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ABSTRACT. We study the nonlinear stability of the (3 + 1)-dimensional Minkowski space-
time as a solution of the Einstein vacuum equation. Similarly to our previous work on
the stability of cosmological black holes, we construct the solution of the nonlinear initial
value problem using an iteration scheme in which we solve a linearized equation globally
at each step; here, due to the simpler geometry, the linear analysis is largely based on
energy and vector field methods originating in work by Klainerman. We work in a mildly
generalized harmonic coordinate gauge. The weak null condition of Lindblad and Rod-
nianski arises naturally as a nilpotent coupling of certain metric components in a linear
model operator at null infinity; in order to fix the geometry of null infinity throughout the
iteration scheme, we devise a hyperbolic formulation of Einstein’s equation which ensures
constraint damping.

Following Melrose’s work, we approach the analysis of the nonlinear equation at hand
on the noncompact domain R* by studying controlledly degenerate equations on a suitable
compactification of R* to a manifold with corners. Our compactification is adapted to the
bending of outgoing light cones; its boundary hypersurfaces are null infinity and (blown
up versions of) timelike and spacelike infinity. We show that, for polyhomogeneous initial
data, the metric has a full polyhomogeneous expansion on this compactification.

Finally, we relate the Bondi mass to a logarithmic term in the expansion of the metric
at null infinity and prove the Bondi mass loss formula.
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1. INTRODUCTION

We prove the nonlinear stability of (3 + 1)-dimensional Minkowski space as a vacuum
solution of Einstein’s field equation and obtain a precise full expansion of the solution, in a
mildly generalized harmonic gauge, in all asymptotic regions, i.e. near spacelike, null, and
timelike infinity. On a conceptual level, we show how some of the methods we developed
for our proofs of black hole stability in cosmological spacetimes [HV18, Hin18] apply in this
more familiar setting, studied by Christodoulou—Klainerman [CK93], Lindblad—Rodnianski
[LRO5, LR10], and many others: this includes the use of an iteration scheme for the con-
struction of the metric in which we solve a linear equation globally at each step, keeping
track of the precise asymptotic behavior of the iterates by working on a suitable compacti-

fication M of the spacetime, and the implementation of constraint damping.
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The estimates we prove for the linear equations—which arise as linearizations of the
gauge-fixed Einstein equation around metrics which lie in the precise function space in
which we seek the solution—are largely based on energy estimates and a version of the
vector field method [Kla86]. The estimates are rather refined in terms of a splitting of the
symmetric 2-tensor bundle (different metric components behave differently at null infinity);
the vector fields we use are closely related to those in [Kla86, CK93, LR05, LR10]. In
our systematic approach, both the relevant notion of regularity (matching [Linl7]) and
the determination of the precise asymptotic behavior of the solution follow readily from
an inspection of the geometric and algebraic properties of the linearized gauge-fixed (or
‘reduced’) Einstein equation; correspondingly, once M and the required function spaces are
defined (§§2-3), the proof of stability itself is rather concise (§§4-6).

The weak null condition of Lindblad-Rodnianski [LR03] manifests itself in our lineariza-
tion approach as a nilpotent coupling of certain metric components for a linear model
operator at null infinity: the logarithmic growth (relative to the typical decay rate of 7~1 of
waves on (3 + 1)-dimensional Minkowski space near null infinity) of one metric component
is rendered harmless due to its coupling (to leading order) only to a metric component goo
which governs the ‘long range’ behavior of outgoing light cones and which decays faster
than r—! by a factor of r~7 for some v > 0 (see the discussions in §§1.1.2 and 3.3). For
the reader already familiar with the weak null condition, we mention here that the better
decay of ggo in [LR10] (corresponding, roughly, to gz, in the reference) is a consequence of
the harmonic gauge condition being satisfied by the nonlinear solution, while in the present
paper we have decay of the (0,0)-component of every iterate in our iteration scheme since
we arrange constraint damping, which, roughly speaking, ensures that our gauge condi-
tion is satisfied to high accuracy (in the sense of decay) even though we are only solving
‘nongeometric’ (linear) equations. (This makes constraint damping attractive for numerical
analysis, see [GCHMGO5, Pre05] and Remark 1.2 below.)

