u1 in the definition of the function space (1.27). In the next iteration
step, Lu′u

′′ = −P (u′), no further adjustments are necessary: the structure of the model
operator at I + is unchanged, hence the asymptotic behavior of u′′ does not get more
complicated.21 We remark that due to our precise control over each iterate, encoded by
membership in X∞, the relevant structure of the model operators and the regularity of
the coefficients of the linearized equations are the same at each iteration step; in particu-
lar, the fact that equation (1.33) is quasilinear rather than semilinear does not cause any
complications beyond the need for constraint damping.

20For technical reasons related to the definition of the smooth structure on mR4, we shall modify t
slightly; see Definition 2.9 and equation (3.3).

21The coupling matrix, called Au in (1.28), is in fact slightly more complicated here, see Lemma 3.8,
necessitating a more careful choice of the weights of the remainder terms of elements of the spaces X∞ and
Y∞ at I +, whose precise definitions we give in Definitions 3.1 and 3.3.
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The decoupling of the model operator at I + into three pieces—one for the decaying
components u0, one for the components uc11 which have possibly nontrivial leading terms at
I +, and one for the logarithmically growing component u11—is the key structure making
our proof of global stability work. The fact that the equation for the components u0 decou-
ples is not coincidental, as they are governed by the gauge condition and thus are expected
to decouple to leading order in view of the second Bianchi identity as around (1.31).22 The
decoupling of u11 and uc11 on the other hand is the much more subtle manifestation of the
weak null condition, as discussed in Remark 1.7.

The solution h of (1.33) is a symmetric 2-tensor in M◦; as part of step 1, we still need
to specify the smooth vector bundle on M which h will be a section of. Consider first the
Minkowski metric g on the radial compactification 0R4. In R4, g is a quadratic form, with

constant coefficients, in the 1-forms dt and dxi, which extend smoothly to the boundary as
sections of the scattering cotangent bundle scT ∗ 0R4 first introduced in [Mel94]; in a collar

neighborhood [0, 1)ρ × R3
X of a point in ∂0R4, the latter is by definition spanned by the

1-forms dρ
ρ2 , dXi

ρ , which are smooth and linearly independent sections of scT ∗ 0R4 down to

the boundary. For instance, near r = 0, we can take ρ = t−1 and X = x/t, in which

case dρ
ρ2 = −dt and dXi

ρ = dxi −Xi dt. Similarly then, gm will be a smooth section of the

second symmetric tensor power S2 scT ∗ mR4. Since our nonlinear analysis takes place on
the blown-up space mM , we seek h as a section of the pullback bundle β∗S2 scT ∗ mR4, where
β : mM → mR4 is the blow-down map. For brevity, we shall suppress the bundle from the
notation here.

Theorem 1.8. Suppose the assumptions of Theorem 1.1 are satisfied, i.e. for some small
m ∈ R and b0 > 0 fixed, the normalized data ρ−1

0 γ̃ and ρ−2
0 k ∈ ρb00 H

∞
b (R3) are small

in ρb00 H
N+1
b and ρb00 H

N
b , respectively. Then there exists a solution g of the initial value

problem (1.4) satisfying the gauge condition Υ(g) = 0, see (1.30), which on mM is of the

form g = gm + ρh, h ∈ ρb00 ρ
−ε
I ρ−ε+ H∞b (mM) for all ε > 0; here ρ is a boundary defining

function of mR4, and ρ0, ρI , and ρ+ are defining functions of I0, I +, and I+, respectively.

More precisely, near I + and using the notation introduced after (1.35) and (1.36), the
components h00, r−1h0b, and r−2/gabhab lie in

ρb00 ρ
bI
I ρ
−ε
+ H∞b (mM) (1.37)

for all bI < min(1, b0) and ε > 0, while h01, r−1h1b, and r−2(hab − 1
2/gab/g

cdhcd) have size 1

leading terms at I + plus a remainder in the space (1.37) for all such bI , ε, and h11 has a
logarithmic and a size 1 leading term at I + plus a remainder in the space (1.37) for all such
bI , ε. At I+ on the other hand, h has a size 1 leading term: there exists h+ ∈ ρ−εI H∞b (I+)

such that h− h+ ∈ ρ−εI ρ
b+
+ H∞b (mM) near I+ for any b+ < min(b0, 1).

Remark 1.9. Near mI +, and indeed for r � 1 and t − r∗ ≤ 1
2r, the membership u ∈

ρb00 ρ
bI
I ρ

b+
+ H∞b (mM) (e.g. u being a metric coefficient of h, and b+ = −ε as in (1.37)) is

equivalent, up to arbitrarily small losses in decay (due to switching from L2 to L∞ via
Sobolev embedding), to

|V1 · · ·VNu| . r−bI (1 + (r∗ − t)+)−b0+bI (1 + (t− r∗)+)b++bI

22In practice, it is easier to analyze u0 directly using the structure of the linearized gauge-fixed Einstein
equation, rather than via an (approximate) linearized second Bianchi identity, so this is how we shall proceed.
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for all N ∈ N0, where each Vj is a rotation vector field in R3 or one of the vector fields
t∂t + r∗∂r∗ , t∂r∗ + r∗∂t, ∂t, ∂x.

See Theorem 6.3 for the full statement, which in particular allows for the decay rate b0 of
the initial data to be larger and gives the corresponding weight at I0 for the solution. The
final conclusion follows from resonance considerations, as indicated before (1.23), and will
follow from the arguments used to establish polyhomogeneity in §7. We discuss continuous
dependence on initial data in Remark 6.4. A typical example of a polyhomogeneous expan-
sion of h arises for initial data which are smooth functions of 1/r in r � 1: in this case,
the leading terms of the expansion of h are schematically (and not showing the coefficients,
which are functions on I +)

h0 ∼ ρI log≤3 ρI , hc11 ∼ 1 + ρI log≤4 ρI , h11 ∼ log≤1 ρI + ρI log≤6 ρI (1.38)

at I +, and h ∼ 1+ρ+ log≤8 ρ+ at I+; see Example 7.3. Here, log≤k ρI stands for functions
which are sums of products | log ρI |`a`, 0 ≤ ` ≤ k, with a` functions on I +.

While a solution g of Ric(g) = 0 in the gauge Υ(g) = 0 of course solves equation (1.29)

for any choice of δ̃∗, we argued why a careful choice is crucial to make our global iteration
scheme work. Another perspective is the following: implementing constraint damping
allows us to solve the gauge-fixed equation (1.29) for any sufficiently small Cauchy data;
whether or not these data come from an initial data set satisfying the constraint equations
is irrelevant. Only at the end, once one has a solution of (1.29), do we use the constraint
equations and the second Bianchi identity to deduce Υ(g) = 0.

In contrast, consider the choice δ̃∗ = δ∗g in (1.29); the linearization of P0(g) around the

Minkowski metric g = g is then equal to 1
2�g, which is 1

2 times the scalar wave operator
acting component-wise on the components of a symmetric 2-tensor in the frame dxµ⊗dxν+
dxν ⊗ dxµ, where x0 = t, xi, i = 1, 2, 3, are the standard coordinates on R1+3

t,x . Solving
�g(ρh) = 0 with given initial data, which would be the first step in our iteration scheme for
initial data with mass m = 0, does not imply improved behavior for any components of h,

in particular h00; this means that constraint damping fails for this choice of δ̃∗. Thus, the
next iterate g + ρh in general has a different long range behavior, and correspondingly 0M
is no longer the correct place for the analysis of the linearized operator in the next iteration
step—even though the final solution of Einstein’s equation is well-behaved on 0M for such
initial data. With constraint damping on the other hand, the linearized equation always
produces behavior consistent with the qualitative properties of the nonlinear solution.

1.3. Bondi mass loss formula. The description of the asymptotic behavior of the met-
ric g = gm + ρh in Theorem 1.8 on the compact manifold mM and in the chosen gauge
allows for a precise description of outgoing light cones close to the radiation face I +.
Work on geometric quantities at I + started with the seminal works of Bondi–van der
Burg–Metzner [Bon60, BvdBM62], Sachs [Sac62b, Sac62a], Newman–Penrose [NP62], and
Penrose [Pen65]; the precise decay properties of the curvature tensor—in particular ‘peeling
estimates’ or their failure—were discussed in [KN03b, Chr02], see also [Daf12]. (For studies
on conditions on initial data which ensure or prevent smoothness of the metric at I + in
suitable coordinates, see [Fri83, Fri85, CMS95, AC93, VK04] and [KN03a, §8.2].)

As remarked before, the logarithmic bending of light cones is controlled by the ADM mass
m, which measures mass on spacelike, asymptotically flat, Cauchy surfaces. A more subtle



28 PETER HINTZ AND ANDRÁS VASY

notion is the Bondi mass [BvdBM62], see also [Chr91], which is a function of retarded
time x1 = t − r∗ that can be defined as follows: let S(u) ⊂ I + denote the u-level set
of x1 at null infinity; S(u) is a 2-sphere, and naturally comes equipped with the round
metric. If Cu denotes the outgoing light cone which limits to S(u) at null infinity and which
asymptotically approaches the radial Schwarzschild light cone {x1 = u}, one can define a
natural area radius r̊ on Cu, equal to the coordinate r plus lower order correction terms; the
Bondi mass MB(u) is then the limit of the Hawking mass of the 2-sphere {x1 = u, r̊ = R}
as R→∞. See §8 for the precise definitions. A change d

duMB(u) of the Bondi mass reflects
a flux of gravitational energy to I + along Cu. We shall calculate these quantities explicitly
and show:

Theorem 1.10. Suppose we are given a metric constructed in Theorem 1.8, and write

h11 = h
(1)
11 log(r) +O(1) near I +, where h

(1)
11 ∈ ρ

b0
0 ρ
−ε
+ H∞b (I +) is the logarithmic leading

term. Then the Bondi mass is equal to

MB(u) = m+
1

4π

∫
S(u)

1
2h

(1)
11 d/g. (1.39)

The Bondi mass loss formula takes the form d
duMB(u) = −E(u), where

E(u) =
1

32π

∫
S(u)
|N |2/g d/g, Nab = r−2∂1hab|I + ,

is the outgoing energy flux. Finally, MB(−∞) = m and MB(+∞) = 0.

We prove this for all initial data which are small and asymptotically flat in the sense
of (1.6). The Bondi mass was shown to be well-defined (and to satisfy a mass loss formula)
for the weakly decaying initial data used in [BZ09] by Bieri–Chruściel [BC16] in the geo-
metric framework of [CK93], but the question of how to define Bondi–Sachs coordinates
remained open. Our result is the first to accomplish this for a large class of initial data,
and to identify the Bondi mass in a (generalized) wave coordinate gauge setting. (The

C1,min(b0,1)−0 regularity of a conformally rescaled non-degenerate metric down to I + is a
by-product of our analysis.) The key to establishing the first part of Theorem 1.10 is the
construction and precise control of the aforementioned geometric quantities leading to the
identification (1.39); the mass loss formula itself is then equivalent to the vanishing of the
leading term of the (1, 1) component of the gauge-fixed Einstein equation at I +. The van-
ishing of MB(u) as u→ −∞ follows immediately from the decay properties of h there. On
the other hand, the proof that the total radiated energy

∫
E(u) du equals the initial mass m

proceeds by studying the leading order term h|I+ as the solution of a linear equation on I+

(obtained by restricting the nonlinear gauge-fixed Einstein equation to I+), with a forcing
term that comes from the failure of our glued background metric gm to satisfy the Einstein
equation and which is thus proportional to m. This equation now is closely related to the
spectral family of exact hyperbolic space at the bottom of the essential spectrum;23 a cal-

culation of the scattering matrix acting on the incoming data given by h
(1)
11 and comparing

23This linear operator acts on the symmetric scattering 2-tensor bundle restricted to I+; see [Had17] for
the relation with the hyperbolic Laplacian acting on its intrinsic 2-tensor bundle. The spectral parameter
here is fixed, and the definition of the scattering matrix (incoming data having logarithmic rather than
algebraic growth) is specific to working at the bottom of the spectrum; this is in contrast to the description
of the scattering matrix depending on the spectral parameter as e.g. in [GZ03].



STABILITY OF MINKOWSKI SPACE 29

the (0, 0) component of the outgoing data with h00—which vanishes by construction!—then
establishes the desired relationship.

Theorem 1.10 shows that the logarithmic term in the asymptotic expansion of h11 car-
ries physical meaning. Its vanishing forces m = 0, which by the positive mass theorem
means that the spacetime is exact Minkowski space. (The observation that

∫
E(u) du ≥ 0

immediately implies the nonnegativity of the ADM mass of the small initial data under con-
sideration here, which in this case was first proved by Choquet-Bruhat–Marsden [CBM76].)

Further geometric properties of the vacuum metrics constructed in this paper, such as
the identification of (I +)◦ ⊂M , resp. (I+)◦, as the set of endpoints of future-directed null,
resp. timelike, geodesics, will be discussed elsewhere.

1.4. Outline of the paper. In §§2 and 3, we set the stage for the analysis (steps 1 and
2): we give the precise definition of the compactification M = mM on which we will find
the solution of (1.4) in §2.1; the relevant function spaces are defined in §2.2, and the
relationships between different compactifications are discussed in §2.3. In §2.4, we prepare
the invariant formulation of estimates such as (1.19); the results there are not needed until
§4. In §3.1, we define the spaces X∞ and Y∞ on M in which we shall find the solution h in
Theorem 1.8, and calculate the mapping properties and model operators of the (linearized)
gauge-fixed Einstein operator in §§3.2 and 3.3, respectively. (The necessary algebra is
moved to Appendix A.) The key structures (constraint damping, null structure) critical for
our proof will be discussed there as well. We accomplish part 3.1 of step 3—the proof of a
high regularity background estimate with imprecise weights—by exploiting these structures
in §4. The recovery of the precise asymptotic behavior in §5 finishes step 3.2. Putting this
into a Nash–Moser framework allows us to finish the proof of Theorem 1.8 in §6; the proof
of polyhomogeneity, thus of the last part of Theorem 1.1, is proved in §7. Finally, a finer
description of the resulting asymptotically flat spacetime near null infinity, leading to the
proof of Theorem 1.10, is given in §8.

For the reader only interested in the key parts of the proof, we recommend reading §§2.1
and 2.2 for the setup, §3.1 for the form of metric perturbations we need to consider, and §3.2
for an explanation of the main features of the linearized problem; taking the background
estimate, Theorem 4.2 (which uses material from §2.4, and whose proof roughly follows the
steps outlined in §1.1.1), as a black box, the argument formally concludes in §5. (Getting
the actual nonlinear solution in §6 is then routine.)
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2. Compactification

As explained in §1.2, we shall find the metric g in Theorem 1.8 as a perturbation of a
background metric gm which interpolates between mass m Schwarzschild in a neighborhood
{r � 1, |t| < 2r} of I0 ∪I and the Minkowski metric elsewhere. In §2.1, we define such

a metric gm as a smooth scattering metric on a suitable partial compactification mR4 of
R4 to a manifold with boundary which is closely related to the radial compactifications
of asymptotically Minkowski spaces used in [BVW15, BVW16]. The ideal boundaries I0,
I +, and I+ are then the boundary hypersurfaces of a manifold with corners obtained by
blowing up mR4 at the ‘light cone at infinity.’ The spaces of conormal and polyhomogeneous
functions on this manifold are defined in §2.2.

Let us recall the notion of the scattering cotangent bundle scT ∗X over an n-dimensional
manifold X with boundary ∂X. Over the interior X◦, scT ∗X◦X := T ∗X◦X is the usual
cotangent bundle. Near the boundary, let

ρ ≥ 0, y = (y1, . . . , yn−1) ∈ Rn−1 (2.1)

denote local coordinates in which ∂X is given by ρ = 0; then the 1-forms dρ
ρ2 , dyj

ρ (j =

1, . . . , n−1) are a smooth local frame of scT ∗X, i.e. smooth scattering 1-forms are precisely

the linear combinations a(ρ, y)dρ
ρ2 +aj(ρ, y)dy

j

ρ with a, aj smooth. (Equivalently, we can use

d(1/ρ) and d(yj/ρ) as a smooth local frame.) The point is that, viewed from the perspective
of X◦, such 1-forms have a very specific behavior as one approaches ∂X. Tensor powers
and their symmetric versions Sk scT ∗X, k ∈ N, are defined in the usual manner; the dual
bundle is denoted scTX and called scattering tangent bundle. In the case that ∂X = Y ×Z
and X = [0, 1)ρ × ∂X are products, so T ∗Y ⊂ T ∗X is a well-defined subbundle, then the
rescaling ρ−1T ∗Y ⊂ scT ∗X, spanned by covectors of the form ρ−1η, η ∈ T ∗Y , is a smooth
subbundle.

To give an example, calculations similar to the ones prior to Theorem 1.8 show that the
differentials of the standard coordinates on Rn extend to the radial compactification Rn as
smooth scattering 1-forms; they are in fact a basis of scT ∗Rn, and any metric on Rn with
constant coefficients, such as the Minkowski or Euclidean metric, is a scattering metric, i.e.
an element of C∞(Rn;S2 scT ∗Rn).

The b-cotangent bundle bT ∗X is locally spanned by the 1-forms dρ
ρ , dyj (j = 1, . . . , n−1);

its dual is the b-tangent bundle bTX, spanned locally by ρ∂ρ and ∂yj . The space Vb(X)
of b-vector fields on X, consisting of those vector fields V on X which are tangent to ∂X,
is then canonically identified with C∞(X; bTX). A b-metric is a nondegenerate section of

S2 bTX. The space Diffkb(X) of b-differential operators of degree k consists of finite sums
of k-fold products of b-vector fields. Fixing a collar neighborhood [0, ε)ρ×∂X and choosing

local coordinates yj on ∂X as before, the normal operator of an operator L ∈ Diffkb(X)
given in the coordinates (2.1) by L =

∑
j+|α|≤k ajα(ρ, y)(ρDρ)

jDα
y is defined by freezing

coefficients at ρ = 0,

N(L) :=
∑

j+|α|≤k

ajα(0, y)(ρDρ)
jDα

y ∈ Diffkb([0,∞)ρ × ∂X). (2.2)

This depends on the choice of collar neighborhood only through the choice of normal vector
field ∂ρ|∂X ; see [Mel93, §4.15] for an invariant description. The Mellin-transformed normal
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operator family L̂(σ), σ ∈ C, is the conjugation of N(L) by the Mellin transform in ρ; thus,

in view of ρ−iσρDρ(ρ
iσ) = σρiσ, one obtains L̂(σ) by formally replacing ρDρ by σ:

L̂(σ) :=
∑

j+|α|≤k

ajα(0, y)σjDα
y .

This is a holomorphic family of elements of Diffk(∂X). Analogous constructions can be
performed for b-operators acting on vector bundles.

2.1. Analytic structure. Fix the mass m ∈ R; for now, m does not have to be small.
The Schwarzschild metric, written in polar coordinates on R× R3, takes the form

gSm = (1− 2m
r )dt2 − (1− 2m

r )−1dr2 − r2
/g

= (1− 2m
r )ds2 + 2ds dr − r2

/g, (2.3)

where /g denotes the round metric on S2, and where we let

s := t− r∗, r∗ := r + 2m log(r − 2m), (2.4)

so dr∗ = r
r−2mdr. Note that level sets of s are radial outgoing null cones. Define

ρ := r−1, v := r−1
(
t− r − χ(t/r)2m log(r − 2m)

)
, (2.5)

where χ(x) ≡ 1, x < 2, and χ(x) ≡ 0, x > 3. Let then

C1 := [0, ε0)ρ × (−7
4 , 5)v × S2

ω, (2.6)

where we shrink ε0 > 0 so that t is well-defined and depends smoothly on ρ > 0 and v, via
the implicit function theorem applied to (2.5). This will provide the compactification near
the future light cone (and part of spatial infinity). Near future infinity, we use standard
coordinates (t, x) ∈ R× R3 on R4; define

ρ′+ = t−1, X = x/|t|, (2.7)

and put
C2 := [0, ε0)ρ′+ × {X ∈ R3 : |X| < 1

4}. (2.8)

For ε0 > 0 small enough, we can consider the interiors C◦1 , C◦2 as smooth submanifolds of
R4 using the identifications (2.5) and (2.7). (Note in particular that the smooth structures
agree with the induced smooth structure of R4.) Let us consider the transition map between
C◦1 and C◦2 in more detail: in C◦1 ∩ C◦2 and for t−1 small enough, we have χ(t− r) ≡ 0 and
r
t >

1
7 , so the map

(ρ′+, X) 7→ (ρ = ρ′+/|X|, v = |X|−1 − 1, ω = X/|X|) (2.9)

extends smoothly (with smooth inverse) to ρ′+ = 0. We then let

R4 :=
(
R4 t C1 t C2

)
/ ∼

where ∼ identifies C1 and C2 with subsets of R4 as above, and the boundary points of C1

and C2 are identified using the map (2.9). This is thus a smooth manifold with boundary,24

though both R4 and ∂R4 = (∂C1 t ∂C2)/ ∼ are noncompact. In other words, R4 is only a
compactification of the region v > −7

4 . See Figure 2.1.

24Different choices of χ produce the same topological space, indeed Cα manifold (α < 1); on the other
hand, the smooth structure at the boundary does depend on χ, but only in the gluing region C1 ∩ C2. All
resulting smooth structures work equally well.
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C1 C1

C2

Σ

∂R4

Figure 2.1. The partial compactification R4 of R4, constructed from R4,
C1, and C2. Also shown is the hypersurface Σ from (2.15).

The scattering cotangent bundle of R4 near the light cone at infinity has a smooth
partial trivialization scT ∗C1

R4 = 〈dr〉 ⊕ 〈d(v/ρ)〉 ⊕ ρ−1T ∗S2, thus if ψ is a smooth function
with ψ(v) ≡ 1 for v < 1 and ψ(v) ≡ 0 for v > 2, then

gm,1 := (1− 2mψ(v)
r )d(v/ρ)2 + 2d(v/ρ) dr − r2

/g ∈ C∞(C1;S2 scT ∗C1
R4). (2.10)

In v > 3 and for ε0 > 0 small enough, we simply have gm,1 = dt2− dr2− r2/g, which is thus
equal to

gm,2 := d(1/ρ′+)2 − d(X/ρ′+)2 ∈ C∞(C2;S2 scT ∗C2
R4)

on the overlap C1 ∩ C2. Thus, we can glue gm,1 and gm,2 together to define a Lorentzian
scattering metric g̃m on C1 ∪ C2. We extend g̃m to a global metric:

Definition 2.1. Fix φ ∈ C∞(R4) such that suppφ ⊂ C1 ∪C2, and so that φ ≡ 1 near ∂R4.
With g̃m as above, we then define

gm := φg̃m + (1− φ)(dt2 − dx2) ∈ C∞(R4;S2 scT ∗R4), (2.11)

thus gluing g̃m to the Minkowski metric away from C1 ∪ C2.

By construction, gm is equal to the Minkowski metric in a compact region of R4 as well
as in a closed subcone of the interior of the future light cone, which we glue together with
the Schwarzschild metric near spacelike and null infinity.

Next, denote the light cone at future infinity by

S+ := {ρ = 0, v = 0} ⊂ ∂R4 (2.12)

and let

M ′ := [R4;S+]

denote the blow-up of R4 at S+, see Figure 2.2. That is, as a set,

M ′ =
(
R4 \ S+

)
t
(
[−π/2, π/2]σ × S2

ω

)
,

which can be endowed with the structure of a smooth (noncompact) manifold with corners
by writing it as

M ′ =
((

R4 \ S+
)
t
(
[0, 1)ρI × [−π/2, π/2]σ × S2

ω

))
/ ∼,
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where we identify a point in R4 with coordinates (ρ, v, ω), (ρ, v) 6= (0, 0), with the point

(ρI =
√
ρ2 + v2, σ = arctan(v/ρ), ω). The map

β : M ′ → R4, (2.13)

equal to the identity map away from S+, and given by β(ρI , σ, ω) = (ρ = ρI cosσ, v =
ρI sinσ, ω), is called the blow-down map. Note that β is a local diffeomorphism away from
S+, but is not injective at the front face

ff([R4;S+]) := ρ−1
I (0)

of the blow-up. The point of doing this blow-up is that curves tending to S+ but at different
angles σ have distinct limiting points on the front face. Concretely, s = tan(σ) = v/ρ =
t − r∗ is an affine parameter on the fibers β−1(p), p ∈ S+, of the blow-down map, so
β−1(S+) is the set of all endpoints of future-directed outgoing radial null-geodesics of mass
m Schwarzschild, and radial null-geodesics with different t − r∗ are separated all the way
up to β−1(S+). It is thus natural to define:

Definition 2.2. Null infinity I + is defined as the front face of the blowup of S+ ⊂ R4,

I + := ff([R4;S+]).

∂R4

S+S+

R4

I+

I0

I +

M ′
β

Figure 2.2. Left: the partial compactification R4 and its light cone at

infinity S+. Right: the blow-up M ′ = [R4;S+]
β−→ R4, with front face I +

(null infinity) and side faces I0 (spatial infinity), I+ (future timelike infinity).

The side faces of the blow-up are the connected components of the lift of the original
boundary hypersurface ∂R4, i.e. of the closure of the preimage of ∂R4 \S+ under β. In the
present situation, there are two side faces:

Definition 2.3. The future temporal face is

I+ = β−1
(
(∂C2 ∩ ∂R4) ∪ {v > 0}

)
,

whose image β(I+) is a closed 3-ball with boundary S+. The spatial face (more precisely:

the part of it that we chose to include in the compactification R4) is defined by

I0 := β−1
(
∂R4 ∩ {v < 0}

)
.
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Using β, one can pull back natural vector bundles on R4 to M ′; for instance, the pullback
β∗gm, which we simply denote by gm for brevity, is an element of C∞(M ′;β∗S2 scT ∗R4) (and
constant along the fibers of β).

Let ρ0 = r−1 for |v + 1| ≤ 3
4 and r > R, R � 1, and extend it to a smooth positive

function on all of R4. Denote then by tb the smooth function

tb = ρ0(t− 2mχ0(r) log(r − 2m)), (2.14)

defined for |t|/〈r〉 < 1
2 , where χ0 ≡ 0 for r < R and χ0 ≡ 1 for r > 2R; this extends the

function v + 1 smoothly into the interior R4, and dtb is timelike on

Σ := t−1
b (0). (2.15)

(The main point of this construction is to write the initial hypersurface Σ in a nondegenerate
way, i.e. as the zero set of a function whose differential does not vanish anywhere on it.)
Note that the function ρ0 is, in a neighborhood of Σ, a boundary defining function of I0;
below, we shall use different boundary defining functions adapted to our needs, but keep
the same notation. See also Remark 2.6.

We restrict our analysis from now on to the following smooth manifold with corners:

Definition 2.4. The compact manifold with corners M is defined by

M := M ′ ∩
(
{tb ≥ 0} ∪ {t > 1

3〈r〉}
)
.

One should think of this as (the compactification of) the causal future of Σ; and this is
indeed what it is if we endow M◦ with the Minkowski metric.

We regard the boundary Σ ⊂ M as ‘artificial,’ i.e. incomplete, from the point of view
of b-analysis; recall Figure 1.1; abusing notation slightly, we shall denote the part I0 ∩M
of spatial infinity contained in M again by I0. We denote by ρ0, ρI , and ρ+ ∈ C∞(M)
defining functions of I0, I +, and I+, respectively; we further let ρ ∈ C∞(M) denote a
total boundary defining function, e.g. ρ = ρ0ρIρ+. Defining functions are well-defined up
to multiplication by smooth positive functions. We shall often make concrete choices to
simplify local calculations; by a local defining function of I0, say, on some open subset
U ⊂M we then mean a function ρ0 ∈ C∞(U) so that for any K b U , ρ0|K can be extended
to a globally defined defining function of I0. We remark that ρ0|Σ ∈ C∞(Σ) is a defining
function of ∂Σ within Σ.

Remark 2.5. The causal character (spacelike, null, timelike) of level sets of ρ0, i.e. of dρ0,
depends on the particular choice of ρ0. On the other hand, the vector field ρ0∂ρ0 , defined

using any local coordinate system, is well-defined as an element of bTI0M , and thus so is
its causal character at I0 with respect to the b-metric ρ2gm: it is the scaling vector field
at infinity, see the discussion after equation (1.13), and spacelike away from the corner
I0 ∩I +. Likewise, ρ+∂ρ+ is the scaling vector field at I+, which is timelike.

Let us relate Σ to the radial compactification R3 of Euclidean 3-space; recall that the
latter is defined using polar coordinates (r, ω) ∈ (0,∞)× S2 on R3 as the closed 3-ball

R3 :=
(
R3 t ([0,∞)ρ0 × S2)

)
/ ∼, where (r, ω) ∼ (ρ0, ω), ρ0 = r−1, r > 0.

Consider the map ι : R3 3 x = (r, ω) 7→ (2mχ(r) log(r − 2m), x) ∈ Σ◦ ⊂ Rt × R3
x, which

is the projection along the flow of ∂t. Expressed near ∂R3, i.e. for small ρ0, this takes the
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form ι(ρ0, ω) = (ρ, v, ω) for ρ = ρ0 and v = −1; thus, ι extends to a diffeomorphism

Σ ∼= R3. (2.16)

Whenever necessary, we shall make the mass parameter m in these constructions explicit
by writing

mR4, mM ′, mM, mΣ, mtb,
mI0, mI +, mI+, mβ, mρ, etc. (2.17)

In particular, 0R4 is the radial compactification of R4 with the closed subset {|t|−1 =
0, t/r ≤ −3

4} of the boundary removed; note here that on their respective domains of

definition, r−1 and |t|−1 are indeed local boundary defining functions of 0R4. Moreover, the
metric gm for m = 0 is equal to the Minkowski metric g. We shall explore the relationships

between mR4 etc. for different values of m in §2.3.

Remark 2.6. For m = 0, it is easy to write down global expressions for boundary defining
functions in t ≥ 1

2 |r|, for instance (using notation similar to [Lin17])

0ρ0 = (1 + q−)−1, 0ρI = t−1(1 + q−)(1 + q+), 0ρ+ = (1 + q+)−1, 0ρ = t−1; (2.18)

here q+ = φ+(t− 〈r〉) and q− = φ+(〈r〉 − t), where φ+(x) is a smooth function, φ+(x) = x
for x ≥ 1, and φ+(x) = 0, x ≤ 0. One can write down similar expressions for general m
by using r∗ instead of r near I + ∪ I0, and inserting suitable partitions of unity to obtain
expressions which are globally smooth. While expressions such as (2.18) offer a quick way to
relate bounds by (0ρ0)a0(0ρI)

aI (0ρ+)a+ into bounds in terms of standard coordinates on R4,
they are of course cumbersome to work with if one used them as parts of local coordinate
systems on mM . Furthermore, since we fixed a smooth structure of mM , boundary defining
functions on mM are well-defined up to multiplication by smooth, positive functions with
smooth, positive reciprocals; therefore, decay rates, such as a0, aI , a+ above, with respect
to one particular set of choices of boundary defining functions of mM are the same as for
any other set of choices on the same manifold mM . The advantage of defining mM is then
that one can work with any convenient choices of (local) boundary defining functions for
any particular local coordinate calculation or estimate for a PDE on mM , and the decay
rates in such an estimate, when expressed in terms of one’s chosen defining functions, make
invariant sense.

Working on mR4, the following coordinates are convenient for performing calculations
near the light cone at infinity S+:

Definition 2.7. We define the coordinates q = x0 and s = x1 as follows:

q := x0 := t+ r∗, s := x1 := t− r∗.

Their level sets are null hypersurfaces for the mass m Schwarzschild metric. Using
dq = ds+ 2dr∗ and (2.4),

scT ∗R4 = 〈dq〉 ⊕ 〈ds〉 ⊕ r T ∗S2 (2.19)

therefore defines a smooth partial trivialization near S+; recall that ρ = r−1 there. Simi-
larly,

∂0 ≡ ∂x0 = ∂q = 1
2(∂t + ∂r∗), ∂1 ≡ ∂x1 = ∂s = 1

2(∂t − ∂r∗)
are smooth scattering vector fields on R4, and together with r−1TS2, they give a smooth
partial trivialization of scTR4 near S+.25 Letting xa, a = 2, 3, denote local coordinates on

25On the other hand, t−1 is not smooth on mR4 for m 6= 0; see Lemma 2.8 below.
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S2, we will denote spherical indices by early alphabet Latin letters a, b, c, d, e, and general
indices ranging from 0 to 3 by Greek letters. The components of a section ω of scT ∗R4 in
the splitting (2.19) are denoted with barred indices:

ω0̄ := ω(∂0), ω1̄ := ω(∂1), ωā := ω(ρ∂a) = r−1ω(∂a). (2.20)

Thus, the components of a tensor with respect to this splitting have size comparable to the
components in the coordinate basis of T ∗R4. The splitting (2.19) induces the splitting

S2 scT ∗R4 = 〈dq2〉 ⊕ 〈2dq ds〉 ⊕ (2dq ⊗s r T ∗S2)

⊕ 〈ds2〉 ⊕ (2ds⊗s r T ∗S2)⊕ r2 S2T ∗S2,
(2.21)

as well as the dual splittings of the dual bundles scTR4 and S2 scTR4. We will occasionally
use the further splitting

S2T ∗S2 = 〈/g〉 ⊕ 〈/g〉⊥. (2.22)

For calculations of geometric quantities associated with the metric, the bundle splittings
induced by the coordinates q, s, x2, x3, i.e.

T ∗R4 = 〈dq〉 ⊕ 〈ds〉 ⊕ T ∗S2,

S2T ∗R4 = 〈dq2〉 ⊕ 〈2dq ds〉 ⊕ (2dq ⊗s T ∗S2)⊕ 〈ds2〉 ⊕ (2ds⊗s T ∗S2)⊕ S2T ∗S2,
(2.23)

are more convenient. Components are denoted without bars, that is, for a 1-form ω and
for µ = 0, 1, we have ωµ := ω(∂µ) = ωµ̄, while we let ωa := ω(∂a) = rωā. In short, we have

ωµ̄ = r−s(µ)ωµ, s(µ1, . . . , µN ) := #{λ : µλ ∈ {2, 3}}, (2.24)

likewise for tensors of higher rank.

On the resolved space M , the null derivatives ∂0, ∂1 can be computed as follows: near
I0 ∩I +, we can take

ρ0 = −ρ/v = (r∗ − t)−1, ρI = −v = (r∗ − t)/r, ρ = ρ0ρI = r−1; (2.25)

then

∂0 = −1
2ρ0ρI(1− 2mρ)ρI∂ρI ,

∂1 = ρ0

(
ρ0∂ρ0 − (1− 1

2ρI(1− 2mρ))ρI∂ρI
)
,

(2.26)

and dually

ρ dq = − 2
1−2mρ

(dρ0

ρ0
+ dρI

ρI

)
+ ρI

dρ0

ρ0
, ρ ds = ρI

dρ0

ρ0
. (2.27)

A similar calculation near I+ ∩I + yields

∂0 = f0ρ0ρIρ+ · ρI∂ρI , ∂1 ∈ ρ0ρ+Vb(M), (2.28)

for some f0 ∈ C∞(M), f0 > 0, depending on the choices of boundary defining functions.

2.2. Function spaces. We first recall the notion of b-Sobolev spaces on Rn,d+ := [0,∞)dx×
Rn−dy : first, we set H0

b(Rn,d+ ) ≡ L2
b(Rn,d+ ) := L2(Rn,d+ ; |dx1

x1 . . .
dxd

xd
dy|); for k ∈ N then,

Hk
b (Rn,d+ ) consists of all u ∈ L2

b such that V1 . . . Vju ∈ L2
b for all 0 ≤ j ≤ k, where each

V` is equal to either xp∂xp or ∂yq for some p = 1, . . . , d, q = 1, . . . , n − d. For general

s ∈ R, one defines Hs
b(Rn,d+ ) by interpolation and duality. One can define b-Sobolev spaces

on compact manifolds with corners by localization and using local coordinate charts; we
give an invariant description momentarily. Note that the logarithmic change of coordinates
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tj := − log xj , j = 1, . . . , d, induces an isometric isomorphism Hs
b(Rn,d+ ) ∼= Hs(Rn) with the

standard Sobolev space on Rn.

Now on M ′, fix any smooth b-density, i.e. in local coordinates as above a smooth positive

multiple of |dx1

x1 . . .
dxd

xd
dy|, then the space L2

b(M ′) with respect to this density is well-defined;

the space L2
b(M) of restrictions of elements u ∈ L2

b(M ′) to M is similarly well-defined, and
since M is compact, any two choices of b-densities on M ′ yield equivalent norms on L2

b(M).
More generally, if b0, bI , b+ ∈ R are weights, we define the weighted L2 space

ρb00 ρ
bI
I ρ

b+
+ H0

b(M) ≡ ρb00 ρ
bI
I ρ

b+
+ L2

b(M) :=
{
u : ρ−b00 ρ−bII ρ

−b+
+ u ∈ L2

b(M)
}
.

The b-Sobolev spaces of order k = 0, 1, 2, . . . are defined using a finite collection of vector
fields V ⊂ Vb(M ′) such that at each point p ∈M , the collection Vp spans bTpM , namely

Hk
b (M) := {u ∈ L2

b(M) : V1 . . . Vju ∈ L2
b(M), 0 ≤ j ≤ k, V` ∈ V };

the norm on this space is the sum of the L2
b(M)-norms of u and its up to k-fold derivatives

along elements of V . One defines ρb00 ρ
bI
I ρ

b+
+ Hk

b (M) and its norm correspondingly. Note

that the vector fields in V are required to be tangent to I0, I +, and I+, but not to
Σ; thus, we measure standard Sobolev regularity near Σ, and b- (conormal) regularity at
I0, I +, and I+. (Thus, our space Hk

b (M) would be denoted H̄k
b (M) in the notation of

[Hör07, Appendix B].) Due to the compactness of M , any two choices of collections V
and boundary defining functions ρ0, ρI , ρ+ give rise to the same b-Sobolev space, up to
equivalence of norms. (For instance, any other defining function ρ′0 of I0 is related to ρ0 by
ρ′0 = aρ0 where 0 < a ∈ C∞(M) (and thus by compactness of M , C−1 ≤ a ≤ C for some
C > 1); the equality of the weighted spaces defined using ρ0 or ρ′0 is then a consequence of
the fact that multiplication by ab0 , or in fact by any smooth nonzero function on M with
smooth reciprocal, is an isomorphism on Hk

b (M).) The space H∞b (M) =
⋂
k≥1H

k
b (M) and

its weighted analogues have natural Fréchet space structures; we refer to their elements as
conormal functions. We shall also use function spaces with infinitely decaying weights, so
for instance

ρ∞I H
k
b (M) :=

⋂
bI∈R

ρbII H
k
b (M), (2.29)

as well as spaces of the form

ρbI−0
I Hk

b (M) :=
⋂
ε>0

ρbI−εI Hk
b (M),

similarly for spaces with more weights.

Weighted b-Sobolev spaces of sections of vector bundles on M are defined using local
trivializations. We will in particular use the space

H
k;b0,bI ,b+
b (E) ≡ Hk;b0,bI ,b+

b (M ;E) := ρb00 ρ
bI
I ρ

b+
+ Hk

b (M ;E), (2.30)

with E denoting the trivial bundle C := M × C → M , or E = β∗scT ∗R4, or E =

β∗S2 scT ∗R4. When the bundle E is clear from the context, we will simply write H
k;b0,bI ,b+
b .

When estimating error terms, we will often use the inclusion

C∞(R4) ⊂ C∞(M) ⊂ H∞;−0,−0,−0
b :=

⋂
ε>0

H∞;−ε,−ε,−ε
b .
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For the last part of Theorem 1.1, we need to define the notion of polyhomogeneity (or
E-smoothness) and discuss its basic properties; see [Maz91, §2A] and [Mel96, §4.15] for
detailed accounts and proofs. An index set is a discrete subset E ⊂ C× N0 such that

(z, j) ∈ E =⇒ (z, j′) ∈ E ∀ j′ ≤ j; (2.31a)

(z`, j`) ∈ E , |z`|+ j` →∞ =⇒ Im z` → −∞; (2.31b)

(z, j) ∈ E =⇒ (z − i, j) ∈ E . (2.31c)

We shall write

Im E < c :⇐⇒ Im z < c ∀ (z, k) ∈ E , (2.32)

likewise for the nonstrict inequality sign. Note that by condition (2.31b), every index set E
has an upper bound Im E < C for some C; more precisely, if E is an index set and C ′ ∈ R,
then there are only finitely many points (z, k) ∈ E with Im z > C ′.

Let now X denote a compact manifold with boundary ∂X, and let ρ ∈ C∞(X) be a
boundary defining function. The choice of a collar neighborhood [0, 1)ρ × ∂X makes the
vector field ρDρ = 1

i ρ∂ρ well-defined, and any two choices of collars give the same vector

field ρDρ modulo elements of ρVb(X). Let E be an index set. The space AEphg(X) then

consists of all u ∈ ρ−∞H∞b (X) =
⋃
N∈R ρ

NH∞b (X) for which∏
(z,j)∈E

Im z≥−N

(ρDρ − z)u ∈ ρNH∞b (X) for all N ∈ R; (2.33)

equivalently, there exist a(z,j) ∈ C∞(X), (z, j) ∈ E , such that

u−
∑

(z,j)∈E
Im z≥−N

ρiz(log ρ)ja(z,j) ∈ ρNH∞b (X). (2.34)

(Condition (2.31c) ensures that this is independent of the choice of ρDρ.) In particular,
u ∈ ρ− Im E−0H∞b (X). When no confusion can arise, we write

(a, k) := {(a− in, j) : n ∈ N0, 0 ≤ j ≤ k}, a := (a, 0). (2.35)

For example, A−iaphg(X) = ρaC∞(X). We also recall the notion of the extended union of two

index sets E1, E2, defined by

E1 ∪E2 = E1 ∪ E2 ∪ {(z, k) : ∃ (z, j`) ∈ E`, k ≤ j1 + j2 + 1},

so e.g. 0∪ 0 = (0, 1), as well as their sum

E1 + E2 := {(z, j) : ∃ (z`, j`) ∈ E`, z = z1 + z2, j = j1 + j2};

thus AE1phg(X) · AE2phg(X) ⊂ AE1+E2
phg (X). For j ∈ N and an index set E , we define

jE1 := E1 + · · ·+ E1,

with j summands.

If X is a manifold with corners with embedded boundary hypersurfaces H1, . . . ,Hk to

each of which is associated an index set Ei, we define AE1,...,Ekphg (X) as the space of all

u ∈ ρ−∞H∞b (X), with ρ ∈ C∞(X) a total boundary defining function, such that for each
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1 ≤ i ≤ k, there exist weights bj ∈ R, j 6= i, such that, with ρi ∈ C∞(X) denoting a defining
function of Hi,

26 ∏
(z,j)∈Ei

Im z≥−N

(ρiDρi − z)u ∈ ρNi
∏
j 6=i

ρ
bj
j H

∞
b (X) near Hi.

This is equivalent to u admitting an asymptotic expansion at each Hi as in (2.34), with
each a(z,j) polyhomogeneous with index set Ej at each nonempty boundary hypersurface
Hj ∩Hi of Hi.

We shall also need spaces encoding polyhomogeneous behavior at one hypersurface but
not others; for brevity, we only discuss this in the case of two boundary hypersurfaces

H1, H2: for an index set E and α ∈ R, AE,αphg,b consists of all u ∈ ρ−∞H∞b such that∏
(z,j)∈Ei

Im z≥−N

(ρ1Dρ1 − z)u ∈ ρN1 ρα2H∞b near H1, for all N ∈ R;

this is equivalent to u having an expansion at H1 with terms a(z,j) ∈ ρα2H∞b (H2).