We proceed to state a simple version of our main theorem, before returning to an in-
depth discussion of our approach, the relevant estimates, and the structure of the Einstein
equation in §1.1. Recall that in Einstein’s theory of general relativity, a vacuum spacetime is
described by a 4-manifold M° which is equipped with a Lorentzian metric g with signature

(4, —, —, —) satisfying the Einstein vacuum equation
Ric(g) = 0. (1.1)
The simplest solution is the Minkowski spacetime (M°,g) = (R%, g),
g :=dt* —da?, R'=R; xR (1.2)

The far field of an isolated gravitational system (M°, g) with total (ADM) mass m is usually
described by the Schwarzschild metric

2 2m\ ~1
9~ g = (1 - ﬁ)dtQ - (1 - —m> dr’ —rig, > 1, (1.3)
r r

where ¢ denotes the round metric on S?; the Minkowski metric g= g5 differs from this by
terms of size O(mr~1). In the study of weak nonlinear gravity in vacuum (in particular,
black holes are excluded), one then works with metrics g which are smooth extensions of
(a short range perturbation of) g5 to all of R*. Such spacetimes are asymptotically flat:
letting |t|+|z| — oo in R*, the metric g (in a suitable gauge) approaches the flat Minkowski
metric ¢ in a quantitative fashion.
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Suitably interpreted, the field equation (1.1) has the character of a quasilinear wave
equation; in particular, it predicts the existence of gravitational waves, which were recently
observed experimentally [LIG16]. Correspondingly, the evolution and long time behavior
of solutions of (1.1) can be studied from the perspective of the initial value problem: given
a 3-manifold ¥° and symmetric 2-tensors v,k € C*(X°; S2T*%°), with v a Riemannian
metric, one seeks a vacuum spacetime (M°, g) and an embedding ¥° < M° such that

Ric(g) =0 on M°, g|se = —v, II; =k on X°, (1.4)

where II; denotes the second fundamental form of ¥°, and where we use the embedding
3% < M° to identify the tensors 7, k on X° with (tangential) tensors on the image of ¥° in
M¢°. (The minus sign in (1.4) is due to our sign convention for Lorentzian metrics.) A fun-
damental result due to Choquet-Bruhat and Geroch [CB52, CBG69] states that necessary
and sufficient conditions for the well-posedness of this problem are the constraint equations
for v and k,

Ry + (tryk)* — [k]2 =0, &4k +dtry k=0, (1.5)
where R, is the scalar curvature of v, and ¢, is the (negative) divergence. Concretely, if
these are satisfied, there exists a maximal globally hyperbolic solution (M°, g) of (1.4) which
is unique up to isometries. By the future development of an initial data set (X°,v,k), we
mean the causal future of ¥° as a Lorentzian submanifold of (M°, g). Our main theorem
concerns the long time behavior of solutions of (1.4) with initial data close to those of
Minkowski space:

Theorem 1.1. Let by > 0. Suppose that (v, k) are smooth initial data on R? satisfying the
constraint equations (1.5) which are small in the sense that for some small 6 > 0, a cutoff
X € C°(R3) identically 1 near 0, and 7 := v — (1 —X)(—g;?l)|{t:0},l where |m| < §, we have

S )R PA +  (VYR <5 (16)
JEN+1 J<N
where N is some large fized integer (N = 26 works). Assume moreover that the weighted
L? norms in (1.6) are finite for all j € N.

Then the future development of the data (R3,~, k) is future causally geodesically complete
and decays to the flat (Minkowski) solution. More precisely, there exist a smooth manifold
with corners M with boundary hypersurfaces ¥, I°, Z+, I't, and a diffeomorphism of
the interior M° with {t > 0} C R*, as well as an embedding R® = ¥° of the Cauchy
hypersurface, and a solution g of the initial value problem (1.4) which is conormal (see
below) on M and satisfies |g— g| < (1+t+ |r|)71F€ for all e > 0. See Figure 1.1. For fized
ADM mass m, the solution g depends continuously on 7, k, see Remark 6.4.

If the normalized initial data ((r)7, (r)2k) are in addition €-smooth, i.e. polyhomogeneous
at infinity with index set € (see below), then the solution g is also polyhomogeneous on M,
with index sets given explicitly in terms of €.

More precise versions will be given in Theorem 1.8 and in §6. The condition (1.6) allows
for 7 to be pointwise of size 7~ 17%0~¢ ¢ > 0; since by > 0 is arbitrary, this means that we
allow for the initial data to be Schwarzschildean modulo O(r~17€) for any € > 0.