We briefly discuss nonlinear properties of b-Sobolev and polyhomogeneous spaces; for
brevity, we work on an n-dimensional compact manifold X with boundary ∂X, and leave
the statements of the obvious generalizations to the setting of manifolds with corners to
the reader. Thus, if s > n/2, then Hs

b(X) is a Banach algebra, and more generally u1 ·u2 ∈
ρa1+a2Hs

b(X) if uj ∈ ρajHs
b(X), j = 1, 2. Regarding the interaction with polyhomogeneous

spaces, if E is an index set, then AEphg(X) · ρaHs
b(X) ⊂ ρa−eHs

b(X) for all a, s ∈ R when

e > Im E ; in the case that E = (a0, 0) ∪ E ′ with Im E ′ < Im a0, we may take e = Im a0.
One can also take inverses, to the effect that u/(1 − v) ∈ Hs

b(X) provided u, v ∈ Hs
b(X),

s > n/2, and v ≤ C < 1, which follows readily from the corresponding results on Rn, see
e.g. [Tay96, §13.10], by a logarithmic change of coordinates.

For comparisons with the Minkowski metric, we study the regularity properties of t−1

on mR4. Define the index set

Elog := {(−ik, j) : k ∈ N0, 0 ≤ j ≤ k}, E ′log := Elog \ {(0, 0)}. (2.36)

Lemma 2.8. Letting U = {t > 2
3r} ⊂

mR4, we have

t−1 ∈ ρ · AElog

phg (U) ⊂ ρ C∞(U) + ρ2−0H∞b (U) ⊂ ρ1−0H∞b (U), (2.37)

and t−1/ρ ∈ C∞(U ∩ ∂R4) is everywhere nonzero.

Definition 2.9. We define ρt ∈ C∞(mR4) to be any boundary defining function satisfying

ρt/ρ = t−1/ρ at U ∩ ∂mR4.

By Lemma 2.8, this fixes ρt in U modulo ρ2C∞(mR4); away from U , ρt is merely well-

defined modulo ρ C∞(mR4).

Proof of Lemma 2.8. Using the notation of §2.1, we have t−1 ∈ C∞(C2). Thus, it suffices to

work in C1 ∩ {v > −1
2}, where we can take ρ = r−1; we then need to prove f := ρt ∈ AElog

phg

26As before, the vector fields ρiDρi , defined using a collar neighborhood of Hi, are in fact well-defined
modulo ρiVb(X), which is all that matters in this definition.
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and f |
∂R4 6= 0 there, which implies the claim about t−1/ρ = 1/f as AElog

phg is closed under

multiplication. Note that f ∈ C∞(R4), and f > 1
4 . Let χ̃(x) = χ(x−1) ∈ C∞((0,∞); [0, 1])

in the notation (2.5), so χ̃(x) ≡ 0, x < 1
3 , and χ̃(x) ≡ 1, x > 1

2 , then

f = 1 + v − 2mρχ̃(f)
(
log ρ− log(1− 2mρ)

)
. (2.38)

Note that near ρ = 0, f = ρ−1t−1 is the unique positive function satisfying this equation:
indeed, if f ′ is another such function, then |f − f ′| . (ρ log ρ)|f − f ′|. At ρ = 0, we have
f = 1 + v. Thus, let k ≥ 2 be an integer, and consider the map

T : f̃ 7→ −2mρ(log ρ− log(1− 2mρ))χ̃(1 + v + f̃)

on ρ1−δHk
b ([0, εk)ρ × (−1/2, 5)v), where δ ∈ (0, 1) is fixed. Now

‖T (f̃)− T (f̃ ′)‖ρ1−δHk
b
≤ Ck‖ρ log ρ− ρ log(1− 2mρ)‖Hk

b
‖χ̃‖Ck‖f̃ − f̃ ′‖ρ1−δHk

b
;

choosing εk > 0 sufficiently small, the first norm on the right can be made arbitrarily small.
By the contraction mapping principle, this gives f − 1− v ∈ ρ1−δH∞b since k was arbitrary.
We can now improve the remainder term by plugging this into (2.38), which gives

f −
(
1 + v − 2mχ̃(1 + v)

(
ρ log ρ− ρ log(1− 2mρ)

))
∈ ρ2−δH∞b ,

so f ∈ AElog

phg +ρ2−δH∞b . Using that χ ◦ (·) maps AElog

phg into itself, as follows from the testing

definition (2.33), the desired conclusion follows from an iterative argument. �

2.3. Relationships between different compactifications. The only difference between
the compactifications mR4 for different values of m is the manner in which a smooth collar
neighborhood of ∂mR4 is glued together with R4. Since this difference is small due to the
logarithmic correction in (2.5) being only of size r−1 log r, different compactifications are
closely related; see also [BVW16, §7]. Indeed:

Lemma 2.10. The identity map R4 → R4 induces a homeomorphism φ : mR4 → 0R4, which
in fact is a polyhomogeneous diffeomorphism with index set Elog; that is, in smooth local

coordinate systems near ∂mR4 and ∂0R4, the components of both φ and φ−1 are real-valued

functions on [0,∞) × R3 of class AElog

phg . Moreover, φ induces a smooth diffeomorphism

∂mR4 ∼= ∂0R4, which restricts to mβ(mI+) ∼= 0β(0I+), and also induces a smooth diffeo-
morphism mI+ ∼= 0I+.

Proof. We have AElog

phg ⊂ C
∞ + ρ1−0H∞b ⊂ C0, so it suffices to prove the polyhomogeneity

statement. Defining the smooth coordinates ρ and v as in (2.5), and the corresponding

smooth coordinates 0ρ = r−1 and 0v = r−1(t − r) on 0R4, we then observe that 0ρ = ρ,

while in the notation of equation (2.38), we established that 1 + 0v = f ∈ AElog

phg on mR4,

giving the desired conclusion for φ. For φ−1, we write v = 0v − r−1χ(t/r)2m log(r − 2m)

and note that t/r ∈ C∞(0R4). For the last claim, we observe that

v = 0v at ∂mR4 (2.39)

under the identification with ∂0R4 given by φ. This also shows that the sets mβ(mI+) =
{v ≥ 0} and 0β(0I+) = {0v ≥ 0} are diffeomorphic. On mM , resp. 0M then, v, resp.
0v, are local defining functions of the boundaries ∂mI+, resp. ∂0I+, hence by (2.39), the



STABILITY OF MINKOWSKI SPACE 41

identification mI+ ∼= 0I+ in the interior of mI+ indeed extends smoothly to its boundary.
�

In a similar vein, the scattering (co)tangent bundles can be naturally identified over the
boundary:

Lemma 2.11. The identity map T ∗R4 → T ∗R4 extends by continuity to a continuous
bundle map scT ∗ mR4 → scT ∗ 0R4 which restricts to a smooth bundle isomorphism over the
boundary.

Proof. Since away from r = 0, 〈d(r−1)〉 and r T ∗S2 are smooth subbundles of scT ∗ mR4

for any m, it suffices to show that d(t−1), which is a smooth section of scT ∗ 0R4, extends

by continuity from R4 to ∂mR4 and restricts to a smooth section of scT ∗
∂mR4

mR4. By

Lemma 2.8, we have t = ρ−1f , f ∈ AElog

phg , so dt = f d(ρ−1) + ρ−1df ; but f |
∂mR4 is smooth

indeed, while in a local product neighborhood [0, 1)ρ × R3
X of a point in ∂mR4, ρ−1df =

(ρ∂ρf)dρ
ρ2 + (∂Xf)dXρ restricts to the smooth scattering 1-form (∂Xf)dXρ on ∂mR4. �

Let us discuss this on the level of function spaces. The map φ in Lemma 2.10 induces

C∞(mR4) ⊂ AElog

phg (0R4) and vice versa. Moreover, it induces an isomorphism

(mρ)αHs
b,loc(

mR4) ∼= (0ρ)αHs
b,loc(

0R4), s, α ∈ R, (2.40)

as follows from φ ∈ AElog

phg . The corresponding statement is not quite true on the blown-up

spaces mM , the failure happening at mI +; there, let us use
mρ = 0ρ = r−1; mv = 0v − 2m(0ρ) log((0ρ)−1 − 2m), 0v = r−1(t− r).

Now, the b-tangent bundle on 0M is spanned near 0I + by spherical derivatives,

0ρ∂0ρ ∈ mρ∂mρ +A
E ′log

phg · ∂mv,
0v∂0v ∈

(
mv +A

E ′log

phg

)
∂mv,

and 0ρ∂0v = mρ∂mv; due to the logarithmic loss at I +, we thus only have

(mρ0)b0(mρI)
bI (mρ+)b+Hs

b,loc(
mM) ⊂ (0ρ0)b0(0ρI)

bI−ε(0ρ+)b+Hs
b,loc(

0M)

for all ε > 0, but the inclusion fails for ε = 0. That is, conormal function spaces are the
same on mM and 0M up to an arbitrarily small loss in the weight at I +.

Polyhomogeneous spaces on mR4 for different values of m are related in a simple manner:
if E ⊂ C× N0 is an index set and Elog is given by (2.36), then φ induces inclusions

AEphg(mR4) ↪→ AE+Elog

phg (0R4), AEphg(0R4) ↪→ AE+Elog

phg (mR4); (2.41)

this is only nontrivial where the two compactifications differ, i.e. away from r = 0, i.e.
where we can use r−1 as a boundary function for both 0R4 and mR4. Considering a single
term r−iz(log r)kf(mv, ω), with ω ∈ S2 and f smooth, in the expansion of an element of

AEphg(mR4), the first inclusion in (2.41) follows from f ◦ φ ∈ AElog

phg (0R4), which in turn

can be seen by Taylor expanding f(0v − 2m(0ρ) log((0ρ)−1 − 2m), ω) in the first argument
around 0v. The proof of the second inclusion is similar. See [BVW16, Proposition 7.8] for
an alternative argument.

Polyhomogeneity on different spaces mM on the other hand is much less well-behaved:
for instance, a function u ∈ C∞(mM) compactly supported near a point in (mI +)◦, m > 0,
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so u ∈ A∅,0,∅phg (mM), is not polyhomogeneous on 0M : it vanishes near (0I +)◦ and (0I+)◦,

but is nontrivial at the corner 0I + ∩ 0I+.

2.4. Bundles and connections near null infinity. In the energy estimate (1.19) for the
toy problem (1.18), derivatives of u along vector fields tangent to the fibers of β : I + → S+

are better controlled than general b-derivatives. In this section, we introduce analytic
structures on the blow-up M of R4 capturing this in an invariant manner.

Definition 2.12. For vector bundles Ej → R4, j = 1, 2, let

Mβ∗E1,β∗E2 ⊂ Diff1
b(M ;β∗E1, β

∗E2)

denote the C∞(M)-module of all first order b-differential operators A which satisfy the
following condition near I +: if Ej ∼= U × Ckj , j = 1, 2, is a local trivialization of Ej ,

with U ⊂ R4 a neighborhood of S+, see (2.12), and we pull these trivializations back to
β∗Ej ∼= β−1(U) × Ckj , then A = V + f , where V is a k2 × k1 matrix of vector fields

Vij ∈ Vb(M) which are tangent to the fibers of β, and f ∈ C∞(M)k2×k1 . Let moreover

0Mβ∗E1,β∗E2 ⊂Mβ∗E1,β∗E2

denote the submodule for which f |I + = 0

For a single vector bundle E → R4, we write (0)Mβ∗E := (0)Mβ∗E,β∗E . Whenever the

bundle E is clear from the context, we shall simply write (0)M := (0)Mβ∗E . For k ∈ N, we

write Mk ⊂ Diffkb for sums of k-fold products of elements of M.

It is easy to check that the definition ofMβ∗E1,β∗E2 is independent of the choice of local
trivializations; for 0M, this is true as well, since vector fields tangent to the fibers of β
annihilate the matrices for changes of frames of E1 and E2 which lift to be constant along
the fibers of β. We make some elementary observations:

Lemma 2.13. We have:

(1) ρIDiff1
b(M ;β∗E) ⊂ 0Mβ∗E ⊂Mβ∗E;

(2) if A,B ∈ Mβ∗E, and A has a scalar principal symbol, then [A,B] ∈ Mβ∗E.
Strengthening the assumption to A,B ∈ 0Mβ∗E, we have [A,B] ∈ 0Mβ∗E;

(3) there is a well-defined map

MC 3 A 7→ A⊗ Id ∈ 0Mβ∗E/ρI C∞(M ; End(β∗E)).

Proof. (1) and (2) are clear from the definition. The map in (3) is given in a local trivi-
alization E ∼= U × Ck of E near S+ as A · Idk×k ∈ Diff1

b(M)k×k; the transition function
between two different trivializations is given by C ∈ C∞(U ;Ck×k), which pulls back to M
to be constant along the fibers of β; but then C−1(A · Idk×k)C − (A · Idk×k) = C−1A(C) ∈
C∞(M ;Ck×k), with A acting component-wise, vanishes on I + by definition of MC. �

In local coordinates [0, ε0)ρ0 × [0, ε0)ρI × R2
x2x3 near I0 ∩ I + as in (1.17), with R2 a

local coordinate patch on S2, elements of MC are linear combinations of ρ0∂ρ0 , ρI∂ρI , and

ρI∂xa , a = 2, 3, plus smooth functions. We thus see that (0)MC is generated over C∞(M)

by (ρI)C∞(M) and lifts of elements V ∈ Vb(R4) which vanish at S+ as incomplete vector

fields, i.e. V |S+ = 0 ∈ TS+R4. (This should be compared to the larger space Vb(M), which
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is generated by lifts of elements V ∈ Vb(R4) which are merely tangent to S+.) Note that
by (2.28), we have

ρ−1∂0, ρ
−1
0 ρ−1

+ ∂1 ∈ 0MC; (2.42)

for a fixed choice of ρ, the operators ρ−1∂0 and ∂1 acting on sections of any bundle β∗E
are therefore well-defined, modulo ρI C∞ and ρ0ρIρ+C∞ valued in End(β∗E), respectively.

The modules defined above are closely related to a natural subbundle of bTI +M :

Definition 2.14. Denote by
βTI +M ⊂ bTI +M

the rank 2 subbundle generated by all V ∈ bTI +M which are tangent to the fibers of β,
see (2.13), and let βTM be any smooth rank 2 extension of βTI +M to a neighborhood of
I +. Let then

(βTM)⊥ := {α ∈ bT ∗M : α(V ) = 0 for all V ∈ βTM} ⊂ bT ∗M

denote the annihilator of βTM in bT ∗M .

Near I0 ∩I +, we can for instance take βTM ⊂ bTM to be the subbundle whose fibers
are spanned by ρI∂ρI and ρ0∂ρ0 .

Remark 2.15. Another equivalent characterization of M is that the principal symbols of
its elements vanish on (βTI +M)⊥. We also note that for p ∈ I +, there is a natural
isomorphism

(βTM)⊥p
∼= T ∗β(p)S

+. (2.43)

Indeed, given V ∈ bTpM , note that β∗V ∈ bTS+R4 is tangent to S+, hence has a well-defined

image in TpS
+; and V ∈ βTpM is precisely the condition that this image be 0. Thus, the

isomorphism (2.43) is obtained by mapping η ∈ T ∗β(p)S
+ to bTpM 3 V 7→ η(β∗V ).

Using this subbundle, we have

MC = C∞(M ; βTM + ρI
bTM) + C∞(M) ⊂ Diff1

b(M),

where we write

C∞(M ; βTM + ρI
bTM) := C∞(M ; βTM) + ρI C∞(M ; bTM). (2.44)

Note here that the sum of the first two spaces on the right is globally well-defined on M even
though we only defined βTM in a neighborhood of I +: this is due to βTM ⊂ bTM . The
general modulesMβ∗E1,β∗E2 have a completely analogous description obtained by tensoring
the bundles with Hom(β∗E1, β

∗E2).

We next prove some lemmas allowing us to phrase energy estimates for bundle-valued
waves invariantly.

Lemma 2.16. Let E → R4 be a vector bundle, and let dE ∈ Diff1(R4;E, T ∗R4 ⊗ E) be a
connection. Then dE induces a b-connection, i.e. a differential operator

dE ∈ Diff1
b(M ;β∗E, bT ∗M ⊗ β∗E), (2.45)

on β∗E →M . If d̃E is another connection on E, then, with notation analogous to (2.44),

dE − d̃E ∈ C∞
(
M ; ((βTM)⊥ + ρI

bT ∗M)⊗ End(β∗E)
)
. (2.46)
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Proof. Fix a local frame ei of E, then for ui ∈ Ċ∞(M) ⊂ Ċ∞(R4), we have

dE(uie
i) = dui ⊗ ei + ui d

Eei.

Now the map ui 7→ dui extends to M as the map ui 7→ bdui, with bd ∈ Diff1
b(M ;C, bT ∗M);

and f i := dEei ∈ C∞(R4;T ∗R4 ⊗ E) canonically induces β∗f i ∈ C∞(M ; bT ∗M ⊗ β∗E) by
β∗f i(V ) = f i(β∗V ), V ∈ bTM . Therefore, the expression dE(ui · β∗ei) = bdui ⊗ β∗ei + ui ·
β∗f i proves (2.45).

Letting f̃ i := d̃Eei, we have (dE−d̃E)(ui ·β∗ei) = ui ·(β∗f i−β∗f̃ i). But βTI +M ⊂ kerβ∗,

so the bundle map dE − d̃E annihilates βTM at I +, giving (2.46). �

Lemma 2.17. In the notation of Lemma 2.16, suppose E is equipped with a fiber metric
〈·, ·〉E, and let

K ∈ C∞
(
M ; (S2 βTM + ρI S

2 bTM)⊗ End(β∗E)
)
. (2.47)

Moreover, let B ∈ C∞(M ; Hom(bTM, bT ∗M)) denote a fiber metric on bTM . Then, acting
on sections of β∗E, we have

(dE)∗BKdE − (d̃E)∗BKd̃E ∈ ρIDiff1
b(M ;β∗E), (2.48)

where we take adjoints with respect to the fiber metrics on bTM and E, and any fixed b-
density on M . Moreover, if (dE)† denotes the adjoint with respect to another fiber metric
on E, then (dE)†BKdE − (dE)∗BKdE ∈ ρIDiff1

b(M ;β∗E).

Note that for K as in (2.47) with both the S2 βTM and the S2 bTM summands positive
definite, and adding weights, the pairing 〈(dE)∗BKdEu, u〉 provides the control on fiber-

tangential derivatives of u as in the toy model (1.19), but is weaker by ρ
1/2
I for general

b-derivatives; we will take care of this in Definition 4.1. The space in (2.48) will be weak
enough to be treated as an error term (similar to the Diffb spaces arising as error terms in
Lemma 3.8 below).

Proof of Lemma 2.17. We write the left hand side of (2.48) as

(dE)∗BK(dE − d̃E) + (dE − d̃E)∗BKd̃E ,

with one summand being the adjoint of the other. Now, (dE)∗B ∈ Diff1
b(M ; bTM ⊗ β∗E,

β∗E), while Lemma 2.16 implies

K(dE − d̃E) ∈ ρI C∞(M ; bTM ⊗ End(β∗E)).

This proves (2.48). (Alternatively, one can analyze the second summand directly, using that

over p ∈ M , 〈(dE − d̃E)∗(B(V ) ⊗ e), e′〉E = 〈e, (dE − d̃E)(V ⊗ e′)〉E for V ∈ bTpM , e, e′ ∈
Eβ(p).) For the second part, note that the two adjoints are related via (dE)† = C−1(dE)∗C

for some C ∈ C∞(R4; End(E)), hence d̃E := (dE)†∗ = dE + C∗[dE , (C−1)∗] is a connection
on E, and therefore

((dE)† − (dE)∗)BKdE = (d̃E − dE)∗BKdE ∈ ρIDiff1
b(M ;β∗E)

by what we already proved. �

Lemma 2.18. Equip E → R4 with a fiber metric and fix a b-density on R4. Then for
principally scalar W ∈ 0Mβ∗E, with principal symbol equal to that of the real vector field
W1 ∈ Vb(M), we have W +W ∗ ∈ −divW1 + ρI C∞(M ; End(β∗E)).



STABILITY OF MINKOWSKI SPACE 45

Proof. In a local trivialization on E, we have W = W1⊗1+W0, W0 ∈ ρI C∞(M ; End(β∗E)),
while the fiber inner product k on E is related to the standard Euclidean fiber inner product

k in the trivialization by k(e, e′) = k(C̃e, C̃e′) for some C̃ smooth on R4, hence fiber constant

on M . Denoting adjoints with respect to k by †, and letting C := C̃∗C̃, we thus have

W +W ∗ =
(
W1 ⊗ 1 + C−1(W †1 ⊗ 1)C

)
+ (W0 +W ∗0 )

∈ −(divW1)⊗ 1 + C−1[W †1 ⊗ 1, C] + ρI C∞,
with the second term also lying in ρI C∞ since C is fiber-constant. �

3. Gauge-fixed Einstein equation

As motivated in §1.2, we work in the wave map gauge with respect to the background
metric gm constructed in §2.1, since we expect the solution g of the initial value problem
(1.4) for the Einstein vacuum equation with initial data asymptotic to massm Schwarzschild
to be well-behaved on the space mM . The gauge condition reads

Υ(g; gm)µ := (gg−1
m δgGggm)µ = gµνg

κλ(Γ(g)νκλ − Γ(gm)νκλ) = 0, (3.1)

where we recall the notation Gg = 1 − 1
2g trg, and (δgu)µ = −uµν;

ν . For brevity, we shall
write

Υ(g) ≡ Υ(g; gm),

when the background metric gm is clear from the context. A simple calculation shows that
if h ∈ H∞;−ε,−ε,−ε

b (mM), ε > 0 small, is a metric perturbation, and g = gm + ρh, then the
gauge condition Υ(g; gm) = 0 implies that the ∂1-derivatives of the good components h00,
h0b̄, and /trh := /gabhāb̄ decay towards I +. (See equation (A.5) for this calculation for h
with special structure.) A key ingredient of our iteration scheme is therefore constraint
damping, which ensures that the gauge condition, or, more directly, the improved decay of
the good components at I +, is satisfied to leading order for each iterate h. We implement
constraint damping by considering the gauge-fixed Einstein operator

P (h) := ρ−3P0(gm + ρh), P0(g) := Ric(g)− δ̃∗Υ(g; gm), (3.2)

where on 1-forms u

δ̃∗u = δ∗gmu− 2γ dρtρt ⊗s u+ γ(ιρ−1
t ∇gmρt

u)gm (3.3)

is a modification of the symmetric gradient δ∗gm by a 0-th order term; here ρt is fixed
according to Definition 2.9. We discuss the effect of this modification in §3.3, see in par-
ticular (3.26a). From now on, the mass parameter m will be fixed and dropped from the
notation whenever convenient.

3.1. Form of metric perturbations. One can easily establish the existence of a solution
of (1.4) near I0 \ (I0 ∩I +) for normalized initial data (see Theorem 1.8) which lie merely

in ρ
1/2+0
0 H∞b ; this is due to nonlinear interactions being weak at I0, which in turn can

ultimately be traced back to the null derivatives (2.28) coming with extra factors of ρ0.27

However, we will use (and prove) the existence of leading terms of the perturbation h of

27This is related to the solvability of semilinear equations with initial data or forcing terms which are
mildly growing at spatial infinity, see [HV15, Theorem 5.14], where one can take the weight l < −1/2 in
certain circumstances. This is also the level of decay for which Bieri [BZ09] establishes the global stability
of Minkowski space.
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g = gm+ρh at I +; as discussed around (1.18), this requires the initial data to be decaying

to mass m Schwarzschild data. At I+ however, weak control, i.e. h ∈ ρ
−1/2+0
+ H∞b away

from I +, suffices due to the nonlinear interactions being as weak there as they are at
I0. (The decay of our initial data does imply the existence of a leading term at I+, see
§7.) Motivated by this and the discussion of constraint damping above, and recalling the
notation (2.30) and the bundle splittings (2.19) and (2.21), we will seek the solution h of

P (h) = 0 in the function space X k;b0,bI ,b
′
I ,b+ :

Definition 3.1. Let k ∈ N0 ∪ {∞}, and fix weights28

−1 < b+ < 0 < bI < b′I < min(1
2 , b0);

let further χ ∈ C∞(M) be identically 1 near I +, with support in a small neighborhood
of I + where the bundle splitting (2.19) is defined; different choices of χ will produce

the same function space, as we shall discuss below. The space X k;b0,bI ,b
′
I ,b+ consists of all

h ∈ Hk;b0,−1,b+
b (M ;β∗S2 scT ∗R4) such that

χh00, χ /trh ∈ Hk;b0,b′I ,b+
b (C), χh0b̄ ∈ H

k;b0,b′I ,b+
b (β∗(r T ∗S2)), (3.4)

χh11 = χh
(1)
11 log ρI + χh

(0)
11 + h11,b, (3.5)

χ(h01, h1b̄, hāb̄) = χ(h
(0)
01 , h

(0)

1b̄
, h

(0)

āb̄
) + (h01,b, h1b̄,b, hāb̄,b), (3.6)

where the leading and remainder terms are

h
(`)
11 , h

(0)
01 , h

(0)

1b̄
, h

(0)

āb̄
∈ ρb00 ρ

b+
+ Hk

b (I +),

h01,b, h11,b, h1b̄,b, hāb̄,b ∈ H
k;b0,bI ,b+
b ,

the latter supported on suppχ and valued in the bundles C (for ` = 0, 1), C, β∗(r T ∗S2),

and β∗(r2 S2T ∗S2), respectively; we describe the topology on X k;b0,bI ,b
′
I ,b+ below. Here, we

use a collar neighborhood to extend functions from I + to a neighborhood of I + in M ,
and to extend the relevant bundles from I + to smooth subbundles of β∗S2 scT ∗R4 near
I +; all choices of collar neighborhoods and extensions give the same function space. We
shall suppress the parameters b0, bI , b

′
I , b+ from the notation when they are clear from the

context, so

X k := X k;b0,bI ,b
′
I ,b+ .

Remark 3.2. The partial expansions amount to a statement of partial polyhomogeneity:

for example, the condition on h01 in (3.6) for k = ∞ can be phrased as h01 ∈ Ab0,0,b+b,phg,b +

H
∞;b0,bI ,b+
b , and similarly for k <∞ if one replaces the first summand by a function space

capturing the finite regularity of the leading term at I +. In view of the existence of
at most logarithmically growing leading terms of h ∈ X k at I +, we automatically have

h ∈ Hk;b0,−0,b+
b .

Thus, h ∈ X k decays at I0, while (3.4) encodes the vanishing of the good components
at I +; (3.5) and (3.6) assert the existence of leading terms of the remaining components,

28The imposed upper bound of 1
2

for bI and b′I simplifies the arithmetic in §4 but is otherwise artificial;
the natural bound is bI < b′I < min(1, b0), with the upper bound 1 arising from the expected presence of
lower order terms in expansion of the metric at I + as well as from the requirement that the function space
be independent of the choice of collar neighborhood of I +.
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in the case of h11 allowing for a logarithmic term;29 at I+ finally, h is allowed to have mild
growth. The existence of leading terms of h ∈ X k;b0,bI ,b

′
I ,b+ at I + implies in particular that

ρI∂ρIhµ̄ν̄ ∈ H
k−1;b0,bI ,b+
b , (µ̄, ν̄) = (0, 1), (1, b̄), (ā, b̄),

ρI∂ρIh11 ∈ h(1)
11 +H

k−1;b0,bI ,b+
b , (ρI∂ρI )

2h11 ∈ Hk−2;b0,bI ,b+
b ,

(3.7)

which we will frequently use without further explanation.

For h ∈ X∞;b0,bI ,b
′
I ,b+ , we describe P (h) using a closely related function space:

Definition 3.3. For k ∈ N0 ∪ {∞} and weights b0, bI , b
′
I , b+ as above, the function space

Yk;b0,bI ,b
′
I ,b+ consists of all f ∈ Hk;b0,−2,b+

b (M ;β∗S2 scT ∗R4) so that near I +,

f00, f0b̄, /tr f ∈ Hk;b0,−1+b′I ,b+
b , f01, f1b̄, fāb̄ ∈ H

k;b0,−1+bI ,b+
b ,

f11 = f
(0)
11 ρ

−1
I + f11,b, f

(0)
11 ∈ ρ

b0
0 ρ

b+
+ Hk

b (I +), f11,b ∈ Hk;b0,−1+bI ,b+
b .

(3.8)

The shift by −1 in the decay order at I + is due to the linearized gauge-fixed Einstein
equation, or even the linear scalar wave equation, being ρ−1

I times a b-differential operator
at I +, cf. (1.18). A calculation will show that for h as above, the gauge-fixed Einstein

operator P (h) defined in (3.2) satisfies P (h) ∈ Y∞;b0,bI ,b
′
I ,b+ , see Lemma 3.5 for a more

precise statement. Note here that P (h) is well-defined (i.e. gm + ρh is a nondegenerate
symmetric 2-tensor, making P (h) computable) in a neighborhood of ∂M due to the decay
(in L∞) of g = gm + ρh to gm. In order for P (h) to be defined globally, we need to assume
ρh to be small in L∞.

Fixing a smooth cutoff χ as in Definition 3.1, we can define a norm on Yk;b0,b′I ,bI ,b+ using
the notation of Definition 3.3 by setting

‖f‖
Yk;b0,b

′
I
,bI ,b+

:= ‖(χf00, χf0b̄, χ /tr f)‖
H
k;b0,−1+b′

I
,b+

b

+ ‖(χf01, χf1b̄, χfāb̄)‖Hk;b0,−1+bI ,b+
b

+ ‖χf (0)
11 ‖ρb00 ρ

b+
+ Hk

b (I +)
+ ‖χ(f11 − f (0)

11 )‖
H
k;b0,−1+bI ,b+
b

+ ‖f‖
H
k;b0,−2,b+
b

,

where the choice of ρI -weight in the remainder term is arbitrary (as long as it is fixed and less

than−1). Equipped with this norm, Yk;b0,bI ,b
′
I ,b+ is a Banach space. A completely analogous

definition gives a norm ‖·‖
Xk;b0,bI ,b

′
I
,b+

. The spaces X∞;b0,bI ,b
′
I ,b+ and Y∞;b0,bI ,b

′
I ,b+ , equipped

with the projective limit topologies, are Fréchet spaces.

In particular, using the Sobolev embedding H3
b(M) ↪→ L∞(M) (which uses that 3 >

dim(M)/2), we have an embedding X 3 ↪→ ρb00 ρ
−1
I ρ

b+
+ L∞; thus, P (h) is well-defined globally

on M provided h is small in X 3.

It will occasionally be useful to write

X k = X kphg ⊕X kb , Yk = Ykphg ⊕ Ykb , (3.9)

where Ykphg = {χf (0)
11 : f

(0)
11 ∈ ρ

b0
0 ρ

b+
+ Hk

b (I +)} encodes the leading term of elements of Yk,
while Ykb = {f ∈ Yk : f

(0)
11 = 0} captures the remainder terms (i.e. with vanishing leading

terms at I +); the spaces X kphg and X kb are defined analogously.

29The slightly faster decay b′I of the good components as compared to the decay bI of the remainder terms
of the other components is needed to handle the logarithmically large size of the coefficients coupling good
components into the others, encoded in the (4, 1) entries of Ah and Bh in Lemma 3.8; see the discussion
following (3.26c).
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In order to exhibit the ‘null structure,’ or upper triangular block structure, of the lin-
earized gauge-fixed Einstein operator DhP for h ∈ X at I + in a compact fashion, we
introduce subbundles of the symmetric 2-tensor bundle. We use the following notation:
given a nowhere vanishing section e of a complex vector bundle E → U over base manifold
U , we denote by 〈e〉 the line subbundle of E whose fiber of p ∈ U is given by {λe(x) : λ ∈ C}.

Definition 3.4. Define the subbundles

Kc
11 := 〈2 ds dq〉 ⊕ (2 ds⊗ r T ∗S2)⊕ 〈r2

/g〉⊥, Kc
0 := Kc

11 ⊕ 〈ds2〉,

of S2 scT ∗R4|S+ , which we extend in a smooth but otherwise arbitrary fashion to a neigh-

borhood of S+ as rank 5, resp. 6, subbundles of S2 scT ∗R4, still denoted by Kc
11 and Kc

0.
Furthermore, define near S+ the subbundles

K0 = 〈dq2〉 ⊕ 〈2dq ⊗ r T ∗S2〉 ⊕ 〈r2
/g〉, K11 = 〈ds2〉. (3.10)

The only property of K0 and K11 which we will need is

Kc
0 ⊕K0 = S2 scT ∗R4, Kc

11 ⊕K11 = Kc
0.

Denote by

π0 : S2 scT ∗R4 → S2 scT ∗R4/Kc
0
∼= K0,

π̃11 : Kc
0 → Kc

0/K
c
11
∼= K11

(3.11)

the projections onto the quotient bundles,

πc0 := 1− π0 : S2 scT ∗R4 → Kc
0,

and

π11 := π̃11π
c
0 : S2 scT ∗R4 → K11, πc11 := (1− π̃11)πc0 : S2 scT ∗R4 → Kc

11. (3.12)

Writing

β∗S2 ≡ β∗S2 scT ∗R4 (3.13)

from now on, the improved decay (3.4) of the good components of h ∈ X k;b0,bI ,b
′
I ,b+ can

then be expressed, using local coordinates (θ2, θ3) on S2, as

π0h = h00 dq
2 + h0a dq dθ

a + ( /trh)/gab dθ
a dθb ∈ Hk;b0,b′I ,b+

b (β∗K0),

similarly for (3.8). The refinement Kc
11 ⊂ Kc

0,

πc11h = 2h01 ds dq + 2h0b ds dθ
b + (hab − (1

2
/trh)/gab) dθ

a dθb

will be used to encode part of the ‘null structure’ of the linearized gauge-fixed Einstein
equation at I +, as discussed in §5; the component

π11h = h11 ds
2

will capture the logarithmically growing (relative to r−1) component at I +.

Consider now a fixed h ∈ X∞ which is small in X 3 so that g := gm + ρh is a Lorentzian
metric on R4. Working near I +, we recall gm = (1− 2m

r )dq ds− r2/g and the barred index

notation (2.20), so with ρ = r−1, the coefficients of g in the product splitting (2.23) are

g00 = r−1h00, g01 = 1
2 + r−1(h01 −m), g0b = h0b̄,

g11 = r−1h11, g1b = h1b̄, gab = −r2/gab + rhāb̄;
(3.14)
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the coefficients gµν of the inverse metric g−1 = g−1
m − r−1g−1

m hg−1
m + r−2g−1

m hg−1
m hg−1

m +

H
∞;3+3b0,3−0,3+3b+
b are

g00 ∈ −4r−1h11 +H
∞;2+b0,2−0,2+2b+
b , g01 ∈ 2 + 4r−1(m− h01) +H

∞;2−0,2−0,2+2b+
b ,

g0b ∈ 2r−2h1
b̄ +H

∞;3+b0,3−0,3+2b+
b , g11 ∈ −4r−1h00 +H

∞;2+b0,2+b′I ,2+2b+
b ,

g1b ∈ 2r−2h0
b̄ +H

∞;3+b0,3+b′I ,3+2b+
b , gab ∈ −r−2/gab − r−3hāb̄ +H

∞;4+2b0,4−0,4+2b+
b ,

(3.15)
where we raise spherical indices using the round metric /g, i.e. h0

ā = /gabh0b̄ etc. Thus,

gµ̄ν̄ , g
µ̄ν̄ ∈ C∞ +H

∞;1+b0,1−0,1+b+
b ; gāb̄ + /g

ab, g01 − 2 ∈ ρ C∞ +H
∞;1+b0,1−0,1+b+
b . (3.16)

The calculation of the connection coefficients, components of Riemann and Ricci curvature,
and other geometric quantities associated with the metric g is then straightforward; the
results of these calculations are given in Appendix A.

3.2. Mapping properties of the gauge-fixed Einstein operator. Let h ∈ X∞ =
X∞;b0,bI ,b

′
I ,b+ . In order to compute the leading terms of the gauge-fixed Einstein operator

P (h) = ρ−3P0(g), g = gm + ρh, see (3.2), we first use the definition (3.3) of 2(δ̃∗ − δ∗
gSm

)

(given explicitly by (A.2) in the case m = 0) and the observation, from (A.5), that Υ(g) ∈
H
∞;2+b0,1+b′I ,2+b+
b (note that the explicit terms given in (A.5) lie in this space in view of

(2.28) and the decay of the coefficients of h in Definition 3.1), to deduce that

2(δ̃∗ − δ∗gm)Υ(g) ∈ H∞;3+b0,2+b′I ,3+b+
b . (3.17)

The decay rate at I+ holds globally there—not only near I+ ∩I + where gm = gSm. To see

this, it suffices to show that Υ(g) ∈ ρ2+b+
+ H∞b near (I+)◦ (since δ̃∗−δ∗gm ∈ ρ+Diff1

b, cf. (3.3),

then maps it into the stated space).30 But this follows from the fact that there g differs from

the smooth scattering metric gm by an element of ρ
1+b+
+ H∞b (with values in S2 scT ∗R4).

Concretely, choosing local coordinates y1, y2, y3 in ∂R4, near any point p ∈ (I+)◦, we
can introduce coordinates z0 := ρ−1

+ , za = ρ−1
+ ya (a = 1, 2, 3), in a neighborhood of p

intersected with ρ > 0, and {∂zµ : µ = 0, . . . , 3} is a frame of scTR4 there; but then, using

∂zµ ∈ ρ+Vb(R4), one sees that Γ(gm + ρh)νκλ − Γ(gm)νκλ is a sum of terms of the form

((gm + ρh)µν − (gm)µν)∂zκ(gm)λσ ∈ ρ1+b+
+ H∞b · ρ+C∞(R4) ⊂ ρ2+b+

+ H∞b (near p),

and (gm+ρh)µν∂zκ(ρhλσ), which likewise lies in ρ
2+b+
+ H∞b near p. (The Christoffel symbols

themselves satisfy Γ(gm)νκλ ∈ ρ+C∞(R4), Γ(gm + ρh)νκλ ∈ ρ+C∞(R4) + ρ
2+b+
+ H∞b .)

We can now prove:

Lemma 3.5. For any h ∈ X∞, the tensor P (h) is well-defined near ∂M (in the sense
explained in the paragraph after Definition 3.3), and we have χP (h) ∈ Y∞ for any χ ∈
C∞(M) with support sufficiently close (depending on h) to ∂M . We have P (h) ∈ Y∞

provided ‖h‖X 3 is small. More precisely, we have P (h)āb̄ ∈ H
∞;b0,−1+b′I ,b+
b and

P (h)11 ∈ −2ρ−2∂1∂0h11 − 1
4ρ
−1∂1h

d̄ē∂1hd̄ē +H
∞;b0,−1+bI ,b+
b (3.18)

when ρ = r−1 near I +.

30Recall that on 0M , we can take t−1 as a local defining function of (I+)◦; on mM , this needs to be
modified by a term of size t−2 log t due to the different smooth structure.
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Proof. We use the calculations (near I0 ∪I +) of δ∗gmΥ(g) in (A.6) and of Ric(g) in (A.8);

in view of the calculation (3.17), it suffices to prove that ρ−3(Ric(g) − δ∗gmΥ(g)) ∈ Y∞
near ∂M . In a neighborhood of I0 ∪ I +, this follows by subtracting (A.6) from (A.8)
and dividing by ρ3 (thus shifting the three orders down by 3); the expression (3.18) is a
particular result of this subtraction.

It remains to justify the decay rate globally at I+, which is a slight extension of the
calculations justifying (3.17) above. We use local coordinates near p ∈ (I+)◦ as above:
firstly, the membership of δ∗gmΥ(g) follows directly from the above arguments. Secondly,
the difference of curvature components R(gm + ρh)µνκλ − R(gm)µνκλ is a sum of terms of
the schematic forms ∂µ(Γ(gm + ρh)κνλ − Γ(gm)κνλ) and (Γ(gm + ρh)κµν − Γ(gm)κµν)Γ(gm +

ρh)νκλ, both of which lie in ρ
3+b+
+ H∞b by the calculations above. But by construction, see

equations (2.10)–(2.11), gm differs from a flat metric by a smooth symmetric scattering

2-tensor of class ρ+C∞(R4), which implies that R(gm)µνκλ ∈ ρ3
+C∞(R4) near p. Therefore,

the Riemann curvature tensor satisfies

R(gm + ρh) ∈ ρ3+b+
+ H∞b (3.19)

as a section of scTR4 ⊗ (scT ∗R4)⊗3 near (I+)◦, which a fortiori gives Ric(g) ∈ ρ3+b+
+ H∞b ,

as desired. (The vanishing of P (h) modulo the faster decaying space ρb00 H
∞
b near (I0)◦

requires more structure of gm, namely the Ricci flatness of the background metric gm.) �

Note that one component of P (h) has a nontrivial leading term at I +; in order for this to
not create logarithmically growing terms in components (other than the (1, 1) component)
of the next iterate of our Newton-type iteration scheme (which would cause the iteration
scheme to not close), one needs to exploit the special structure of the operator DhP . See
also the discussion around (1.26).

3.3. Leading order structure of the linearized gauge-fixed Einstein operator. For
h ∈ X∞;b0,bI ,b

′
I ,b+ small, write

Lh := DhP, (3.20)

and let g = gm + ρh. We shall now calculate the structure of Lh ‘at infinity,’ that is, its
leading order terms at I0, I +, and I+: at I +, we will find that the equation Lhu = f can
be partially decoupled to leading order; this is the key structure for proving global existence
for the nonlinear problem later. Recall from [GL91] that

DgRic = 1
2�g − δ

∗
gδgGg + Rg,

Rg(u)µν = (Rg)
κ
µνλuκ

λ + 1
2(Ric(g)µ

λuλν + Ric(g)ν
λuλµ),

DgΥ(g)u = −δgGgu− Cg(u) + Yg(u),

(3.21)

where (our notation differs from the one used in [GL91] by various signs)

Cg(u)κ = gκλC
λ
µνu

µν , Cλµν = Γ(g)λµν − Γ(gm)λµν ; Yg(u)κ = Υ(g)λuκλ.

Here, index raising and lowering as well as covariant derivatives are defined using the metric

g, and (�gu)µν = −uµν;κ
κ. Thus, recalling the definition (3.3) of δ̃∗, we have

Lh = ρ−3
(

1
2�g + (δ̃∗ − δ∗g)δgGg + δ̃∗(Cg − Yg) + Rg

)
ρ, g = gm + ρh, (3.22)

which has principal symbol

σ2(Lh) = 1
2Gb := 1

2(gb)−1, gb := ρ2g, (3.23)
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where G ∈ C∞(T ∗R4) is the dual metric function G(ζ) = |ζ|2G. As a first step towards
understanding the nature of Lh as a b-differential operator on M , we prove:

Lemma 3.6. We have L0 ∈ ρ−1
I Diff2

b(M ;β∗S2) (see (3.13)).

Proof. Since gm is a smooth scattering metric, we see, using local coordinates zµ and the
membership ∂zµ ∈ ρVb(R4) as in the discussion preceding Lemma 3.5 to compute Christoffel
symbols, that

Rgm ∈ ρ2 C∞(R4; End(S2 scT ∗R4)), δgm ∈ ρDiff1
b(R4;S2 scT ∗R4, scT ∗R4),

and �gm ∈ ρ2 Diff2
b(R4;S2 scT ∗R4). This gives L0 ∈ Diff2

b(R4;S2 scT ∗R4), and thus the

desired conclusion away from I +. Near I +, any element of Diff1
b(R4) lifts to an element

of ρ−1
I Diff1

b(M); moreover, for V1, V2 ∈ Vb(R4), the product V1V2 lifts to an element of

ρ−1
I Diff2

b(M) provided at least one of the Vj is tangent to S+. Thus, expressing �gm in the
null frame ∂0, ∂1, ∂a (a = 2, 3), we merely need to check that the coefficient of ∂2

1 vanishes
at S+; but this coefficient is g11

m ≡ 0. �

As suggested by the toy estimate (1.19) and explained in §2.4, we need to describe lower
order terms of Lh near I + in two stages, one involving the moduleM from Definition 2.12,
the other being general b-differential operators but with extra decay at ρI = 0. For illus-
tration and for later use, we calculate the leading terms, i.e. the ‘normal operator,’ of the
scalar wave operator:

Lemma 3.7. The scalar wave operator �gb
(see (3.23)) satisfies

�gb
∈ −4ρ−2∂0∂1 +H

∞;1+b0,−1+b′I ,1+b+
b M2

C + (C∞ +H
∞;1+b0,−0,1+b+
b )Diff2

b(M). (3.24)

For the linearized gauge-fixed Einstein operator Lh, the analogous result is:

Lemma 3.8. For h ∈ X∞ small in X 3, we have

Lh = L0
h + L̃h

where, using the notation (3.13) and fixing ρ = r−1 near I +,

L0
h = −ρ−1

(
(2ρ−1∂0 +Ah)∂1 −Bh

)
,

L̃h ∈ H
∞;1+b0,−1+b′I ,1+b+
b M2

β∗S2 + (C∞ +H
∞;1+b0,−0,1+b+
b )Diff2

b(M ;β∗S2);
(3.25)

here ρ−1∂0 and ∂1 are defined using equation (2.42) and Lemma 2.13(3). In the refinement
of the bundle splitting (2.21) by (2.22), Ah and Bh are given by

Ah =



2γ 0 0 0 0 0 0
−2∂1h01 0 0 0 0 0 0

0 0 γ 0 0 0 0

0 0 −2∂1h1
ā 0 0 γ + 2∂1h01

1
2∂1h

āb̄

−2∂1h1b̄ 0 γ 0 0 0 0
2γ 0 0 0 0 γ 0

−2∂1hāb̄ 0 0 0 0 0 0


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and

Bh =



0 0 0 0 0 0 0
2∂1∂1h01 0 0 0 0 0 0

0 0 0 0 0 0 0
2∂1∂1h11 0 0 0 0 0 0
2∂1∂1h1b̄ 0 0 0 0 0 0

0 0 0 0 0 0 0
2∂1∂1hāb̄ 0 0 0 0 0 0


.

The proofs of these lemmas only involve simple calculations and careful bookkeeping; they
are given in Appendix B. We thus see that at I +, Lh effectively becomes a differential
operator in the null coordinates x0 = q and x1 = s only, as spherical derivatives have
decaying coefficients; this is to be expected since r−1V , V ∈ V(S2) ⊂ Vb(M), is the naturally
appearing (scattering) derivative just like ∂0 and ∂1. We point out that a number of terms
of Lh which are not of leading order at I + do contribute to the normal operators at I0

and I+; this includes in particular the spherical Laplacian, which is crucial for proving an
energy estimate.

For the analysis of the linearized operator Lh, the structure of the leading term L0
h will

be key for obtaining the rough background estimate, Theorem 4.2, as well as the precise
asymptotic behavior at I +, as encoded in the space X∞. To describe this structure
concisely, recall the projection π0 defined in (3.11) projecting a metric perturbation onto
the bundle K0 encoding the components which we expect to be decaying from the gauge
condition; and the projection π11 defined in (3.12) onto the bundle K11 encoding the (1, 1)
component, which we allow to include a logarithmic term. Thus, in the splitting used in
Lemma 3.8, π0 picks out components 1, 3, 6, π11 picks out component 4, and πc11 picks
out components 2, 5, 7. Suppose now h′ satisfies the asymptotic equation L0

hh
′ = 0. Since

π0Ah|Kc
0

= 0 and π0Bh|Kc
0

= 0, the components π0h
′, which we hope to be decaying, satisfy

a decoupled equation

(2ρ−1∂0 +ACD)∂1(π0h
′) = 0, ACD :=

2γ 0 0
0 γ 0

2γ 0 γ

 , (3.26a)

where ACD ∈ C∞(M ; End(K0)) is the endomorphism induced by π0Ah on β∗S2/Kc
0
∼= K0.

(Thus, this matrix is the expression for Ah,0 in the splitting ofK0
∼= β∗S2/Kc

0 induced by the
splittings (2.21)–(2.22) via the projection π0.) Note that by equation (2.28), ρ−1∂0 is pro-
portional to the dilation vector field −ρI∂ρI (which is the asymptotic generator of dilations
on outgoing light cones), hence equation (3.26a) is, schematically, (ρI∂ρI −ACD)(π0h

′) = 0.
Choosing γ > 0, the spectrum of ACD is positive, which will allow us to prove that π0h

′

decays at I +, similarly to the discussion of the model equation (1.24); we will make this
precise in §§4.1 and 5.1.

Next, using that πc11Ah|K11 = 0 and πc11Bh|K11 = 0, i.e. the logarithmic component h11

does not couple into the other nondecaying components, we can obtain an equation for the
nonlogarithmic components πc11h

′ which only couples to (3.26a), namely

2ρ−1∂0∂1(πc11h
′) = (−Ach,11∂1 +Bc

h,11)(π0h
′), (3.26b)
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Ach,11 =

−2∂1h01 0 0
−2∂1h1b̄ γ 0
−2∂1hāb̄ 0 0

 , Bc
h,11 =

2∂1∂1h01 0 0
2∂1∂1h1b̄ 0 0
2∂1∂1hāb̄ 0 0

 ;

the precise form of Ach,11, B
c
h,11, mapping sections of K0 to sections of Kc

11, is irrelevant:

only their boundedness matters (even mild growth towards I + would be acceptable). The
operator on the left hand side of (3.26b) has the same structure as the model operator
in (1.22); the fact that the forcing term in (3.26b) is decaying will thus allow us to prove
that πc11h

′ is bounded at I +, consistent with what the function space X∞ encodes.

Lastly, π11h
′ couples to all previous quantities,

2ρ−1∂0∂1(π11h
′) = (−Ah,11∂1 +Bh,11)

(
π0h

′

πc11h
′

)
, (3.26c)

Ah,11 =
(
0 −2∂1h1

ā γ + 2∂1h01 0 0 1
2∂1h

āb̄
)
,

Bh,11 =
(
2∂1∂1h11 0 0 0 0 0

)
.

The logarithmic growth of the first component of Bh,11 is more than balanced by the fast
decay of the (0, 0)-component of h′ that it acts on.

Remark 3.9. The fact that the logarithmic growth of h11 is rendered harmless due to its
coupling only to the faster decaying π0h

′ is the manifestation of the weak null condition
[LR03] in our framework. Here, the faster decay of π0h

′ is accomplished by means of
constraint damping, whereas in [LR05, LR10] the faster decay of π0 applied to the difference
of the nonlinear solution and the background (Minkowski) metric follows from the gauge
condition which the nonlinear solution verifies, cf. [LR10, Corollary 9.7].

More subtly, the ρ
b′I
I decay of h′00 is required at this point to allow for an estimate of the

remainder of h11 with weight ρbII (� ρ
b′I
I log ρI). The last component of Ah,11, acting on

the trace-free spherical part of h′, in general has a nonzero leading term at I +;31 hence,

solving the equation (3.26c), schematically ρI∂ρI (∂1π11h
′) ≈ ∂1h

āb̄(∂1h
′)āb̄, requires π11h

′

to have a log ρI term.

At the other boundaries I0 and I+, we only need crude information about Lh for the
purpose of obtaining an energy estimate in §4:

Lemma 3.10. We have Lh − L0 ∈ H∞;1+b0,−1−0,1+b+
b Diff2

b(M ;β∗S2).

Proof. Near (I+)◦, the stated ρ
1+b+
+ decay is a consequence of the calculation of differences

of Christoffel symbols and curvature components as in the proof of Lemma 3.5. Near I +,
we revisit the proof of Lemma 3.8: in the notation of equation (3.25), the expressions for Ah
and Bh give L0

h −L0
0 ∈ H

∞;1+b0,−0,1+b+
b Diff1

b. Regarding the second remainder term in L̃h,

we note that the leading order terms, captured by the Diff2
b summand with C∞ coefficients,

come from terms of the metric and the Christoffel symbols which do not involve h; thus,
these are equal to the corresponding terms of L0. �

In order to obtain optimal decay results at I+ in §5.2, we shall need the precise form of
the normal operator of Lh, which by Lemma 3.10 is the same as that of L0. Now, gm is

31The discussion of Theorem 1.10 shows that for nontrivial data, this leading term must be nontrivial
somewhere on I +.
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itself merely a perturbation of the Minkowski metric, pulled back by a diffeomorphism, see
(2.10). It is convenient for the normal operator analysis at I+ in §§5.2 and 7 to relate this
to the usual presentation of the Minkowski metric g = dt2 − dx2 on R4 in U = {t > 2

3r}:

Lemma 3.11. The metric g lies in AElog

phg (U ;S2 scT ∗ mR4) for the index set Elog defined in

(2.36), and g − gm ∈ A
E ′log

phg (U ;S2 scT ∗ mR4) ⊂ ρ1−0H∞b (U ;S2 scT ∗ mR4).

The failure of smoothness (for m 6= 0) of g is due to the logarithmic correction, see (2.5),

in the definition of the compactification mR4. On the radial compactification 0R4 on the
other hand, g is a smooth scattering metric.

Proof of Lemma 3.11. In the region C2 defined in (2.8), gm = g is smooth, see the discussion

after equation (2.10). In the region C1, see equation (2.6), the spatial part dr2 + r2/g is a

smooth symmetric scattering 2-tensor on mR4. In the region t ≥ 2
3r and for large r, the

claim follows from Lemma 2.8 in that region. �

Define

L := 1
2�g + (δ̃∗ − δ∗g)δgGg, (δ̃∗ − δ∗g)u := 2γt−1 dt⊗s u− γt−1(ι∇gtu)g, (3.27)

cf. the definition (3.3), which is the linearization Ric(g) − δ̃∗Υ(g) around g = g, where
Υ(g) is defined like Υ(g) in (3.1) with g in place of gm. Using Lemma 3.11, one finds

L ∈ AElog

phg ·Diff2
b(U ;S2 scT ∗R4). Furthermore,

L− L0 ∈ A
E ′log

phg (U) ·Diff2
b(U ;S2 scT ∗R4); (3.28)

but ∂v ∈ ρ−1
I Vb(M), while derivatives along b-vector fields tangent to S+ lift to elements

of Vb(M); thus,

L− L0 ∈ ρ−1−0
I ρ1−0

+ H∞b ·Diff2
b (near I+ ⊂M). (3.29)

4. Global background estimate

We prove a global energy estimate for solutions of the linearized equation Lhu = f with
h ∈ X∞, and show that u lies in a weighted conormal space provided f does; recall here the
definition (3.20) of Lh. The weak asymptotics of u at the boundaries I0, I +, and I+ can
be improved subsequently using normal operator arguments in §5. At I +, the estimate

loses a weight of ρ
1/2
I for general b-derivatives, as we will explain in detail in §4.1. We

capture this using the function space H1
I :

Definition 4.1. Let E → R4 be a smooth vector bundle. With Mβ∗E defined in §2.4, let

H1
β(M ;β∗E) := {u ∈ L2

b(M ;β∗E) : Mβ∗Eu ⊂ L2
b(M ;β∗E)},

H1
I (M ;β∗E) := {u ∈ H1

β(M ;β∗E) : ρ
1/2
I Diff1

b(M ;β∗E)u ⊂ L2
b(M ;β∗E)}.

For k ∈ N0 and • = β,I , define

H1,k
•,b (M ;β∗E) := {u ∈ L2

b(M ;β∗E) : Diffkb(M ;β∗E)u ⊂ H1
• (M ;β∗E)}.
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If {Aj} ⊂ Mβ∗E is a finite set spanning Mβ∗E over C∞(M), we define norms on these
spaces by

‖u‖
H1,k
β,b(M ;β∗E)

:= ‖u‖Hk
b (M ;β∗E) +

∑
j

‖Aju‖Hk
b (M ;β∗E),

‖u‖
H1,k

I ,b(M ;β∗E)
:= ‖u‖

H1,k
β,b(M ;β∗E)

+ ‖ρ1/2
I u‖Hk+1

b (M ;β∗E).

Note that for u ∈ H1
β, we automatically have ρIDiff1

b(M)u ⊂ L2
b by Lemma 2.13(1), so

the subspace H1
I ⊂ H1

β encodes a ρ
1/2
I improvement over this. Away from I +, the spaces

H1,k
β,b and H1,k

I ,b are the same as Hk+1
b .

Fix a vector field
∂ν ∈ Vb(R4) (4.1)

transversal to the Cauchy surface Σ; we extend the action of ∂ν to sections u of a vector
bundle E using an arbitrary fixed b-connection dE on E, see (2.45), by setting ∂νu :=
(dEu)(∂ν).

Theorem 4.2. Fix weights b0, b
′
I , bI , b+ as in Definition 3.1, let γ > b′I in the defini-

tion (3.3) of δ̃∗, and fix a0, aI , a
′
I ∈ R satisfying

aI < a′I < a0, aI < 0, a′I < aI + b′I .

Then there exists a+ ∈ R such that the following holds for all h ∈ X∞;b0,bI ,b
′
I ,b+ which are

small in X 3: for k ∈ N, uj ∈ ρa0
0 H

k−j
b (Σ), j = 0, 1, and f ∈ Hk−1;a0,aI−1,a+

b (M ;β∗S2) with

π0f ∈ H
k−1;a0,a′I−1,a+

b (M ;β∗S2), the linear wave equation

Lhu = f, (u, ∂νu)|Σ = (u0, u1), (4.2)

has a unique global solution u satisfying

‖u‖
ρ
a0
0 ρ

aI
I ρ

a+
+ H1,k−1

I ,b (M ;β∗S2)
+ ‖π0u‖

ρ
a0
0 ρ

a′
I
I ρ

a+
+ H1,k−1

I ,b (M ;β∗S2)

≤ C
(
‖u0‖ρa0

0 Hk
b

+ ‖u1‖ρa0
0 Hk−1

b
+ ‖f‖

H
k−1;a0,aI−1,a+
b

+ ‖π0f‖
H
k−1;a0,a

′
I
−1,a+

b

)
.

(4.3)

In particular, if the assumptions on uj and f hold for all k, then

u ∈ H∞;a0,aI ,a+

b , π0u ∈ H
∞;a0,a′I ,a+

b . (4.4)

We refer the reader to Remark 1.9 for a translation of the memberships (4.4) to pointwise
decay estimates. (For obtaining pointwise decay for any fixed number of derivatives of u,
the estimate of (4.3) for sufficiently large k is of course sufficient.)

For completeness, we prove a version of such a background estimate with an explicit
weight a+ in §4.3. As we will see in §5.2, this allows us to give an explicit bound on the
number of derivatives needed to close the nonlinear iteration in §6. A nonexplicit value of
a+ as in Theorem 4.2 is sufficient to prove Theorem 1.1 if one is content with a nonexplicit
value for N .32 We will prove Theorem 4.2 by means of energy estimates, as outlined in

32One could obtain an explicit value for N even from a nonexplicit weight a+ if one improved the
argument in §6, which proves precise decay rates at I+, to not lose regularity. We expect that this can be
accomplished by microlocal propagation estimates along I + and radial point estimates at I +∩I+, though
we do not pursue this here.
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§1.1.1. Microlocal techniques on R4 on the other hand, as employed in [BVW15], would
work well away from the light cone at infinity S+, but since the coefficients of Lh are singular
at S+, it is a delicate question how ‘microlocal’ the behavior of Lh is at S+, i.e. whether
or not and what strengths of singularities could ‘jump’ from one part of the b-cotangent
bundle to another at S+; since we do not need precise microlocal control of Lh for present
purposes, we do not study this further.

Since dt is globally timelike for g = gm+ρh provided ρh is small in ρX 3 ⊂ L∞, existence
and uniqueness of a solution u ∈ Hk

loc(M ∩ R4;S2T ∗R4) are immediate, together with an
estimate for any compact set K bM ∩ R4,

‖u‖Hk(K) ≤ CK(‖u0‖ρa0
0 Hk

b
+ ‖u1‖ρa0

0 Hk−1
b

+ ‖f‖
H
k−1;a0,aI ,a+
b

), (4.5)

where one could equally well replace the norms on the right by standard Sobolev norms
on sufficiently large compact subsets of M ∩ R4 depending on K, due to the domain of
dependence properties of solutions of (4.2).

Using Lemma 3.10, it is straightforward to prove (4.3) near any compact subset of (I0)◦,

where H1,k−1
I ,b is the same as Hk

b . Let us define ρ0, ρI , ρ near I0 as in equation (2.25). Fix

ε > 0, and define for δ, η > 0 small

U := {ρI > ε, ρ0 − ηρI < δ} ⊂M,

which for ε small is a neighborhood of any fixed compact subset of M ∩ (I0)◦. (Since ρI
is bounded from above, U can be made to lie in any fixed neighborhood {ρ0 < δ0} of I0

provided δ and η are sufficiently small.) In view of (3.15), we have G ∈ 4∂0∂1 − r−2 /G +

ρ1−0
0 H∞b (U ;S2 scT ∗R4), hence the calculation (2.26) gives

Gb = G0,b + ρ1−0
0 H∞b (U ;S2 bT ∗R4), G0,b := 2∂ρI (ρI∂ρI − ρ0∂ρ0)− /G. (4.6)

Thus, dρI and d(ρ0 − ηρI) are timelike in U once we fix δ, η > 0 to be sufficiently small,
and thus U is bounded by Σ ∩ U and two spacelike hypersurfaces, U∂1 = {ρI = ε} and
U∂2 = {ρ0 − ηρI = δ} (as well as by U ∩ ∂M at infinity), see Figure 4.1.

U
U∂1

U∂2

Σ

I0

I +

Figure 4.1. The domain U with its spacelike boundaries U∂1 , and U∂2 . We
draw I0 at a 45 degree angle as the level sets of the chosen boundary defining
function ρ0 are approximately null (namely, |dρ0|2G0,b

= 0). The level sets of

ρI are spacelike in ρI > 0, but not uniformly so as ρI → 0.

Proposition 4.3. Under the assumptions of Theorem 4.2, we have

‖u‖ρa0
0 Hk

b (U) ≤ C
(
‖u0‖ρa0

0 Hk
b (Σ∩U) + ‖u1‖ρa0

0 Hk−1
b (Σ∩U) + ‖f‖ρa0

0 Hk−1
b (U)

)
. (4.7)
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Proof. We give a positive commutator proof of this standard estimate, highlighting the
connection to the more often encountered fashion in which energy estimates are phrased
[DR08]. Let us work in a trivialization bT ∗R4 ∼= R4×R4, and fix the fiber inner product to be
the Euclidean metric in this trivialization. For proving the case k = 1 of the lemma, we set
L := Lh; it will be convenient however for showing higher regularity to allow L ∈ Diff2

b +
ρ1−0

0 H∞b Diff2
b to be any principally scalar operator with σb,2(L) = 1

2Gb, acting on CN -

valued functions for some N ∈ N; we equip CN with the standard Hermitian inner product.
(One may also phrase the proof invariantly, i.e. not using global bundle trivializations, as
we shall do in §§4.1 and 4.2 for conceptual clarity.)

We will use a positive commutator argument: let V = −∇ρI ∈ Vb(R4), with ∇ defined
with respect to gb; this is future timelike. For z > 0 chosen later, let w = ρ−a0

0 ezρI , and let
1U denote the characteristic function of U . Put W = 1Uw

2V . Write L = L2 + L1, where
L2 = 1

2�gb
⊗ 110×10, L1 ∈ (C∞ + ρ1−0

0 H∞b )Diff1
b. We then calculate the commutator

2 Re〈1Uwf,1UwV u〉 = 2 Re〈Lu,Wu〉 = 〈Au, u〉+ 2 Re〈1UwL1u,1UwV u〉 (4.8)

using the L2
b inner product, where A = [L2,W ] + (W +W ∗)L2. A simple calculation gives

σb,2(A)(ξ) = KW (ξ, ξ), where

KW := −1
2(LWGb + (divgb

W )Gb). (4.9)

(The K-current is often given in its covariant form 1
2(LW gb − (divgb

W )gb).) Therefore,
A = d∗KWd, since the principal symbols of both sides agree, hence the difference is a
scalar33 first order b-differential operator which has real coefficients and is symmetric—
thus is in fact of order zero, and since it annihilates constant vectors in CN , the difference
vanishes. Differentiation of the exponential weight in W upon evaluating KW will produce
the main positive term into which all other terms can be absorbed. Indeed, the identity
LfVGb = fLVGb − 2∇f ⊗s V for V ∈ Vb and f ∈ C∞ gives

KfV = T (∇f, V ) + fKV , (4.10)

where
T (X,Y ) = X ⊗s Y − 1

2gb(X,Y )Gb

denotes the (abstract) energy-momentum tensor. (The energy-momentum tensor of a scalar
wave u, say, is given by T (X,Y )(du, du).) Therefore, KW = w2(2z1UK0 + 1UK1 + K2),
where

K0 = T (∇ρI , V ), K1 = −2a0T
(∇ρ0

ρ0
, V
)
, K2 = T (∇1U , V ).

Since ∇ρI is past timelike, the main term K0 is negative definite; K2 has support in
∂U \ ∂M , so ∇1U being past timelike at U∂1 and U∂2 , K2 has the same sign as K0 there.
Lastly, K1 has no definite sign, but can be absorbed into K0 by choosing z > 0 large:
indeed, |T (∇ρ0

ρ0
, V )(ξ, ξ)| ≤ −CT (∇ρI , V ) for some constant C depending only on K, since

gb is a b-metric. Thus, (4.8) gives the estimate

〈1Uw(−2zK0 −K1)du,1Udu〉 ≤ 2(‖1UwV u‖2 + ‖1UwL1u‖2)

+ ‖1Uwf‖2 + C‖1Uw(du0, u1)‖2.
(4.11)

In order to control u itself, consider the ‘commutator’

2 Re〈1Uwu,1UwV u〉 = 2 Re〈u,Wu〉 = 〈−1Uw(div V )u,1Uwu〉 − 〈V (1Uw
2)u, u〉, (4.12)

33That is, it is a scalar operator tensored with the identity operator on CN .
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where V (1Uw
2) = 2z1Uw2(V ρI) − 2a01Uw

2 V ρ0

ρ0
+ w2V (1U ). In the first, main, term,

V ρI = −|dρI |2gb
≤ −c0 < 0 has a strictly negative upper bound on U ; the third term gives

δ-distributions at ∂U with the same sign as this main term at U∂1 and U∂2 since V is outward
pointing there. Choosing z large to absorb the contribution of the second term, we get

c0z‖1Uwu‖2 ≤ ηz‖1Uwu‖2 + Cηz−1‖1UwV u‖2 + C‖1Uwu0‖2,
so fixing η = c0/2, this gives ‖1Uwu‖2 ≤ Cz−2‖1UwV u‖2 + Cz‖1Uwu0‖2. Adding C ′

times this to (4.11) yields

〈1Uw(−2zK0 −K1)du,1Udu〉+ C ′‖1Uwu‖2

≤ (2 + CC ′z−2)‖1UwV u‖2 + 2‖1UwL1u‖2

+ Cz
(
‖1Uwf‖2 + (C + C ′)‖1Uw(u0, du0, u1)‖2

)
.

Fixing C ′ sufficiently large and then z > 0 large, we can absorb the two first terms on the
right into the first term on the left hand side, using that −zK0 > −2zK0 −K1 for large
z. This gives (4.7) for k = 1.

We now proceed by induction, assuming (4.7) holds for some value of k for all operators

L of the form considered above. If Lu = f , let X ∈ (Diff1
b(R4))N denote an N -tuple of

b-differential operators which generate Diff1
b(R4) over C∞(R4); writing [L,X] = L′ ·X for

L′ an N -tuple of operators in (C∞ + ρ1−0
0 H∞b )Diff1

b, we then have (L − L′)(Xu) = Xf .
Applying (4.7) to this equation, we obtain the estimate (4.7) for Lu = f itself with k
replaced by k + 1. �

Given the structure of the operator Lh on the manifold with corners M as described in
§3.3, it is natural to proceed proving the estimate (4.3) in steps: in §4.1, we propagate the
control given by Proposition 4.3 uniformly up to a neighborhood of the past corner I0∩I +

of null infinity and thus into (I +)◦. In §4.2, we prove the energy estimate uniformly up to
I+; the last estimate cannot be localized near the corner I + ∩ I+ since typically limits of
future-directed null-geodesic tending to I + ∩ I+ pass through points in I+ far from I +.

4.1. Estimate up to null infinity. We work near the past corner I0∩I + of the radiation
field; recall the definition of the boundary defining functions ρ0 and ρI of I0 and I +

from (2.25), and let ρ = r−1. At I +, we need to describe Gb more precisely than was
needed near (I0)◦; we make extensive use of the structures defined in §2.4. Equations (3.15)
and (2.26) give

Gb = G0,b +G1,b + G̃b, G1,b := ρ−2g−1
m −G0,b ∈ C∞(M ;S2 βTM), (4.13)

with G0,b = 2∂ρI (ρI∂ρI − ρ0∂ρ0)− /G ∈ ρ−1
I C∞(M ;S2 βTM + ρI S

2 bTM) as before, and

G̃b ∈ ρ1+b0
0 ρ

−1+b′I
I H∞b (M ;S2 βTM + ρI S

2 bTM).

Dually, equation (2.27) gives

gb ∈ (C∞ + ρ1+b0
0 ρ

b′I
I H

∞
b )(M ;S2(βTM)⊥ + ρI S

2 bT ∗M) (4.14)

where the smooth term is ρ2gm = −2ρI
dρ0

ρ0

(dρ0

ρ0
+ dρI

ρI

)
− /g + ρ2

I C∞(M ;S2 bT ∗M).

Fix β ∈ (0, b′I). For small ε > 0, we define the domain

Uε := {ρI < ε, ρ0 − ρβI < 1} ⊂M, U0
ε := Uε ∩ {1

2ε < ρI < ε}, (4.15)
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see Figure 4.2. Thus, Uε is bounded by I0, I +, {ρI = ε}, and U∂ε = {ρ0− ρβI = 1, ρI < ε}.
At U∂ε , we use (4.6) and (4.13) to compute

|d(ρ0 − ρβI )|2Gb
∈ 2βρ−1+β

I (ρ0 + βρβI ) + ρ2β
I C
∞ + ρ1−0

0 ρ
−1+b′I
I H∞b , (4.16)

hence U∂ε is timelike for small enough ε. As in the proof of Proposition 4.3, the main term
is the K-current of a timelike vector field with suitable weights:

Lemma 4.4. Fix cV ∈ R, let W := ρ−2a0
0 ρ−2aI

I V , and V := −(1 + cV )ρI∂ρI + ρ0∂ρ0, then

KW ∈ ρ−2a0
0 ρ−2aI−1

I

(
2aI(ρ0∂ρ0 − ρI∂ρI )

2 − 2cV (a0 − aI)(ρI∂ρI )
2

− 1
2

(
1 + 2(a0 − aI) + cV (1− 2aI)

)
ρI /G

)
+ ρ−2a0

0 ρ−2aI
I (C∞ + ρ1+b0

0 ρ
−1+b′I
I H∞b )(M ;S2 βTM + ρI S

2 bTM).

(4.17)

Furthermore,

divgb
W ∈ −2ρ−2a0

0 ρ−2aI
I

(
1 + 2(a0 − aI) + cV (1− 2aI)

)
+ ρ−2a0

0 ρ−2aI+1
I (C∞ + ρ1+b0

0 ρ
−1+b′I
I H∞b )

(4.18)

Here, ρ−1
I |V |2gb

∈ 2cV +ρI C∞+ρ1+b0
0 ρ

b′I
I H

∞
b , so V is timelike for cV > 0. This calculation

also shows that the level sets of ρI are spacelike in Uε. The term ρIKW (du, du) will provide
control of u in ρa0

0 ρ
aI
I H

1
I (modulo control of |u|2 itself, which we obtain by integration),

similarly to (1.19).

Remark 4.5. For easier comparison with energy estimates expressed in standard coordinates
on R4, consider the special case m = 0, so ρ0 = (r − t)−1 and ρI = (r − t)/r; then
ρ0∂ρ0 = −(r∂r + t∂t) (scaling) and ρI∂ρI = −r(∂t + ∂r) (weighted outgoing derivative).
Thus, the multiplier vector field W in t < r, r > 0, equals

W = r2aI+1(r − t)2(a0−aI)
(
cV ∂r + (cV + r−t

r )∂t
)
.

Proof of Lemma 4.4. Recall that KW = 1
2(π− 1

2(trgb
π)Gb), π := −LWGb. Since V ∈MC,

Lemma 2.13(2) shows that π̃ := −LW G̃b, expressed using vector field commutators, lies in

the remainder space in (4.17); using (4.14), this implies trgb
π̃ ∈ ρ−2a0+1+b0

0 ρ
−2aI+b′I
I H∞b ,

so (trgb
π̃)Gb also lies in the remainder space. Similarly, G1,b contributes a (weighted)

smooth remainder term to KW . Lastly, for π0 = −LWGb,0, the term 1
2(π0 − 1

2(trgb
π0)Gb)

contributes the main term, i.e. the first line of (4.17) after a short calculation, as well as two

more error terms, one from G̃b, the other coming from the nonsmooth remainder term in
(4.14). The calculation (4.18) drops out as a by-product of this, and can also be recovered
by divgb

W = − trgb
KW . �

In order to get the sharp weights34 for the decaying components π0u of u at I + in
Theorem 4.2, we need to exploit the sign of the leading subprincipal part of Lh at I +,
given by the term involving ρ−1Ah∂1 in Lemma 3.8, in the decoupled equation for π0u, see
(3.26a) for the model. We thus prove:

34As explained before in the context of the weight at I+, this is not necessary, but easy to accomplish
here without lengthy calculations.
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Lemma 4.6. Define W = ρ−2a0
0 ρ

−2a′I
I (ρ0∂ρ0 − (1 + cV )ρI∂ρI ) similarly to previous lemma.

Let γ ∈ R, and fix a0, a
′
I ∈ R such that a′I < min(γ, a0). Then for small cV > 0, there exists

a constant C > 0 such that

KW − 2γW ⊗s ρ−1∂1 ≤ −Cρ−2a0
0 ρ

−2a′I−1
I

(
(ρI∂ρI )

2 + (ρ0∂ρ0)2 + ρI /G
)
, (4.19)

in the sense of quadratic forms, in Uε, ε > 0 small.

Proof. Using the expression (2.26) for ρ−1
0 ρ−1

I ∂1, we have

ρ2a0
0 ρ

2a′I+1
I W ⊗s ρ−1∂1

∈ (ρ0∂ρ0 − ρI∂ρI )
2 − cV ρI∂ρI ⊗s (ρ0∂ρ0 − ρI∂ρI ) + ρI C∞(M ; βTM)

We can then calculate the leading term of ρ2a0
0 ρ

2a′I+1
I times the left hand side of (4.19) by

completing the square:

− 2(γ − a′I)
(
ρ0∂ρ0 − ρI∂ρI −

γcV
2(γ − a′I)

ρI∂ρI

)2
− cV

(
a0 − a′I −

γ2cV
2(γ − a′I)

)
(ρI∂ρI )

2

− 1
2

(
1 + 2(a0 − a′I) + cV (1− 2a′I)

)
ρI /G.

The first term is the negative of a square, and so is the second term if we choose cV > 0
sufficiently small; reducing cV further if necessary, the coefficient of the last term is negative
as well, finishing the proof. �

Remark 4.7. For the value of cV determined in the proof, we have divgb
W ≤ −Cρ−2a0

0 ρ
−2a′I
I

near I + by inspection of the expression (4.18).

Suppose now u solves Lhu = f with initial data (u0, u1) as in (4.2). Note that the
estimates (4.5) and (4.7) provide control of u on U0

ε for any choice of ε > 0; thus, it suffices
to prove an estimate in Uε for any arbitrary but fixed ε > 0. Let χ ∈ C∞(R) be a cutoff,
χ(ρI) ≡ 1 for ρI < ε/4 and χ(ρI) ≡ 0 for ρI > ε/2, and put ũ := χu, then ũ solves the
forward problem

Lhũ = f̃ := χf + [Lh, χ]u (4.20)

in Uε, with ‖f̃‖
ρ
a0
0 ρ

aI−1

I Hk−1
b (Uε)

+ ‖π0f̃‖
ρ
a0
0 ρ

a′
I
−1

I Hk−1
b (Uε)

controlled by the corresponding

norm of f plus the right hand sides of (4.5) and (4.7). (Use Lemma 3.10 to compute the

rough form of the commutator term.) Note that ũ = χu is the unique solution of Lhũ = f̃
vanishing in ρI >

1
2ε. See Figure 4.2.

Thus, the estimate (4.3) of u in Uε is a consequence of the following result (dropping the

tilde on ũ and f̃):

Proposition 4.8. For weights b0, b
′
I , bI , a0, a

′
I , aI , and for h ∈ X∞, small in X 3, as in

Theorem 4.2, and for k ∈ N, let f ∈ ρa0
0 ρ

aI−1
I Hk−1

b (Uε), π0f ∈ ρa0
0 ρ

a′I−1
I Hk−1

b (Uε); suppose

f vanishes in ρI >
1
2ε. Let u denote the unique forward solution of Lhu = f . Then

‖u‖
ρ
a0
0 ρ

aI
I H1,k−1

I ,b (Uε)
+ ‖π0u‖

ρ
a0
0 ρ

a′
I
I H1,k−1

I ,b (Uε)

≤ C
(
‖f‖

ρ
a0
0 ρ

aI−1

I Hk−1
b (Uε)

+ ‖π0f‖
ρ
a0
0 ρ

a′
I
−1

I Hk−1
b (Uε)

)
.

(4.21)
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U∂ε

ρI = ε

U0
εUε

I0

I +

Figure 4.2. The domain Uε and its subdomain U0
ε where we have a priori

control of u, allowing us to cut off and study equation (4.20) instead.

Proof. The idea is to exploit the decoupling of the leading terms of Lh at I + given by
equations (3.26a)–(3.26c): this allows us to prove an energy estimate (for the case k = 1)

‖π0u‖
ρ
a0
0 ρ

a′
I
I H1

I

≤ C
(
‖π0f‖

ρ
a0
0 ρ

a′
I
−1

I L2
b

+ ‖πc0u‖ρa0
0 ρ

aI−δ
I H1

I

)
, (4.22)

where δ > 0 fixed such that

a′I − b′I < aI − δ, aI < a′I − δ. (4.23)

The estimate (4.22) contains πc0u as an error term, but with a weaker weight due to the

decay of the coefficients of the error term L̃h—which is dropped in (3.26a). On the other
hand, π0u couples into πc0u via at most logarithmic terms, hence we can prove

‖πc0u‖ρa0
0 ρ

aI
I H1

I
≤ C

(
‖πc0f‖ρa0

0 ρ
aI−1

I L2
b

+ ‖π0u‖ρa0
0 ρ

aI+δ

I H1
I

)
(4.24)

Close to I +, the last term in the estimate (4.22), resp. (4.24), is controlled by a small
constant times the left hand side of (4.24), resp. (4.22), hence summing the two estimates
yields the full estimate (4.21). The proof of (4.24) and its higher regularity version will itself
consist of two steps, corresponding to the weak null structure expressed by the decoupling
of (3.26b) and (3.26c).

All energy estimates will use the vector field

V1 = −(1 + cV )ρI∂ρI + ρ0∂ρ0

from Lemma 4.4, with cV > 0 chosen according to Lemma 4.6. Denote u0 := π0u, u11 :=
π11u, uc11 := πc11u, and uc0 := πc0u = u11 + uc11. We expand Lhu = f as

π0Lhπ0u0 = π0f − π0Lhπ
c
0u
c
0, (4.25a)

πc11Lhπ
c
11u

c
11 = πc11f − πc11Lhπ0u0 − πc11Lhπ11u11, (4.25b)

π11Lhπ11u11 = π11f − π11Lhπ0u0 − π11Lhπ
c
11u

c
11. (4.25c)

Here, we regard β∗K0 → M as a vector bundle in its own right, and u0 as a section of
β∗K0: the inclusion K0 ↪→ S2 scT ∗R4 and the structures on the latter bundle induced by g
or gm play no role; likewise for K11 and Kc

11.

Starting the proof of the estimate (4.22) using equation (4.25a), let us abbreviate L :=
π0Lhπ0. By Lemma 3.8 and recalling the definition of ACD from equation (3.26a), we have

L = L0 + L̃, L0 = −2ρ−2∂0∂1 + L0
1, L

0
1 = −ρ−1ACD∂1, (4.26)
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with L̃ lying in the same space as L̃h in (3.25) with β∗S2 replaced by β∗K0. Here, L0
1 denotes

a fixed representative in ρ−1
I ·0Mβ∗K0 , defined by fixing a representative of ρ−1

0 ∂1 ∈ 0Mβ∗K0 ,

see equation (2.42), in the image space of Lemma 2.13(3). Let w = ρ−a0
0 ρ

−a′I
I ; let further

1Uε denote the characteristic function of Uε. Fix V ∈ 0Mβ∗K0 , with scalar principal symbol
equal to that of V1. Let

W := 1UεW
◦, W ◦ := w2V.

Fix a positive definite fiber inner product B : bTM → bT ∗M on bTM , a connection
d ∈ Diff1(R4;K0, T

∗R4 ⊗ K0) on K0, and a positive definite fiber metric k0 on K0 with
respect to which ACD = A∗CD; note here that ACD is constant on the fibers of I +,
hence indeed descends to an endomorphism of K0|S+ . Let 〈·, ·〉 denote the L2 inner

product with respect to k0 and the density |dgb| ∼ |dρ0

ρ0
dρI d/g|; defining the b-density

dµb := ρ−1
I |dgb| ∼ |dρ0

ρ0

dρI
ρI
d/g| to define L2

b(M), we then have

〈u, v〉 = 〈ρIu, v〉L2
b
. (4.27)

We shall evaluate

2 Re〈wLu0,1UεwV u0〉 = 〈Cu0, u0〉,
C := L∗W +W ∗L = [L,W ] + (W +W ∗)L+ (L∗ − L)W.

(4.28)

Let KW denote the current associated with the scalar principal part of W , see (4.9),
now understood as taking values in the bundle S2 bTM ⊗ End(β∗K0), acting on β∗K0

by scalar multiplication. While KW provides positivity of C near I + for suitable weights
by Lemma 4.4—in particular, this would require a′I < 0—we will show around (4.35) below
how to obtain a better result by exploiting the sign of ACD entering through (L∗ − L)W .

In the proof of Proposition 4.3, where we worked in a global trivialization, all terms of W
and L other than the top order ones could be treated as error terms; we show that the same
is true here by patching together estimates obtained from calculations in local coordinates
and trivializations. Thus, let {Uj} be a covering of a neighborhood of S+ containing Uε by
open sets on which K0 is trivial, and let {χj}, χj ∈ C∞c (Uj), denote a subordinate partition
of unity; let χ̃j ∈ C∞c (Uj), χ̃j ≡ 1 on suppχj . Fix trivializations (K0)|Uj ∼= Uj ×C4 and the
induced trivializations of β∗K0. Write

L = Lj,2 + Lj,1, W = Wj,1 +Wj,0,

where Lj,2 := 1
2�gb

acts component-wise as the scalar wave operator and Lj,1 is a first order

operator, while Wj,1 := 1Uεw
2V1 acts component-wise, and Wj,0 ∈ 1Uεw2ρI C∞(Uj , βTM),

with the extra factor of ρI due to the choice of V . On (K0)|Uj , let moreover dj denote the
standard connection, given component-wise as the exterior derivative on functions, and let
kj denote the standard Hermitian fiber metric; we denote adjoints with respect to kj by †.
Now,

〈Cu0, u0〉 =
∑
〈Cju0, χju0〉, (4.29)

where

Cj =
∑
k,`

Cj,k`, Cj,k` := L∗j,kWj,` +W ∗j,`Lj,k.

The usual calculation in the scalar case, see the discussion around (4.8), gives

Cj,21 := L†j,2Wj,1 +W †j,1Lj,2 = d†jBKWdj ,
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so

〈Cj,21u0, χju0〉 = 〈d∗BKWdu0, χju0〉+ 〈(Cj,21 − Cj,21)u0, χju0〉 (4.30)

+ 〈(d†j − d
∗
j )BKWdju0, χju0〉+ 〈(d∗jBKWdj − d∗BKWd)u0, χju0〉.

Summing the first term over j yields∫
Uε

ρIKW ◦(du0, du0) dµb +

∫
T (ρI∇1Uε ,W ◦)(du0, du0) dµb (4.31)

upon application of the formula (4.10). The first summand—after adding the term (4.35)
below—is negative definite, controlling derivatives of u0 as in (4.22); the second term gives
a contribution of the same sign: we have

T (ρI∇1Uε ,W ◦) = δU∂ε ⊗ w
2T ∂ ,

with T ∂ ≤ 0 since −∇1Uε and W ◦ are future causal. The remaining terms in (4.30) are
error terms: the second term is equal to

〈Wj,1u0, (Lj,2 − L†∗j,2)χju0〉+ 〈Lj,2u0, (Wj,1 −W †∗j,1)χju0〉.

Now, k0 and kj are related by kj(·, ·) = k0(Q̃j ·, Q̃j ·), with Q̃j ∈ C∞(Uj ; End(K0)) invertible,

and then A† = Q−1
j A∗Qj for Qj := Q̃∗j Q̃j when A is an operator acting on sections of K0.

Thus, Wj,1−W †∗j,1 = [Wj,1, Q
∗
j ](Q

−1
j )∗. On M , the constancy of Qj , and hence of Q∗j , along

the fibers of β and V1 ∈ 0M give the extra vanishing factor ρI in

Wj,1 −W †∗j,1 = 1UερIw
2qj,1, qj,1 ∈ C∞(β−1(Uj); End(β∗K0)),

with qj,1 only depending on Qj . Similarly, Lj,2 −L†∗j,2 = [Lj,2, Q
∗
j ](Q

−1
j )∗; using Lemma 3.7

and [∂1, Q
∗
j ] ∈ ρ C∞, we find (replacing the weight −0 there by −1/2 + b′I for definiteness)

Lj,2−L†∗j,2 ∈ ρ
1+b0
0 ρ

−1+b′I
I H∞b (M)Mβ∗K0 +(C∞+ρ1+b0

0 ρ
−1/2+b′I
I H∞b )Diff1

b(Uj ;β∗K0). (4.32)

Writing Lj,2u0 = Lu0 − Lj,1u0 and using the relationship (4.27), we thus get

|〈(Cj,21 − Cj,21)u0, χju0〉| ≤ C‖χ̃jwV1u0‖L2
b

(
‖χ̃jρ

b′I
I wu0‖H1

β
+ ‖χ̃jρ

1/2+b′I
I wu0‖H1

b

)
+ C

(
‖χ̃jρIwLu0‖L2

b
+ ‖χ̃jρIwLj,1u0‖L2

b

)
‖χ̃jρIwu0‖L2

b
,

(4.33)

where the norms are taken on Uε. Note that in all terms on the right, at least one factor
comes with an extra decaying power of ρI relative to wu0, hence is small compared to wu0

if we localize to Uε for small ε > 0, i.e. to a small neighborhood of I +. Next, we combine
Lemmas 2.16 and 4.4 in the same fashion as in the proof of Lemma 2.17 to estimate the
last two terms of (4.30) by

C
(
‖χ̃jρIwu0‖H1

b
‖χjwu0‖L2

b

+ (‖χ̃jρIwT ∂(du0, du0)1/2‖L2
b(U∂ε ) + ‖χ̃jρIwu0‖L2

b(U∂ε ))‖χjwu0‖L2
b(U∂ε )

)
;

(4.34)

where the second term in the inner parenthesis comes from the pointwise estimate T ∂(dju0,

dju0)1/2 ≤ C(T ∂(du0, du0)1/2 + |u0|).
The next interesting term in (4.29) is Cj,11 + Cj,10, specifically the term coming from the

‘constraint damping part’ L0
1 defined in (4.26). In a local trivialization, L0

1 = −ρ−1ACD∂1 +
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L0
1,j , L

0
1,j ∈ C∞(Uj) (using the discussion around (2.42) for this membership), so we have

the pointwise equality

2 Re k0(Wu0, L
0
1χju0) = −2 Re k0(Wj,1u0, ρ

−1ACD∂1χju0)

+ 2 Re k0(Wj,0u0, L
0
1χju0) + 2 Re k0(Wj,1u0, L

0
1,jχju0);

letting

K ′ := −2w2(V1 ⊗s ρ−1∂1)⊗ACD

∈ ρ−2a0
0 ρ

−2a′I−1
I C∞

(
Uε; (S2 βTM + ρI S

2 bTM)⊗ End(β∗K0)
)
,

the first term integrates to
∫
ρIK

′(dju0, djχju0) dµb, which equals∫
ρIK

′(du0, dχju0) dµb (4.35)

plus error terms of the same kind as in the second line of (4.30). The extra factor of ρI in
Wj,0 and L0

1,j (as compared to Wj,1 and L0
1) allows the remaining two terms to be estimated

in a fashion similar to (4.33). The remaining contributions to Cj,11 + Cj,10 are error terms

coming from L̃ in (4.26) and can be estimated as in (4.33).