In Theorem 1.1, conormality is a (local) regularity notion on a manifold with corners M
which is equivalent to smoothness in M°, but differs from it near OM: in the model case

IWe use polar coordinates on R? and define —gih:o =(1- 277”)*1d7"2 + r2g.
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M = [0,00)% x R, and with & € R?, a function u € 2*L{° (M) is called conormal relative
to the space L (M) if

loc

Vi Vyu € z®LE (M) VN €N,

where each Vj is one of the vector fields x40, 0y, 1 < k < p, 1 <1 < q. (A typical
example of a conormal function is 2”, where § € RP, 8 > « component-wise.) We say that
a distribution w is conormal if it is conormal relative to x® LS (M) for some vector a € R?
of weights. In the context of Theorem 1.1, the weights are specified in Theorem 1.8 and
Remark 1.9 below; at this point we simply content ourselves with taking them to be 0 at
each hypersurface.

Before continuing the discussion of Theorem 1.1, we remark that the assumption that
all weighted norms in (1.6) are finite is only needed to conclude the conormality of g. If
one is only interested in controlling a finite number of derivatives of g, we only need to
require the finiteness of finitely many weighted norms (1.6) (as can be seen by inspecting
the Nash-Moser theorem we use in our nonlinear iteration).

Next, £-smoothness is a refinement of conormality: the assumption of £-smoothness, i.e.
polyhomogeneity with index set £ C C x Ny, means, roughly speaking, that (r)7y (similarly
(r)2k) has a full asymptotic expansion as 7 — oo of the form

<T>§ ~ Z T_iz(log T)ka(z,k) (UJ), W= CL’/|$‘ € S27 /i(z,k) € COO(SQ; S2T*R3)a (17)
(z,k)e€

with Im z < —bg, where for any fixed C, the number of (z, k) € £ with Imz > —C is finite.
(That is, (r)y admits a generalized Taylor expansion into powers of r~!, except the powers
may be fractional or even complex—that is, oscillatory—and logarithmic terms may occur.
A typical example is that all z are of the form z = —ik, k € N, in which case (1.7) is an
expansion into powers %, with potential logarithmic factors.) The polyhomogeneity of g
on the manifold with corners M means that at each of the hypersurfaces I, #+, and I,
the metric g admits an expansion similar to (1.7), with 7~! replaced by a defining function
of the respective boundary hypersurface (for example .# 1) such that moreover each term
in the expansion (which is thus a tensor on .#7) is itself polyhomogeneous at the other
boundaries (that is, at .#+ N 1% and .#+ N IT). We refer the reader to §2.2 for precise
definitions, and to Examples 7.2 and 7.3 for the list of index sets for two natural classes of
polyhomogeneous initial data.

Christodoulou [Chr02] showed that, generically, one can only expect the metric g, suitably
rescaled to a non-degenerate metric on a compactification of R, to be of class C%, a < 1,
due to the presence of logarithmic terms in the expansion of certain geometric quantities
at null infinity; polyhomogeneity of the metric (rather than smoothness of a conformal
multiple down to .# 1) is thus the best one can hope for, and this is what we establish here.
(We also prove that the metric is indeed conformal to a non-degenerate metric of class C1<,
a < min(bg, 1), down to .#*; see Remark 8.12).

If the initial data do not have a full polyhomogeneous expansion, but only a partial
expansion (containing only finitely many terms) plus a sufficently regular remainder decay-
ing faster than the terms in the expansion, the solution g will itself have a finite partial
expansion at each boundary hypersurface, plus a faster decaying remainder; we shall not,
however, record results of this nature here.
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FIGURE 1.1. Left: the compact manifold M (solid boundary), containing
a compactification ¥ of the initial surface ¥°. The boundary hypersurfaces
I° 7% and I are called spatial infinity, (future) null infinity, and (fu-
ture) timelike infinity, respectively. One can think of M as the blow-up of a
Penrose diagram at timelike and spatial infinity. A global compactification
would extend across X to the past, with additional boundary hypersurfaces
#~ (past null infinity) and I~ (past timelike infinity). Right: for compari-
son, the Penrose diagram of Minkowski space.