Lastly, the terms of (4.29) involving Cj,20 can be rewritten and estimated as follows:∣∣2 Re〈(L− Lj,1)u0,Wj,0χju0〉+ 〈Wj,0u0, [Lj,2, χj ]u0〉
∣∣

≤ 2
(
‖ρIwLu0‖L2

b
+ ‖χ̃jρIwLj,1u0‖L2

b

)
‖χjρIwu0‖L2

b

+ ‖χ̃jρIwu0‖L2
b

(
‖χ̃jρ

b′I
I wu0‖H1

β
+ ‖χ̃jρ

1/2+b′I
I wu0‖H1

b

)
;

the norms are taken on Uε, and we use that [Lj,2, χj ] lies in the same space as (4.32). We
note that by Lemma 3.8, the terms involving Lj,1 here and in (4.33) can be estimated by

‖χ̃jρIwLj,1u0‖L2
b
≤ C

(
‖χ̄jρ

b′I
I wu0‖H1

β
+ ‖χ̄jρ

1/2+b′I
I wu0‖H1

b

)
,

where χ̄j ∈ C∞c (Uj) is identically 1 on supp χ̃j .

This finishes the evaluation of (4.28); we now turn to the estimate of wu0 itself by wV u.
As in the proof of Proposition 4.3, this follows from integration along V . Concretely, we
consider a ‘commutator’ as in (4.12), that is,

2 Re〈1UεwV u0, ρ
−1
I wu0〉 = −〈ρ−1

I divgb
(1Uεw

2V1)u0, u0〉+ E, (4.36)

where |E| ≤ C‖wu0‖L2
b
‖ρIwu0‖L2

b
by Lemma 2.18. Using the negativity of the divergence

near I + due to Lemma 4.4 and Remark 4.7, and that V1 is outward pointing at U∂ε , so
V1(1Uε) is a negative δ-distribution at U∂ε , we get

‖wu0‖L2
b(Uε) + ‖wu0‖L2

b(U∂ε ) ≤ C‖wV u0‖L2
b(Uε); (4.37)

recall here that u0 vanishes in ρI > ε
2 , hence there is no a priori control term on the

right. Subtracting this estimate from (4.28) (the latter having main terms which are neg-
ative definite in du0), the main terms are the left hand side of (4.37) and

∫
Uε
ρI(K

′ +

KW ◦)(du0, du0) dµb from (4.31) and (4.35). By Lemma 4.6, they control ‖wu0‖H1
I (Uε): the

error terms in Uε can be absorbed into this, while those at U∂ε in (4.34) can be absorbed
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into the second terms of (4.31) and (4.37), due to the extra decaying weights on at least one
of the factors in each of those error terms as discussed after (4.33). Thus, we have proved

‖u0‖
ρ
a0
0 ρ

a′
I
I H1

I

≤ C
(
‖π0f‖

ρ
a0
0 ρ

a′
I
−1

I L2
b

+ ‖π0Lhπ
c
0u
c
0‖
ρ
a0
0 ρ

a′
I
−1

I L2
b

)
, (4.38)

valid for a′I < min(a0, γ). Since Lh is principally scalar, π0Lhπ
c
0 is a first order operator,

and by Lemma 3.8, we have

π0Lhπ
c
0 ∈ ρ1−0

0 ρ
−1+b′I
I Mβ∗K0 + (C∞ + ρ1−0

0 ρ−0
I H∞b )Diff1

b(M ;β∗K0); (4.39)

since a′I < aI + b′I < aI + 1
2 , the second term in (4.38) is bounded by ‖uc0‖ρa0

0 ρ
aI−δ
I H1

I

for sufficiently small δ > 0 (by the assumptions on the weights in Theorem 4.2), which
establishes the estimate (4.22).

The proof of the estimate (4.24) proceeds along completely analogous lines, using the
weight w = ρ−a0

0 ρ−aII and positive commutator estimates for the equations (4.25b) and
(4.25c). The main difference is that π11Lhπ11 and πc11Lhπ

c
11 have no leading order subprin-

cipal terms like π0Lhπ0 does, hence we need aI < min(a0, 0) for Kw2V to have a sign—this
is the case a′I = aI , γ = 0 in the notation of Lemma 4.6. In order to estimate the coupling
terms on the right hand side of (4.25b), we use Lemma 3.8, so

πc11Lhπ0 ∈ (ρ−1
I C

∞ + ρ1−0
0 ρ−1−0

I H∞b )M+ (C∞ + ρ1−0
0 ρ−0

I H∞b )Diff1
b, (4.40)

πc11Lhπ11 ∈ ρ1−0
0 ρ

−1+b′I
I M+ (C∞ + ρ1−0

0 ρ−0
I )Diff1

b,

which gives

‖uc11‖ρa0
0 ρ

aI
I H1

I
≤ C

(
‖πc11f‖ρa0

0 ρ
aI−1

I L2
b

+ ‖u0‖ρa0
0 ρ

aI+δ

I H1
I

+ ‖u11‖ρa0
0 ρ

aI−δ
I H1

I

)
; (4.41)

for our choice (4.23) of δ, the second term is bounded by a small constant times the left
hand side of (4.22). For analyzing the equation (4.25c) for u11, we observe that π11Lhπ0

lies in the space (4.40), while

π11Lhπ
c
11 ∈

(
ρ1+b0

0 ρ−1
I H∞b (I + ∩ Uε) + ρ1−0

0 ρ−1+bI
I H∞b

)
M+ (C∞ + ρ1−0

0 ρ−0
I H∞b )Diff1

b,

where we exploit that hāb̄ has a leading term at I +. Thus,

‖u11‖ρa0
0 ρ

aI
I H1

I
≤ C ′

(
‖π11f‖ρa0

0 ρ
aI−1

I L2
b

+ ‖u0‖ρa0
0 ρ

aI−δ
I H1

I

+ ‖uc11‖ρa0
0 ρ

aI
I H1

I

)
. (4.42)

In order to obtain the estimate (4.24), we add (4.41) and a small multiple, η, of (4.42), so
that ηC ′ < 1 and uc11 can be absorbed into the left hand side of (4.41); note that the u11

term in (4.41) is arbitrarily small compared to the left hand side of (4.42) when we localize
sufficiently closely to I +. As explained at the beginning of the proof, this establishes the
desired estimate (4.21) for k = 1.

To prove (4.21) for k ≥ 2, we proceed by induction on the level of the hierarchy (4.25a)–
(4.25c) and the corresponding estimates (4.22), (4.41), and (4.42). The key structures
for obtaining higher regularity are the symmetries of the normal operators of π0Lhπ0 etc.
at I +. Namely, −2ρ−2∂0∂1 ∈ ∂ρI (ρ0∂ρ0 − ρI∂ρI ) + Diff2

b commutes (modulo Diff2
b) with

ρ0∂ρ0 , while for the vector field ρI∂ρI generating dilations along approximate (namely,
Schwarzschildean) light cones, we have

[−2ρ−2∂0∂1, ρI∂ρI ] ∈ −2ρ−2∂0∂1 + Diff2
b.

Commutation with spherical vector fields is more subtle: we need to define rotation ‘vector
fields’ somewhat carefully. We only define these on β∗K0, the definition for the other
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bundles being analogous. Using the product splitting Rq × Rs × S2 of R4 near S+, denote
by {Ω1,i : i = 1, 2, 3} ⊂ V(S2) ↪→ Vb(M) a spanning set of the space of vector fields on S2,
e.g. rotation vector fields, though the concrete choice or their (finite) number are irrelevant;
we can then define elements Ωi ∈ Diff1

b(M ;β∗K0) with scalar principal symbols equal to
those of Ω1,i such that

[ρ−1∂0,Ωi], [ρ−1
0 ∂1,Ωi] ∈ ρIDiff1

b(M ;β∗K0), (4.43)

where ρ−1∂0, ρ
−1
0 ∂1 denote elements in 0Mβ∗K0 . (Note that the ρI C∞ indeterminacy of

ρ−1∂0, ρ
−1
0 ∂1 does not affect (4.43).) Here, it is crucial that we fix ρ0 and ρ to be given

by (2.25) and thus rotationally invariant: Ωi,1ρ0 = 0, so [Ωi, ρ0] ∈ ρI C∞; we also have
[Ωi, ρI ] ∈ ρI C∞ independently of choices. Regarding (4.43) then, we automatically have
membership in Diff1

b by principal symbol considerations; to get the additional vanishing
at ρI is then exactly the statement that the normal operators of ρ−1∂0, resp. ρ−1

0 ∂1, and
Ωi commute. For ρ−1∂0, whose normal operator is −1

2ρI∂ρI , this is automatic, while for

ρ−1
0 ∂1, we merely need to arrange [ρ0∂ρ0 ,Ωi] = 0 at I +, which holds if we define Ωi in the

decomposition (3.10) by Ω1,i ⊕ /∇Ω1,i ⊕ Ω1,i. We therefore obtain

[−2ρ−2∂0∂1,Ωi], [L0,Ωi] ∈ Diff2
b,

with L0 given in (4.26), which improves over the a priori membership in ρ−1
I Diff2

b. Let
us now assume that for the solution of equation (4.25a), we have already established the
estimate

‖u0‖
ρ
a0
0 ρ

a′
I
I H1,k−1

I ,b

≤ C
(
‖π0f‖

ρ
a0
0 ρ

a′
I
−1

I Hk−1
b

+ ‖πc0u‖ρa0
0 ρ

aI−δ
I H1,k−1

I ,b

)
. (4.44)

We use {Gj} := {ρ0∂ρ0 , ρI∂ρI , Ω1, Ω2, Ω3, 1}, which spans Diff1
b(M ;β∗K0) over C∞(M),

as a set of commutators. Writing L = π0Lhπ0, we then have

LGju0 = fj + [L,Gj ]u0, fj := Gjπ0f −Gjπ0Lhπ
c
0u
c
0. (4.45)

We estimate the first term by

‖fj‖
ρ
a0
0 ρ

a′
I
−1

I Hk−1
b

≤ C
(
‖π0f‖

ρ
a0
0 ρ

a′
I
−1

I Hk
b

+ ‖πc0u‖ρa0
0 ρ

aI−δ
I H1,k

I ,b

)
.

For the second, delicate, term, we use the above discussion to see that

[L,Gj ] ∈ cjL+ ρ1−0
0 ρ

−1+b′I
I M◦Diff1

b + (C∞ + ρ1−0
0 ρ−0

I )Diff2
b (4.46)

with cj = 1 if Gj = ρI∂ρI , and cj = 0 otherwise. Thus, [L,Gj ] = cjL + C`jG` with

C`j ∈ ρ
1−0
0 ρ

−1+b′I
I M+ (C∞ + ρ1−0

0 ρ−0
I )Diff1

b, and therefore

‖[L,Gj ]u0‖
ρ
a0
0 ρ

a′
I
−1

I Hk−1
b

≤ cj‖Lu0‖
ρ
a0
0 ρ

a′
I
−1

I Hk−1
b

+ C
∑
`

‖G`u0‖
ρ
a0
0 ρ

aI−δ−δ′
I H1,k−1

I ,b

(4.47)

for δ′ > 0 small; recall that our choice (4.23) of δ leaves some extra room. Now, apply-
ing (4.44) to Gju0 in equation (4.45) and summing over j, we can absorb the term (4.47)
into the left hand side of the estimate due to the weaker weight. This establishes (4.44) for
k replaced by k+ 1. The higher regularity analogues of the estimates (4.41) and (4.42) are
proved in the same manner; as before, this then yields the estimate (4.21) for all k. �

This proposition remains valid near any compact subset of I + \ I+: the proof only
required localization near I +. At this point, we therefore have quantitative control of the
solution of the initial value problem for Lhu = f in any compact subset of M \ I+.
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4.2. Estimate near timelike infinity. Near the corner I+ ∩ I +, fix the local defining
functions

ρI := v = (t− r∗)/r, ρ̊+ := (t− r∗)−1 (4.48)

of I + and I+, and let ρ := ρI ρ̊+ = r−1; these only differ from the expressions for the
defining functions ρI and ρ0 used in §4.1 by a sign. We thus have Gb = ρ−2G = G0,b +

G1,b + G̃b for

G0,b = −2∂ρI (ρI∂ρI − ρ̊+∂ρ̊+)− /G ∈ ρ−1
I C

∞(M ;S2 βTM + ρI S
2 bTM) (4.49)

and G1,b ∈ C∞(M ;S2 βTM), G̃b ∈ ρ
−1+b′I
I ρ

1+b+
+ H∞b (M ;S2 βTM + ρI S

2 bTM), while

gb ∈ (C∞ + ρ
b′I
I ρ

1+b+
+ H∞b )(M ;S2(βTM)⊥ + ρI S

2 bT ∗M)

with smooth term given by ρ2gm = 2ρI
dρ̊+

ρ̊+
(dρ̊+

ρ̊+
+ dρI

ρI
) + ρ2

I C∞(M ;S2 bT ∗M). In order to

be able to work near all of I+, we first prove:

Lemma 4.9. There exists a defining function ρ+ ∈ C∞(M) of I+ such that dρ+/ρ+ is past
timelike near I+ for the dual b-metric ρ−2g−1

m . Moreover, if C > 0 is fixed, then for any
h ∈ X∞ with ‖h‖X 3 < C and for any ε > 0, there exists δ > 0 such that dρ+/ρ+ is past
timelike with |dρ+/ρ+|2Gb

> 0 in {ρI ≥ ε, ρ+ ≤ δ} for the dual b-metric Gb = ρ−2g−1,
g = gm + ρh.

Proof. For the second claim, note that in ρI ≥ ε > 0, we have Gb − ρ−2g−1
m ∈ ρ1+b+

+ L∞

with norm controlled by ‖h‖X 3 , so

|dρ+/ρ+|2Gb
∈ |dρ+/ρ+|2ρ−2g−1

m
+ ρ

1+b+
+ H∞b (4.50)

is indeed positive near ρ+ = 0. To prove the first claim, we compute on Minkowski space
|f−1

0 df0|2 ≡ 1, f0 = t/(t2 − r2) in t > r, computed with respect to the dual metric of
t−2(dt2 − dr2).35 Similarly, in r/t > 1

4 , and t > r∗ large, we have |f−1
∗ df∗|2ρ−2gm

> 0

for f∗ = t/(t2 − r2
∗): this is a simple calculation where gm = gSm is the Schwarzschild

metric, and follows in general by an estimate similar to (4.50) since gm differs from gSm
by a scattering metric of class ρ1−0H∞b in r/t < 3

4 . Moreover, f∗ is (apart from minor
smoothness issues, which we address momentarily) a defining function of I+ near I +. But
f0 − f∗ ∈ ρ2−0H∞b for r/t ∈ (1

4 ,
3
4), hence f ′ := χf∗ + (1 − χ)f0 has |(f ′)−1df ′|2ρ−2gm

> 0

near I+, where χ = χ(r/t) is smooth and identically 0, resp. 1, in r/t < 1
4 , resp. r/t > 3

4 .

Fixing any defining function ρ′+ of I+, Lemma 2.8 implies f ′ ∈ ρ′+ C∞(M)+(ρ′+)2−0H∞b (M)
(with the nonsmooth summand supported away from I + by construction), so we may take
ρ+ ∈ C∞(M) to be any defining function of I+ such that f ′ − ρ+ ∈ (ρ′+)2−0H∞b . �

For the remainder of this section, ρ+ will denote this particular defining function. Near
I+ ∩I +, we need to modify ρ+ in the spirit of (4.16) in order to get a timelike (but not
quite smooth) boundary defining function. Thus, fix β ∈ (0, b′I) and some small η > 0, and

let pβ ∈ ρβI C∞(U) be a nonnegative function in a neighborhood U of I+ such that pβ ≡ ηβ

in ρI ≥ 2η, pβ(ρI) = ρβI in ρI ≤ 1
2η, and 0 ≤ p′β ≤ βρ

β−1
I ; let then

ρ̃+ := ρ+(1 + pβ) ∈ ρ+(1 + ρβI ) C∞(M). (4.51)

35See also the related calculations and geometric explanations around equation (4.64).
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It is easy to see that ρ̃
a+
+ Hk

b (M) = ρ
a+
+ Hk

b (M), likewise for weighted HI and HI ,b spaces.

Lemma 4.10. Fix C > 0. Then there exist η, δ > 0 such that for all h ∈ X∞ with
‖h‖X 3 < C, we have |dρ̃+/ρ̃+|2Gb

> 0 in ρ+ ≤ δ.

Proof. We compute the Gb-norms∣∣∣dρ̃+

ρ̃+

∣∣∣2 =
∣∣∣dρ+

ρ+

∣∣∣2 +
ρIp
′
β

1 + pβ

(
2
〈dρ+

ρ+
,
dρI
ρI

〉
+

ρIp
′
β

1 + pβ

∣∣∣dρI
ρI

∣∣∣2). (4.52)

In ρI < 2η and thus near I +, we first note that ρ+ = fρ̊+ with f > 0 smooth; since df/f
thus vanishes at I + ∩ I+ as a b-1-form, we have

2
〈dρ+

ρ+
,
dρI
ρI

〉
∈ (2 + ρI C∞ + ρ+ C∞)ρ−1

I + ρ
−1+b′I
I ρ

1+b+
+ H∞b ,

thus the second summand of (4.52) is & ρ−1+β
I in ρI ≤ 1

2η and ρ+ small. The first and

third terms on the other hand are dominated by this, as they are bounded by ρ
−1+b′I
I and

ρ−1+2β
I , respectively. In 1

2η < ρI < 2η and ρ+ small, the parenthesis in (4.52) is positive,

the second summand being bounded by ρ−1+β
I ; the prefactor being positive due to p′β ≥ 0,

the claimed positivity thus follows from Lemma 4.9. �

We also note that ρ+∂ρ+ , which is well-defined as a b-vector field at I+ and equals the
scaling vector field in (I+)◦, is past timelike in (I+)◦. Let

U = {ρ̃+ < δ} ⊂M
denote the neighborhood of I+ ⊂M on which we will formulate our energy estimate. Near
I +, we need to exploit the weak null structure as in §4.1; thus, let

χ ∈ C∞c ([0,∞)ρI ), χ ≡ 1 near ρI = 0, (4.53)

denote a smooth function on U localizing in a neighborhood of I + where the projections
π0 etc. are defined, see the discussion around Definition 3.4.

Proposition 4.11. For weights b′I , bI , b+, a
′
I , aI as in Theorem 4.2, there exists a+ ∈ R such

that for all h ∈ X∞ which are small in X 3, the following holds: Let f ∈ ρaI−1
I ρ

a+
+ Hk−1

b (U),

χπ0f ∈ ρ
a′I−1
I ρ

a+
+ Hk−1

b (U), and suppose f vanishes in ρ̃+ > 1
2δ. Let u denote the unique

forward solution of Lhu = f . Then

‖u‖
ρ
aI
I ρ

a+
+ H1,k−1

I ,b (U)
+ ‖χπ0u‖

ρ
a′
I
I ρ

a+
+ H1,k−1

I ,b (U)

≤ C
(
‖f‖

ρ
aI−1

I ρ
a+
+ Hk−1

b (U)
+ ‖χπ0f‖

ρ
a′
I
−1

I ρ
a+
+ Hk−1

b (U)

)
.

(4.54)

Proof. We first consider k = 1. Near ∂I+, we will make use of the vector field V ′0 =
(1 − cV )ρI∂ρI − ρ̊+∂ρ̊+ , cV > 0 small, analogously to Lemma 4.4; away from ∂I+, the

vector field V ′′0 := −∇ρ+/ρ+ is future timelike. Fix a0
+ ≤ −1

2 and consider the vector field

VI := ρ−2aI
I ρ̊

−2a0
+

+ V ′0 , then

KVI ∈ ρ
−2aI−1
I ρ̊

−2a0
+

+

(
2cV (a0

+ − aI)(ρI∂ρI )
2 + 2aI(ρI∂ρI − ρ̊+∂ρ̊+)2

+
(

1
2(1− cV ) + a0

+ − aI + cV aI
)
ρI /G

)
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+ ρ−2aI
I ρ

−2a0
+

+ (C∞ + ρ
−1+b′I
I ρ

1+b+
+ )(M ;S2 βTM + ρI S

2 bTM)

is . −ρ−2aI−1
I ρ

−2a0
+

+ as a quadratic form, and divgb
VI . −ρ−2aI

I ρ
−2a0

+
+ . Analogously to

Lemma 4.6, if V ′I = ρ
−2a′I
I ρ̊

−2a0
+

+ V ′0 , then KV ′I
− 2γV ′I ⊗s ρ−1∂1 is negative definite near ∂I+

for cV > 0 sufficiently small.

To explain the idea for obtaining a global (near I+) negative commutator, consider the

timelike vector fieldW0 := χVI+(1−χ)ρ
−2a0

+
+ V ′′0 , and letW = ρ̃

−2a1
+

+ W0; then formula (4.10)
gives

KW = ρ̃
−2a1

+
+ KW0 + 2a1

+ρ̃
−2a1

+
+ T (W0,−∇ρ̃+

ρ̃+
). (4.55)

Letting

a+ := a0
+ + a1

+,

the first term gives control in ρaII ρ
a+
+ H1

I near I + in a positive commutator argument. On

the other hand, its size is bounded by a fixed constant times ρ
−2a+
+ in ρI ≥ ε > 0; but there,

T (W0,−dρ̃+

ρ̃+
) & ρ

−2a0
+

+ in the sense of quadratic forms on bT ∗M since W0 and −dρ̃+/ρ̃+ are

both future timelike. Therefore, choosing a1
+ large and negative, we obtain

KW ≤ −Cρ−2aI−1
I ρ

−2a+
+ K ′W ,

where K ′W is positive definite on bT ∗M in ρI ≥ ε > 0, while near I +, we have K ′W =

K1 +ρIK2, with K1, resp. K2, positive definite on bT ∗M , resp. (βTM)⊥. This gives global
(near I+) control in ρaII ρ

a+
+ H1

I .

We now apply this discussion to the situation at hand. For brevity, let us use the same
symbol to denote a b-vector field in 0M and an arbitrary but fixed representative in 0Mβ∗E

according to Lemma 2.13(3), similarly for b-vector fields with weights (such as VI and V ′I );

the bundle E → R4 will be clear from the context. For a1
+ ∈ R chosen later, consider then

the operator W acting on sections of β∗S2,

W := ρ̃
−2a1

+
+ W0, W0 := χ

(
π0V

′
Iπ0 + πc11VIπ

c
11 + ηπ11VIπ11

)
+ (1− χ)ρ

−2a0
+

+ V ′′0 , (4.56)

where η > 0 will be taken small, as in the discussion after (4.42). (Since u vanishes in ρ+ >
1
2δ, we do not need to include a cutoff term here.) ‘Integrating’ along W via a commutator

calculation for 2 Re〈Wu, ρ−1
I u〉 as in (4.36) gives control on u in the function space appearing

in (4.7) in terms of Wu. The evaluation of the commutator 2 Re〈Lhu,Wu〉 = 〈Cu, u〉,
C = [Lh,W ] + (W +W ∗)Lh + (L∗h − Lh)W , then combines the three separate calculations
for the equations (4.25a)–(4.25c) into one: near I +, one writes Lh in block form according
to the bundle decomposition β∗S2 = K0 ⊕Kc

11 ⊕K11, with the diagonal elements π0Lhπ0

etc. giving rise to the main terms of the commutator, while the off-diagonal terms can be
estimated using Cauchy–Schwarz and absorbed into the main terms due to the weak null
structure, as explained in detail in the proof of Proposition 4.8. Away from I +, all error
terms can be absorbed in the main term, corresponding to the second term in (4.55) upon
choosing a1

+ < 0 negative enough. This proves the proposition for k = 1.

Suppose now we have proved (4.54) for some k ≥ 1. First, the b-operator Lh automati-
cally commutes with ρ+∂ρ+ to leading order at I+; concretely, Lemma 3.8 gives

[Lh, ρ+∂ρ+ ] ∈ ρ−1+b′I
I ρ

1+b+
+ M2

β∗S2 + (ρ+ C∞ + ρ−0
I ρ

1+b+
+ H∞b )Diff2

b.
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Here, by an abuse of notation, ρ+∂ρ+ ∈ 0Mβ∗S2 is defined by first extending the vector

field ρ+∂ρ+ ∈ C∞(I+, bTI+M) to an element of 0MC, and then taking a representative of
the image space in Lemma 2.13(3); for this particular vector field, such a representative is
in fact well-defined modulo ρIρ+ C∞(M ; End(β∗S2)), the extra vanishing at ρ+ being due
to the special (b-normal) nature of ρ+∂ρ+ .

Therefore, commuting ρ+∂ρ+ through the equation Lhu = f , we have the estimate

‖ρ+∂ρ+u‖ρaII ρ
a+
+ H1,k−1

I ,b
+ ‖χπ0ρ+∂ρ+u‖

ρ
a′
I
I ρ

a+
+ H1,k−1

I ,b

≤ C
(
‖f‖

ρ
aI−1

I ρ
a+
+ Hk

b

+ ‖χπ0f‖
ρ
a′
I
−1

I ρ
a+
+ Hk

b

+ ‖u‖
ρ
aI−δ
I ρ

a+−(1+b+)

+ H1,k
I ,b

) (4.57)

by the inductive hypothesis, where we used aI − δ > a′I − b′I for δ > 0 small to bound
the forcing term [Lh, ρ+∂ρ+ ]u by the third term on the right; see the related discussion
around (4.39).

Second, the timelike character of ρ+∂ρ+ at (I+)◦ for ε > 0 implies that C(ρ+Dρ+)2−Lh
is elliptic in ρI ≥ ε for large C (depending on ε); therefore, letting χj ∈ C∞c (U \ I +),
j = 1, 2, denote cutoffs with χ1 ≡ 1 on supp(1 − χ) and χ2 ≡ 1 on suppχ1, we have an
elliptic estimate away from I +,

‖χ1u‖ρa+
+ Hk+1

b
≤ C

(
‖χ2ρ+∂ρ+u‖ρa+

+ Hk
b

+ ‖χ2u‖ρa+
+ Hk

b
+ ‖χ2f‖ρa+

+ Hk−1
b

)
, (4.58)

for u supported in ρ+ ≤ 1
2δ. Near I + on the other hand, we have the symmetries of null

infinity at our disposal, encoded by the operators ρI∂ρI and the spherical derivatives Ωj ,
see the discussion around (4.43). Let χ̃ ∈ C∞(U) be identically 1 on suppχ, and supported
close to I +. Defining the set of (cut-off) commutators {χGj} := {χρI∂ρI , χΩ1, χΩ2, χΩ3}
which together with ρ+∂ρ+ spans Vb(M) near I +, and recalling the commutation rela-
tions (4.46), we find

‖χGju‖ρaII ρ
a+
+ H1,k−1

I ,b
+ ‖χπ0Gju‖

ρ
a′
I
I ρ

a+
+ H1,k−1

I ,b

≤ C
(
‖f‖

ρ
aI−1

I ρ
a+
+ Hk

b

+ ‖χπ0f‖
ρ
a′
I
−1

I ρ
a+
+ Hk

b

+
∑
`

‖χ̃G`u‖ρaI−δI ρ
a+
+ H1,k−1

I ,b

+ ‖χ̃ρ+∂ρ+u‖ρaI−δI ρ
a+
+ H1,k−1

I ,b

)
.

(4.59)

But for any η > 0, we have the estimate

‖χ̃G`u‖ρaI−δI ρ
a+
+ H1,k−1

I ,b

≤ η‖χG`u‖ρaII ρ
a+
+ H1,k−1

I ,b
+ Cη‖χ1u‖ρa+

+ Hk+1
b

,

and the second term can in turn be estimated using (4.58). Summing the estimate (4.59)
over j and fixing η > 0 sufficiently small, we can thus absorb the terms involving χ̃G`u into
the left hand side, getting control by the norm of f , plus a control term C‖ρ+∂ρ+u‖ρa+

+ Hk
b
.

Adding to this estimate 2C times (4.57), this control term can be absorbed in the left hand
side of (4.57). This gives control of u as in the left hand side of (4.54) with k replaced by
k + 1, but with an extra term on the right coming from the last term in (4.57); however,

this term has a weaker weight at I+, ρ
a+−(1−b+)
+ � ρ

a+
+ , hence can be absorbed. This

gives (4.54) for k replaced by k + 1. �

Combining the estimate (4.5) in compact subsets of M◦ with Proposition 4.3 near (I0)◦,
Proposition 4.8 near I + \ (I + ∩ I+), and Proposition 4.11 near I+ proves Theorem 4.2.
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4.3. Explicit weights for the background estimate. We sketch the calculations needed
to obtain explicit values for the weights in the background estimate. More precisely, we
prove the following slight modification of Theorem 4.2:

Theorem 4.12. Let a+ = −3
2 . There exists an ε > 0 such that for aI < āI < a′I <

min(0, a0) with |aI |, |a′I |, |āI |, bI , b′I < γ < ε subject to the conditions in Definition 3.1,

as well for h ∈ X∞;b0,bI ,b
′
I ,b+ with ‖h‖X 3 < ε, the unique global solution of the linear wave

equation

Lhu = f, (u, ∂νu)|Σ = (u0, u1)

satisfies the estimate

‖u‖
ρ
a0
0 ρ

aI
I ρ

a+
+ H1,k−1

I ,b
+ ‖πc11u‖ρa0

0 ρ
āI
I ρ

a+
+ H1,k−1

I ,b
+ ‖π0u‖

ρ
a0
0 ρ

a′
I
I ρ

a+
+ H1,k−1

I ,b

≤ C
(
‖u0‖ρa0

0 Hk
b

+ ‖u1‖ρa0
0 Hk−1

b

+ ‖f‖
H
k−1;a0,aI−1,a+
b

+ ‖πc11f‖Hk−1;a0,āI−1,a+
b

+ ‖π0f‖
H
k−1;a0,a

′
I
−1,a+

b

)
.

(4.60)

Proof. The usage of an intermediate weight āI ∈ (aI , a
′
I) allows for a small but useful

modification of the argument following (4.42): namely, in the notation of that proof, we
are presently estimating u11 with weight ρaII , while the term uc11 coupling into the equation

for u11 via π11Lhπ
c
11 is estimated with weight ρāII � ρaII , hence automatically comes with

a small prefactor if we work in a sufficiently small neighborhood of I +. Correspondingly,
in the proof of Proposition 4.11, we would replace the third inner summand in (4.56) by

π11V̄Iπ11, with V̄I = ρ−2āI
I ρ̊

−2a0
+

+ V ′0 in order to obtain (4.60) (with a+ � 0 not explicit at
this point yet).

The only part of the proof of Theorem 4.2 in which we did not get explicit control on
the weights is the energy estimate near I+. In order to obtain the explicit weights there,
we note that for γ = 0, h = 0, and Schwarzschild mass m = 0, we simply have 2Lh = �g,

the wave operator of the Minkowski metric g = dt2 − dx2, which acts component-wise on

S2T ∗R4 in the trivialization given by coordinate differentials. Recalling from (2.17) that
0M denotes the manifold with corners constructed in §2.1 for m = 0, we shall prove that
the solution of the scalar wave equation t3�gt−1u = f , with f ∈ ρaI−1

I ρ
a+
+ L2

b supported in
ρ+ < 1, satisfies the estimate

‖u‖
ρ
aI
I ρ

a+
+ H1

I
. ‖f‖

ρ
aI−1

I ρ
a+
+ L2

b

(4.61)

for a+ = −3
2 and aI < 0 small, using a vector field multiplier argument; here, ρI = 0ρI

and ρ+ = 0ρ+. But then, if the weights aI , a
′
I , āI etc. are very close to one another, the

nonscalar commutant used in (4.56), modified as above, is very close to being principally
scalar away from I +; correspondingly, a slight modification of our arguments below for
the Minkowski case (4.61) yield the estimate (4.60) for k = 1. Higher b-regularity follows
as in the proof of Proposition 4.11.

In order to prove the estimate (4.61), we introduce explicit coordinates near the tem-
poral face I+ ⊂ M within the blow-up of compactified Minkowski space. First of all, the
calculations in A.3 imply

t3�gt
−1 = �gdS

− 2, (4.62)
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where

gdS = t−2(dt2 − dx2) (4.63)

is the de Sitter metric; notice though that we are interested in t � 1. Thus, consider the
isometry

(t, x) 7→ (τ̂ , x̂) =
1

t2 − r2
(t, x) ∈ [0,∞)τ̂ × R3

x̂ (4.64)

of gdS, defined in t > r = |x|: it maps I+ to (0, 0) and I + to {τ̂ = |x̂|}, see Figure 4.3. (The
map (4.64) is the change of coordinates between the upper half space models of de Sitter
space associated with q on the one hand and its antipodal point on the future conformal
boundary of de Sitter space on the other hand; see [HZ18, §6.1] for the relevant formulas.)

R

S3

I +
i+

i0

q

Figure 4.3. Left: part of the conformal embedding of Minkowski space
into the Einstein universe (E, dt2 − gS3), E = R × S3. Right: conformal
embedding of de Sitter space into E, and the backward light cone of a point
q on its conformal boundary, whose interior is the domain of the upper half
space model (4.63) of de Sitter space, which near q is equal to the static
model of de Sitter space near its future timelike infinity, q. The coordinates
(τ̂ , x̂) are regular near q = (τ̂ = 0, x̂ = 0).

Define the blow-up M ′ :=
[
[0,∞)τ̂ × R3

x̂, {(0, 0)}
]

at the image of I+. Then the lift of
{τ̂ ≤ |x̂|} to M ′ is canonically identified with a neighborhood of I+ ⊂M . Concretely,

(ρ+, Z) := (τ̂ , x̂/τ̂) =
(
t/(t2 − r2), x/t

)
∈ [0,∞)× R3

gives coordinates on M ′, in which U := [0, 1)ρ+ × {|Z| ≤ 1} is identified with a collar
neighborhood of I+ ⊂M so that

gdS = τ̂−2(dτ̂2 − dx̂2) = (1− |Z|2)
dρ2

+

ρ2
+

− 2Z dZ
dρ+

ρ+
− dZ2. (4.65)

Furthermore, ρI := 1 − |Z|2 = 1 − r2/t2 is a defining function of I + in U . Let us write
R := |Z|. Instead of the vector field Vloc = (1− cV )ρI∂ρI − ρ+∂ρ+ , which is defined locally
near I + and was used in the proof of Proposition 4.11, we use the global vector field

V0 = −(1 +R2)ρ+∂ρ+ − (1− cV )(1−R2)R∂R

which is equal to Vloc near I +, up to an overall scalar and modulo ρIVb + ρ+Vb; more-
over, V0 is timelike in U \ I + for small cV ≥ 0. Considering the commutant/vector field

multiplier W := ρ−2aI
I ρ

−2a+
+ V0 with a+ = −3

2 and aI < 0 small, the expression for the
K-current KW is somewhat lengthy, so we merely list its main features in 0 ≤ R ≤ 1,
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writing ρ2aI+1
I ρ

2a+
+ KW =: K1 + /K /G, with K1 a section of S2〈ρ+∂ρ+ , ∂R〉 (considered a 2×2

matrix in this frame) and /K a scalar:

– trK1|cV =0 = −2(1−R4 − aIR2(4 +R2)) < 0, which persists for small cV > 0;
– detK1|cV =0 = −4aI(1 + aI)R

2(1−R2) ≥ 0 and

(∂cV detK1)|cV =0 = −16a2
I(R

2 − 1
1+4aI

)(R2 + 3
3+4aI

) > 0,

so detK1 > 0 for small cV > 0;
– /K|cV =0 = −2(1 + aIR

2) < 0, which persists for small cV > 0;

– ρ2aI
I ρ

2a+
+ divgdS

W |cV =0 = 6− (2− 4aI)R
2 > 0.

Thus, fixing cV > 0 to be small, the main term arising in the evaluation of the commutator

−2 Re〈(�gdS
− 2)u,Wu〉 is

∫
U −KW (du, du) + 4(divgdS

W )|u|2 dρ+

ρ+
dZ, which thus gives the

desired control on u in H1
I , except |u|2 itself is only controlled in ρaII ρ

a+−1/2
+ L2

b due to the

weaker weight of divgdS
W at I +; control in ρaII ρ

a+
+ L2

b is obtained by integrating ρ+∂ρ+u ∈
ρaII ρ

a+
+ L2

b from ρ+ = 1. This yields (4.61). �

5. Newton iteration

Fix b0, bI , b
′
I , b+ and γ as in Theorem 4.2. Recall that we want to solve the symmetric

2-tensor-valued wave equation

P (h) = 0, (h, ∂νh)|Σ = (h0, h1)

for initial data (h0, h1), hj ∈ ρb00 H
∞
b (Σ), small in a suitable high regularity norm, and we

hope to find a solution h ∈ X∞;b0,bI ,b
′
I ,b+ . Following the strategy, outlined in §1, of solving a

linearized equation at each step of an iteration scheme, we consider, formally, the iteration
scheme with initialization

L0h
(0) = 0, (h(0), ∂νh

(0))|Σ = (h0, h1),

and iterative step h(N+1) = h(N) + u(N+1), where

Lh(N)u(N+1) = −P (h(N)), (h(N+1), ∂νh
(N+1))|Σ = 0.

Assume that h(N) ∈ X∞ has small X 3 norm. In order for this iteration scheme to close, we
need to show that h(N+1) ∈ X∞. Since P (h(N)) ∈ Y∞ by Lemma 3.5, this means that we
need to prove:

Theorem 5.1. For weights as above, there exists ε > 0 such that for h ∈ X∞;b0,bI ,b
′
I ,b+

with ‖h‖X 3 < ε, the following holds: if f ∈ Y∞;b0,bI ,b
′
I ,b+ and h0, h1 ∈ ρb00 H

∞
b (Σ), then the

solution of the initial value problem

Lhu = f, (u, ∂νu)|Σ = (u0, u1),

satisfies u ∈ X∞;b0,bI ,b
′
I ,b+.

Remark 5.2. We recall that membership, of a scalar function u for simplicity, in ρb00 H
∞
b (R3)

is equivalent (up to an arbitrarily loss in decay) to pointwise estimates |V1 · · ·VNu| . 〈r〉−b0
where the Vi are translation, rotation, or scaling vector fields on R3. The membership
h ∈ X∞;b0,bI ,b

′
I ,b+ means pointwise decay of various components of h towards leading order

terms at I + or to zero; see Definition 3.1 and Remark 1.9.
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According to Theorem 4.2, we have the background estimate

u ∈ H∞;b0,−0,a+

b (M ;β∗S2), π0u ∈ H
∞;b0,b′I−0,a+

b (M ;β∗S2), (5.1)

for suitable a+. We shall improve this to u ∈ X∞;b0,bI ,b
′
I ,b+ using normal operator analysis

in several steps, which were outlined around (1.22): using the leading order form (3.25) of
Lh, or rather its decoupled versions (3.26a)–(3.26c), we obtain the precise behavior of u
near I + \ (I + ∩ I+) in §5.1 by simple ODE analysis; the correct weight at I+ but losing
some precision at I + near its future boundary in §5.2 by normal operator analysis and
a contour shifting argument; and finally the precise behavior near I +, uniformly up to
I + ∩ I+, again by ODE analysis in §5.3.

For later use, we record the mapping properties of P and its linearization on the poly-
homogeneous and conormal parts of X∞—recall (3.9).

Lemma 5.3. Let h ∈ X∞;b0,bI ,b
′
I ,b+, with ‖h‖X 3 small; write h = hphg + hb, hphg ∈ X∞phg,

hb ∈ X∞b . Then: (1) P (hphg) ∈ Y∞, (2) L0
h : X∞phg → Y∞, (3) L0

h, L̃h : X∞b → Y∞b ,

(4) L̃h : X∞phg → Y∞b .

The point is that the behavior (2)–(3) of the leading term L0
h and simple information (1)

on the nonlinear operator automatically imply precise mapping properties (4) of the error

term L̃h which are not encoded in (3.25).

Proof of Lemma 5.3. Part (1) follows from Lemma 3.5. One obtains (2) by inspection

of (3.25); note that L0
h is only well-defined modulo terms in (C∞+ρ1+b0

0 ρ−0
I ρ

1+b+
+ H∞b )Diff1

b

which always map X∞phg → Y∞. Likewise, the first part of (3) follows from (3.25); the fact

that the ‘good components’ (encoded by the bundle K0) have a better weight b′I than the
weight bI of the remaining components (in Kc

0) is again due to the structure of L0
h discussed

after Lemma 3.8. The second part of (3) is clear, since this concerns the remainder operator

L̃h, whose coefficients are decaying relative to ρ−1
I Diff2

b, acting on X∞b , which consists of
tensors decaying at I +.

Finally, to prove (4), we take uphg ∈ X∞phg and write L̃huphg = DhP (uphg)−L0
huphg. The

second term lies in Y∞ by (2), while the first term equals

d

ds
P (hphg + suphg + hb)

∣∣
s=0

=
d

ds

(
P (hphg + suphg) +

∫ 1

0
L0
hphg+suphg+thb

(hb) + L̃hphg+suphg+thb
(hb) dt

)∣∣∣∣
s=0

;

but each of the three terms in parentheses depends smoothly on s as an element of Y∞
by (1), (2), and (3), respectively. �

5.1. Asymptotics near I0 ∩I +. With conormal regularity of u at our disposal, all but
the leading order terms of Lh can be regarded as error terms at I +: from (5.1) and
Lemma 3.8, we get

L0
hu ∈ Y∞;b0,bI ,b

′
I ,b+ +H

∞;b0,−1+b′I−0,a+

b .

Let us now work in a neighborhood U ⊂M of I0∩I + and drop the weight at I+ from the
notation. To improve the asymptotics of uc11 := πc11u, we use part (3.26b) of the constraint
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damping/weak null structure hierarchy as well as b′I > bI : this gives

2ρ−2∂0∂1u
c
11 ∈ ρ

b0
0 ρ

bI−1
I H∞b .