Applying a suitable version of this theorem both towards the future and the past, we
show that the maximal globally hyperbolic development is given by a causally geodesi-
cally complete metric g, with analogous regularity and polyhomogeneity statements as in
Theorem 1.1, on a suitable manifold with corners whose interior is diffeomorphic to R*
(and contains ¥°), which now has the additional boundary hypersurfaces .# ~ and I~ ; see
Theorem 6.7 and the end of §7.

Like many other approaches to the stability problem (see the references below), our
arguments apply to the Einstein-massless scalar field system Ric(g) = \V¢|§, Oy¢ = 0,
with small initial data for the scalar field in order to obtain global stability. They also give
the stability of the far end of a Schwarzschild black hole spacetime with any mass m € R,
i.e. of the domain of dependence of the complement of a sufficiently large ball in the initial
surface, without smallness assumptions on the data: in this case, we control the solution
up to some finite point along the radiation face #*. See Remark 6.6.

The compactification M only depends on the ADM mass m of the initial data set;? for
the class of initial data considered here, the mass gives the only long range contribution
to the metric that significantly (namely, logarithmically) affects the bending of light rays:
for the Schwarzschild metric (1.3), radially outgoing null-geodesics lie on the level sets of
t —r —2mlog(r — 2m). Concretely, near I° U.#*, M will be the Penrose compactification
of the region {t/r < 2, r > 1} C R* within the Schwarzschild spacetime, i.e. equipped with
the metric g;%, blown up at spacelike and future timelike infinity. As in our previous work
[HV18, Hin18] on Einstein’s equation, we prove Theorem 1.1 using a Newton-type iteration
scheme (more precisely: Nash-Moser) in which we solve a linear equation globally on M at

2By the positive mass theorem [SY79, Wit81], we have m > 0, but we will not use this information. In
fact, our analysis of the Bondi mass, summarized in Theorem 1.10 below, implies the positive mass theorem
for the restricted class of data considered in Theorem 1.1.
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each step. While this approach brings many advantages (cf. Remark 1.3), a disadvantage
of using a Nash—Moser iteration is the typically rather large number of derivatives needed
compared to other approaches.

We do not quite use the wave coordinate gauge as in Lindblad—Rodnianski [LR10, LR05],
but rather a wave map gauge with background metric given by the Schwarzschild metric
with mass m near I° U .#7F, glued smoothly into the Minkowski metric elsewhere; this is a
more natural choice than using the Minkowski metric itself as a background metric (which
would give the standard wave coordinate gauge), as the solution g will be a short range
perturbation of g;qn there. This gauge, which can be expressed as the vanishing of a certain
1-form Y(g), fixes the long range part of g and hence the main part of the null geometry at
#*. In order to ensure the gauge condition to a sufficient degree of accuracy (i.e. decay)
at # 7 throughout our iteration scheme, we implement constraint damping, first introduced
in the numerics literature in [GCHMGO5], and crucially used in [HV18]. This means that
we use the 1-form encoding the gauge condition in a careful manner when passing from the
Einstein equation (1.1) to its ‘reduced’ quasilinear hyperbolic form: we can arrange that for
each iterate gi in our iteration scheme, the gauge 1-form Y(g) vanishes sufficiently fast at
T so as to fix the long range part of g. In order to close the iteration scheme and control
the nonlinear interactions, we need to keep precise track of the leading order behavior of
the remaining metric coefficients at #+. We discuss this in detail in §1.2.

Remark 1.2. Fixing the geometry at .# T in this manner, the first step of our iteration
scheme, i.e. solving the linearized gauge-fixed Einstein equation with the given (nonlinear)
initial data of size §, produces a solution with the correct long range behavior and which is
82 close to the nonlinear solution in the precise function spaces on M in which we measure
the solution. (Subsequent iteration steps give much more accurate approximations since
the convergence of the iteration scheme is ezponential.) This suggests that our formulation
of the gauge-fixed Einstein equation could allow for improvements of the accuracy of post-
Minkowskian expansions—which are iterates of a Picard-type iteration scheme as in [LR10,
Equation (1.7)]—used to study gravitational radiation from isolated sources [Blal4].