Using the local defining functions ρ0 and ρI from (2.25) and multiplying by ρI , this becomes

ρI∂ρI (ρ0∂ρ0 − ρI∂ρI )u
c
11 ∈ ρ

b0
0 ρ

bI
I H

∞
b . (5.2)

We can integrate the second vector field from ρI ≥ ε, where uc11 ∈ ρb00 H
∞
b , obtaining

ρI∂ρIu
c
11 ∈ ρb00 ρ

bI
I H

∞
b ; this uses bI < b0 (see Lemma 7.7 for details). Integrating out

ρI∂ρI (see Lemma 7.6) shows that uc11 is the sum of a leading term in ρb00 H
∞
b (I + ∩ U)

and a remainder in ρb00 ρ
bI
I H

∞
b (U). This then couples into the equation for u11 = π11u,

corresponding to part (3.26c) of the hierarchy:

ρI∂ρI (ρ0∂ρ0 − ρI∂ρI )u11 ∈ ρIπ11f − 1
2(∂1h

āb̄)∂1(uc11)āb̄ + ρb00 ρ
bI
I H

∞
b . (5.3)

The first two summands lie in ρb00 H
∞
b (I + ∩ U) + ρb00 ρ

bI
I H

∞
b ; integrating this along ρI∂ρI

generates the logarithmic leading term of u11. Thus, u11 = u
(1)
11 log ρI + u

(0)
11 + u11,b with

u
(j)
11 ∈ ρ

b0
0 H

∞
b (I + ∩ U) and u11,b ∈ ρb00 ρ

bI
I H

∞
b , as desired.

It remains to improve u0 = π0u. Write u = uphg + ub, where uphg ∈ X∞phg and ub ∈
ρb00 ρ

bI
I H

∞
b according to what we have already established; note that the space X∞phg is

independent of the choice of bI , b
′
I ∈ (0, 1). Then

π0L
0
hπ0u0 = π0f − π0L̃h(π0u0)− π0L̃h(πc0ub)− π0L̃h(πc0uphg) ∈ ρb00 ρ

b′I−1
I H∞b :

for the first summand, this follows from f ∈ Y∞;b0,bI ,b
′
I ,b+ , for the second summand from

u0 ∈ ρb00 ρ
b′I−0
I H∞b and the decay of the coefficients of L̃h, similarly for the third summand;

and for the fourth summand, we use Lemma 5.3(4). Using the notation of part (3.26a) of
the hierarchy, this means

(ρI∂ρI −ACD)(ρ0∂ρ0 − ρI∂ρI )u0 ∈ ρb00 ρ
b′I
I H

∞
b .

Since we are taking γ > b′I , all eigenvalues of ACD are > b′I , so integration of ρI∂ρI − ACD

and then of ρ0∂ρ0 − ρI∂ρI (using b′I < b0) gives u0 ∈ ρb00 ρ
b′I
I H

∞
b . We have thus shown that

u ∈ X∞;b0,bI ,b
′
I ,b+ near I0 ∩I +; in fact, this holds away from I+.

5.2. Asymptotics at the temporal face. We work near I+ now and drop the weight
at I0 from the notation. Recall from (3.27) the gauge-damped operator L on Minkowski
space; by Lemma 3.10 and (3.29), we have

Lh − L ∈ ρ−1−0
I ρ

1+b+
+ H∞b (M) ·Diff2

b(M ;β∗S2). (5.4)

We shall deduce the asymptotic behavior of u at I+ from a study of the operator L (and
its resonances) on a partial radial compactification N of R4—without blowing up the latter
at the light cone at future infinity. Before making this precise, we study L in detail as a
b-operator on N . Let

τ = t−1, X = x/t;

these are smooth coordinates on the radial compactification

N := [0,∞)τ × R3
X
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of R4 in t > 0, see Figure 5.1. We have dX = tdx, tδe = δX , tδ∗e = δ∗X , and t∂t =

−τ∂τ −X∂X . Thus, if we trivialize S2 scT ∗ 0R4 using coordinate differentials, the explicit
expression of L given in §A.3 shows that L is a dilation-invariant element of Diff2

b(N ;C10),
i.e. L = N(L), recalling the definition (2.2) of the normal operator.

Note that Lh (and even L0) has singular coefficients at ∂I+ ⊂ mM due to the gauge/con-
straint damping term: the singular terms come from −ρ−1Ah∂1 in Lemma 3.8. Likewise,
L, on the blow-up of N at the light cone {τ = 0, |X| = 1} at infinity, has coefficients with
ρ−1
I singularities, which would complicate the normal operator analysis at the temporal

face 0i+, the lift of
B := {τ = 0, |X| ≤ 1},

On the other hand, L does have smooth coefficients on the un-blown-up space N , and
we recall its well-understood b- and normal operator analysis at ∂N momentarily. The
discussion of the relation between the blown-up and the un-blown-up picture starts with
Lemma 5.7 below.

∂N
X

τ

BS+ S+

|X| = 1

Figure 5.1. Illustration of the compactification N near its boundary at
infinity ∂N = {τ = 0}. Shown are future timelike infinity B = 0β(0I+), its
boundary ∂B = S+, and, for illustration, the light cone |x| = t (dashed).

Conjugating L by the Mellin-transform in τ , thus formally replacing τ∂τ by iσ, gives the

Mellin-transformed normal operator family L̂(σ) ∈ Diff2(∂N ;C10), depending holomorphi-

cally on σ ∈ C; the principal symbol of L̂ is independent of σ.

We already control u in Theorem 5.1 away from I+ ⊂ M , so only need to study u
(and how L relates to it) near mI+, whose image under the blow-down map mβ on mM is

identified with B, see Lemma 2.10. For s ∈ R, we then define the function space Ḣs(B;C10)
as the space of all v ∈ Hs

loc(∂N ;C10) which are supported in B. (We are using the notation
of [Hör07, Appendix B].) Let

Xs := {u ∈ Ḣs(B;C10) : L̂(0)u ∈ Ḣs−1(B;C10)}, Ys := Ḣs(B;C10).

Semiclassical Sobolev spaces are defined by Ḣs
h = Ḣs with h-dependent norm ‖u‖Ḣs

h
=

‖〈hD〉su‖L2 on ∂N ∼= R3
X . Let further M ⊂ Diff1(∂N ;C10) denote the C∞(∂N)-module

of first order operators with principal symbol vanishing on N∗∂B, and fix a finite set
{Aj} ⊂ M of generators.36 For k ∈ N0, we then define

Ḣs,k(B;C10) = {u ∈ Ḣs : Aj1 · · ·Aj`u ∈ Ḣ
s, 0 ≤ ` ≤ k}

and the semiclassical analogue Ḣs,k
h = Ḣs,k with norm

‖u‖2
Ḣs,k
h

= ‖u‖2
Ḣs
h

+
∑

0≤`≤k
‖(hAj1) · · · (hAj`)u‖

2
Ḣs
h
.

36Near ∂B, and omitting the bundle C10, one can take as generators the vector fields (|X| − 1)X∂X ,
Xj∂Xi −Xi∂Xj .
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Lemma 5.4. Let C > 0, and fix s < 1
2 − C. Then L̂(σ) : Xs → Ys−1 is an analytic family

of Fredholm operators in {σ ∈ C : Imσ > −C}, with meromorphic inverse satisfying

‖L̂(σ)−1f‖
Ḣs,k

〈σ〉−1
≤ C ′k〈σ〉−1‖f‖

Ḣs−1,k

〈σ〉−1
, | Imσ| ≤ C, |Reσ| � 1,

for any k ∈ N0.

Proof. For k = 0, this is almost the same statement as proved in [Vas13, §5], see also
[BVW15] and the summary of the presently relevant results in [BVW16, §6]; adding higher
module regularity, i.e. k ≥ 1, follows by a standard argument, commuting (compositions

of) a well-chosen spanning set of M through the equation L̂(σ)u = f ; see [BVW15, Proof
of Proposition 4.4] and the discussion prior to [HV15, Theorem 5.4] for details in the closely
related b-setting (i.e. prior to conjugation by the Mellin transform). We shall thus be brief.

The only two differences between the references and the present situation are: (1) L̂(σ)
is an operator acting on a vector bundle; (2) we are working with supported function
spaces in B, i.e. future timelike infinity, rather than globally on the boundary of the radial
compactification of Minkowski space. Since L̂(σ) is principally scalar, (1) only affects the
threshold regularity at the radial set N∗∂B. For γ = 0, L is simply a conjugation of 1

2

times the scalar wave operator, acting diagonally on C10, and in this case the threshold
regularity is given as s < 1

2 + Imσ in [BVW16, §6], which is implied by our assumption

s < 1
2 − C. For small γ > 0 (depending on the choice of s), this assumption is still

sufficient. A straightforward calculation (which we omit) shows that the eigenvalues of

σ1(t3(δ̃∗ − δ∗g)δgGgt−1)|N∗∂B are ≥ 0, hence the threshold regularity is s < 1
2 + Imσ for

any γ ≥ 0. (This is closely related to the fact that the components of the solution of
Lu = f ∈ C∞c (R4) do not grow at I +; see Lemma 5.7 below for the relation between

growth/decay on M and regularity on R4.)

In order to deal with (2), it is convenient to first study L̂(σ) acting on supported distribu-
tions on a larger ball Bd := {|X| ≤ 1 + d}. The only slightly delicate part of the argument

establishing the Fredholm property of L̂(σ) acting between Ḣs(B2;C10)-type spaces is the

adjoint estimate: we need to show that L̂(σ)∗ satisfies an estimate

‖u‖H̄1−s(B◦2 ) . ‖L̂(σ)∗u‖H̄−s(B◦2 ) + ‖u‖H̄s0 (B◦2 ) (5.5)

for some s0 < 1− s; here H̄s(B◦2) denotes extendible distributions, i.e. restrictions of Hs
loc

sections on ∂N to B◦2 . This estimate however is straightforward to obtain by combining
elliptic, real principal type, and radial point estimates in B1, as in the references, with

energy estimates for L̂(σ)∗ which is a wave operator (on the principal symbol level) in

B2 \ B1/2, see e.g. [Zwo16, §3.2] where our L̂(σ)∗ is denoted P . High energy estimates for

L̂(σ) on Ḣs(B2)-type spaces follow by similar arguments (using [Vas13, Proposition 3.8] for
the energy estimate).

Suppose now L̂(σ)u = f ∈ Ḣs−1(B) with u ∈ Ḣs(B2). Then energy estimates in B2 \B
imply suppu ⊂ B. This and the Fredholm property of L̂ on B2 yield the desired Fredholm

property of L̂ : Xs → Ys−1 (specifically, the finite codimensionality of the range). Similarly,
the high energy estimates on B2 imply those on B, finishing the proof. �

Lemma 5.5. For small γ ≥ 0, all resonances σ ∈ C of L satisfy Imσ < 0.
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Remark 5.6. One can in fact compute the divisor of L, i.e. the set of (z, k) ∈ C× N0 such

that L̂(σ)−1 has a pole of order ≥ k+ 1 at σ = z, quite explicitly for any γ: it is contained
in −i∪−2i∪−i(1 + γ)∪−i(1 + 2γ), using the shorthand notation (2.35).

Proof of Lemma 5.5. For γ = 0, and in the trivialization of S2T ∗R4 by coordinate differen-
tials, L acts, up to conjugation and rescaling, component-wise as the scalar wave operator
on Minkowski space, for which the divisor is known to be −i, see [BVW15, §10.1]. For small
γ, L is a small perturbation of this, and the lemma follows. (See also [Vas13, §2.7].) �

Since by equation (3.28), L0 − L ∈ ρ1−0H∞b Diff2
b(mR4), the normal operators as b-

differential operators on mR4 are the same, N(L0) = N(L), hence the above results hold
for N(L0) in place of L.

We next relate the relevant function spaces on mM , mR4. We only need to consider
supported distributions near mi+ ⊂ mM . We drop m from the notation. If ρ+ ∈ C∞(M)
denotes a defining function of I+ such that ρ+ > 2 at I0, let

U := {ρ+ ≤ 1} ⊂M.

Let Mb ⊂ Diff1
b(R4) be the C∞(R4)-module of b-differential operators with b-principal

symbol vanishing on bN∗S+,37 and define Hs,k
b,loc(R4) to consist of all u ∈ Hs

b,loc(R4) for

which A1 · · ·A`u ∈ Hs
b,loc(R4) for all 0 ≤ ` ≤ k, Aj ∈ Mb. Supported distributions on a

compact set V ⊂ R4 are denoted Ḣs,k
b (V ).

Lemma 5.7. For a+ ∈ R, d > −1
2 , and k ∈ N0, the map β|U\∂M : U \ ∂M

∼=−→ β(U) \ ∂R4

induces a continuous inclusion

ρ
a++d−1/2
I ρ

a+
+ Ḣk+d

b (U) ↪→ ρa+Ḣd,k
b (β(U)), (5.6)

and conversely

ρa+Ḣd,k
b (β(U)) ↪→ ρ

a++d−1/2
I ρ

a+
+ Ḣk

b (U). (5.7)

Thus, given the condition on supports, b-regularity near S+ is, apart from losses in
module regularity, the same as decay at I +. See Figure 5.2. A version of the inclusion (5.7)
is (implicitly) a key ingredient of [BVW16], see in particular §9.2 there.

U

I0

I +

I+

I +

I0

S+ S+
β(U)

β

Figure 5.2. The neighborhood U of I+ ⊂ M as well as its image in R4

under the blow-down map β.

37The b-conormal bundle bN∗S+ ⊂ bT ∗S+R4 is the annihilator of the space of b-vector fields tangent to

S+. In the coordinates (2.6), Mb is spanned by ρ∂ρ, ρ∂v, v∂v, and spherical vector fields.
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Proof of Lemma 5.7. First consider (5.6). Dividing by ρa+ = ρ
a+

I ρ
a+
+ , it suffices to prove

this for a+ = 0. Furthermore, elements of Mb lift to b-differential operators on M ; in
fact, Diff1

b(M) is generated, over C∞(M), by the lift of Mb to M . Therefore, it suffices to
consider the case k = 0 and prove

ρ
d−1/2
I Ḣd

b(U) ↪→ Ḣd
b(β(U)), d > −1

2 . (5.8)

For d = 0, this is a consequence of the fact that ρI times a b-density on M pushes forward
to a b-density on R4, cf. (4.27). Next, note that Vb(R4) lifts to ρ−1

I Vb(M) and thus maps

ραIH
s
b,loc(M)→ ρα−1

I Hs−1
b,loc(M); the Leibniz rule thus reduces the case d ∈ N to the already

established case d = 0. For general d ≥ 0, (5.8) follows by interpolation; we discuss
d ∈ (−1

2 , 0] below.

For (5.7), we again only need to consider a+ = 0, k = 0, and prove

Ḣd
b(β(U)) ↪→ ρ

d−1/2
I L2

b(U) ∼= ρdIL
2
b(β(U)). (5.9)

For d = 0, this is clear; for d = 1, integrating the 1-dimensional Hardy inequality,
‖x−1u‖L2(R+) . ‖u′‖L2(R+), u ∈ C∞c (R+), in fact gives Ḣ1

b(β(U)) ↪→ xL2
b(β(U)), where

x is a defining function for β(∂U) within R4. In particular, β∗x ∈ C∞(M) vanishes at I +

and is hence a bounded multiple of ρI , from which (5.9) follows. For general d ∈ N, we use
the following generalization of the Hardy inequality: for u ∈ C∞c (R+),

‖x−du‖L2 =

∥∥∥∥∫ 1

0

∫ s2

0
· · ·
∫ sd

0
u(d)(tx) dt dtd · · · dt2 dx

∥∥∥∥
L2

≤
∫ 1

0

∫ s2

0
· · ·
∫ sd

0
‖u(d)(t·)‖L2 dt dtd · · · dt2 dx

=
22dd!

(2d)!
‖u(d)‖L2 .

For real d ≥ 0, (5.9) again follows by interpolation.

For d ∈ (−1
2 , 0], we dualize (5.8) with respect to L2

b(β(U)) and thus need to show

H̄e
b(β(U)) ↪→ ρ

e−1/2
I H̄e

b(U), e = −d ∈ [0, 1/2). But this follows from (5.7), as in this
regularity range, supported and extendible Sobolev spaces are naturally isomorphic [Tay96,
§4.5]. Similarly, (5.9) for d ∈ (−1

2 , 0] follows from (5.8) for d ∈ [0, 1
2) by dualization. �

Returning to the proof of Theorem 5.1, we have already proved (1−χ)u ∈ X∞ where χ =

χ(ρ+) is identically 1 for ρ+ ≤ 1
2 and vanishes for ρ+ ≥ 1. Consider χu ∈ ρ−0

I ρ
a+
+ Ḣ∞b (U),

a+ < b+, which satisfies

Lhχu = f1 := χf + [Lh, χ]u ∈ ρ−1−0
I ρ

b+
+ Ḣ∞b (U),

where we use that [Lh, χ]u is supported away from I+. Let

a′+ = min(a+ + 1 + b+, b+) < 0,

and fix d ∈ (−1
2 ,−

1
2 − a′+), then Lh − N(L0) ∈ ρ−1−0

I ρ
1+b+
+ H∞b (M) · Diff2

b(M) (see
Lemma 3.10) and Lemma 5.7 yield

N(L0)χu =: f2 ∈ ρ−1−0
I ρ

a′+
+ Ḣ∞b (U) ↪→ ρa

′
+Ḣd,∞

b (β(U)). (5.10)



80 PETER HINTZ AND ANDRÁS VASY

Shrinking U if necessary, we may assume that t > 1 + r∗ in U . It then suffices to use
dilation-invariant operators on mR4 to measure module regularity at mS+. Indeed, for
m = 0 and thus r∗ = r (the discussion for general m being similar), recall that with
R = |X|, ω = X/|X|, we can take τ∂τ , (1 − R)∂R, ∂ω, and τ∂R as generators of Mb; but
τ∂R = c(1 − R)∂R with c = τ/(1 − R) ∈ [0, 1] bounded. Write (5.10) using the Mellin
transform in τ as

χu =
1

2π

∫
Imσ=−α

τ iσL̂(σ)−1f̂2(σ) dσ,

initially for α = −a+; then f̂2(σ) is holomorphic in Imσ > −a′+ with values in Ḣd,∞(B;C10),
and in fact extends by continuity to

f̂2(σ) ∈ L2
(
{Imσ = −a′+}; 〈σ〉−d−NḢ

d,N
〈σ〉−1(B;C10)

)
(∀N). (5.11)

By Lemmas 5.4 and 5.5, L̂(σ)−1f̂2(σ) is thus holomorphic in Imσ > −a′+ as well, with

values in Ḣd+1,∞, extending by continuity to the space in (5.11) with d replaced by d+ 1;

therefore χu ∈ ρa′+Ḣd+1,∞
b (β(U)), so χu ∈ ρ−0

I ρ
a′+
+ Ḣ∞b (U) by Lemma 5.7, as we may choose

d arbitrarily close to −1
2 − a

′
+. This improves the weight of u at I+ by a′+ − a+; iterating

the argument gives χu ∈ ρ−0
I ρ

b+
+ Ḣ∞b (U).

5.3. Asymptotics near I +∩ I+. It remains to show that the precise asymptotics at I +

which we established away from I+ in §5.1 extend all the way up to I+, with the weight ρ
b+
+

at I+. This is completely parallel to the arguments in §5.1: working near I+, we now have

L0
hu ∈ Y∞;b0,bI ,b

′
I ,b+ + H

∞;b0,−1+b′I−0,b+
b , so with coordinates ρI , ρ+ as in (4.48) (dropping

the superscript ‘◦’),
ρI∂ρI (ρ+∂ρ+ − ρI∂ρI )u

c
11 ∈ ρ

bI
I ρ

b+
+ H∞b ;

now, in ρ+ > 0 (and away from I0), uc11 has a leading term at I +, plus a remainder in

ρbII H
∞
b , while in ρI > 0, uc11 = πc11u lies in ρ

b+
+ H∞b . Using Lemma 7.6 to integrate the above

equation for uc11, we conclude that uc11 is the sum of a leading term in ρb00 ρ
b+
+ H∞b (I +) and

a remainder in ρb00 ρ
bI
I ρ

b+
+ H∞b , as desired. Similarly, we obtain the desired asymptotic be-

havior, uniformly up to I+, of u11 and then of u0. Therefore, u ∈ X∞;b0,bI ,b
′
I ,b+ , completing

the proof of Theorem 5.1.

6. Proof of global stability

We now make Theorem 5.1 quantitative by keeping track of the number of derivatives
used and proving tame estimates, the crucial ingredient in Nash–Moser iteration. Fix the
mass m; for weights b0, bI , b

′
I , b+ as in Definitions 3.1 and 3.3, let

Bk := X k;b0,bI ,b
′
I ,b+ ; Bk := Yk;b0,bI ,b

′
I ,b+ ⊕Dk;b0 , Dk;b0 := ρb00 H

k+1
b (Σ)⊕ ρb00 H

k
b (Σ).

Let us write | · |s, resp. ‖ · ‖s, for the norm on Bs, resp. Bs. Put

B∞ =
⋂
k∈N

Bk, B∞ =
⋂
k∈N

Bk.

We recall Saint-Raymond’s version [SR89] of the Nash–Moser inverse function theorem:
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Theorem 6.1 (See [SR89]). Let φ : B∞ → B∞ be a C2 map, and assume that there exist
d ∈ N, ε > 0, and constants C1, C2, (Cs)s≥d such that for any h, u, v ∈ B∞ with |h|3d < ε,

‖φ(h)‖s ≤ Cs(1 + |h|s+d) ∀ s ≥ d, (6.1a)

‖φ′(h)u‖2d ≤ C1|u|3d, (6.1b)

‖φ′′(h)(u, v)‖2d ≤ C2|u|3d|v|3d. (6.1c)

Moreover, assume that for such h, there exists an operator ψ(h) : B∞ → B∞ satisfying
φ′(h)ψ(h)f = f and the tame estimate

|ψ(h)f |s ≤ Cs(‖f‖s+d + |h|s+d‖f‖2d), ∀ s ≥ d, f ∈ B∞. (6.2)

Then if ‖φ(0)‖2d < c, where c > 0 is a constant depending on ε and Cs for s ≤ D, where
D = 16d2 + 43d+ 24, there exists h ∈ B∞, |h|3d < ε, such that φ(h) = 0.

This uses a family of smoothing operators (Sθ)θ>1 : B∞ → B∞ satisfying the estimates

|Sθv|s ≤ Cs,tθs−t|v|t, s ≥ t; |v − Sθv|s ≤ Cs,tθs−t|v|t, s ≤ t. (6.3)

Acting on standard Sobolev spaces Hs(Rn), the existence of such a family is proved in
[SR89, Appendix], and the extension to weighted b-Sobolev spaces on manifolds with cor-
ners is straightforward: the arguments on manifolds with boundary given in [HV18, §11.2]
generalize directly to the corner setting. For the spaces Bs = X s at hand then, one writes
h ∈ B∞ as χ1h + (1 − χ1)h, with χj ∈ C∞(M), j = 0, 1, 2, identically 1 in a small neigh-

borhood of I +, and χj+1 ≡ 1 on suppχj . We smooth out (1 − χ1)h ∈ ρb00 ρ
∞
I ρ

b+
+ H∞b (M)

(see (2.29) for the notation ρ∞I ) as usual and cut the result off using (1 − χ0); since we
are working away from I +, the weight of ρI plays no role here. (The proof of [HV16,
Lemma 5.9] shows that cutting off the smoothing of (1− χ1)h away from its support does
not affect the estimates (6.3).) Near I + on the other hand, we have χ1h = (χ1hα), where
we denote by hα the components of h in the bundle splitting (2.21). The decaying com-
ponents (3.4) as well as the remainder terms hα,b in (3.5)–(3.6) can then be smoothed out
and cut off using χ2. To smooth out the leading terms, fix a collar neighborhood of I +;

considering for example χ1h01 = χ0h
(0)
01 + χ1h01,b, see (3.6), we smooth out h

(0)
01 in the

weighted b-Sobolev space ρb00 ρ
b+
+ H∞b (I +), extend the result to the collar neighborhood,

and cut off using χ0; similarly for the other components of h.

Given initial data (h0, h1) ∈ D∞, we want to apply Theorem 6.1 to the map

φ(h) =
(
P (h), (h, ∂νh)|Σ − (h0, h1)

)
, (6.4)

with P given in (3.2). Note that the smallness of φ(0) in particular requires P (0) =
ρ−3Ric(gm) to be small. Now, P (0) is nonzero only in the region where we interpolate
between the mass m Schwarzschild metric and the Minkowski metric (both of which are
Ricci-flat!), i.e. on supp dψ ∪ supp dφ in the notation of (2.10)–(2.11); thus in fact P (0) ∈
A∅,∅,0phg . It is then easy to see that ‖P (0)‖Yk ≤ Ckm for all k ∈ N, which is the reason why

we need to assume the ADM mass m to be small to get global solvability.

For h ∈ X∞ with |h|3 small, the tensor

g = gm + ρh

is Lorentzian (by Sobolev embedding) and hence φ(h) is defined; since P is a second order
(nonlinear) differential operator with coefficients which are polynomials in g−1 and up to

2 derivatives of g, and since h 7→ (h, ∂νh)|Σ is continuous as a map X k → Dk−3/2 for
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k ≥ 2, the estimate (6.1a) follows for d = 3. The estimate (6.1b) also holds for d = 3
and |h|3d < ε small, since the first component of φ′(h)u, namely Lhu, is a second order
linear differential operator acting on u, with coefficients involving at most 2 derivatives of
h; similarly for (6.1c).

The existence of the right inverse ψ(u) : B∞ → B∞ is the content of Theorem 5.1;
we merely need to determine a value for d such that the tame estimate (6.2) holds. (As
stressed in the introduction, the mere existence of such a d is clear, since the estimates
on ψ(u) are obtained using energy methods, integration along approximate characteristics,
and inversion of a linear, smooth coefficient, model operator in §4, §§5.1 and 5.3, and §5.2,
respectively.) Consider the first term on the right in (6.2): we need to quantify the loss
of derivatives of the solution v of Lhu = f , (u, ∂νu)|Σ = (u0, u1), relative to the regularity
k ≥ 0 of (f, (u0, u1)) ∈ Bk.

Now, dropping the H1
I regularity part of Theorem 4.2, we obtain u ∈ ρb00 ρ

aI
I ρ

a+
+ Hk

b ,

π0u ∈ ρb00 ρ
a′I
I ρ

a+
+ Hk

b . The arguments near I0 ∩I + in §5.1 first express uc11 as the solution
of a transport equation (5.2), with the right hand side involving up to two derivatives of u;
since integration of this equation does not regain full b-derivatives, the leading terms (and

the remainder term) of uc11 lie in Hk−2
b , with the correct weight b0 at I0 (and bI at I +);

next, this couples into the transport equation (5.3) for u11, again with up to 2 derivatives

of u, so integrating this yields leading and remainder terms of u11 in Hk−4
b ; and similarly

then u0 ∈ ρb00 ρ
b′I
I H

k−6
b near I0 ∩I +.

On the other hand, improving the b-weight at I+ by 1 + b+, which we may take to
be arbitrarily close to 1 by taking b+ < 0 close to 0, uses the rewriting (5.10), which
due to the second order nature of Lh − N(L0) involves an error term (subsumed into f2

there) with 2 derivatives on u. Passing to the blow-down using Lemma 5.7 loses at most 1
module derivative; inverting N(L0) gains 1 b-derivative (which is used to recover the ρ−0

I
bound at I +), but no module derivatives, so passing back to the blow-up, we have lost at
most 3 b-derivatives. Thus, improving the weight at I+ from a+ to b+ ≈ 0 loses at most
d+ := 1 + 3da+e derivatives relative to Hk

b .

These two pieces of information are combined near I + ∩ I+ in §5.3, where we lose at
most 6 derivatives, just as in the discussion near I0 ∩I +, relative to the less regular of the

two spaces Hk−6
b and H

k−d+

b from above; we thus take d = 6 + max(6, d+). If we use the

explicit background estimate, Theorem 4.12, so a+ = 3
2 , this gives d+ = 7 and therefore

d = 13.

For this value of d, one may then verify the tame estimate (6.2) by going through the proofs
of Theorems 4.2 and 5.1 and proving tame estimates by exploiting Moser estimates; this is
analogous to the manner in which the microlocal estimates for smooth coefficient operators
in [Vas13, §2], [HV15, §2.1] were extended to estimates for rough coefficient operators in
[Hin16, §§3–6], which were subsequently sharpened to tame estimates in [HV16, §§3–4]. In
the present setting, obtaining tame estimates is much simpler than in the references, as
the estimates in §§4–5 are based on standard energy estimates, so one can appeal directly
to the Moser estimates; or, in view of the fact that our energy estimates can be proved
using positive commutators (and are indeed phrased this way here), which also underlie the
tame estimates in these references, the arguments given there (using vector fields instead
of microlocal commutants) apply here as well. We omit the details, but we do point out
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that it is key that the proofs as stated only use pointwise control of up to 1 derivative of
h (via causality considerations and deformation tensors, see e.g. the calculation (4.16) and
Lemma 4.6) in order to obtain the main positive terms in the commutator arguments; thus,
control of |h|4 suffices in this sense, that is, the constant in (4.3) for k = 1 only depends on
|h|4. The proofs of higher b-regularity use commutation arguments, which do not affect the
principal part of Lh, as well as ellipticity considerations around (4.58) which only require
pointwise control of h itself; correspondingly, at no point do we need to use the smallness
of any higher regularity norms of h. (See the end of [Hör97, §6.4] for a related discussion.)

Next, we deal with a small technical complication stemming from the fact that for m 6= 0,
the closure of {t = 0}, on which in Theorem 1.1 we compare the initial data with those of

the Schwarzschild metric in its standard form, inside of mR4 is not a smooth hypersurface
when m 6= 0, the issue being smoothness at ∂mR4; furthermore, our discussion of linear
Cauchy problems used mΣ 6= {t = 0} as the Cauchy surface. We resolve this issue by solving

the initial value problem for a short amount of time in the radial compactification 0R4, with
initial surface {t = 0} (whose closure is smooth in 0R4), pushing the local solution forward

to mR4, and then solving globally from there. Recall the function tb from (2.14), and the
notation (2.17). (Thus, 0tb is a rescaling of t, and 0Σ = {0tb = 0}.)

Lemma 6.2. Fix N large, and let b0 > 0, ε > 0. Suppose γ, k ∈ C∞(R3;S2T ∗R3) are
vacuum initial data on R3, that is, solutions of the constraint equations (1.5), such that for
some m ∈ R,

γ̃ := γ − χ(r)
(
(1− 2m

r )−1dr2 + r2
/g
)
∈ ρ1+b0

0 H∞b (R3;S2 scT ∗R3) (6.5)

and k ∈ ρ2+b0
0 H∞b (R3;S2 scT ∗R3) satisfy

|m|+ ‖γ̃‖
ρ

1+b0
0 HN+1

b

+ ‖k‖
ρ

2+b0
0 HN

b

< δ, (6.6)

where δ > 0 is a sufficiently small constant; here χ = χ(r) is a cutoff, χ ≡ 0 for r < 1,

χ ≡ 1 for r > 2. Then, identifying R3 ∼= 0Σ ⊂ 0M via R3 3 x 7→ (0, x) ∈ R4, there exists a
solution g of the Einstein vacuum equation Ric(g) = 0 in the neighborhood

U := {|0tb| < 1
4}, (6.7)

attaining the data (γ, k) at 0Σ (that is, (1.4) holds) and satisfying the gauge condition

Υ(g; gm) = 0; moreover, g = gm + ρh, where h ∈ ρb00 H
∞
b (U ;S2 scT ∗ 0R4) has norm

‖h‖
ρ
b0
0 HN+1

b (U)
< ε.

Proof. Note that the metric gm is smooth on U ⊂ 0R4, as near I0 it is given by the
Schwarzschild metric gSm, see (1.3). Using the product decomposition R4 = Rt × R3

x, we
define a Lorentzian signature metric over the interior (0Σ)◦ = {t = 0} by

g0 := (1− χ(r)2m
r )dt2 − γ ∈ C∞((0Σ)◦;S2T ∗R4), (6.8)

whose pullback to 0Σ is equal to −γ. We next find g1 ∈ C∞(0Σ;S2T ∗R4) such that k =

IIg0+tg1 ; denoting by N = (1−χ(r)2m
r )−1/2∂t the future unit normal, this is equivalent, by

polarization, to

g0((∇g0+tg1

X −∇g0

X )X,N) = k(X,X) ∀X ∈ T (0Σ)◦;
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Here, we view g0 as a stationary metric near t = 0, which due to its symmetry under time
reversal t 7→ −t has vanishing second fundamental form: g0(∇g0

XX,N) ≡ 0. A calculation
in normal coordinates for g0 shows that this is uniquely solved by

g1(X,X) = −2(Nt)−1k(X,X) = −2(1− χ(r)2m
r )1/2k(X,X). (6.9)

It remains to specify g1(N, ·) and g1(N,N), which involves the gauge condition at t = 0;
that is, for all V ∈ T{t=0}R4, we require

−Υ(g0; gm)(V ) =
(
Υ(g0 + tg1; gm)−Υ(g0; gm)

)
(V )

= (Gg0g1)(V,∇g0t) = (1− χ(r)2m
r )−1/2(Gg0g1)(V,N).

(6.10)

For V ∈ T (0Σ)◦, this determines (Gg0g1)(V,N) = g1(V,N). Lastly, if E1, E2, E3 ∈ T (0Σ)◦

completes N to an orthonormal basis, this also determines (Gg0g1)(N,N) = 1
2(g1(N,N) +∑

j g1(Ej , Ej)) and thus g1(N,N).

The assumption on γ gives

h0 := ρ−1
0 (g0 − gm) ∈ ρb00 H

∞
b (0Σ;S2 scT ∗0Σ

0R4). (6.11)

We claim that likewise

h1 := ρ−2
0 g1 ∈ ρb00 H

∞
b (0Σ;S2 scT ∗0Σ

0R4). (6.12)

We introduce the extra factor of ρ−1
0 since ρ−1

0 ∂t is a smooth b-vector field on 0R4 near 0Σ
and transversal to it; that is, in (4.1), we can take

∂ν = ρ−1
0 ∂t.

Now the restriction of h1 to S2 scT 0Σ lies in ρb00 H
∞
b , as follows from (6.9). (Recall that

scT 0Σ is spanned by coordinate vector fields on R3.) To prove (6.12), it thus suffices to

prove that Υ(g0; gm)(V ) ∈ ρ2+b0
0 H∞b for V equal to ∂t or a coordinate vector field on R3;

this however follows from (6.11) and the local coordinate expression (3.1) of Υ, as such a

vector field V is equal to ρ0 times a b-vector field on 0R4.

This construction preserves smallness, i.e. we have ‖h0‖ρb00 HN+1
b

+ ‖h1‖ρb00 HN
b

< Cδ for

some constant C. We can then solve the quasilinear wave equation P (h) = 0 in the neighbor-
hood U of 0Σ, e.g. using Nash–Moser iteration as explained above. (Since we are not solving
up to I + where our arguments in §5 lose derivatives, one can use a simpler iteration scheme
here, see [Tay96, §16.1].) The constraint equations then imply that ∂νΥ(gm + ρh; gm) = 0
at 0Σ, see [HV18, §2.1]; since Υ solves the wave equation (1.31), we have Υ ≡ 0. �

To extend this to a global solution, we recall from Lemma 2.10 and the isomorphism (2.40)

that h pushes forward to an element of ρb00 H
∞
b (U ′), U ′ := {|mtb| < 1

8}, and satisfies a
bound ‖h‖

ρ
b0
0 HN+1

b (U ′)
< Cε, with C a constant depending only on m. We can thus use

(h0, h1) = (h, ∂νh)|mΣ as Cauchy data for the equation P (h) = 0. Note that the gauge
condition Υ(g) = 0, g = gm + ρh, holds identically near mΣ; by uniqueness of solutions of
P (h) = 0 with Cauchy data (h0, h1), a global solution h will automatically satisfy Υ(g) ≡ 0,
as this holds near mΣ, and then globally by the argument given around equation (1.31).

Theorem 6.3. Fix N large, b0 > 0, ε > 0, and 0 < η < min(1
2 , b0). Then if m ∈ R and

h0, h1 ∈ ρb00 H
∞
b (mΣ) satisfy

|m|+ ‖h0‖ρb00 HN+1
b

+ ‖h1‖ρb00 HN
b

< δ,
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where δ > 0 is a small constant, then there exists a global solution h of

P (h) = 0, (h, ∂νh)|mΣ = (h0, h1), (6.13)

that is,

Ric(g)− δ̃∗Υ(g) = 0, g = gm + ρh,

which satisfies h ∈ X∞;b0,bI ,b
′
I ,b+ for all weights bI < b′I < min(1, b0) and b+ < 0, and so

that moreover ‖h‖X 6;b0,η,η/2,−η < ε. If in addition Υ(gm+ρh; gm) = 0, ∂νΥ(gm+ρh; gm) = 0
at mΣ, then g solves

Ric(g) = 0

in the gauge Υ(g) = 0.

As explained above, data for which the assumption in the second part of the theorem
holds arise from an application of Lemma 6.2. This assumption is equivalent to the state-
ment that the Riemannian metric and second fundamental form of mΣ induced by a metric
gm + ρh with (h, ∂νh)|mΣ = (h0, h1) satisfy the constraint equations, and that the gauge
condition Υ(h; gm) = 0 holds pointwise at mΣ. These are assumptions only involving the
data (h0, h1); the vanishing of ∂νΥ(h)|mΣ for the solution h of P (h) = 0 with these data
follows as in the proof of Lemma 6.2.

Proof of Theorem 6.3. This follows, with bI < b′I < min(1
2 , b0) at first, for N = 2d = 26,

from Theorem 6.1 applied to the map in (6.4). The constant δ > 0 depends in particular
on the constants Cs in (6.1a) for s ≤ D = 3287; that is, δ = δ(‖h0‖ρb00 HD+1

b

+ ‖h1‖ρb00 HD
b

).

Repeating the arguments in §§5.1 and 5.3 once more shows that one can take bI < b′I <
min(1, b0); see also the proof of Theorem 7.1 below.

We remark that h is in fact small in X 3d = X 39, but if one is interested in the size of
up to two derivatives (e.g. curvature) of h, control of its X 6 norm is sufficient by Sobolev
embedding. �

Remark 6.4. In other words, using the notation of the proof and d ≥ 13, N = 2d, D =
16d2 + 43d+ 24 = 3287, and fixing m and b0, we can solve the initial value problem (6.13)
for data in the space D :=

⋃
C D(C), where

D(C) :=
{

(h0, h1) : h0, h1 ∈ ρb00 H
∞
b (mΣ), |m|+ ‖h0‖ρb00 HN+1

b

+ ‖h1‖ρb00 HN
b

< δ(C),

‖h0‖ρb00 HD+1
b

+ ‖h1‖ρb00 HD
b

< C
}
.

An inspection of the proof of Theorem 6.1 in [SR89] shows that limC→0 δ(C) > 0, so D in
particular contains all conormal data (h0, h1) for which |m|+‖h0‖ρb00 HD+1

b

+‖h1‖ρb00 HD
b

< δ0,

where δ0 > 0 is a universal constant (i.e. depending only on m and b0). Moreover, one
also has a continuity statement: for any choice of weights bI , b

′
I , b+ as in Theorem 6.3,

the solution h ∈ X 3d;b0,bI ,b
′
I ,b+ of (6.13) depends continuously on (h0, h1) ∈ D , the latter

being equipped with the ρb00 H
D+1
b ⊕ ρb00 H

D
b topology.38 Indeed, to obtain continuity at

the Minkowski solution, note that the map φ in (6.4) depends parametrically on the data
(h0, h1) ∈ D , but the constants appearing in the estimates in [SR89] can be taken to be
uniform when (h0, h1) varies in D(C) with C fixed. Continuity at other solutions is similarly

38Hamilton [Ham82] shows that the data-to-solution map is in fact a tame smooth map D∞;b0 3
(h0, h1) 7→ h ∈ X∞;b0,bI ,b

′
I ,b+ (defined in the neighborhood D of the origin of D∞;b0).
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automatic, but the base point of the Nash–Moser iteration (called u0 in [SR89, Lemma 1])
should then be given by the solution one is perturbing around.

The solution h of (6.13) in fact has a leading term at I+, as will follow from the arguments
in §7, see the discussion around (7.16); this precise information was not needed to close the
iteration scheme, hence we did not encode it in the spaces X s.

The conclusion in the form given in Theorem 1.1 can be obtained by combining Lemma 6.2
and Theorem 6.3: using the coordinate tb on mM ′, the initial surface 0Σ in Minkowski space
is given by tb = −2mρ0χ(r) log(r − 2m). A diffeomorphism of mR4 which near mΣ is not
smooth but rather polyhomogeneous with index set Elog, and which is the identity away
from mΣ, can be used to map {tb ≥ −2mρ0χ(r) log(r − 2m)} ⊂ mM ′ to mM = {tb ≥ 0};
pushing the solution g obtained from Lemma 6.2 and Theorem 6.3, which is defined on
t ≥ 0, forward using this diffeomorphism produces the solution g as in Theorem 1.1. (The
gauge condition satisfied by g is the wave map condition with respect to the background
metric which is the pushforward of gm.) We omit the proofs of future causal geodesic
completeness of (M, g), as one can essentially copy the arguments of Lindblad–Rodnianski
[LR05, §16].

Remark 6.5. By Sobolev embedding, h obeys the pointwise bound

|h| ≤ Cη(1 + t+ r)−1+η(1 + (r∗ − t)+)b0 ∀ η > 0 (6.14)

and is small for fixed η > 0 if δ = δ(η) > 0 in the theorem is sufficiently small; here,
we measure the size of h using any fixed Riemannian inner product on the fibers of β∗S2,
equivalently, by measuring

∑
ij |h(Zi, Zj)|, where {Zi} = {∂t, ∂x1 , ∂x2 , ∂x3} are coordinate

vector fields. The bound (6.14) also holds for all covariant derivatives of h along b-vector
fields on mM . In particular, by Lemma 3.11, |g−g| ≤ Cη(1+t+r)−1+η, η > 0. The Riemann
curvature tensor also decays to 0 as t + r → ∞, with the decay rate depending on the
component: this follows from an inspection of the expressions in §A.2. Note however that
the components in the frame (2.23) have no geometric meaning away from I +. Geometric
and more precise decay statements were obtained by Klainerman–Nicolò [KN03a].

Remark 6.6. If the ADM mass m of the initial data is large, there does not exist a metric
with the mass m Schwarzschild behavior near I + but Minkowski-like far from I0 ∪ I +

which is sufficiently close to being Ricci flat for an application of a small data nonlin-
ear iteration scheme like Nash–Moser: this follows from work of Christodoulou [Chr09],
Klainerman–Rodnianski and Luk [KR12, KLR14], An–Luk [AL14], and (for the nonchar-
acteristic problem) Li–Yu [LY15]. On the other hand, for arbitrary m, but without the
smallness condition (1.6) on the data, one does obtain small data by restricting to the
complement of a sufficiently large ball. Working on a suitable submanifold of mM , defined

near I0 ∩ I + by ρ0 < ε + ρβI for β ∈ (0, b0) and ε > 0 sufficiently small, cf. (4.15), our
method of proof then ensures the existence of a vacuum solution on this submanifold; in
particular, the solution includes a piece of null infinity.

We can also solve towards the past: Lemma 6.2 produces a solution g of Einstein’s
equation in the gauge Υ(g; gm) = 0 in a full neighborhood of {t = 0}, and we can then use
the time-reversed analogue of Theorem 6.3 for solving backwards in time, obtaining a global
solution g on R4. Note here that by construction, the background metric gm is invariant
under the time reversal map ι : t 7→ −t on R4, hence the gauge conditions of the future and
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past solutions match. To describe the behavior of g on a compact space, as illustrated in
Figure 1.1, let us denote by mR4 the compactification defined like mR4 in §2.1 but with t
replaced by −t everywhere. Thus, ι induces diffeomorphisms mR4 ∼= mR4; denote by S−

the image of S+. The identity map on R4 induces an identification of the interiors of mR4

and mR4 which extends to be polyhomogeneous of class AElog

phg on the maximal domain of

existence by a simple variant of Lemma 2.10. We then define the compact topological space
m
mR4 to be the union of mR4 and mR4 quotiented out by this identification; this is thus a

manifold of class AElog

phg , and in fact of class C∞ away from ∂mR4∩∂mR4, hence in particular

near S± as well as near mβ(mI+) and its image under ι. Define the blown-up space

m
mM := [mmR4;S+, S−],

i.e. blow up both S+ and S−; these are closed and disjoint submanifolds, hence the order
of blow-up does not matter. Then m

mM is a polyhomogeneous manifold, covered by the two

smooth manifolds mM ′ and mM
′ := [mR4;S−], and with interior naturally diffeomorphic

to R4
t,x. We denote its boundary hypersurfaces by I ± and i± in the obvious manner, see

Figure 1.1, and I0 is the closure of the remaining part of the boundary. In view of the
isomorphism (2.40), weighted b-Sobolev spaces on m

mM are well-defined. For future use, we
also note that polyhomogeneity at I0 with index set E0 is well-defined provided

E0 + Elog = E0, (6.15)

as follows from (2.41); note that given any index set E0
0 , the index set E0 := E0

0 + Elog

satisfies (6.15) (and is the smallest such index set which contains E0
0 ) since Elog +Elog = Elog.

It is useful to describe m
mM as the union of three (overlapping) smooth manifolds, namely

mM , mM := ιmM , and the set U defined in (6.7). We can then define the function space

X∞;b0,bI ,b
′
I ,b+

global

to consist of all distributions on R4 which lie in ρb00 H
∞
b on U , and such that their restriction

as well as the restriction of their pullback by ι to mM lie in X∞;b0,bI ,b
′
I ,b+ .

Theorem 6.7. Given initial data γ, k as in Lemma 6.2, there exists a global solution g of
the Einstein vacuum equation Ric(g) = 0, attaining the data γ, k at {t = 0} and satisfying

the gauge condition Υ(g), which is of the form g = gm + ρh with h ∈ X∞;b0,bI ,b
′
I ,b+

global for all

bI < b′I < b0 and b+ < 0.

7. Polyhomogeneity

We state and prove a precise version of the polyhomogeneity statement, made in The-
orem 1.1, about the solution of the initial value problem which we constructed in §6. We
use the short hand notations (2.32) and (2.35).

Theorem 7.1. Let b0 > 0, and let E0
0 ⊂ C×N0 be an index set with Im E0

0 < −b0. Suppose
γ, k ∈ C∞(R3;S2T ∗R3) are initial data such that m ∈ R, γ̃, defined in (6.5), and k satisfy
the smallness condition (6.6), for N large and δ > 0 small.39 Assume moreover that the
initial data are polyhomogeneous (namely, E0

0 -smooth):

ρ−1
0 γ̃, ρ−2

0 k ∈ AE
0
0

phg(R3;S2 scT ∗R3). (7.1)

39We can take N = 26 as in (the proof of) Theorem 6.3.
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Let h denote the global solution of Ric(g) = 0, g = gm + ρh, in M , satisfying the gauge
condition Υ(g; gm) = 0. Then h is polyhomogeneous on M . More precisely, h is E-smooth,
E = (E0, EI , E+):

h ∈ AE0,EI ,E+phg ,

with the refinements πc11h ∈ A
E0,ĒI ,E+
phg and π0h ∈ A

E0,E ′I ,E+
phg near I +, where the index sets

are the smallest ones satisfying40

E0 ⊃ E0
0 + E ′log, E0 ⊃ j(E0 − i) + i ∀ j ∈ N (7.2a)

at I0, with E ′log defined in (2.36), while at I +,

E ′I ⊃ E0 ∪(2EI − i) (7.2b)

ĒI ⊃ 0 ∪
(
E0 ∪

(
(ĒI + E ′I) ∪ (2EI − i)

))
, (7.2c)

EI ⊃ 0∪E0 ∪
(
(EI + E ′I) ∪ (2ĒI)

)
, (7.2d)

EI ⊃ j(EI − i) + i ∀ j ∈ N, (7.2e)

and finally at I+,

E+ ⊃ (−i∪ 0) ∪
(
(E+ − i)∪−i∪(EI \ {(0, 1)})

)
. (7.2f)

At I0, we only need to capture the index set arising from nonlinear terms in Einstein’s
equation since the background metric gm solves ρ−3Ric(gm) = 0 identically near I0; the

addition of the index set Elog arises when pushing the solution near {t = 0} ⊂ 0R4 forward to
mM ; see (6.15). We point out that the index sets we obtain are very likely to be nonoptimal
due to our rather coarse analysis of nonlinear interactions.

Example 7.2. For data which are Schwarzschildean modulo Schwartz functions, i.e. E0
0 = ∅,

the above gives E0 = ∅ and

EI =
⋃
j∈N0

(−ij, 3j + 1), ĒI = 0 ∪ E ′I , E ′I =
⋃
j∈N

(−ij, 3j − 1), E+ =
⋃
j∈N0

(
−ij, 3

2j(j + 3)
)
.

Recalling the notation log≤k introduced around (1.38), this gives, schematically, leading
terms π11h ∼ log≤1 ρI + ρI log≤4 ρI , π

c
11h ∼ 1 + ρI log≤2 ρI , π0h ∼ ρI log≤2 ρI at I + (near

the interior of which one can take ρI = r−1), and h ∼ 1 + ρ+ log≤6 ρ+ at I+ (near the
interior of which one can take ρ+ = t−1).

Example 7.3. Consider E0
0 = −i: this corresponds to initial data which have a full Taylor

expansion in 1/r at infinity, beginning with O(r−2) perturbations of the Schwarzschild
metric. In this case, we get many additional logarithmic terms from E0 = E0

0 + Elog =⋃
j∈N(−ij, j − 1), namely

EI =
⋃
j∈N0

(
−ij, 1

2j(3j + 7) + 1
)
, ĒI = 0 ∪

⋃
j∈N

(
−ij, 1

2j(3j + 5)
)
,

E ′I =
⋃
j∈N

(
−ij, 1

2j(3j + 3)
)
, E+ =

⋃
j∈N0

(
−ij, 1

2j(j
2 + 5j + 10)

)
,

so π11h ∼ log≤1 ρI + ρI log≤6 ρI , π
c
11h ∼ 1 + ρI log≤4 ρI , π0h ∼ ρI log≤3 ρI at I +, and

h ∼ 1 + ρ+ log≤8 ρ+ at I+.

40We shall prove that such index sets indeed exist.
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Remark 7.4. Let us consider the index set E0
0 = −i again. As indicated above, the addition

of E ′log in (7.2a) is only due to an inconvenient choice of initial surface which produces loga-

rithmic terms when passing from 0R4 (which the initial surface in Theorem 7.1 is a smooth

submanifold of) to mR4. If instead one is given the ADM mass m and initial data (γ, k) on
mΣ, with (γ, k) close to the data induced by gm on mΣ (measured in ρb00 H

N
b (mΣ;S2 scT ∗ mΣ)

for suitable N), then the index set at I0 can be defined as in (7.2a) but without E ′log. Cor-
respondingly, the index sets at the other boundary faces have fewer logarithms:

EI =
⋃
j∈N0

(
−ij, 5j + 1

)
, ĒI = 0 ∪

⋃
j∈N

(
−ij, 5j − 1

)
,

E ′I =
⋃
j∈N

(
−ij, 5j − 2

)
, E+ =

⋃
j∈N0

(
−ij, 1

2j(5j + 11)
)
,

so π11h ∼ log≤1 ρI + ρI log≤6 ρI , π
c
11h ∼ 1 + ρI log≤4 ρI , π0h ∼ ρI log≤3 ρI at I +, and

h ∼ 1 + ρ+ log≤8 ρ+ at I+. (The exponents in subsequent terms of the expansion are
smaller than in Example 7.3.)

The proof of Theorem 7.1 is straightforward but requires some bookkeeping: we will peel
off the polyhomogeneous expansion at the various boundary faces iteratively, writing the
nonlinear equation P (h) = 0 as a linear equation plus error terms with better decay, much
like in §5. As a preparation, we prove a few lemmas for ODEs which were already used in
§5:

Lemma 7.5. Let X := [0,∞)ρ, u ∈ ρ−∞H∞b (X), suppu ⊂ [0, 1], and f := ρDρu. Then:

(1) f ∈ ρaH∞b (X), a < 0 ⇒ u ∈ ρaH∞b (X);
(2) f ∈ ρaH∞b (X), a > 0 ⇒ u ∈ A0

phg(X) + ρaH∞b (X);

(3) f ∈ AEphg(X), E any index set ⇒ u ∈ AE ∪ 0
phg (X); if (0, 0) /∈ E, then u ∈ AE∪0

phg (X).

Proof. This follows immediately from the characterization of b-Sobolev and polyhomoge-
neous spaces using the Mellin transform [Mel96, §4]. Alternatively, one can explicitly con-
struct the unique solution of ρDρu = f with support in ρ ≤ 1: part (1) follows easily from

u = −i
∫ 1
ρ f

dρ
ρ , while for part (2), u = −i

∫ 1
0 f

dρ
ρ + i

∫ ρ
0 f

dρ
ρ gives the decomposition into

constant and remainder term. The appearance of the extended union in (3) is due to the
fact that while ρDρu = ρiz(log ρ)k, k ∈ N0, is solved to leading order by u = 1

zρ
iz(log ρ)k for

z 6= 0, we need an extra logarithmic term for z = 0, as ρDρ(
1

k+1(log ρ)k+1a) = −i(log ρ)ka
plus lower order terms. �

Adding more dimensions is straightforward:

Lemma 7.6. Let X = [0,∞)ρ1 × [0,∞)ρ2 × Rnω, U = {ρ1 < 1, ρ2 < 1} ⊂ X, ρ = ρ1ρ2,
and let E1, E2 denote two index sets. Suppose u ∈ ρ−∞H∞b (X) has support in U , and let
f := ρ1Dρ1u. Then:

(1) f ∈ ρa1
1 ρ

a2
2 H

∞
b (X), a1 6= 0 ⇒ u ∈ A0,a2

phg,b(X) + ρa1
1 ρ

a2
2 H

∞
b (X);

(2) f ∈ Aa1,E2
b,phg(X), a1 6= 0 ⇒ u ∈ A0,E2

phg (X) +Aa1,E2
b,phg(X);

(3) f ∈ AE1,E2phg (X) ⇒ u ∈ AE1 ∪ 0,E2
phg (X); if (0, 0) /∈ E2, then u ∈ AE1∪0,E2

phg (X).
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Lemma 7.7. In the notation of Lemma 7.6, with u ∈ ρ−∞H∞b (X) supported in ρ1 ≤ 1, let
f := (ρ1Dρ1 − ρ2Dρ2)u. Let χ = χ(ρ1, ρ2) ∈ C∞c ([0, 1)2) denote a localizer, identically 1 in
a neighborhood of the corner ρ1 = ρ2 = 0. See Figure 7.1. Then:

(1) f ∈ ρb11 ρ
b2
2 H

∞
b (X), b2 > b1 ⇒ χu ∈ ρb11 ρ

b2
2 H

∞
b (X);

(2) f ∈ Ab1,E2b,phg(X), Im z 6= −b1 whenever (z, 0) ∈ E2 ⇒ χu ∈ AE2,E2phg (X) +Ab1,E2b,phg(X);

(3) f ∈ AE1,E2phg (X) ⇒ χu ∈ AE1 ∪E2,E2phg (X).

suppχ

ρ1

ρ2

1

Figure 7.1. Illustration of Lemma 7.7 which describes solutions of the
transport equation along the vector field −ρ1∂ρ1 + ρ2∂ρ2 ; one integral curve
of this vector field is shown here.

Proof. We drop the Rnω factor from the notation for brevity. For (1), write u(ρ1, ρ2) =

−i
∫ 1
ρ1
f(t−1ρ1, tρ2) dtt and f = ρb11 ρ

b2
2 f̃ , f̃ ∈ H∞b , then for 0 < ε < b2 − b1

‖χu‖2
ρ
b1
1 ρ

b2
2 L2

b

≤
∫ 1

0

∫ 1

0

∣∣∣∣∫ 1

ρ1

tb2−b1 f̃(t−1ρ1, tρ2)
dt

t

∣∣∣∣2dρ1

ρ1

dρ2

ρ2

≤
∫ 1

0

(∫ 1

ρ1

tb2−b1
(∫ 1

0
|f̃(t−1ρ1, x2)| dx2

x2

)1/2dt

t

)2dρ1

ρ1

≤
(∫ 1

0
t2(b2−b1−ε) dt

t

)
·
∫ 1

0

∫ 1

0

∫ 1

0
t2ε|f̃(x1, x2)|2 dx2

x2

dt

t

dx1

x1

≤ C‖f‖
ρ
b1
1 ρ

b2
2 L2

b

,

as desired; higher b-regularity follows by commuting ρjDρj through the equation for u.41

For the proof of (2), it suffices to consider a single term

fk = ρiz2 (log ρ2)kak(ρ1), (7.3)

with ak ∈ ρb11 H
∞
b (H1) supported in ρ1 ≤ 1. Let uk = ρiz2 (log ρ2)kbk(ρ1), where bk = bk(ρ1)

solves
(ρ1Dρ1 − z)bk = ak (7.4)

and is supported in ρ1 ≤ 1, then the error term

fk−1 := (ρ1Dρ1 − ρ2Dρ2)uk − fk =
(
(ρ1Dρ1 − z)− (ρ2Dρ2 − z)

)
uk − fk

41A more conceptual proof, which does not rely on explicit integration of the vector field, uses a positive
commutator argument with the commutant a = χ1(ρ1)χ2(ρ2)ρ−b11 ρ−b22 , χj ∈ C∞c ([0,∞)), χj(ρ) ≡ 1 near 0,
and χ′j ≤ 0, i.e. the evaluation of 2 Im〈(ρ1Dρ1 − ρ2Dρ2)u, a2u〉L2

b
, in two different ways: once by using the

equation satisfied by u, and once by integrating by parts and using that (ρ1∂ρ1 − ρ2∂ρ2)a has a constant
sign on supp a ∩ suppu. See (4.12) for a similar argument.
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= ρiz2 (log ρ2)k−1ak−1(ρ1), ak−1 := ikbk,

is one power of log ρ2 better than fk. Rewriting equation (7.4) as ρ1Dρ1(ρ−iz1 bk) = ρ−iz1 ak ∈
ρb1+Im z

1 H∞b (H1), we can use Lemma 7.5 to obtain bk ∈ Azphg(H1) + ρb11 H
∞
b (H1); therefore

uk ∈ A
z,(z,k)
phg (X)+Ab1,(z,k)

b,phg (X). Proceeding iteratively, we next solve (ρ1Dρ1−ρ2Dρ2)uk−1 =

fk−1 to leading order, etc., reducing k by 1 at each step, and picking up one extra power

of log ρ1 at each stage by Lemma 7.5(3) (conjugated by ρiz). We obtain u =
∑k

j=0 uj ∈
A(z,k),(z,k)

phg (X) +Ab1,(z,k)
b,phg (X).

The proof of (3) proceeds in the same manner: if fk is of the form (7.3), now with

ak ∈ AE1phg(H1), then bk ∈ AE1 ∪ zphg (H1), so uk ∈ A
E1 ∪ z,(z,k)
phg (X) and fk−1 ∈ A

E1 ∪ z,(z,k−1)
phg (X).

Iterating as before gives u ∈ AE1 ∪(z,k),(z,k)
phg (X). �

Proof of Theorem 7.1. We shall first prove that if the Cauchy data (h0, h1) in the notation
of Theorem 6.3 are polyhomogeneous at ∂mΣ,

h0, h1 ∈ AE0phg(mΣ), (7.5)

then the conclusion of Theorem 7.1 holds. Now, by Theorem 6.3, we have h ∈ X∞;b0,bI ,b
′
I ,b+

for all bI < b′I < b0 and b+ < 0. Note that since the gauge condition Υ(g) = 0 is satisfied

identically, h solves Ric(g) − δ̃∗Υ(g) = 0 for any choice of δ̃∗; this will be useful as it will
allow us to work with simpler normal operator models.

For now, consider h as a solution of P (h) = 0 for γ > b′I as in Theorem 4.2. We write

0 = P (h) = p0 +

∫ 1

0
Lth(h) dt, p0 := P (0) ∈ A∅,∅,0phg . (7.6)

(In fact, supp p0 ∩ (I0 ∪I +) = ∅ since gm is the Schwarzschild metric near I0 ∩I +.)

Let us first work near I0, away from I+. Suppose that for some c ≥ b0, we already have

h ∈ AE0,−0
phg,b + ρc0ρ

−0
I H∞b , π0h ∈ A

E0,b′I−0

phg,b + ρc0ρ
b′I−0
I H∞b , with the exponents referring to the

behavior at I0 and I +, respectively. Then

L0h = −p0 +

∫ 1

0
(L0 − Lth)(h) dt; (7.7)

we have L0 − Lth ∈ (AE0−i,−1−0
phg,b + ρc+1

0 ρ−1−0
I H∞b )Diff2

b by an inspection of the proof of

Lemma 3.8, and it respects the improved behavior of π0h, so we find

L0h ∈ A2E0−i,−1−0
phg,b + ρc+1

0 ρ−1−0
I H∞b , π0L0h ∈ A

2E0−i,−1+b′I−0

phg,b + ρc+1
0 ρ

−1+b′I−0
I H∞b .

Denote by E1 := {(z, j) ∈ E0 : Im z ≥ −c} the (finite) set of exponents already captured,
and let E2 := {(z, j) ∈ E0 : − c− 1 ≤ Im z < −c}. Let

Rj :=
∏

(z,k)∈Ej

(ρ0Dρ0 − z), R = R2 ◦R1.

Let N(L0) ∈ ρ−1
I Diff2

b(M) denote the normal operator of L0 at I0, i.e. freezing the coeffi-
cients of L0 at ρ0 = 0 for a fixed choice of a collar neighborhood [0, ε)ρ0 × I0 of I0; thus
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N(L0) commutes with ρ0∂ρ0 , and L0 −N(L0) ∈ ρ0ρ
−1
I Diff2

b. Then Rh ∈ ρc0ρ
−0
I H∞b solves

the equation N(L0)(Rh) = f , where

f := −R(L0 −N(L0))h+RL0h ∈ ρc+1
0 ρ−1−0

I H∞b , π0f ∈ ρc+1
0 ρ

−1+b′I−0
I H∞b ,

due to 2E0 − i ⊂ E0; the Cauchy data of Rh lie in ρc+1
0 H∞b due to the polyhomogeneity of

h0 and h1. The background estimate near I0 being sharp with regards to the weight at I0,

see Propositions 4.3 and 4.8, this gives Rh ∈ ρc+1
0 ρ−0

I H∞b , π0Rh ∈ ρc+1
0 ρ

b′I−0
I H∞b . Thus,

h ∈ AE0,−0
phg,b + ρc+1

0 ρ−0
I H∞b , π0h ∈ A

E0,b′I−0

phg,b + ρc+1
0 ρ

b′I−0
I H∞b . Iterating this gives

h ∈ AE0,−0
phg,b , π0h ∈ A

E0,b′I−0

phg,b near I0. (7.8)

Following the structure of the argument in §5, we next prove the polyhomogeneity at
I + \ (I + ∩ I+) using Lemmas 7.6 and 7.7. We now take γ = 0 in the definition of P and
its linearization. Thus, let us work near I0 ∩I +, and assume that we already have

π0h ∈ A
E0,E ′I
phg +AE0,c

′
I−0

phg,b , πc11h ∈ A
E0,ĒI
phg +AE0,cI−0

phg,b , π11h ∈ AE0,EIphg +AE0,cI−0
phg,b , (7.9)

for some 0 ≤ cI < c′I ≤ cI + 1. Using (7.6) and the structure of Lth = L0
th + L̃th, we find

πc11L
0
0π

c
11h = −πc11p0 −

∫ 1

0

(
πc11L̃thπ

c
11h+ πc11Lthπ0h+ πc11Lthπ11h

)
dt. (7.10)

The proof of Lemma 3.8, condition (7.2e), and the fact that EI ⊃ ĒI ⊃ E ′I ⊃ EI − i give

L̃th ∈ (C∞ +AE0−i,EIphg +AE0−i,cI−0
phg,b )Diff2

b, (7.11)

πc11L
0
thπ0 ∈ ρ−1

I (C∞ +AE0−i,ĒIphg +AE0−i,cI−0
phg,b )Diff1

b,

and πc11L
0
thπ11 = 0. Multiplying (7.10) by ρI , grouping function spaces in the order of the

summands in the integrand above, and simplifying using 2E0− i ⊂ E0 and 0 ⊂ EI , this gives

ρI∂ρI (ρ0∂ρ0 − ρI∂ρI )π
c
11h ∈ A

E0,EI+ĒI−i
phg +AE0,ĒI+E ′I

phg +AE0,2EI−iphg +AE0,c
′
I−0

phg,b ;

the first space is contained in the second. In view of condition (7.2c) (note that the index
sets in parentheses there lie in Im z < 0), we obtain

πc11h ∈ A
E0,ĒI
phg +AE0,c

′
I−0

phg,b , (7.12)

which improves on the a priori weight of the remainder term at I +. Next,

π11L
0
0π11h = −π11p0 −

∫ 1

0

(
π11L̃thπ11h+ π11Lthπ0h+ π11Lthπ

c
11h
)
dt.

Lemma 3.8 and the membership (7.12) imply

π11L
0
thπ0 ∈ ρ−1

I (C∞ +AE0−i,EIphg +AE0−i,cI−0
phg,b )Diff1

b,

π11L
0
thπ

c
11 ∈ ρ−1

I (AE0−i,ĒIphg +AE0−i,c
′
I−0

phg,b )Diff1
b,

with ρI times the latter having a leading order term at I +, cf. the discussion of (5.3);
together with (7.11) and (7.12), and using ĒI ⊂ EI , one finds

ρI∂ρI (ρ0∂ρ0 − ρI∂ρI )π11h ∈ AE0,2EI−iphg +AE0,EI+E ′I
phg +AE0,2ĒIphg +AE0,c

′
I−0

phg,b ,
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with the first space again contained in the second. Condition (7.2d) then gives

π11h ∈ AE0,EIphg +AE0,c
′
I−0

phg,b . (7.13)

Lastly then, we can improve on the asymptotics of π0h at I + by writing

π0L
0
0π0h = −π0p0 −

∫ 1

0

(
π0L̃thπ0h+ π0Lthπ

c
11h+ π0Lthπ11h

)
dt;

now π0L
0
thπ

c
11 = 0 = π0L

0
thπ11 and E ′I ⊂ ĒI ⊂ EI , so, since γ = 0,

ρI∂ρI (ρ0∂ρ0 − ρI∂ρI )π0h ∈ AE0,2EI−iphg +AE0,c
′
I+1−0

phg,b ;

but condition (7.2b) and Lemma 7.7 imply

ρI∂ρIπ0h ∈ A
E0,E ′I
phg +AE0,c

′
I+1−0

phg,b ;

an application of Lemma 7.6 gives the same membership for π0h, since we already know that
π0h has no leading term at I +. This establishes (7.9) for (cI , c

′
I) replaced by (c′I , c

′
I + 1),

and we can iterate the procedure to establish the full polyhomogeneity away from I+. Near
I +∩I+, the arguments are completely analogous, except we only have conormal regularity

ρ
b+
+ H∞b at I+. Thus,

π0h ∈ A
E0,E ′I ,b+
phg,phg,b, πc11h ∈ A

E0,ĒI ,b+
phg,phg,b, π11h ∈ AE0,EI ,b+phg,phg,b.

Next, we use this information to obtain an expansion at I+, similarly to the arguments
around (5.10). We shall use the linearization L0, still defined using γ = 0, and its normal

operator at I+ ⊂M—instead of its normal operator at the boundary of R4, which obviates
the need to relate (partially) polyhomogeneous function spaces on R4 and M . Namely, fix
a collar neighborhood

U := [0, 1)ρ+ × I+, I+ = {Z ∈ R3 : |Z| ≤ 1},
of I+ in M , and denote by Vb,−(U) ⊂ V(U) the Lie subalgebra of vector fields tangent

to I+ but with no condition at I +. Then for γ = 0, we have L0 ∈ Diff2
b,−(U) (the

algebra generated by Vb,−), acting on sections of β∗S2|U : by Lemma 3.8, L̃0 ∈ Diff2
b(M) ↪→

Diff2
b,−(M) certainly has smooth coefficients, and the same is true for L0

0 = −2ρ−2∂0∂1 =

∂ρI (ρI∂ρI − ρ+∂ρ+) + Diff2
b(M), ρI = 1 − |Z|2. Furthermore, by Lemmas 2.10 and 3.10

as well as equation (3.29), the normal operator N(L0) of L0 at I+ can be identified with
N(L), so that in fact N(L0) = �gdS

− 2, defined using the expressions (4.62) and (4.65),
acting component-wise on the fibers of the trivial bundle R10, where we use Lemma 2.11

to identify β∗S2|I+
∼= 0β∗(S2 scT ∗0 R4)|0I+

∼= R10 by means of coordinate differentials. By
[Vas13, §4] and the module regularity proved in [HV13],

L̂0(σ)−1 : H̄s−1,k(I+)→ H̄s,k(I+) (7.14)

is meromorphic for σ ∈ C with s > 1
2 − Imσ, where the bar refers to extendibility at

∂I+ = {|Z| = 1}, while the parameter k ∈ N0 measures the amount of regularity under the
C∞(I+)-module Diff1

b(I+); that is, H̄s,k(I+) consists of Hs functions on I+ which remain

in Hs under application of any operator in Diffkb(I+). (This is analogous to Lemma 5.4,
except in the present de Sitter setting we work on high regularity spaces rather than the
low regularity spaces in the Minkowski setting, see [Vas13, §5].) Strictly speaking, the
references only apply to the operator obtained from L0 by smooth extension across ∂I+ to
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an operator on a slightly larger space than I+; but (7.14) follows simply by using extension

and restriction operators, and the choice of extensions is irrelevant since L̂0(σ) is principally
a wave operator beyond ∂I+.

The divisor R of L0, see Remark 5.6, is then

R = −i; (7.15)

indeed, using the relation between asymptotics on global de Sitter space and resonances on
static de Sitter space as in [HV18, Appendix C], this follows from [Vas10, Theorem 1.1] for
n = 4, λ = 2, with the logarithmic terms absent: the indicial roots are 1 and 2, see [Vas10,
Lemma 4.13], and in the notation of (4.65), the difference of �gdS

and its indicial operator
−(τ̂ ∂τ̂ )2 + 3τ̂ ∂τ̂ is τ̂2∆x̂, thus vanishes quadratically in τ̂ as a b-operator on [0,∞)τ̂ × R3

x̂.
Hence, for the formal solution u = τ̂ v− + τ̂2v+ constructed in [Vas10, Lemma 4.13], the
Taylor series of v± only contain even powers of τ̂ ; 1− 2N0 and 2− 2N0 being disjoint, there
are no integer coincidences which would cause logarithmic terms.

Now, consider again (7.7): if χ = χ(ρ+) denotes a localizer near I+, identically 1 near
I+ and vanishing near I0, we have

L0(χh) = −χp0 + [L0, χ]h+

∫ 1

0
χ(L0 − Lth)(h) dt. (7.16)

We have χp0 ∈ A∅,0phg, with the exponents now referring to the behavior at I + and I+,

respectively. Suppose we already have

π0h ∈ A
E ′I ,E+
phg +AE

′
I ,c+

phg,b, πc11h ∈ A
ĒI ,E+
phg +AĒI ,c+phg,b, π11h ∈ AEI ,E+phg +AEI ,c+phg,b. (7.17)

Using that E+ − i is closed under nonlinear operations, i.e. j(E+ − i) + i ⊂ E+, j ∈ N, we

find L0 − Lth ∈ AE+−iphg + ρ
c++1
+ H∞b near (I+)◦; see also Lemma 3.10. Using the structure

of Lth near I + ∩ I+ from Lemma 3.8 as above, and noting that supp[L0, χ]h ⊂ supp dχ is
disjoint from I+, we deduce that

L0(χh) ∈ A∅,0phg +AẼI+i,∅
phg +AẼI+i,2E+−i

phg +AẼI+i,c++1
phg,b , ẼI := EI \ {(0, 1)},

where the weight of the remainder term is as stated since all (z, k) ∈ E+ except for (0, 0)

have Im z < 0. (Here ẼI ⊃ ĒI + i ⊃ E ′I + i allows for a nonlogarithmic leading term at I +,
capturing the worst component of elements of the space Y∞ in Definition 3.3, and moreover
captures all nonlinear terms of (7.16).) Replacing L0 by N(L0) causes another error term,

(L0 −N(L0))(χh) ∈ AẼI+i,E+−i
phg +AẼI+i,c++1

phg,b , so

N(L0)(χh) ∈ A∅,0phg +AẼI+i,E+−i
phg +AẼI+i,c++1

phg,b .

Mellin transforming in ρ+ at Imσ = −b+, inverting L̂0(σ) on AẼI+i
phg (I+) using Lemma 7.8

below, taking the inverse Mellin transform, and shifting the contour to Imσ = −c+− 1, we
obtain

χh ∈ A0,R∪ 0
phg +A0∪ ẼI ,(R∪ ẼI)∪(E+−i)

phg +A0∪ ẼI ,c++1
phg,b .

The index set at I+ is contained in E+ by condition (7.2f), so this improves over (7.17) by the
weight 1 in the remainder term; the index sets at I + on the other hand are automatically
the ones stated (but now with the improvement at I+), as the presence of a nonzero term

in the expansion of π11h, say, at I + corresponding to some element in (0∪ ẼI) \ EI , would
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contradict our a priori knowledge (7.17). Iterating this gives the polyhomogeneity at I+,
as claimed.

Next, let us show that the smallest sets satisfying conditions (7.2a)–(7.2f) are indeed index

sets: we need to verify condition (2.31b). For E0, this is clear since, letting Ẽ0
0 := E0

0 + E ′log,

E0 = Ẽ0
0 ∪

⋃
j∈N

j(Ẽ0
0 − i) + i

and Im Ẽ0
0 < 0; note that this gives Im E0 < 0. At I +, we take E ′I =

⋃
k∈N E ′I,k, likewise for

ĒI and EI , where we recursively define E ′I,0 = ĒI,0 = EI,0 = ∅ and

E ′I,k+1 = E0 ∪(2EI,k − i), (7.18a)

ĒI,k+1 = 0 ∪
(
E0 ∪

(
(ĒI,k + E ′I,k) ∪ (2EI,k − i)

))
, (7.18b)

EI,k+1 =
(

0∪E0 ∪
(
(EI,k + E ′I,k) ∪ (2ĒI,k)

))
∪
⋃
j∈N

(
j(EI,k − i) + i

)
. (7.18c)

It easy to see by induction that

Im E ′I,k, Im
(
ĒI,k \ (0, 0)

)
, Im

(
EI,k \ (0, 1)

)
≤ −c, c := min(1,− sup Im E0) > 0,

for all k. Therefore, to compute the index sets in any fixed half space Im z > −N , it
suffices to restrict to j ≤ N + 1 in (7.18c), which implies that the truncated sets E ′I,k;N :=

E ′I,k ∩ {Im z > −N} etc. are finite for all k; we must show that E ′I,k;N etc. are independent

of k for sufficiently large k (depending on N). Note then:

– E ′I,k+1;N only depends on EI,k;(N−1)/2;

– ĒI,k+1;N only depends on EI,k;(N−1)/2, ĒI,k;N−c, and E ′I,k;N ;

– EI,k+1;N only depends on EI,k;N−c, EI,k;(N−1)/2, ĒI,k;N , and E ′I,k;N .

Combining these, one finds that, a fortiori, E ′I,k+1;N , ĒI,k+1;N , and EI,k+1;N only depend on

the sets E ′I,k−`;N−c, ĒI,k−`;N−c, EI,k−`;max(N−c,(N−1)/2), ` = 0, 1, 2. Therefore, for N > 0,

E ′I,k;N etc. are independent of k for k > 3N/c, as desired. An analogous argument implies
that E+ is an index set as well.

Finally, we show that the polyhomogeneity of the initial data γ and k in the sense
of (7.1) implies that the solution in the neighborhood U , see (6.7), of {t = 0} constructed
in Lemma 6.2 is indeed polyhomogeneous at I0 ∩U with index set E0; this however follows
from the same arguments used to prove (7.8) (and we can in fact ignore the weight at

I +). In fact, working on 0R4, we have h ∈ AE
′
0

phg(U) where E ′0 =
⋃
j∈N0

(
j(E0

0 − i) + i
)

does not include the extra logarithmic terms from Elog; this relies on the observation that
the gauged Cauchy data constructed in the proof of Lemma 6.2, see (6.11)–(6.12), lie in

AE
′
0

phg(0Σ), which follows from an inspection of the proof. Upon pushing the local solution

h in U forward to mR4, we incur the logarithmic terms encoded in the index set Elog,
see (6.15); this proves (7.5). �

To complete the proof, we need to study the action of L̂0(σ)−1 on polyhomogeneous
spaces. Let E be an index set, and let c ∈ R be such that Im z < −c for all (z, 0) ∈ E ; then

AE+i
phg (I+) ⊂ ρc−1

I H∞b (I+) ⊂ H̄−1/2+c−0,∞(I+).
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Lemma 7.8. The operator L̂0(σ)−1 in (7.14) extends from Imσ > −c as a meromorphic

operator family L̂0(σ)−1 : AE+i
phg (I+)→ A0∪E

phg (I+) with divisor contained in R∪E.

Proof. Given f ∈ ρ−1
I AEphg(I+), we shall explicitly construct a formal solution uphg of

L̂0(σ)uphg = f at ∂I+, which we then correct using the inverse (7.14) acting on Ċ∞(I+).
The construction uses that

L̂0(σ) = −DρI (ρIDρI − σ) + Diff2
b(I+), (7.19)

which follows from the form (4.49) of the dual metric of ρ−2gm. Thus, consider (z, k) ∈ E ,

f0 ∈ C∞(∂I+) = C∞(S2), and suppose f = ρiz−1
I (log ρI)

kfk ∈ ρ−1
I A

(z,k)
phg (I+) near ρI = 0. If

z 6= 0, we then have

L̂0(σ)
(
−z−1(z − σ)−1ρizI (log ρI)

kfk
)
− fphg

= (z − σ)−1ρiz−1
I (log ρI)

k−1fk−1 + (z − σ)−1f ′

for some fk−1 ∈ C∞(∂I+), and with f ′ ∈ ρ−1
I A

(z,k)−i
phg (I+) holomorphic in σ. We can

iteratively solve away the first term, obtaining uj ∈ C∞(∂I+) such that

L̂0(σ)

(
k∑
j=0

(z − σ)−j−1ρizI (log ρI)
k−juj

)
− f =

k∑
j=0

(z − σ)−j−1f ′j ,

where f ′j ∈ ρ
−1
I A

(z,k−j)−i
phg (I+) is holomorphic in σ and has improved asymptotics at ∂I+.

If on the other hand z = 0, f = ρ−1
I (log ρI)

kfk ∈ ρ−1
I A

(0,k)
phg (I+), we need an extra log ρI

term: there exist uj ∈ C∞(∂I+) such that

L̂0(σ)

(
k∑
j=0

σ−j−1(log ρI)
k+1−juj

)
− f =

k∑
j=0

σ−j−1f ′j , f ′j ∈ ρ−1
I A

(0,k+1−j)−i
phg (I+).

(Note that there is no term on the left with (log ρI)
0.) In general, given f ∈ ρ−1

I AEphg(I+),
we can use these arguments and asymptotic summation to construct, locally in σ, a family
uphg ∈ A0∪E

phg (I+), depending meromorphically on σ with divisor contained in E , such that

L̂0(σ)uphg − f =: f ′ ∈ A∅phg(I+) = Ċ∞(I+)

is meromorphic with divisor contained in E ; applying L̂0(σ)−1 to this gives an element of
C∞(I+) = A0

phg(I+), and

u := L̂0(σ)−1f = uphg − L̂0(σ)−1f ′

solves L̂0(σ)u = f , with divisor contained in R∪E due to the second term. �

The global solution g = gm + ρh constructed on the space m
mM in Theorem 6.7 is poly-

homogeneous as well; the only place where this is not immediate is I0, where however
polyhomogeneity is well-defined under the assumption (6.15) on the index set E0, which is
already satisfied for the set E0 constructed in Theorem 7.1. Thus, the index sets of h at
I−, I −, I0, I +, and I+ are E+, EI , E0, EI , and E+, respectively, likewise for the refined
asymptotics of πc11h and π0h near I ±.
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8. Bondi mass and the mass loss formula

We shall first use a different characterization of the Bondi mass than the one outlined
in §1.3: the Bondi mass can be calculated from the leading lower order terms of the metric
g in a so-called Bondi–Sachs coordinate system in §8.2; in order to define these coordi-
nates, we first need to study a special class of null-geodesics in §8.1, namely those which
asymptotically look like outgoing radial null-geodesics in the Schwarzschild spacetime. For
simplicity, we work with the infinite regularity solutions of Theorem 1.8, and we only con-
trol the Bondi–Sachs coordinates in a small neighborhood of (I +)◦, as this is all that is
needed for deriving the mass loss formula. More precise estimates, including up to I +∩I+,
of this coordinate system, and a precise description of future-directed null-geodesics and
other aspects of the geometry near (null) infinity will be discussed elsewhere.

8.1. Asymptotically radial null-geodesics. Suppose g = gm + ρh, h ∈ X∞;b0,bI ,b
′
I ,b+ ,

solves Ric(g) = 0 in the gauge Υ(g; gm) = 0, where the weights are as in Definition 3.1;
by an inspection of the expressions in §A.2, the gauge condition implies improved decay of
certain (sums and derivatives of) components of the metric perturbation h, for instance,
Υ(g)0 = 0 implies

Γ00
0 ∈ mr−2 +H

∞;2+b0,2+bI ,2+b+
b . (8.1)

We wish to study null-geodesics near (I +)◦. Introducing coordinates vµ on TR4 by writing
tangent vectors as vµ∂xµ , the geodesic vector field H ∈ V(TR4) takes the form

H = vµ∂xµ + Γµκλv
κvλ∂vµ .

As usual, we will use x0 = t+ r∗, x
1 = t− r∗, and local coordinates x2, x3 on S2. Consider

first the case that h = 0, so g is the Schwarzschild spacetime near I +. Radial null-
geodesics then have constant x1 and xb, b = 2, 3, while v0(s) = ẋ0(s) satisfies the ODE
v̇0 = −mr(s)−2(v0)2, so ẍ0 = −mr−2(ẋ0)2. We then use:

Lemma 8.1. We have r = r∗ − 2m log r∗ +O(r−1
∗ log r∗), and r∗ = 1

2(x0 − x1).

Proof. Let r0(r∗) ≡ r∗ and

rk+1(r∗) = r∗ − 2m log(rk(r∗)− 2m) = r∗ − 2m log(rk)− 2m log(1− 2mr−1
k ),

then |rk+1− rk| ≤ Cr−1
∗ |rk − rk−1|, k ≥ 1, and the fact that |r1− r0| = O(log r∗) show that

r − r1 = O(r−1
∗ log r∗), hence evaluation of r1 gives the result. �

Often, we will only need the consequence that

r = 1
2x

0 +O(log x0) (8.2)

for bounded x1, suggesting the approximation ẍ0 = −4m(x0)−2(ẋ0)2 for the geodesic equa-
tion. Solving this by Picard iteration with initial guess x0

0(s) ≡ s gives

x0
1(s) = s+ 4m log s, ẋ0

1(s) = 1 + 4ms−1,

and subsequent iterations give O(s−1 log s), resp. O(s−2 log s), corrections to x0
1(s), resp.

ẋ0
1(s). Let us generalize such radial null-geodesics:

Proposition 8.2. Fix a point p ∈ (I +)◦ with coordinates xi(p) =: x̄i. Then there exists a
future-directed null-geodesic γ : [0,∞) → M , γ(s) = (xµ(s)) such that γ(s) → p in M and
xa(s)− x̄a = o(s−1) as s→∞.
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Proof. We will normalize γ by requiring that x0(s) ∼ s + 4m log s, and we shall seek
γ : [s0,∞)→M for s0 > 0 large. For weights α0, α1, /α > 0, to be specified in (8.10) below,
we will solve the geodesic equation on the level of the velocity vµ = ẋµ using a suitable
Picard iteration scheme on the Banach space

X :=
{
v = (vµ) : [s0,∞)→ R4 : ṽ0 ∈ s−1−α0C0, v1 ∈ s−1−α1C0, va ∈ s−1−/αC0

}
, (8.3)

where we use the notation

ṽ0(s) := v0(s)− (1 + 4ms−1),

and where C0 ≡ C0([s0,∞)) is equipped with the sup norm; as the norm on X, we then
take the maximum of the weighted C0 norms of ṽ0 and vi, i = 1, 2, 3. For v ∈ X, we define
its integral x = I(v), ẋµ(s) = vµ(s), by

x0(s) := s+ 4m log s−
∫ ∞
s

ṽ0(u) du,

xi(s) := x̄i −
∫ ∞
s

vi(u) du, i = 1, 2, 3.

(8.4)

As the first iterate, we take

ṽ0
0(s), vi0(s) ≡ 0, x0 := I(v0);

note that ‖v0‖X = 0. For k ≥ 0, vk ∈ X, ‖vk‖X ≤ 1, and xk = I(vk), let then

vµk+1(s) := vµk (∞) +

∫ ∞
s

Γµκλ|xk(u)v
κ
k (u)vλk (u) du, xk+1 := I(vk+1). (8.5)

Note that for some fixed constant C > 0,

|x0
k(s)− s− 4m log s| ≤ Cs−α0 , |x1

k(s)− x̄1| ≤ Cs−α1 , |xik(s)− x̄i| ≤ Cs−/α, (8.6)

which in particular allows us to estimate the Christoffel symbols appearing in (8.5). For
µ = 0, writing rk(s) = r(xk(s)), and using the improved decay of various Christoffel symbols
due to the gauge condition Υ(g) = 0, we have

ṽ0
k+1(s) = −4ms−1 +

∫ ∞
s

mrk(u)−2 du+

∫ ∞
s
Os0(u−2−bI ) du

+

∫ ∞
s
Os0(u−2 log u · 1 · u−1−α1) +Os0(u−1 · 1 · u−1−/α)

+Os0(u−1 log u · u−2−α1) +Os0(u−1 log u · u−1−α1 · u−1−/α)

+Os0(u · u−2−2/α) du,

(8.7)

with the integrals on the first line coming from terms with (κ, λ) = (0, 0) and using (8.1),
while the remaining terms come from (κ, λ) = (0, 1), (0, b), (1, 1), (1, b), (a, b), in this order,
using that v0

k = O(1), v1
k = O(s−1−α1), and vak = O(s−1−/α). As for the notation, the

constants implicit in the Os0 notation depend only on s0 and are nonincreasing with s0,
as they come from the size of the Christoffel symbols along xk(s), which satisfies (8.6).
By (8.2) and (8.6), we have∫ ∞

s
mrk(u)−2 du =

∫ ∞
s

4m(u−2 +O(u−3 log u)) du = 4ms−1 +O(s−2 log s).

Therefore, we have

|ṽ0
k+1(s)| .s0 s−1−bI + s−2−α1 log s+ s−1−/α + s−2/α,
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which, for fixed α0 < bI , is bounded by 1
10s
−1−α0 for large s0, provided α0 < min(/α, 1 +

α1, 2/α− 1); in particular, this requires /α > 1
2 .