The global stability of Minkowski space was established, building in particular on [K1a86,
Chr86], in the monumental work of Christodoulou-Klainerman [CK93] for asymptotically
Schwarzschildean data (similar to those in (1.6) but with by > %, though requiring only
N = 3 derivatives) and precise control at null infinity, with an alternative proof using double
null foliations by Klainerman—Nicolo [KN03a]; and more recently in [LR05, LR10] using the
wave coordinate gauge, for initial data as in Theorem 1.1 (but requiring only N = 10 deriva-
tives on the initial data). Friedrich [Fri86] (see [Fri91] for the Einstein—Yang-Mills case)
established non-linear stability, using a conformal method, for a restrictive class (shown to
be nonempty in [Cor00]) of initial data, but with precise information on the asymptotic
structure of the spacetime. Bieri [BZ09] studied the problem for a very general class of data
which are merely decaying like <r>_1/ 29 for some § > 0—thus more slowly even than the
O(r~1) terms of Schwarzschild—and even less regularity than Christodoulou—Klainerman;
in this case, the ‘correct’ compactification on which the metric has a simple description
will have to depend on more than just the ADM mass (this is clear e.g. for the initial data
constructed by Carlotto—Schoen [CS16], which are nontrivial only in conic wedges); Bieri
and Chrusciel [BC16, Chr17] construct a piece of £ for the data considered in [BZ09]
but without a smallness assumption. Further works on the stability of Minkowski space
for the Einstein equations coupled to other fields, in the wake of [CK93, LR05, LR10],
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include those by Speck [Spel4] on (a generalization of) the Einstein—Maxwell system, Tay-
lor [Tay16], Lindblad—Taylor [LT17], and Fajman—Joudioux—Smulevici [FJS17] for both the
massless and the massive Einstein—Vlasov system. We also mention Keir’s very general
quasilinear results [Keil8] which in particular imply the global solvability for small data of
the gauge-fixed Einstein equation in harmonic coordinates (but without constraint damp-
ing) even when the gauge condition is violated, albeit at the expense of losing the precise
asymptotic control at null infinity. The global stability for a minimally coupled massive
scalar field was proved by LeFloch-Ma [LM15] and Wang [Wan16].

The present paper contains the first proof of full conormality and polyhomogeneity of
small nonlinear perturbations of Minkowski space in 3+1 dimensions. Lindblad—Rodnianski
also established high conormal regularity, see [LR10, Equation (1.14)], though, in the con-
text of the present paper, on the compactification corresponding to Minkowski rather than
on M, and hence with a loss in the decay rates. This was improved by Lindblad [Lin17]
who proved sharp decay for the metric at null infinity (albeit in a slightly different gauge),
and uses them to establish a relationship between the ADM mass and the total amount of
gravitational radiation. The decay in [Linl17] corresponds to the leading order decay which
we prove at .#T; we improve this by proving definite decay rates towards the leading order
terms at .# 1, and we strengthen the decay rate towards IT to t~!; in fact, we show decay
at a faster rate to an O(t~!) leading order term, see the proof of Theorem 8.14. (Neither
improvement requires polyhomogeneous initial data.)

Previously, polyhomogeneity was established in spacetime dimensions > 9 for the Ein-
stein vacuum and Einstein—-Maxwell equations, for initial data stationary outside of a com-
pact set, by Chrusciel-Wafo [CW11]; this relied on earlier work by Chrusciel-Leski [CLO6]
on the polyhomogeneity of solutions of hyperboloidal initial value problems® for a class
of semilinear equations, and Loizelet’s proof [Loi08, Loi06] of the electrovacuum extension
(using wave coordinate and Lorenz gauges) of [LRO5]; see also [BCO7]. Lengard [Len01]
studied hyperboloidal initial value problems and established the propagation of weighted
Sobolev regularity for the Einstein equation, and of polyhomogeneity for nonlinear model
equations. In spacetime dimensions 5 and above, Wang [Wan10, Wan13] obtained the lead-
ing term (i.e. the ‘radiation field’) of g — g at #*, and proved high conormal regularity.
Baskin-Wang [BW14] and Baskin—S4 Barreto [BSB15] defined radiation fields for linear
waves on Schwarzschild as well as for semilinear wave equations on Minkowski space. For
initial data which are exactly Schwarzschildean outside a compact set and in even spacetime
dimensions > 6, a simple conformal argument, which requires very little information on the
structure of the Einstein(—Maxwell) equation, stability and smoothness of .#* were proved
by Choquet-Bruhat—Chrusciel-Loizelet [CBCLO06]; see also [ACO05] for a different approach
in the vacuum case. The construction of the required initial data sets as well as questions
of their smoothness and polyhomogeneity were taken up in the hyperboloidal context by
Andersson—Chrusciel-Friedrich [ACF92] and extended in [AC93, AC96], see also [CLOO].
Paetz and Chrusciel [CP15, Pael4] studied this for characteristic data; we refer to Corvino
[Cor00], Chrusciel-Delay [CDO03], and references therein for the case of asymptotically flat
data sets.