We obtain estimates on vik+1(s), i = 1, 2, 3, in a similar manner. Namely,

v1
k+1(s) =

∫ ∞
s
Os0(u−2−b′I · 12) +Os0(u−2 · 1 · u−1−α1) +Os0(u−1−b′I · 1 · u−1−/α)

+Os0(u−1 · u−2−2α1) +Os0(u−1 · u−1−α1 · u−1−/α)

+Os0(u · u−2−2/α) du

(8.8)

satisfies |v1
k+1(s)| .s0 s−1−b′I + s−2/α, hence |v1

k+1(s)| < 1
10s
−1−α1 provided the weights

satisfy α1 < min(b′I , 2/α− 1), and provided we increase s0, if necessary.

Lastly, using the precise form of the leading term of Γc0b,

vak+1(s) =

∫ ∞
s
Os0(u−3−b′I ) +Os0(u−3 · 1 · u−1−α1)

+
(
u−1 · 1 · u−1−/α +Os0(u−2 · 1 · u−1−/α)

)
+Os0(u−2 · u−2−2α1) +Os0(u−1 · u−1−α1 · u−1−/α)

+Os0(1 · u−2−2/α) du.

(8.9)

Integrating the first term in the second line gives a term bounded from above by∣∣− 1
1+/α

s−1−/α∣∣ < 2
3s
−1−/α (/α > 1

2),

so we get |vak+1(s)| < (2
3 + 1

10)s−1−/α provided /α < 1 + b′I (which is consistent with /α > 1
2).

Thus, the iteration (8.5) maps the unit ball in X into itself, provided we fix weights

α0 ∈ (0, bI), α1 ∈ (0, b′I), /α ∈ (1
2 , 1 + b′I), (8.10)

and choose s0 large; recall here that 0 < bI < b′I < 1. Moreover, taking s0 larger if
necessary, vk 7→ vk+1 is a contraction; such an estimate is only nonobvious for the difference
of quadratic terms in (8.5) involving the component v0; however, the corresponding terms
come with a small prefactor due to the smallness of the relevant Christoffel symbols.

Let now v := limk→∞ vk ∈ X denote the limiting curve in TR4, and integrate it by
setting γ := I(v). Then v satisfies the integral equation (8.5) with vk and vk+1 replaced by
v, so v is C1, hence γ is a C2 geodesic. In particular, |v(s)|2g(s) is constant, hence equal to

its limit as s→∞, which is

O(s−1−b′I · 12) +O(1 · 1 · s−1−α1) +O(s−b
′
I · 1 · s−1−/α)

+O(s−1 log s · s−2−2α1) +O(1 · s−1−α1 · s−1−/α) +O(s2 · s−2−2/α) = o(1), s→∞.
This proves that γ is a null-geodesic with the desired properties. �

Note that γ is the unique null-geodesic, up to translation of the affine parameter, tending
to p and such that γ̇ ∈ X. (Indeed, for any such γ, the velocity γ̇ has small norm in a space
defined like X but with weights decreased by a small amount and for s0 large enough. The
uniqueness then follows from the fixed point theorem.)

Definition 8.3. For p ∈ (I +)◦, denote by γp(s) the maximal null-geodesic such that
v = γ̇p and x = γp satisfy equation (8.4) and v ∈ X, with X given in (8.3). We call γp a
radial null-geodesic.
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We record the following stronger regularity property of the geodesics γp:

Lemma 8.4. In the notation of Proposition 8.2, let γp(s) = (xµ(s)) denote a radial null-
geodesic; then we have

x̃0(s) ∈ S−α0([s0,∞)), x̃1(s) ∈ S−α1([s0,∞)), x̃a(s) ∈ S−/α([s0,∞)),

for all weights α0 < bI , α1 < b′I , /α < 1 + b′I , where x̃0(s) := x0(s) − (s + 4m log s),
x̃i(s) := xi(s) − x̄i, and where Sm([s0,∞)) denotes symbols of order m, i.e. functions

u ∈ C∞([s0,∞)) such that for any k ∈ N0, |u(k)(s)| ≤ Ck〈s〉m−k.

Proof. Certainly xµ(s) is smooth as a geodesic in a spacetime with smooth metric tensor.
The symbolic estimates for ∂ks x̃

µ(s) for k = 0, 1 follow immediately from the construction of
γp in the proof of Proposition 8.2; for k = 2, they follow from the proof as well, specifically,
from the decay of the integrands in (8.7)–(8.9). Assuming that for some k ≥ 1 we have

|∂js x̃0(s)| . 〈s〉α0−j , 0 ≤ j ≤ k + 1, with α0 as in (8.10), likewise for x̃i, i = 1, 2, 3, we have

∂ks (∂2
s x̃

0) = ∂ks ẍ
0 − ∂k+2

s (s+ 4m log s) = ∂ks ẍ
0 + ∂ks (4ms−2),

and ∂ks ẍ
0 = −∂ks (Γ0

µν ẋ
µẋν). Note that x0(s) = O(s), ∂sx

0(s) = O(1), and ∂jsx0(s) =

O(s−1−j) for 2 ≤ j ≤ k + 1. Expanding the derivatives using the Leibniz and chain rules
thus gives the following types of terms: for (µ, ν) = (0, 0) and all derivatives falling on the
Christoffel symbol,

(∂ksΓ0
00)(ẋ0)2 = ∂ks (4ms−2 +O(s−2−bI ))(1 +O(s−1 log s))

= ∂ks (4ms−2) +O(s−k−2−bI )

by the inductive hypothesis and the b-regularity of the remainder term in Γ0
00; the remaining

(µ, ν) = (0, 0) terms are, with `1 + `2 + `3 = k and `2 > 0,

(∂`1s Γ0
00)(∂`2s ẋ

0)(∂`3s ẋ
0) = O(s−2−`1 · s−1−`2 · s−`3) = O(s−k−3).

Estimating the terms with (µ, ν) 6= (0, 0) does not require special care: derivatives falling on
ẋµ are estimated using the inductive hypothesis (thus every derivative gives an extra power
of decay in s); a derivative falling on Γ0

µν on the other hand either produces (∂0Γ0
µν)ẋ0,

which gains an order of decay due to the Christoffel symbol (recall that ∂0 is a b-derivative
which vanishes at I +), or (∂iΓ

0
µν)ẋi, which gains an order of decay due to ẋi = O(s−1).

Thus, the bound ∂ks (∂2
s x̃

0) = O(s−k−2−α0) follows from the same arithmetic of weights as
used after (8.7).

The arguments for the other components x̃i are completely analogous, and in fact simpler
as no terms need to be handled separately. This finishes the inductive step, and thus the
proof of the lemma. �

We further note that for any compact subset K b (I +)◦, there exists a uniform value
s0 ∈ R such that the null-geodesics γp, p ∈ K, are defined on [s0,∞); since moreover γp
arises, via γp = I(γ̇p) as in (8.4), from the Banach fixed point theorem for a smooth (in p)
contraction, Lemma 8.4 holds smoothly in the parameter p, that is, making the dependence
on p explicit as a subscript, we have x̃0

p(s) ∈ C∞(K;S−α0([s0,∞))) etc.
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Consider now the union of radial null-geodesics tending to the points of particular S2

sections of I +. Concretely, for fixed x̄1 ∈ R, denote

S(x̄1) := {p ∈ I + : x1(p) = x̄1}, Cx̄1 :=
⋃

p∈S(x̄1)

γp((s0,∞)), (8.11)

where s0 is chosen sufficiently large, which will always be assumed from now on. See Fig-
ure 8.1. Thus, on the Schwarzschild spacetime, Cx̄1 is the part of the null hypersurface
x1 = x̄1 on which x0 & s0.

S(x̄1)

Cx̄1

x̄1
I +

I+

I0

Figure 8.1. The outgoing light cone Cx̄1 limiting to the sphere S(x̄1) ⊂
(I +)◦. Also shown are a number of radial null-geodesics.

Lemma 8.5. For x̄1 ∈ R, the set Cx̄1 is a smooth null hypersurface near I +. Moreover,
if I1 b R is a precompact open interval, then there exists a function u such that

u− x1 =: ũ ∈ ρb
′
I−0
I H∞b (M); Cx̄1 = {u = x̄1}, x̄1 ∈ I1. (8.12)

Proof. With coordinates xa, a = 2, 3, on S2, write γ(x̄1; s, x̄2, x̄3) := γ(x̄1,x̄2,x̄3)(s). First, we

shall prove that there exists a coordinate change of Rx0 × R2
x2,x3 ,

Φ(x̄1;x0, x2, x3) = (x0 − 4m log x0 + Φ̃0, x2 + Φ̃2, x3 + Φ̃3) =: (Φ0,Φ2,Φ3), (8.13)

depending parametrically on x̄1 ∈ I1, and with Φ̃0 ∈ S−α0 , Φ̃a ∈ S−/α for weights as
in (8.10) (with the symbolic behavior in x0), such that the map

δ(x0, x̄1, x2, x3) := γ(x̄1; Φ(x̄1;x0, x2, x3))

satisfies xi ◦ δ = xi, i = 0, 2, 3. To do this, recall that, putting γµ := xµ ◦ γ, we have
γ0 − (s+ 4m log s) =: γ̃0 ∈ S−α0 , γ1 − x̄1 =: γ̃1 ∈ S−α1 , and γa − x̄a =: γ̃a ∈ S−/α, so after

some simplifications, our task becomes choosing Φ̃i such that

Φ̃0 = 4m log
(
1− 4m(x0)−1(log x0 + Φ̃0)

)
− γ̃0(x̄1; Φ), Φ̃a = −γ̃a(x̄1; Φ); (8.14)

this can be solved, first with Φ̃0 ∈ (x0)−α0C0 etc. using the fixed point theorem, and then

in symbol spaces using the smoothness of Φ̃0 (which follows from the implicit function
theorem) and an iterative argument.

Let us drop x0, x2, x3 from the notation. The desired function u is then defined implicitly
by u ◦ δ = x̄1. Writing x1(δ(x̄1)) =: x̄1 + f , where f ∈ S−α1 by Lemma 8.4, we see that δ is
one to one for large x0, as x̄1 +f(x̄1) = ȳ1 +f(ȳ1) implies 0 ≥ |x̄1− ȳ1|−C(x0)−α1 |x̄1− ȳ1|,
so x̄1 = ȳ1 if x0 is large. Writing u = x̄1 + ũ, we thus need to solve

(x̄1 + ũ) + f(x̄1 + ũ) = x̄1 ⇐⇒ ũ = −f(x̄1 + ũ),
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which by another application of the fixed point theorem has a solution ũ ∈ S−α1 . Lastly,
note that the vector fields ∂xi , i = 2, 3, 4, and x0∂x0 span Vb(M) near (I +)◦ in view of

ρI = 1/x0, hence S−α1 ⊂ ρα1−0
I H∞b near (I +)◦. Since we can take α1 arbitrarily close to

b′I by (8.10), the existence of u and smoothness of Cx̄1 follows.

It remains to prove that Cx̄1 is a null hypersurface. To this end, we sketch a different way
of constructing Cx̄1 : let x̄0 > 0, and consider the 2-sphere Sx̄1x̄0 = {x0 = x̄0, x1 = x̄1}. For
sufficiently large x̄0, Sx̄1x̄0 is spacelike; hence, for any p ∈ Sx̄1x̄0 , there are precisely 4 rays
of lightlike directions in (TpSx̄1x̄0)⊥, and there exists a unique v(p) ∈ (TpSx̄1x̄0)⊥ which is
future lightlike and outgoing (i.e. dr(v(p)) > 0), and for which v(p)0 = 1 + 2m

r(p) . By writing

out the condition g(v(p), ∂a) = 0 using the form (3.14) of g, one obtains an expression
for v(p)a in terms of a small multiple of v(p)1 and certain metric coefficients, while using
|v(p)|2g = 0 (and using the nonvanishing of g01) gives an expression for v(p)1 in terms of
a small multiple of v(p)a, plus certain metric coefficients. Solving this simple system, one

finds that the components of v(p) satisfy v(p)1 = O(r−1−b′I ) and v(p)a = O(r−2−b′I ); they
are thus small when measured in the norm of X (restricted to a single point) in (8.3), cf.
the upper bounds on the weights in (8.10).

A small modification of the fixed point argument in the proof of Proposition 8.2 shows
that we can solve the geodesic equation with initial data v(p) in the backwards direction
up to a fixed value of x0, say x0 = C � 1; denote the union of these null-geodesic segments
emanating from points on Sx̄1x̄0 by Cx̄1x̄0 . Letting x̄0 → ∞, it then follows that Cx̄1x̄0

converges over every compact subset of R4 ∩ {x0 > C} to Cx̄1 in the C1 topology. By
construction, every Cx̄1x̄0 is a null hypersurface; thus, its C1 limit Cx̄1 is a null hypersurface
as well. �

The function u is uniquely defined by (8.12); thus, Lemma 8.5 shows the existence of a
neighborhood

(I +)◦ ⊂ U+ ⊂M (8.15)

and a function u ∈ x1 + ρ
b′I−0
I H∞b,loc(U

+) such that Cx̄1 ∩ U+ = {u = x̄1} for all x̄1 ∈ R.

Remark 8.6. The weight in (8.12) is consistent with the choice of the domain (4.15) whose
boundary component U∂ε is spacelike, see (4.16).

Since |∇u|2 ≡ 0 by construction, the vector field ∇u consists of null-generators of its
level sets Cu; more precisely, we have ∇∇u∇u = 0, so restricted to the image of a radial
null-geodesic γp ⊂ Cu, we have (∇u)|γp(s) = cpγ̇p(s) for some constant cp. Taking the inner

product with ∂1 and using the form (3.14) of g yields 1 +O(s−b
′
I+0) = cp(

1
2 +O(s−1)), so

letting s→∞ gives cp = 2 and thus

(∇u)|γp(s) = 2γ̇p(s).

We can then extract more information using r = 1
2s + O(log s) and g01 = 1

2 + 2s−1(h01 −
m) +O(s−2 log s): Lemma 8.4 then gives 2〈γ̇p(s), ∂1〉 = 1 + 4s−1h01 +O(s−1−α0), so

∂1ũ− 2r−1h01 ∈ ρ1+bI−0
I H∞b . (8.16)

8.2. Bondi–Sachs coordinates; proof of the mass loss formula. The function u has
nonvanishing differential everywhere on Cx̄1 when x0 is large; we will use it one coordinate
of a Bondi–Sachs coordinate system (u, r̊, x̊2, x̊3), where the coordinates r̊ and x̊a, a = 2, 3,
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are geometrically defined and constructed below; with respect to such a coordinate system,
the metric takes the form

g = guu du
2 + 2gur̊ du d̊r − r̊2qab(dx̊

a − Ũa du)(dx̊b − Ũ b du)

for some guu, gur̊, qab, and Ũa, and quantities of geometric or physical interest such as
the Bondi mass and the gravitational energy flux can be calculated in terms of certain
lower order terms of these metric coefficients [BvdBM62, MW16]. We begin by defining r̊.
Introduce a projection π : U+ → S2 by

π(γ(x̄1,θ)(s)) := θ, θ ∈ S2,

which is well-defined due to Lemma 8.5; in fact, in the notation of its proof, using local
coordinates xa, a = 2, 3, on S2, we have

π(x0, x1, x2, x3) = (Φa(x1 + ũ;x0, x2, x3))a=2,3, (8.17)

which in particular gives

π(x0, x1, x2, x3)− (x2, x3) ∈ S−/α. (8.18)

The map π defines a fibration of every Cu; these fibrations have natural sections, as we
proceed to explain invariantly. Let N := kerπ∗ denote the subbundle (smooth in M◦)
consisting of vectors tangent to the fibers of π: this is the bundle of null generators of the
null hypersurfaces Cu, and therefore N ⊥ TCu. This implies that the spacetime metric g
restricts to an element

[g] ∈ S2(TCu/N)∗.

On the other hand, the pull-back π∗/g induces a Riemannian metric [π∗/g] on TCu/N , i.e. an

isomorphism TCu/N → (TCu/N)∗, hence [π∗/g]−1[g] ∈ End(TCu/N) is well-defined. We
then define the area radius r̊ by the formula

r̊4 := det
(
[π∗/g]−1[g]

)
, r̊ > 0.

Lemma 8.7. We have r̊ − r ∈ ρb
′
I−0
I H∞b and ∂0r̊ = 1

2 −mr
−1 + ρ

1+b′I−0
I H∞b near (I +)◦.

Proof. It suffices to prove the first claim. We start by finding representatives in TCu of a
basis of TCu/N by considering the vector fields

Va = fa∂1 + ∂a, a = 2, 3, (8.19)

with fa to be determined. Working over the image of a fixed geodesic γp : [s0,∞)→M , we

use γ̇p = (1 +O(s−1))∂0 +O(s−1−α1)∂1 +
∑

cO(s−1−/α)∂c and the form of g to calculate

g(γ̇p, Va) = (1
2 +O(s−1))(1 +O(s−1))fa +O(s1−/α);

demanding this to vanish determines fa = O(s1−/α). Since /α < 1 + b′I is arbitrary, we
conclude that

g(Va, Vb) = −r2
/gab + rhāb̄ +O(r−b

′
I+0), (8.20)

while the observation (8.18) implies that π∗(Va) ∈ ∂a + Cba∂b, C
b
a = O(s−/α), hence

(π∗/g)(Va, Vb) = /gab +O(s−1−b′I+0). (8.21)

Therefore,

r̊4 = r4 det
(
1− r−1(/g

bchāb̄)a,c=2,3 +O(s−1−b′I+0)
)

= r4(1− r−1 /trh+O(s−1−b′I+0)),
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which is equal to r4(1+O(s−1−b′I+0)) due to the decay of /trh at I + coming from the mem-

bership h ∈ X∞;b0,bI ,b
′
I ,b+ , i.e. ultimately from the gauge condition. Taking fourth roots,

carrying symbolic behavior in s through the argument, and noting that these calculations
depend smoothly on the parameter p ∈ (I +)◦ completes the proof. �

Corollary 8.8. Define the punctured neighborhood U̇+ := U+\(I +)◦ of (I +)◦, see (8.15).

Then if U+ is a sufficiently small neighborhood, (u, r̊, π) : U̇+ → R×R× S2 is a coordinate

system on U̇+.

Proof. This follows from Lemma 8.7 and the asymptotics of u and π in (8.12) and (8.18). �

Choosing local coordinates xa on S2 and letting x̊a := xa ◦ π = xa + ρ
1+b′I−0
I H∞b , we can

introduce the Bondi–Sachs coordinates

(u, r̊, x̊2, x̊3) (8.22)

on U ; the metric g and its dual G = g−1 simplify in this coordinate system since, by
construction,

G(du, du) ≡ 0, G(du, dx̊a) = (∇u)(̊xa) ≡ 0. (8.23)

Furthermore, using (8.16) and Lemma 8.7,

G(du, d̊r) = 1 + ρ
1+b′I−0
I H∞b ,

G(dx̊a, dx̊b) = −r̊−2
/g
ab − r̊−3hāb̄ + ρ

3+b′I−0
I H∞b ,

(8.24)

where the leading term in the first expression comes from g01(∂1u)(∂0r̊). In order to calcu-
late G(d̊r, d̊r) to the same level of precision, we need to sharpen Lemma 8.7.

Lemma 8.9. Near (I +)◦, we have

∂1r̊ = −1
2 +

(
m+ 1

2(h11 − 2h01) + r∂0h11 − 1
4
/∇a /∇bhāb̄

)
r−1 + ρ1+bI−0

I H∞b .

Note that in (8.20), we already control g(Va, Vb) modulo terms more than two orders
beyond the leading term, which suffices for present purposes. On the other hand, the
remainder term in (8.21) is not precise enough.

Proof of Lemma 8.9. Put A := [π∗/g]−1[r−2g] ∈ End(TCu/N), so (̊r/r)4 = detA, and

Lemma 8.7 gives Aba = δba − r−1hā
b̄ + ρ

1+b′I−0
I H∞b and (detA) − 1 ∈ ρ

1+b′I−0
I H∞b . Sup-

pose now that

∂1(detA) = r−2µ+ o(r−2), (8.25)

then ∂1((̊r − r)/r) = 1
4(detA)−3/4∂1(detA) = 1

4r
−2µ + o(r−2), so expanding the left hand

side as r−1(∂1r̊ + 1
2 −mr

−1) + o(r−2) implies that

∂1r̊ = −1
2 + r−1(m+ 1

4µ) + o(r−1) (8.26)

Our calculations will imply that the o(r−1) remainder is of size O(r−1−bI+0), but we shall
stick to o(r−1) etc. for brevity. Trivializing TCu/N locally using the frame {Va : a = 2, 3},
with Va defined in (8.19), A becomes a 2 × 2 matrix-valued function. We can thus use
the formula ∂1(detA) = (detA) tr(A−1∂1A), so it suffices to determine the function µ in
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tr(A−1∂1A) = r−2µ + o(r−2). One contribution comes from differentiating [r−2g], which
by (8.20) and Υ(g)1 = 0 yields

tr([r−2g]−1∂1[r−2g]) = (−/gab − r−1hāb̄ +O(r−2+0))(∂1(r−1hāb̄) +O(r−2−b′I+0))

= −r−1∂1 /trh− r−2hāb̄∂1hāb̄ + o(r−2)

= 2r−2(h11 − 2h01)− 2r−2 /∇dh1
d̄ + 4r−1∂0h11 + o(r−2).

(8.27)

The remaining contribution to tr(A−1∂1A) is −tr([π∗/g]−1∂1[π∗/g]) (using the cyclicity of the

trace). Let us work near a point z0 ∈ R4, and suppose x2, x3 are normal coordinates on S2

centered at the point π(z0). Then(
∂1(π∗/g)(Va, Vb)

)
|z0 = ∂1

(
(/gcd ◦ π)(π∗Va)

c(π∗Vb)
d
)
|z0

= /gcd|π(z0)(∂1(π∗Va)
c)(π∗Vb)

d + /gcd|π(z0)(π∗Va)
c(∂1(π∗Vb)

d).

Now (π∗Va)
c = δca +O(r−1−b′I+0), whose derivative along ∂1 is of size O(r−1−b′I+0), so

∂1(π∗/g)(Va, Vb) = /gbc∂1(π∗Va)
c + /gac∂1(π∗Vb)

c + o(r−2) at z0. (8.28)

Let us first calculate the contribution to this coming from the term ∂a in Va. By (8.17) and
recalling the form of the map Φ from (8.13) as well as its defining relation (8.14), we have

∂1(π∗∂a)
b = ∂1∂aΦ̃

b(x1 + ũ;x0, x2, x3)

= −∂1∂aγ̃
b(x1 + ũ;x0 − 4m log x0 + Φ̃0, x2 + Φ̃2, x3 + Φ̃3);

(8.29)

now γ̃b, its xc-derivatives (c = 2, 3), and Φ̃b are of size O((x0)−1−b′I+0), so dropping Φ̃2 and

Φ̃3 gives an o(r−2) error; likewise, ∂x0 γ̃b = O(r−2−b′I+0), so replacing the second argument
by x0 gives another o(r−2) error.

To analyze this further, we need to digress: consider the 1-parameter family w(s; ε) :=
γ(x1+ε,x2,x3)(s) of null-geodesics, with x2, x3 fixed, and let

Y (s) := ∂εw(s; 0) ≡ ∂1γ(x1,x2,x3)(s)

denote the Jacobi field along γ(s) := w(s; 0). The asymptotics proved in Proposition 8.2
give the a priori information

Y (s) = O(s−bI+0)∂0 + (1 +O(s−b
′
I+0))∂1 +

∑
c

O(s−1−b′I+0)∂c,

∂sY (s) = O(s−1−bI+0)∂0 +O(s−1−b′I+0)∂1 +
∑
c

O(s−2−b′I+0)∂c.
(8.30)

We shall determine the component Y (s)b by solving the Jacobi equation(
∇γ̇∇γ̇Y (s) +R(Y, γ̇)γ̇

)b
= 0. (8.31)

Heuristically, it suffices to calculate this modulo o(s−4) errors, as the second integral of
such error terms (integrating from infinity) is o(s−2); we will verify this heuristic in the

course of our calculations. Using γ̇0 = 1 + O(s−1), γ̇1 = O(s−1−b′I+0), γ̇c = O(s−2−b′I+0),
the a priori information (8.30), and the expressions for the curvature tensor in (A.7), one
finds

(R(Y, γ̇)γ̇)b = Rbλµν γ̇
λY µγ̇ν = −Rb001(γ̇0)2Y 1 −Rb00a(γ̇

0)2Y a + o(s−4).
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Now, using the gauge condition Υ(g)0 = 0 and the expressions for Christoffel symbols
given in (A.3), one finds that in fact Rb00a = o(s−3), rendering the second term size o(s−4).
Let us calculate Rb001 = ∂0Γb01 − ∂1Γb00 + Γµ01Γb0µ − Γµ00Γbµ1 more accurately than in (A.7).

In the third term, the only contribution which is not o(r−4) comes from µ = 2, 3, giving

−1
4r
−3∂1h0

b̄ + 1
4r
−4 /∇bh01; the fourth term is o(r−4). For the second term, we use

Γb00 = g0bΓ000 + g1bΓ100 + gabΓa00 = o(s−4) + o(s−4)− (r−2∂0h0
b̄ − 1

2r
−3 /∇bh00),

exploiting Υ(g)0 = 0. In view of the leading order vanishing of h0
b̄ and h00 at I +,

we have ∂1Γb00 = −r−2∂0(∂1h0
b̄) + 1

2r
−3 /∇b∂1h00 + o(s−4); now ∂1h0

b̄ can be rewritten,
using Υ(g)b = 0, in terms of h01, hb̄c̄, and h1b̄; since these have (size 1) leading terms at
I +, subsequent differentiation along ∂0 only produces nontrivial terms (i.e. not of size
o(r−4)) when acting on the r-weights. On the other hand, ∂1h00 = −r−1h01 + o(r−1) from
Υ(g)0 = 0. Arguing similarly for the computation of ∂0Γb01, one ultimately finds that all
nontrivial terms cancel, so

Rb001 = o(r−4).

Thus, the curvature term of the Jacobi equation (8.31) is of size o(s−4) simply. Regarding
the first term of (8.31), the information (8.30) and a brief calculation give (∇γ̇Y )0 =

O(s−1−bI+0), (∇γ̇Y )1 = O(s−1−b′I+0), and, using r−1 = 2s−1 +O(s−2 log s),

(∇γ̇Y )b = ∂sY
b + Γbµλγ̇

µY λ

= ∂sY
b + s−1Y b − 2s−3 /∇dhb̄d̄ + 4s−3h1

b̄ + o(s−3),

with nontrivial contributions only from (µ, λ) = (0, 1), (0, c). In particular, ∇γ̇Y satisfies

the same rough asymptotics as ∂sY in (8.30). Since differentiation of hb̄d̄ and h1
b̄ along γ̇

gains a weight s1+bI due to these components having a leading term, this and (8.31) imply

o(s−4) = (∇γ̇∇γ̇Y )b = ∂s(∇γ̇Y )b + s−1(∇γ̇Y )b + o(s−4)

= ∂2
sY

b + 2s−1∂sY
b + 4s−4 /∇dhb̄d̄ − 8s−4h1

b̄ + o(s−4)

= s−2
(
∂s(s

2∂sY
b)− 2µ̃s−2 + o(s−2)

)
,

where
µ̃ = lim

s→∞
(4h1

b̄ − 2 /∇dhb̄d̄)

is the value of this combination of metric coefficients at γ(∞) ∈ I +. Since lims→∞ s
2∂sY

b =
0 due to (8.30), we find ∂sY

b = −2µ̃s−3 + o(s−3) and thus

Y b = µ̃s−2 + o(s−2) (8.32)

since lims→∞ Y
b = 0.

Returning to the expression (8.29), dropping ũ gives an O(r−2−b′I+0) error term by
Lemma 8.5; we thus conclude that

∂1(π∗∂a)
b = −∂1∂aγ

b(x1;x0, x
2, x3)+o(r−2) =

(
− /∇ah1

b̄+ 1
2
/∇a /∇dhb̄d̄

)
r−2 +o(r−2). (8.33)

We have another term in (8.28) coming from the term fa∂1 in Va; but fa and its derivative

along x1 being of size O(r−b
′
I+0) (see the proof of Lemma 8.7), it suffices to show that

(π∗∂1)c = O(r−2) in order to conclude that ∂1(π∗(fa∂1))c = o(r−2) is a lower order term.
But we can simplify (π∗∂1)c|(x0,x1,x2,x3) = ∂1Φc = −∂1γ̃

c(x1;x0, x2, x3) + o(r−2) = O(r−2)
(using (8.32)) in the same manner as we simplified (8.29).
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Finally then, plugging (8.33) into (8.28), and adding the result to (8.27) yields (8.25) for

µ = 2(h11 − 2h01) + 4r∂0h11 − /∇a /∇bhāb̄,

which by (8.26) proves the lemma. �

We can also compute ∂1x̊
b = ∂1π

b modulo o(r−2), as this is given by the component Y b

of the Jacobi vector field of the proof of Lemma 8.9, so ∂1x̊
b = (h1

b̄− 1
2
/∇dhb̄d̄)r−2 + o(r−2).

In summary, we have shown that

du = o(r−1)dx0 +
(
1 + 2r−1h01 + o(r−1)

)
dx1 +

∑
c
o(1)dxc,

d̊r =
(

1
2 −mr

−1 + o(r−1)
)
dx0

+
(
−1

2 + (m+ 1
2(h11 − 2h01) + r∂0h11 − 1

4
/∇a /∇bhāb̄)r−1 + o(r−1)

)
dx1

+
∑

c
o(1)dxc,

dx̊a = o(r−2)dx0 +
(
(h1

ā − 1
2
/∇dhād̄)r−2 + o(r−2)

)
dx1 + dxa +

∑
c
o(r−1)dxc,

(8.34)

where the remainders are in fact more precise: o(r−k) can be replaced by ρk+bI−0
I H∞b near

(I +)◦, so a fortiori by O(r−k−bI+0). We can now supplement (8.23)–(8.24) by

G(d̊r, d̊r) = −1 + 2mr−1 + 2∂0h11 − 1
2r
−1 /∇a /∇bhāb̄ + ρ1+bI−0

I H∞b ,

G(d̊r, dx̊b) = (h1
b̄ − 1

2
/∇dhb̄d̄)r−2 + ρ

2+b′I−0
I H∞b .

(8.35)

(Note that in the first line, the logarithmically divergent terms h11 from g00(∂0r̊)
2 and

g11(∂1r̊)
2 cancel.) Let us summarize the calculations (8.23)–(8.24) and (8.35):

Proposition 8.10. In the Bondi–Sachs coordinates (8.22), the dual metric G = g−1 is

G = 2(1 + o(̊r−1))∂u∂r̊ −
(
1− 2mr̊−1 − 2∂0h11 + 1

2 r̊
−1 /∇a /∇bhāb̄ + o(̊r−1)

)
∂2
r̊

− r̊−2(/g
ab + r̊−1hāb̄ + o(̊r−1))

(
∂x̊a + (Uar̊

−2 + o(̊r−2))∂r̊
)(
∂x̊b + (Ubr̊

−2 + o(̊r−2))∂r̊
)
,

where Ua = −1
2h1ā + 1

4
/∇chāc̄. The metric g itself takes the form

g =
(
1− 2mr̊−1 − 2∂0h11 + 1

2 r̊
−1 /∇a /∇bhāb̄ + o(̊r−1)

)
du2 + 2(1 + o(̊r−1))du d̊r

− r̊2(/gab − r̊−1hāb̄ + o(̊r−1))
(
dx̊a − (Uar̊−2 + o(̊r−2))du

)(
dx̊b − (U br̊−2 + o(̊r−2))du

)
.

The o(̊r−k) remainders can be replaced by ρk+bI−0
I H∞b = O(r−k−bI+0) near (I +)◦. Fur-

thermore, the coordinate vector fields satisfy

∂u =
(
1− (h11 + 2r∂0h11 − 1

2
/∇a /∇bhāb̄)r−1 + o(r−1)

)
∂0

+ (1− 2h01r
−1 + o(r−1))∂1 +

(
(−h1

ā + 1
2
/∇bhāb̄)r−2 + o(r−2)

)
∂a,

∂r̊ = (2 + 4mr−1 + o(r−1))∂0 + o(r−1)∂1 +
∑

c
o(r−2)∂c,

∂x̊a = o(1)∂0 + o(1)∂1 + ∂a +
∑

c
o(r−1)∂c.

(8.36)

Proof. The statement (8.36) on the dual basis of (8.34) follows by matrix inversion. �
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Remark 8.11. For comparison, the Bondi–Sachs coordinates on Schwarzschild are simply
u = x1, r̊ = r, and spherical coordinates x̊a = xa, and the metric takes the form

(gSm)−1 = 2∂u∂r̊ − (1− 2mr̊−1)∂2
r̊ − r̊−2 /G, gSm = (1− 2mr̊−1)du2 + 2du d̊r − r̊2

/g.

Remark 8.12. Near (I +)◦ and relative to the smooth structure on M , the conformally
rescaled metric r−2g is singular as an incomplete metric at I +: indeed, r2∂0 is a nonzero

multiple of ∂ρI by (2.26), and r2g(r2∂0, r
2∂0) = rh00 = O(ρ

−1+b′I
I ). On the other hand,

changing the smooth structure of M near (I +)◦ by declaring (̊r−1, u, x̊2, x̊3) to be a smooth
coordinate system, so ρ̊I := r̊−1 is a defining function of I +, we have r̊−2g ∈ C1,bI−0.

Indeed, ∂ρ̊I = −r̊2∂r̊ is null, while (̊r−2g)(∂ρ̊I , ∂u) = 1 + O(ρ̊1+bI−0
I ) is C1,bI−0, and the

remaining metric coefficients have at least this amount of regularity. Since by Theorem 6.3
one can take bI arbitrarily close to min(b0, 1), this gives

r̊−2g ∈ C1,α ∀α < min(b0, 1), (8.37)

relative to the new smooth structure. As mentioned in §1.3, smoothness properties of
conformal compactifications have been widely discussed, in particular from the point of view
of asymptotic simplicity [Pen65] and the decay properties of the curvature tensor [KN03b,
Chr02]; see also [Fri04] for further references. Whether or not there exists a compactification
with smooth (or at least highly regular) I +, meaning that the conformally rescaled metric
extends smoothly and nondegenerately across I +, is a delicate issue as it depends very
sensitively on the precise choice of the conformal factor and the smooth structure near I +

and requires the identification of at least two ‘incommensurable’ geometric quantities.42

The observation (8.37) shows that this cannot happen prior to the next-to-leading order
terms in the expansion of g at I +. Work by Christodoulou [Chr02] on the other hand (see
also [Daf12, §1.5.3]) strongly suggests that the conformal compactification is generically at
most of class C1,α.

Therefore, the mass aspect, see [MW16, Equation (37)], is −1
2 times the r̊−1 coefficient

of the du2 component,

MA(p) = m+ (r∂0h11 − 1
4
/∇a /∇bhāb̄)|p, p ∈ (I +)◦, (8.38)

and the Bondi mass MB(u) := 1
4π

∫
S(u)MA d/g is

MB(u) = m+
1

4π

∫
S(u)

r∂0h11 d/g, u ∈ R, (8.39)

where we exploited that the divergence in the expression (8.38) integrates to zero.

Remark 8.13. Recall that near (I +)◦, h11 can be written as h
(1)
11 log ρI + h

(0)
11 + ρbII H

∞
b ,

with h
(j)
11 ∈ C∞((I +)◦), j = 0, 1, so r∂0h11|I + = −1

2h
(1)
11 picks out the logarithmic term.

Theorem 8.14. The Bondi mass (8.39) satisfies the mass loss formula

d

du
MB(u) = − 1

32π

∫
S(u)
|N |2/g d/g, Nab := ∂uhāb̄|I + . (8.40)

Moreover, MB(−∞) = m is the ADM mass of the initial data, while MB(+∞) = 0.

42An example would be given by two metric components which have nonzero leading terms of size ρI
and ρI log ρI , respectively, though we reiterate that this depends on the choice of ρI , i.e. of the smooth
structure.
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Proof. The formula (8.40) is an immediate consequence of Lemma 3.5, and MB(−∞) = m

follows from the fact that r∂0h11 ∈ ρb00 ρ
b+
+ H∞b (I +) decays to 0 as ρ0 → 0.

Let us fix the boundary defining function ρ to be equal to r−1 near I +, and fix ρI and
ρ+ near I+ so that ρIρ+ = ρ. In order to prove MB(+∞) = 0, we analyze the equation
satisfied by h+ := h|I+ . The existence of this leading term was proved in §7 starting
with equation (7.16) (in which we do not use constraint damping); that is, restricting

that equation to I+ and using the Mellin-transformed normal operators L̂0(0) = L̂(0) ∈
ρ−1
I Diff2

b(I+) at frequency 0 (so this is the action of L0 on 2-tensors smooth down to I+

followed by restriction to I+), we have

L̂(0)h+ = −P (0)|I+ = −ρ−3Ric(gm)|I+ . (8.41)

Moreover, h+
11 has a logarithmic leading order term h+

` log ρI ,

h+ − h+
` log ρI (dx1)2 ∈ C∞(I+) + ρbII H

∞
b (I+) ⊂ H̄1/2+bI−0(I+), (8.42)

where h+
` = (ρI∂ρIh11)|∂I+ = (−2r∂0h11)∂I+ , so by Lemma 3.5

h+
` (θ) =

1

4

∫
β−1(θ)

|N |2 dx1, θ ∈ ∂I+.

Since L̂(0) is injective on H̄1/2+0(I+), the tensor h+ on I+ is uniquely determined by
equation (8.41) and the ‘boundary condition’ (8.42). The strategy is to evaluate h+

00|∂I+

in two ways: one the one hand, this quantity vanishes identically by construction of the
metric h in our DeTurck gauge; on the other hand, we will show that solving (8.41) directly
yields the relation

1

4π

∫
∂I+

h+
00|∂I+ d/g = 1

2m−
1
4c, c :=

1

4π

∫
∂I+

h+
` d/g, (8.43)

which thus gives the desired conclusion. For the proof of (8.43), let us split h+ = h′ + h′′,
where

h′ ∈ C∞(I+;S2 scT ∗I+R4), h′′ ∈ h+
` log ρI (dx1)2 + H̄1/2+0(I+;S2 scT ∗I+R4) (8.44)

are the unique solutions with these properties solving the equations

L̂(0)h′ = −P (0)|I+ , (8.45)

L̂(0)h′′ = 0; (8.46)

the first equation is uniquely solvable in this regularity class due to P (0) ∈ C∞c ((I+)◦). We
first solve (8.46) with the boundary condition (8.44), to the extent that we can determine
h′′00. This can be viewed as a calculation of (a part of) the ‘scattering matrix’ of the operator

L̂(0) on I+,43 which can be done explicitly: writing points in I+ using spherical coordinates
as Z = Rω ∈ R3, R = r/t ∈ [0, 1], ω ∈ S2, we have

−2L̂(0) = R−2DRR
2(1−R2)DR +R−2 /∆ω + 2,

43Trivializing the 2-tensor bundle using coordinate differentials on R4, a conjugated version of L̂(0) acts
component-wise as the Laplacian of exact hyperbolic space with spectral parameter at the bottom of the
spectrum; see Equations (4.1), (6.11), and (6.13) in [HZ18].
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acting component-wise on the coordinate trivialization of scT ∗R4; see (4.62) and (4.65).

Since L̂(0) is SO(3)-invariant, it suffices to calculate u00|∂I+ for the solution of L̂(0)u = 0

for which u− c log ρI(dx
1)2 ∈ H̄1/2+0(I+); recall that c was defined in (8.43). Now at I+,

(dx1)2 = dt2 − 2 Z
i

|Z| dt dxi + ZiZj

|Z|2 dxi dxj , (8.47)

where we write xi for the Euclidean coordinates on R3; observe then that if Y` ∈ C∞(S2),
/∆Y` = `(`+ 1)Y`, denotes a spherical harmonic, then L̂(0)

(
u`(R)Y`(ω)

)
= 0 holds for

u0 = R−1 log
(

1−R
1+R

)
, u1 = R−2 log

(
1−R
1+R

)
+ 2R−1, u2 = 3−R2

2R3 log
(

1−R
1+R

)
+ 3R−2; (8.48)

Taylor expanding at R = 0, one sees that R−`u` is a smooth function of R2, hence u`Y` is
smooth there; moreover, u` satisfies the boundary condition u`− log ρI = O(1), ρI = 1−R,
at R = 1. (In fact, u` is the unique solution with these two properties.) Using (8.47), we

find h′′ = c ·
(
u0 dt

2 − 2u1 dt dr + u2 dr
2
)
, so writing dt = (dx0 + dx1)/2, dr = Zi

|Z|dxi, and

r = (dx0 − dx1)/2 near ∂I+ within I+, this gives

h′′00|∂I+ = c ·
(

1
4u0 − 1

2u1 + 1
4u2

)∣∣
R=1

= −1
4c. (8.49)

In order to solve (8.45), note first that the map h ∈ C∞(I+) 7→ ρ−3Ric(g + ρh)|I+ is

linear in h,44 hence writing gm =: g + ρh, we have

P (0)|I+ = ρ−3(Ric(g + ρh)− Ric(g))|I+ = L̂(0)h− ρ−3δ∗gδgGgρh;

for later use, we note that in a neighborhood of ∂I+ in I+,

h = −2mρ−1r−1(dt2 + dr2) = −m((dx0)2 + (dx1)2). (8.50)

This suggests writing ρh′ as the sum of −ρh (to solve away the first term) and a pure gauge
term, so we make the ansatz

h′ = −h+ ρ−1δ∗gω + h̃′, (8.51)

where ω ∈ C∞((I+)◦; scT ∗I+R4) solves45

ρ−2δgGgδ
∗
gω = ϑ := ρ−2δgGg(ρh) ∈ C∞(I+; scT ∗I+R4), (8.52)

and h̃′ is a solution of L̂(0)h̃′ = 0 which we will use to solve away any singular terms. We
compute ϑ to leading order at ∂I+ by using r2δgr

−1dt2 = 0 and r2δgr
−1dr2 = dr, so

ϑ = −2mdr = −mdx0 +mdx1 + ρI C∞(I+).

Write ρ−2δgGgδ
∗
g = ρDρ−1, where D = ρ−3δgGgδ

∗
gρ is 1

2 times the wave operator on 1-forms

on Minkowski space, re-weighted to a b-operator as usual; then equation (8.52) becomes

D̂(i)(ρ−1
I ω) = ρ−1

I ϑ. (8.53)

Now ρ−1
I ϑ ∈ H̄−1/2−0,∞(I+), while D̂(i)−1 : H̄s−1,∞(I+) → H̄s,∞(I+) for s > −1

2 , cf.

(7.14). Therefore, the solution satisfies ω ∈ ρIH̄1/2−0,∞(I+) ⊂ ρ1−0
I H∞b (I+) (by Sobolev

44This reflects the fact that the normal operator of the linearization of the Einstein equation around a
metric of the form g + ρh only depends on the leading order part of the metric at I+, i.e. on g; see also

Lemma 3.10.
45We abuse notation by using the same expression for a b-operator on R4 and its Mellin-transformed

normal operator at 0 frequency. Note that for a b-differential operator A, the operator Â(0) is independent

of the choice of boundary defining function (unlike Â(σ) for σ 6= 0); see also [Vas08, p. 762].
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embedding for functions of the single variable ρI), which using the expression (A.1) implies
that ω does not contribute to h′00|∂I+ , namely (ρ−1δ∗gω)00|∂I+ = (ρ−1∂0ω0)|∂I+ = 0, where

we used that ρ−1∂0 is a multiple of the b-vector field ρI∂ρI at ∂I+.