The backbone of our proof is a systematic treatment of the stability of Minkowski space as
a problem of proving regularity and asymptotics for a quasilinear (hyperbolic) equation on a

3This means that the initial data are posed on a spacelike but asymptotically null hypersurface transversal
to £,
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compact, but geometrically complete manifold with corners M. That is, we employ analysis
based on complete vector fields on M and the corresponding natural function spaces, which
in this paper are b-vector fields, i.e. vector fields tangent to M, and spaces with conormal
regularity or (partial) polyhomogeneous expansions; following Melrose [Mel93, Mel96], this
is called b-analysis (‘b’ for ‘boundary’). The point is that once the smooth structure (the
manifold M) and the algebra of differential operators appropriate for the problem at hand
give a simple background on which to do analysis;* we will give examples and details in
§1.1. In this context, it is often advantageous to work on a more complicated manifold
M if this simplifies the algebraic structure of the equation at hand. While this point of
view has a long history in the study of elliptic equations, see e.g. [MM87, Mel93, Sch91,
Maz91, GSS00], its explicit use in hyperbolic problems is, to a large part, rather recent
[Mel94, Vas00, MW04, MVW13, BVW15, BVW16, HV15, Hinl6, HV16, HV18]. We also
point out that fixing the smooth structure on M, one gains the

A (clean) description of polyhomogeneous expansions, in particular at the transitions
between different regimes such as near I°N.#+ or £+ NI*, requires working on a manifold
with corners. More generally, it is often easier to define function spaces on M° by working
uniformly up to OM, and decay rates from the perspective of M° can be encoded as orders
of vanishing at M (the latter making sense since M is equipped with a smooth structure).5

Working in a compactified setting furthermore makes the structures allowing for global
existence clearly visible in the form of linear model operators defined at the boundary
hypersurfaces. Among the key structures for Theorem 1.1 are the symmetries of the model
operator LY at 1, which is essentially the product of two transport ODEs, as well as
constraint damping and a certain null structure, both of which are simply a certain Jordan
block structure of L°, with the null structure corresponding to a nilpotent Jordan block.
At I'") the model operator will be closely related (via a conformal transformation) to the
conformal Klein—Gordon equation on static de Sitter space, which enables us to determine
the asymptotic behavior of g there via resonance erpansions from known results on the
asymptotics of conformal waves on de Sitter space.

A closely related reason for viewing a global problem (i.e. to be solved, at first glance, on a
noncompact set) as a (degenerate) problem on a compact manifold with boundary or corners
is that asymptotic data of the solution become restrictions of the solution to boundary
hypersurfaces: it was for the purpose of giving a simple and conceptually clean description
of the radiation field of scalar, electromagnetic, or gravitational waves, and also of solutions

4This is akin to how making use of the notion of a smooth manifold allows one to study PDE in an
invariant, coordinate-free manner. Indeed, viewing a global PDE, a priori on a noncompact space, as
a (typically degenerate) PDE on a compactification M (typically a compact manifold with boundary or
corners), one frees oneself from any particular local coordinate expression, and, for instance, gains the
flexibility of being able to work with the local coordinate system (or, more narrowly, a set of boundary
defining functions) appropriate for calculations in the region/asymptotic regime of interest. Moreover,
if one defines function spaces by using only the smooth structure on M (and possibly using some extra
data, such as fibrations of boundary hypersurfaces), it becomes simple to verify whether estimates, done in
convenient local coordinates, do give estimates of the invariantly defined function spaces.