A careful inspection of the solution of (8.53) shows that ρ−1δ∗gω is not smooth. Indeed,

in the bundle splitting (2.19), we have D ∈ −2ρ−2∂0∂1 + Diff2
b(0M), as follows from the

same calculations as (B.13), so using the expression (7.19) for σ = i, we have D̂(i) ∈
∂ρI (ρI∂ρI+1)+Diff2

b(I+), which implies that46 ω = ρI log ρI ϑ|∂I++H̄5/2−0,∞(I+); therefore

(ρ−1δ∗gω)|I+ =
(
−dx0 dx1 + (dx1)2

)
m log ρI + H̄3/2−0,∞(I+).

Therefore, while we do have L̂(0)(−h+ ρ−1δ∗gω) = −P (0), we need to correct the 2-tensor

on the left by adding the unique solution h̃′ of

L̂(0)h̃′ = 0, h̃′ ∈
(
dx0 dx1 − (dx1)2

)
m log ρI + H̄1/2+0(I+)

in order for h′ in (8.51) to have regularity above H̄1/2(I+), which, as remarked before,
implies that it is the unique smooth solution of (8.45), as desired. Arguing similarly as

around (8.47)–(8.48) and noting that dx0 dx1 = dt2− dr2 = dt2− ZiZj

|Z|2 dxi dxj , the solution

is given by h̃′ = m(u0 dt
2 − u2 dr

2)−m(u0 dt
2 − 2u1 dt dr + u2 dr

2). This gives

h̃′00|∂I+ = 1
4m(u0 − u2)|∂I+ −m · (−1

4) = −1
2m.

In view of (8.50), we conclude that

h′00|∂I+ = −h00|∂I+ + h̃′00|∂I+ = 1
2m.

Adding this to (8.49) establishes the relation (8.43), and proves MB(+∞) = 0. �

Remark 8.15. The construction of Bondi–Sachs coordinates is local near (I +)◦ and as such
did not rely on h being small. (The proof of Proposition 8.2 used the smallness of certain
Christoffel symbols in a weighted C0 space, but this is automatic for any fixed h ∈ X∞ if
one relaxes the weights at I + by a little and works in a sufficiently small neighborhood
of I +.) Likewise, the proof of Theorem 8.14 did not require h to be small. Therefore,
we in fact conclude that any (large) solution of the Einstein vacuum equation of the form
g = gm+ρh (with m possibly large), h ∈ X∞—which requires it to decay to the Minkowski
solution at I+—satisfies the conclusions of Theorem 8.14.

Let us connect this to the alternative definition of the Bondi mass and the mass loss
formula used in §1.3, which has a more geometric flavor [Chr91]. To describe this, consider
an outgoing null cone Cu and let

Su,̊r := Cu ∩ {r = r̊}
denote the 2-sphere of constant area radius (which is a particular choice of transversal of
Cu). Let L ∈ (TCu)⊥ be a future-directed null normal vector field, i.e. a smooth positive
multiple of ∇u; then the null second fundamental form is

χL(X,Y ) := g(∇XL, Y ), X, Y ∈ TSu,̊r.

46Using the arguments employed in the proof of Lemma 7.8, we in fact have ρ−1
I ω ∈ log ρI C∞(I+) +

C∞(I+), as follows by constructing a formal solution at ρI = 0, starting with the stated leading order term,

and solving away the remaining smooth error using D̂(i)−1.
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Note that χaL = aχL for any function a. There exists a unique future-directed null vector
field

L ∈ (TSu,̊r)
⊥ such that g(L,L) = 2. (8.54)

Define TCu := TSu,̊r ⊕ 〈L〉, which is the tangent space (at Su,̊r) of a null hypersurface Cu
which is the congruence of null-geodesics with initial condition on Su,̊r and initial velocity
L. (L and Cu, resp. L and Cu, are often called ‘outgoing’ and ‘ingoing,’ respectively.) The
conjugate null second fundamental form is then

χL(X,Y ) := g(∇XL, Y ) = −g(∇XY,L), X, Y ∈ TSu,̊r,

with the second expression showing that this depends only on L at Su,̊r. Letting g̊ := g|Su,̊r
denote the induced metric, the trace-free parts of χ and χ are

χ̂L := χL − 1
2 g̊ tr̊g(χL), χ̂

L
:= χL − 1

2 g̊ tr̊g(χL).

Rescaling L to aL, we must rescale L to a−1L, so the product trχL trχL is well-defined,
and we may drop the subscripts on χ and χ. The Hawking mass of Su,̊r is defined as

MH(u, r̊) :=
r̊

2

(
1 +

1

16π

∫
S(u,̊r)

trχ trχdS

)
, (8.55)

where dS is the induced surface measure. For a 1-form, let us write its components ω in
Bondi–Sachs coordinates as ωu, ωr̊, ωå, a = 2, 3, similarly for higher rank tensors.

Lemma 8.16. We have |MH(u, r̊)−MB(u)| . r̊−bI+0, hence

lim
r̊→∞

MH(u, r̊) = MB(u).

Proof. We work in Bondi–Sachs coordinates, so TSu,̊r = 〈∂x̊2 , ∂x̊3〉, and

g̊̊åb = −r̊2
/gab + r̊hāb̄ + o(̊r), (̊g−1)å̊b = −r̊−2

/g
ab − r̊−3hāb̄ + o(̊r−3).

Let us take L = ∂r̊ and write χ ≡ χL, then χå̊b is the Christoffel symbol of the first kind,
Γ̊b̊ar̊ = g(∇∂x̊a∂r̊, ∂x̊b). By Proposition 8.10, g(∂x̊a , ∂r̊a) ≡ 0, therefore

χå̊b = 1
2∂r̊g̊åb = −r̊/gab + 1

2hāb̄ + o(1), (8.56)

which due to /trh = o(1) gives

trχ = 2̊r−1 + o(̊r−2), χ̂å̊b = −1
2hāb̄ + o(1). (8.57)

Next, a simple calculation shows that the unique future-directed null vector field L defined
in (8.54) is given by

L = (2 + o(̊r−1))∂u −
(
1− 2mr̊−1 − 2∂0h11 + 1

2 r̊
−1 /∇a /∇bhāb̄ + o(̊r−1)

)
∂r̊

+
(
(−h1

ā + 1
2
/∇bhāb̄)̊r−2 + o(̊r−2)

)
∂̊a.

(The spherical component is determined by g(L, ∂̊c) = 0, c = 2, 3, the ∂u component by
g(L,L) = 2, and the ∂r̊ component by g(L,L) = 0.) Working in normal coordinates on
S2, using Γůåb = −1

2 r̊∂uhāb̄ −
1
4( /∇ah1b̄ + /∇bh1ā) + 1

8( /∇a /∇chb̄c̄ + /∇b /∇chāc̄) + o(1), Γr̊̊åb =

r̊/gab − 1
2hāb̄ + o(1), and Γc̊̊åb = o(̊r2), the components of χ := χL are

χå̊b = −Γµ̊åbL
µ = (̊r − 2m− 2̊r∂0h11 + 1

2
/∇c /∇dhc̄d̄)/gab + r̊∂uhāb̄

− 1
2hāb̄ + 1

2( /∇ah1b̄ + /∇bh1ā)− 1
4( /∇a /∇chb̄c̄ + /∇b /∇chāc̄) + o(1),

(8.58)



STABILITY OF MINKOWSKI SPACE 113

which gives

trχ = −2̊r−1 + (4m+ 4̊r∂0h11 − 1
2
/∇a /∇bhāb̄ − /∇ah1

ā)̊r−2 + o(̊r−2),

χ̂
å̊b

= r̊∂uhāb̄ + (1
4
/∇c /∇dhc̄d̄ − 1

2
/∇ch1

c̄)/gab + 1
2hāb̄

+ 1
2( /∇ah1b̄ + /∇bh1ā)− 1

4( /∇a /∇chb̄c̄ + /∇b /∇chāc̄) + o(1).

(8.59)

Finally, the surface measure on Su,̊r is | det g̊|1/2|dx̊a dx̊b| = (̊r2/gab + o(̊r))|dx̊a dx̊b|, hence

the Hawking mass is MH(u, r̊) = m+ 1
4π

∫
S(u) r̊∂0h11 d/g + o(1) = MB(u) + o(1). (As usual,

the o(1) remainder is really symbolic as r̊ → 0, namely of class S−bI+0.) �

With L and L defined as in the proof of the lemma, consider the conjugate null vectors
aL and a−1L. By (8.57) and (8.59), there exists a unique a = 1 +O(̊r−1) such that

trχaL + trχa−1L = a−1(a2 trχ+ trχ) = 0; (8.60)

thus χ̂
a−1L

= r̊∂uhāb̄ +O(1) = χ̂ +O(1), hence to leading order, the normalization (8.60)

does not change χ̂. We can now calculate the outgoing energy flux through Su,̊r,

E(u, r̊) =
1

32π

∫
S(u,̊r)

|χ̂|2 dS =
1

32π

∫
S(u)
|N |2/g dS + o(1),

with Nab = ∂uhāb̄ is as in Theorem 8.14.47 Clearly, E has a limit E(u) = limr̊→∞E(u, r̊)
at null infinity, and the Bondi mass loss formula (8.40) then takes the equivalent form

d

du
MB(u) = −E(u).

Appendix A. Connection coefficients, curvature components, and natural
operators

We list the results of calculations used in the main body of the paper: geometric quan-
tities and relevant differential operators for the exact Schwarzschild metric in §A.1, its
perturbations (as considered in §3.1) near null infinity in §A.2, and near the temporal face
of the Minkowski metric in §A.3.

A.1. Schwarzschild. In the notation of §2.1, in particular around (2.23), the Schwarz-
schild metric

g ≡ gSm = (1− 2m
r )dq ds− r2

/g

and the dual metric g−1 have components

g00 = 0, g01 = 1
2(1− 2m

r ), g0b = 0, g11 = 0, g1b = 0, gab = −r2/gab,

g00 = 0, g01 = 2r
r−2m , g0b = 0, g11 = 0, g1b = 0, gab = −r−2/gab.

47Using (8.59), we could compute a as well as E(u, r̊) to one more order, exhibiting a r̊−1 term plus a
o(̊r−1) remainder for both.
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The only nonzero Christoffel symbols in this frame are Γcab = −r2/Γcab, Γcab = /Γcab, and

Γ100 = 1
2mr

−3(r − 2m), Γc0b = −1
2(r − 2m)/gbc, Γ011 = −1

2mr
−3(r − 2m),

Γc1b = 1
2(r − 2m)/gbc, Γ0ab = 1

2(r − 2m)/gab, Γ1ab = −1
2(r − 2m)/gab,

Γ0
00 = mr−2, Γc0b = 1

2r
−1(1− 2m

r )δcb , Γ1
11 = −mr−2,

Γc1b = −1
2r
−1(1− 2m

r )δcb , Γ0
ab = −r/gab, Γ1

ab = r/gab.

The only nonzero components of the Riemann curvature tensor (up to reordering the last
two indices) are Rabcd = 2mr−1(δac /gbd − δad/gbc) and

R0
001 = −mr−3(1− 2m

r ), R0
b0d = −mr−1/gbd, R1

101 = mr−3(1− 2m
r ),

R1
b1d = −mr−1/gbd, Ra01d = −1

2mr
−3(1− 2m

r )δad , Ra10d = −1
2mr

−3(1− 2m
r )δad .

With respect to the rescaled bundle splittings (2.19) and (2.21), we have

gSm = (0, 1
2(1− 2m

r ), 0, 0, 0,−/g)T , trgSm = (0, 4r
r−2m , 0, 0, 0,− /tr),

further

GgSm =



1 0 0 0 0 0

0 0 0 0 0 (1
4 −

m
2r ) /tr

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0
2r/g

r−2m 0 0 0 G/g


, δ∗gSm

=



∂0 − m
r2 0 0

1
2∂1

1
2∂0 0

1
2r
−1/d 0 1

2∂0 − r−1(1
4 −

m
2r )

0 ∂1 + m
r2 0

0 1
2r
−1/d 1

2∂1 + r−1(1
4 −

m
2r )

r−1/g −r−1/g r−1/δ∗


.

(A.1)

We also record dt = (1
2 ,

1
2 , 0)T , ∇gSmt = r

r−2m(1, 1, 0), and, paralleling the definition of δ̃∗

from (3.3), we have, near S+,

− 2γ
d(t−1)

t−1
⊗s (·) + γ(ιt∇gm (t−1)(·))gm

= γt−1


1 0 0
1
2

1
2 0

0 0 1
2

0 1 0
0 0 1

2
0 0 0

− γt
−1


0 0 0
1
2

1
2 0

0 0 0
0 0 0
0 0 0

− r
r−2m/g − r

r−2m/g 0

 .

(A.2)

A.2. Perturbations of Schwarzschild near the light cone. We consider a metric g =
gm + ρh = gSm + r−1h, with the perturbation h ∈ X∞;b0,bI ,b

′
I ,b+ lying in the function space

of Definition 3.1, and continue using the splittings (2.23) of (S2)T ∗R4; however, we express
the components of h using the rescaled splitting (2.21) as in (2.24), since for h ∈ X∞ all

components hµ̄ν̄ lie in the same space H
∞;b0,−ε,b+
b ; more precisely, they satisfy (3.4)–(3.6).

The components gµν and gµν were already computed, see (3.14) and (3.15). Recall also the
observation (3.7) and the memberships (2.28). We shall write b− 0 for weights which can
be taken to be b− ε for any ε > 0; any two choices of ε are equivalent due to the assumption
that all components of h have leading terms (possibly with a factor log ρI for h11) at I +.
The only part of the analysis that relies on the precise structure of the gauge-fixed Einstein
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equation is the analysis at I +, so in the calculations below, the weight at I + is the most
important one. We compute:

Γ000 ∈ H
∞;2+b0,2+b′I ,2+b+
b ,

Γ100 ∈ 1
2r
−2(m− h01)− 1

2r
−1∂1h00 +H

∞;2+b0,2+bI ,2+b+
b ,

Γc00 ∈ H
∞;1+b0,1+b′I ,1+b+
b ,

Γ001 ∈ 1
2r
−1∂1h00 +H

∞;2+b0,2+b′I ,2+b+
b ,

Γ101 ∈ 1
2r
−1∂0h11 − 1

4r
−2h11 +H

∞;3+b0,3−0,3+b+
b ,

Γc01 ∈ 1
2∂1h0c̄ − 1

2r
−1∂ch01 +H

∞;1+b0,1+bI ,1+b+
b ,

Γ00b ∈ H
∞;1+b0,1+b′I ,1+b+
b ,

Γ10b ∈ 1
2r
−1∂bh01 − 1

2∂1h0b̄ +H
∞;1+b0,1+bI ,1+b+
b ,

Γc0b ∈ −1
2(r − 2m)/gbc + 1

4hb̄c̄ +H
∞;b0,bI ,b+
b ,

Γ011 ∈ 1
2r
−2(h01 −m) + r−1∂1h01 − 1

2r
−1∂0h11 + 1

4r
−2h11 +H

∞;3−0,3−0,3+b+
b ,

Γ111 ∈ 1
2r
−1∂1h11 + 1

4r
−2h11 +H

∞;3+b0,3−0,3+b+
b ,

Γc11 = ∂1h1c̄ − 1
2r
−1∂ch11,

Γ01b ∈ 1
2∂1h0b̄ + 1

2r
−1∂bh01 +H

∞;1+b0,1+bI ,1+b+
b ,

Γ11b = 1
2r
−1∂bh11,

Γc1b ∈ 1
2(r − 2m)/gbc + 1

2r∂1hb̄c̄ − 1
4hb̄c̄ + 1

2(∂bh1c̄ − ∂ch1b̄) +H
∞;1+b0,1−0,1+b+
b ,

Γ0ab ∈ 1
2(r − 2m)/gab − 1

4hāb̄ +H
∞;b0,bI ,b+
b ,

Γ1ab ∈ −1
2(r − 2m)/gab − 1

2r∂1hāb̄ + 1
2(∂ah1b̄ + ∂bh1ā) + 1

4hāb̄ +H
∞;1+b0,1−0,1+b+
b ,

Γcab = −r2/Γcab + 1
2r(∂ahb̄c̄ + ∂bhāc̄ − ∂chāb̄).

The Christoffel symbols of the second kind are therefore

Γ0
00 ∈ r−2(m− h01)− r−1∂1h00 +H

∞;2+b0,2+bI ,2+b+
b , (A.3)

Γ1
00 ∈ H

∞;2+b0,2+b′I ,2+b+
b ,

Γc00 ∈ H
∞;3+b0,3+b′I ,3+b+
b ,

Γ0
01 ∈ r−1∂0h11 − 1

2r
−2h11 +H

∞;3+b0,2+b′I−0,3+2b+
b ,

Γ1
01 ∈ r−1∂1h00 +H

∞;2+b0,2+b′I ,2+b+
b ,

Γc01 ∈ −1
2r
−2∂1h0

c̄ + 1
2r
−3 /∇ch01 +H

∞;3+b0,3+bI ,3+b+
b ,

Γ0
0b ∈ −∂1h0b̄ + r−1∂bh01 − r−1h1b̄ +H

∞;1+b0,1+bI ,1+b+
b ,

Γ1
0b ∈ H

∞;1+b0,1+b′I ,1+b+
b ,

Γc0b ∈ 1
2r
−1(1− 2m

r )δcb + 1
4r
−2hb̄

c̄ +H
∞;2+b0,2+bI ,2+b+
b ,

Γ0
11 ∈ r−1∂1h11 + 1

2r
−2h11 + 2r−2(m− h01)∂1h11
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− 4r−2h11∂1h01 + 2r−2h1
d̄∂1h1d̄ +H

∞;3+b0,3−0,3+2b+
b ,

Γ1
11 ∈ r−2(h01 −m) + 2r−1∂1h01 − r−1∂0h11

+ 1
2r
−2h11 + 4r−2(m− h01)∂1h01 +H

∞;3−0,2+b′I−0,3+2b+
b ,

Γc11 ∈ −r−2∂1h1
c̄ + 1

2r
−3 /∇ch11 + 2r−3h1

c̄∂1h01

− r−3hc̄d̄∂1h1d̄ +H
∞;4+b0,3+b′I−0,4+2b+
b ,

Γ0
1b ∈ r−1∂bh11 + r−1h1b̄ + r−1h1

d̄∂1hb̄d̄ +H
∞;2+b0,1+b′I−0,2+2b+
b ,

Γ1
1b ∈ ∂1h0b̄ + r−1∂bh01 +H

∞;1+b0,1+bI ,1+b+
b ,

Γc1b ∈ −1
2r
−1(1− 2m

r )δcb − 1
2r
−1∂1hb̄

c̄ − 1
4r
−2hb̄

c̄

+ 1
2r
−2
/g
cd(∂dh1b̄ − ∂bh1d̄)− 1

2r
−2hc̄d̄∂1hb̄d̄ +H

∞;3+b0,2+b′I ,3+2b+
b ,

Γ0
ab ∈ (−r + 2h01 − 2h11)/gab − (r + 2m− 2h01)∂1hāb̄

+ ( /∇ah1b̄ + /∇bh1ā) + 1
2hāb̄ +H

∞;1−0,1−0,1+2b+
b ,

Γ1
ab ∈ (r − 2h01)/gab − 1

2hāb̄ +H
∞;b0,bI ,b+
b ,

Γcab ∈ /Γcab + r−1h1
c̄
/gab − 1

2r
−1( /∇ahb̄c̄ + /∇bhāc̄ − /∇chāb̄) +H

∞;1+b0,1+b′I ,1+b+
b .

We can then calculate Υ(g)ν = gκλ(Γ(g)νκλ − Γ(gm)νκλ), see (3.1), to wit

Υ(g)0 ∈ r−1∂1 /trh+ 2r−2(h11 − 2h01)− 2r−2 /∇dh1
d̄ (A.4)

+ 4r−1∂0h11 + r−2hd̄ē∂1hd̄ē +H
∞;2+b0,2+b′I−0,2+b+
b ,

Υ(g)1 ∈ 4r−1∂1h00 + 4r−2h01 +H
∞;2+b0,2+bI ,2+b+
b ,

Υ(g)c ∈ −2r−2∂1h0
c̄ + 2r−3 /∇ch01 + r−3 /∇dhc̄d̄ − 2r−3h1

c̄ +H
∞;3+b0,3+bI ,3+b+
b ,

and therefore

Υ(g)0 ∈ 2r−1∂1h00 + 2r−2h01 +H
∞;2+b0,2+bI ,2+b+
b , (A.5)

Υ(g)1 ∈ 1
2r
−1∂1 /trh+ r−2(h11 − 2h01)− r−2 /∇dh1

d̄

+ 2r−1∂0h11 + 1
2r
−2hd̄ē∂1hd̄ē +H

∞;2+b0,2+b′I−0,2+b+
b ,

Υ(g)c ∈ 2∂1h0c̄ − 2r−1∂ch01 − r−1 /∇dhc̄d̄ + 2r−1h1c̄ +H
∞;1+b0,1+bI ,1+b+
b .

Using (A.1), this gives

(δ∗gmΥ(g))00 ∈ H
∞;3+b0,2+b′I ,3+b+
b , (A.6)

(δ∗gmΥ(g))01 ∈ r−1∂1∂1h00 + r−2∂1h01 +H
∞;3+b0,2+b′I ,3+b+
b ,

(δ∗gmΥ(g))0b̄ ∈ H
∞;3+b0,2+b′I ,3+b+
b ,

(δ∗gmΥ(g))11 ∈ 1
2r
−1∂1∂1 /trh+ 2r−1∂1∂0h11 − r−2∂1 /∇dh1

d̄ + 1
2r
−2hd̄ē∂1∂1hd̄ē

+ r−2(∂1h11 − 2∂1h01) + 1
2r
−2∂1h

d̄ē∂1hd̄ē +H
∞;3+b0,2+b′I−0,3+b+
b ,

(δ∗gmΥ(g))1b̄ ∈ r−1∂1∂1h0b̄ − r−2∂b∂1h01 − 1
2r
−2 /∇d∂1hb̄d̄ + r−2∂1h1b̄ +H

∞;3+b0,2+b′I ,3+b+
b ,
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(δ∗gmΥ(g))āb̄ ∈ H
∞;3+b0,2+b′I ,3+b+
b .

Next, we calculate the curvature components; as explained in §5, we shall need to know

the components Ricµ̄ν̄ modulo terms decaying faster than ρ3+b0
0 , ρ2+bI

I , and ρ
3+b+
+ at I0,

I +, and I+, respectively, in order to control each step in our iteration scheme. At I0, the
leading contribution to the curvature components will come from the Schwarzschild part of
g; cf. the calculations in §A.1. Thus, we compute

R0
001 ∈ −mr−3 + r−1∂1∂1h00 + r−2∂1h01 +H

∞;3+b0,2+bI ,3+b+
b , (A.7)

R0
00d ∈ H

∞;2+b0,1+b′I ,2+b+
b ,

R0
01d ∈ −∂1∂1h0d̄ + r−1∂d∂1h01 − r−1∂1h1d̄ +H

∞;2+b0,1+bI ,2+b+
b ,

R0
0cd ∈ H

∞;1+b0,b′I ,1+b+
b ,

R0
101 ∈ H∞;3+b0,2+bI ,3+b+

b ,

R0
10d ∈ H

∞;2+b0,1+b′I ,2+b+
b ,

R0
11d ∈ r−1h1

ē∂1∂1hd̄ē +H
∞;2+b0,1+b′I ,2+b+
b ,

R0
1cd ∈ H∞;1+b0,1−0,1+b+

b ,

R0
b01 ∈ ∂1∂1h0b̄ − r−1∂b∂1h01 + r−1∂1h1b̄ +H

∞;2+b0,1+bI ,2+b+
b ,

R0
b0d ∈ −mr−1

/gbd +H
∞;1+b0,b′I ,1+b+
b ,

R0
b1d ∈ −(r + 2m− 2h01)∂1∂1hb̄d̄ + (2∂1h01 − ∂1h11)/gbd

+ ∂1(∂bh1d̄ + ∂dh1b̄) + 2∂1h01∂1hb̄d̄ − 1
2∂1hb̄ē∂1hd̄

ē +H
∞;1+b0,1−0,1+b+
b ,

R0
bcd ∈ r∂1( /∇dhb̄c̄ − /∇chb̄d̄) +H

∞;b0,−1+b′I ,b+
b ,

R1
001 ∈ H

∞;3+b0,2+b′I ,3+b+
b ,

R1
00d ∈ H

∞;2+b0,2+b′I ,2+b+
b ,

R1
01d ∈ H

∞;2+b0,1+b′I ,2+b+
b ,

R1
0cd ∈ H

∞;1+b0,1+b′I ,1+b+
b ,

R1
101 ∈ mr−3 − r−1∂1∂1h00 − r−2∂1h01 +H

∞;3+b0,2+b′I ,3+b+
b ,

R1
10d ∈ H

∞;2+b0,1+b′I ,2+b+
b ,

R1
11d ∈ ∂1∂1h0d̄ − r−1∂1∂dh01 + r−1∂1h1d̄ +H

∞;2+b0,1+bI ,2+b+
b ,

R1
1cd ∈ H

∞;1+b0,b′I ,1+b+
b ,

R1
b01 ∈ H

∞;2+b0,1+b′I ,2+b+
b ,

R1
b0d ∈ H

∞;1+b0,b′I ,1+b+
b ,

R1
b1d ∈ −mr−1

/gbd +H
∞;1+b0,b′I ,1+b+
b ,

R1
bcd ∈ H

∞;b0,−1+b′I ,b+
b ,
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Ra001 ∈ H
∞;4+b0,3+b′I ,4+b+
b ,

Ra00d ∈ H
∞;3+b0,2+b′I ,3+b+
b ,

Ra01d ∈ −1
2mr

−3δad +H
∞;3+b0,2+b′I ,3+b+
b ,

Ra0cd ∈ H
∞;2+b0,1+b′I ,2+b+
b ,

Ra101 ∈ 1
2r
−2∂1∂1h0

ā − 1
2r
−3 /∇a∂1h01 + 1

2r
−3∂1h1

ā +H
∞;4+b0,3+bI ,4+b+
b ,

Ra10d ∈ −1
2mr

−3δad +H
∞;3+b0,2+bI ,3+b+
b ,

Ra11d ∈ −1
2r
−1∂1∂1hd̄

ā + 1
2r
−2∂1( /∇ah1d̄ + /∇dh1

ā)− 1
2r
−2hāē∂1∂1hd̄ē

+ r−2(∂1h01 − 1
2∂1h11)δad + r−2∂1h01∂1hd̄

ā

− 1
4r
−2∂1h

āē∂1hd̄ē +H
∞;3+b0,2+b′I ,3+b+
b ,

Ra1cd ∈ 1
2r
−1∂1( /∇dhc̄ā − /∇chd̄ā) +H

∞;2+b0,1+b′I ,2+b+
b ,

Rab01 ∈ H∞;3+b0,2+bI ,3+b+
b ,

Rab0d ∈ H
∞;2+b0,1+b′I ,2+b+
b ,

Rab1d ∈ 1
2r
−1∂1( /∇ahb̄d̄ − /∇bhd̄ā) +H

∞;2+b0,1+b′I ,2+b+
b ,

Rabcd ∈ 2mr−1(δak/gbd − δad/gbc)

+ 1
2(∂1hb̄c̄δ

a
d − ∂1hb̄d̄δ

a
k + ∂1hd̄

ā
/gbc − ∂1hc̄

ā
/gbd) +H

∞;1+b0,1−0,1+b+
b ,

and the Ricci tensor

Ric(g)00 ∈ H
∞;3+b0,2+b′I ,3+b+
b ,

Ric(g)01 ∈ r−1∂1∂1h00 + r−2∂1h01 +H
∞;3+b0,2+bI ,3+b+
b ,

Ric(g)0b̄ ∈ H
∞;3+b0,2+b′I ,3+b+
b ,

Ric(g)11 ∈ 1
2r
−1∂1∂1 /trh− r−2∂1 /∇dh1d̄ + 1

2r
−2hd̄ē∂1∂1hd̄ē (A.8)

+ r−2(∂1h11 − 2∂1h01) + 1
4r
−2∂1h

d̄ē∂1hd̄ē +H
∞;3+b0,2+bI ,3+b+
b ,

Ric(g)1b̄ ∈ r−1∂1∂1h0b̄ − r−2∂1∂bh01 − 1
2r
−2∂1 /∇dhb̄d̄ + r−2∂1h1b̄ +H

∞;3+b0,2+bI ,3+b+
b ,

Ric(g)āb̄ ∈ H
∞;3+b0,2+b′I ,3+b+
b .

A.3. Perturbations of Minkowski space near the temporal face. We work on R4 =
Rt×R3

x, equipped with the Minkowski metric g = dt2− dx2, and consider the linearization

of P 0(g) := Ric(g)− δ̃∗Υ(g),

(δ̃∗ − δ∗g)u := 2γt−1 dt⊗s u− γt−1(ι∇gtu)g, Υ(g) = gg−1δgGgg,

around g = g; concretely, let L := ρ−3DgP 0ρ, where ρ := t−1 is a boundary defining

function of 0R4 in t > εr, ε > 0. We have

L = t3
(

1
2�g + (δ̃∗ − δ∗g)δgGg

)
t−1.
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Splitting

T ∗R4 = 〈dt〉 ⊕ T ∗R3, S2T ∗R4 = 〈dt2〉 ⊕ (2dt⊗s T ∗R3)⊕ S2T ∗R3, (A.9)

and writing e = dx2 for the Euclidean metric on R3, we have g = (1, 0,−e)T , trg =

(1, 0,− tre),

δ̃∗ − δ∗g = t−1

 γ 0
0 γ
γe 0

 , Gg =

 1
2 0 1

2 tre
0 1 0
1
2e 0 1− 1

2e tre

 , δg =

(
−∂t −δe 0

0 −∂t −δe

)
.

Moreover, �g is diagonal using the standard trivialization of T ∗R3, and the scalar wave

operator is t3�gt−1 = −(t∂t − 3
2)2 − t2∆x + 1

4 , hence

L = 1
2

(
−(t∂t − 3

2)2 − t2∆x + 1
4

)
−

 1
2γ(t∂t − 1) γtδe

1
2γ(t∂t − 1) tre

−1
2γtdx γ(t∂t − 1) γt(δe + 1

2dx tre)
1
2γ(t∂t − 1)e γteδe

1
2γ(t∂t − 1)e tre

 .

Appendix B. Proofs of Lemmas 3.7 and 3.8

We perform the necessary calculations using the results in §A.2.

Proof of Lemma 3.7. We use the invariance properties of the conformal wave operator (i.e.
the conformal Laplacian in Lorentzian signature),

A := ρ−3(�g − 1
6Rg)ρ = �gb

− 1
6Rgb

, gb = ρ2g.

Here, the scalar curvature satisfies ρ−2Rg ∈ H
∞;1+b0,−1+b′I ,1+b+
b ; indeed, in view of (A.8),

and using in addition the memberships (2.28) of the operators ∂0, ∂1 (and spherical vector
fields, which lie in Vb(M)) as well as the memberships of the metric coefficients of h as

encoded in Definition 3.1, one concludes that ρ−2Ric(g) ∈ H
∞;1+b0,−1+b′I ,1+b+
b ; since the

metric coefficients of g−1 are bounded and conormal, the rescaled scalar curvature ρ−2Rg =
trg(ρ

−2Ric(g)) lies in the same space.

We next write the wave operator as

�gu = −r−s(µ,ν)gµ̄ν̄∂µ∂νu+ r−s(κ)gµ̄ν̄Γκ̄µ̄ν̄∂κ.

In the first term, when µ = 0, the terms with ν 6= 1 contribute H
∞;3+b0,3−0,3+b+
b Diff2

b, while

ν = 1 gives −4∂0∂1 + (ρ2 + H
∞;3+b0,2−0,3+b+
b )Diff2

b. For µ = 1, ν = 1 produces a term in

H
∞;3+b0,1+b′I ,3+b+
b M2 due to the decay of h00 at I +, while ν spherical gives an element of

H
∞;3+b0,2−0,3+b+
b Diff2

b. Lastly, µ and ν both spherical give (ρ2C∞+H
∞;3+b0,3−0,3+b+
b )Diff2

b.

For the second summand, recall (B.12), while for κ 6= 1, gµ̄ν̄Γκ̄µ̄ν̄ ∈ ρC∞ +H
∞;2+b0,1−0,2+b+
b

by (B.8). Thus, �g ≡ −4∂0∂1 − 2r−1∂1 modulo a term lying in ρ2 times the error space in
(3.24). Since �gb

= A−A(1), the claim follows. �

Proof of Lemma 3.8. We consider each of the terms in (3.22) separately. The contribution
from

(ρ−3Rgρu)µ̄ν̄ = ρ−2(Rg)
κ̄
µ̄ν̄λ̄g

λ̄σ̄uκ̄σ̄ + 1
2ρ
−2gλ̄σ̄(Ric(g)µ̄λ̄uσ̄ν̄ + Ric(g)ν̄λ̄uσ̄µ̄)
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to terms of size at least ρ−1
I at I + comes from those components of Rg and Ric(g) of size

at least ρI . The only such components of Rg are

R0
b̄1d̄ ∈ −r−1∂1∂1hb̄d̄ +H

∞;3+b0,2−0,3+b+
b , Rā11d̄ ∈ −1

2r
−1∂1∂1hd̄

ā +H
∞;3+b0,2−0,3+b+
b ,

while all other components lie in H
∞;3−0,1+b′I ,3+b+
b ; the decay order at I0 is due to the

contributions from the asymptotic Schwarzschild metric, as e.g. in R0
001. On the other

hand, (A.8) shows that Ric(g) ∈ H∞;3+b0,1+b′I ,3+b+
b . Using the form (3.15) of g−1, this gives

ρ−2Rg ∈



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0 0 1
2ρ
−1∂1∂1h

āb̄

0 0 ρ−1∂1∂1h
ā
b̄ 0 0 0 0

0 0 0 0 0 0 0
2ρ−1∂1∂1hāb̄ 0 0 0 0 0 0


+ ρ C∞ +H

∞;1+b0,−1+b′I ,1+b+
b .

(B.1)

Next, we have (Ygu)κ̄ = Υ(g)λ̄uκ̄λ̄, with Υ(g)λ̄ ∈ H
∞;2+b0,1+b′I ,2+b+
b by (A.4). Now,

equation (3.3) implies

δ̃∗ − δ∗gm ∈ ρ C
∞(M ; Hom(β∗ scT ∗R4, β∗S2)), (B.2)

so the expression for δ̃∗ obtained from (A.1) and the inclusions (2.42) show that

δ̃∗ ∈ ρ0ρ+Mβ∗ scT ∗R4,β∗S2 + ρDiff1
b(M ;β∗ scT ∗R4, β∗S2), (B.3)

and therefore

ρ−3δ̃∗Ygρ ∈ H
∞;1+b0,−1+b′I ,1+b+
b M+H

∞;1+b0,b′I ,1+b+
b Diff1

b. (B.4)

Next, the only parts of Cg which will contribute leading terms to (3.22) come from those

components C λ̄µ̄ν̄ which are of size at least ρI at I +; these are, modulo H
∞;2+b0,2−0,2+b+
b ,

C0
11 ≡ r−1∂1h11, C1

11 ≡ 2r−1∂1h01, C c̄11 ≡ −r−1∂1h1
c̄,

C c̄1b̄ ≡ −
1
2r
−1∂1hb̄

c̄, C0
āb̄ ≡ −r

−1∂1hāb̄,
(B.5)

while all other components of C λ̄µ̄ν̄ lie in H
∞;2+b0,1+b′I ,2+b+
b . Therefore, writing sections of

β∗ scT ∗R4 in terms of the splitting (2.19), we have

Cg ∈

4r−1∂1h01 0 0 0 0 0 0

2r−1∂1h11 0 0 0 0 0 −1
2r
−1∂1h

āb̄

4r−1∂1h1b̄ 0 −2r−1∂1hb̄
ā 0 0 0 0

+H
∞;2+b0,1+b′I ,2+b+
b ,
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and then (A.1), (B.2), and (B.3) give

ρ−3δ̃∗Cgρ ∈ ρ−1∂1 ◦



0 0 0 0 0 0 0
2∂1h01 0 0 0 0 0 0

0 0 0 0 0 0 0

2∂1h11 0 0 0 0 0 −1
2∂1h

āb̄

2∂1h1b̄ 0 −∂1hb̄
ā 0 0 0 0

0 0 0 0 0 0 0
0 0 0 0 0 0 0


(B.6)

+H
∞;1+b0,−1+b′I ,1+b+
b M+H

∞;1+b0,−0,1+b+
b Diff1

b;

the only terms of δ̃∗ which contribute leading terms to this operator are the ∂1 derivatives
in δ∗gm .

For the second summand in (3.22), we note that Ggm ∈ C∞(R4,End(S2 scT ∗R4)), while

equation (3.16) givesGg ∈ Ggm+H
∞;1+b0,1−0,1+b+
b (β∗S2). Further, using the notation (2.24)

and setting Γκ̄µ̄ν̄ := rs(κ)−s(µ,ν)Γκµν , we have

(δgu)µ̄ = −r−s(µ,ν,λ)gν̄λ̄∂λ(rs(µ,ν)uµ̄ν̄) + gν̄λ̄(Γκ̄µ̄λ̄uκ̄ν̄ + Γκ̄ν̄λ̄uµ̄κ̄); (B.7)

now r−s(λ)∂λ ∈ ρVb(M) unless λ = 1, and moreover

Γκ̄µ̄ν̄ ∈ ρ C∞ +H
∞;2+b0,1−0,2+b+
b (B.8)

for all indices, and g01 − 2 ∈ ρ C∞ + H
∞;1+b0,1−0,1+b+
b , hence only the terms with g01∂1

survive to leading order:

δg ∈

−2∂1 0 0 0 0 0 0
0 −2∂1 0 0 0 0 0
0 0 −2∂1 0 0 0 0

+ (ρ C∞ +H
∞;2+b0,1−0,2+b+
b )Diff1

b.

Now ((δ∗g − δ∗gm)u)µ̄ν̄ = −C κ̄µ̄ν̄uκ̄ can be calculated using (B.5); hence, we can now use the

expressions (A.1) and (A.2) for Ggm and δ̃∗−δ∗gm to evaluate δ̃∗−δ∗g = (δ̃∗−δ∗gm)−(δ∗g−δ∗gm)
and thus obtain

ρ−3(δ̃∗ − δ∗g)δgGgρ ∈ −ρ−1∂1



2γ 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 γ 0 0 0 0

2∂1h11 0 −2∂1h1
ā 0 0 γ + 2∂1h01 0

0 0 γ − ∂1hā
b̄ 0 0 0 0

2γ 0 0 0 0 γ 0
−2∂1hāb̄ 0 0 0 0 0 0


+ (C∞ +H

1+b0,−0,1+b+
b )Diff1

b.

(B.9)

Finally, we determine the leading terms of

(�gu)µ̄ν̄ = −r−s(µ,ν,κ,λ)gκ̄λ̄∂λ(rs(µ,ν,κ)uµ̄ν̄;κ̄)

+ gκ̄λ̄(Γσ̄µ̄λ̄uσ̄ν̄;κ̄ + Γσ̄ν̄λ̄uµ̄σ̄;κ̄ + Γσ̄κ̄λ̄uµ̄ν̄;σ̄).
(B.10)

Consider uµ̄ν̄;κ̄ = r−s(µ,ν,κ)∂κ(rs(µ,ν)uµ̄ν̄)−Γλ̄µ̄κ̄uλ̄ν̄ −Γλ̄κ̄ν̄uµ̄λ̄. For κ = 0, all Christoffel sym-

bols except those with µ, λ both spherical (second summand) or ν, λ both spherical (third
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summand) lie in ρ2 C∞+H
∞;2+b0,1+b′I ,2+b+
b , while Γc̄

0b̄
∈ 1

2r
−1δcb +ρ2 C∞+H

∞;2+b0,2−0,2+b+
b ;

the contributions of the latter cancel the leading part of the term coming from differenti-
ating the weight r−s(µ,ν)∂0(rs(µ,ν)) = 1

2s(µ, ν)r−1 + r−2C∞. For κ 6= 0, we use the rough
estimate (B.8), and obtain

uµ̄ν̄;0 ∈ ∂0uµ̄ν̄ + (ρ2 C∞ +H
∞;2+b0,1+b′I ,2+b+
b )u

⊂ (ρ C∞ +H
∞;2+b0,1+b′I ,2+b+
b )Diff1

bu,

uµ̄ν̄;1 ∈ ∂1uµ̄ν̄ + (ρ C∞ +H
∞;2+b0,1−0,2+b+
b )u,

uµ̄ν̄;c̄ ∈ (ρ C∞ +H
∞;2+b0,1−0,2+b+
b )Diff1

b u.

(B.11)

In the second line of (B.10) then, the only relevant terms (namely, with coefficients not
decaying faster than ρI) are those with u differentiated along ∂1 and the corresponding
prefactor being of size at least ρI ; using

gκ̄λ̄Γ1
κ̄λ̄ ∈ −2r−1 + ρ2 C∞ +H

∞;2+b0,1+b′I ,2+b+
b , (B.12)

this leaves us with

g10Γσ̄µ̄0uσ̄ν̄;1 + g10Γσ̄ν̄0uµ̄σ̄;1 + gκ̄λ̄Γ1
κ̄λ̄uµ̄ν̄;1 + (ρ2 C∞ +H

∞;3+b0,2−0,3+b+
b )Diff1

bu

⊂ (s(µ, ν)− 2)r−1∂1uµ̄ν̄ +H
3+b0,1+b′I ,3+b+
b Mu+ (ρ2 C∞ +H

∞;3+b0,2−0,3+b+
b )Diff1

bu.

Turning to the first line of (B.10), for λ = 0, indices κ 6= 1 contribute terms of the form

H
∞;3+b0,3−0,3+b+
b Diff2

bu due to (B.11) and the decay of gκ̄λ̄, while κ = 1 gives a term

−2r−s(µ,ν)∂0r
s(µ,ν)∂1uµ̄ν̄ + (ρ2 C∞ + H

∞;3+b0,2−0,3+b+
b )Diff2

bu. For λ = 1, the term with

κ = 0 is equal to −2∂1∂0uµ̄ν̄ + (ρ2 C∞ + H
∞;3+b0,2−0,3+b+
b )Diff2

bu; κ = 1 produces (due to
the decay of the long range component h00)

−r−s(µ,ν)g11∂1(rs(µ,ν)uµ̄ν̄;1) ∈ H∞;3+b0,1+b′I ,3+b+
b M2u

and spherical κ give H
∞;3+b0,2−0,3+b+
b Diff2

bu. Lastly, if λ is a spherical index and κ = 0, 1,

we get a term in H
∞;3+b0,2−0,3+b+
b Diff2

bu, while for spherical κ, we use (3.16) to deduce that

the nontrivial spherical components of g−1 give a term in (ρ2C∞+H
∞;3+b0,2−0,3+b+
b )Diff2

bu.
Putting everything together, and conjugating by weights, we obtain

ρ−3�gρ ∈ −4ρ−2∂0∂1 +H
1+b0,−1+b′I ,1+b+
b M2 + (C∞ +H

∞;1+b0,−0,1+b+
b )Diff2

b. (B.13)

(Note that due to the discussion after (2.42), the first term here is well-defined modulo
Diff1

b(M ;β∗S2).) Together with the expressions (B.1), (B.4), (B.6), and (B.9), this proves
the lemma. �
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[CL00] Piotr T. Chruściel and Olivier Lengard. Polyhomogeneous solutions of wave equations in the
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[Hör87] Lars Hörmander. The lifespan of classical solutions of nonlinear hyperbolic equations. Lecture
notes in Mathematics, 1256:214–280, 1987.
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Applications. Springer, 1997.
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