5As an example, reminiscent of the behavior of linear waves on Minkowski space near null infinity,
consider the space X of smooth functions on [1, 00), which for any N € N can be written as an N-th degree
polynomial in 1/7, without constant term, plus a O(riN) remainder. Passing to the compactification I,
which is diffeomorphic to a closed interval, with boundary defining functions (r — 1)/r for the left endpoint
and z := 1/r for the right endpoint (thus the point = 0 is a rigorous definition of ‘r = o0’), we simply
have X = xC*°(I): smooth functions on I vanishing simply at the right endpoint = 0.
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of the full nonlinear Einstein equation, that Penrose introduced his compactifications and
diagrams. (These restrictions may solve interesting equations by themselves, as is the case
for the Bondi mass loss formula at .# ", and in the case of the scattering argument which
we will use at I™ to prove the vanishing of the final Bondi mass at the future boundary of
#*+.) While a compactified perspective is often not strictly necessary for the description
of asymptotic data and relations between them, it is usually conceptually advantageous,
and brings to light the key features of a PDE problem which may be difficult to detect
from the noncompact point of view, cf. the references above. (For example, finding the
linearized version of the weak null structure of Lindblad—Rodnianski does not require any
careful inspection, but simply the calculation of a partial Jordan block decomposition of a
coefficient of a model operator defined at null infinity.)

We also note that the symmetries and dynamical/geometric features of (asymptotically)
Minkowski metrics relevant in each of these regimes are different. Hence, we find it advanta-
geous to adapt our descriptions of coordinates, operators, and function spaces to the various
asymptotic regimes and symmetries of the problem, rather than e.g. working throughout
with standard (¢, z)-coordinates on R*: the latter seem to be most useful for capturing
the (approximate) translation-invariance of wave equations on (asymptotically) Minkowski
spacetimes—which does not play a role in the stability proof—while scaling, boosts and
rotations, while of course expressible in (¢, x) coordinates, become very simple on M, simply
becoming smooth vector fields on M with some extra properties, such as tangency to OM.

While the manifold M is compact, our analysis of the linear equations (arising from a
linearization of the gauge-fixed Einstein equation) on M lying at the heart of this paper is
not a short-time existence/regularity analysis near the interiors of I9, resp. I, but rather a
global in space, resp. global in time analysis. (Conformal methods such as [Fri98] bringing
I% to a finite place have the drawback of imposing very restrictive regularity conditions
on the initial data.) At £, we use a version of Friedlander’s rescaling [Fri80] of the
wave equation, which does give equations with singular (conormal or polyhomogeneous)
coefficients; but since .# T is a null hypersurface, conormality or polyhomogeneity—which
are notions of regularity defined with respect to (b-)vector fields, which are complete—are
essentially transported along the generators of #*. At the past and future boundaries of
It de at I°N 71 and ST NIT, the two pictures fit together in a simple and natural
fashion. We discuss this in detail in §§1.1.1 and 1.1.3.

We reiterate that our goal is to exhibit the conceptual simplicity of our approach, which
we hope will allow for advances in the study of related stability problems which have a
more complicated geometry on the base, i.e. on the level of the spacetime metric, on the
fibers, i.e. for equations on vector bundles, or both. In particular, we are not interested
in optimizing the number of derivatives needed for our arguments based on Nash—Moser
iteration.

Following our general strategy, one can also prove the stability of Minkowski space in
spacetime dimensions n + 1, n > 4, for sufficiently decaying initial data, with the solution
conormal (or polyhomogeneous, if the initial data are such), thus strengthening Wang’s
results [Wanl13]. There are a number of simplifications due to the faster decay of linear
waves in R'T”: the compactification M of R!*™ does not depend on the mass anymore and
can be taken to be the blow-up of the Penrose diagram of Minkowski space at spacelike
and future timelike infinity; we do not need to implement constraint damping as metric
perturbations no longer have a long range term which would change the geometry of .#;
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and we do not need to keep track of the precise behavior (such as the existence of leading
terms at .# 1) of the metric perturbation. We shall not discuss this further here.

1.1. Aspects of the systematic treatment; examples. Consider a nonlinear partial
differential equation P(u) = 0, with P encoding boundary or initial data as well, whose
global behavior one wishes to understand for high regularity data which have small norm;
denote by L, := D, P the linearized operators. In the present problem, P will be the map
assigning a metric to the value of the (gauge-fixed) Einstein operator on it, as well as its
pair of initial data. Our strategy, with references to their implementation for the present
problem, is:

1. fix a C*° structure, that is, a compact manifold M, with boundary or corners, on
which one expects the solution u to have a simple description (regularity, asymptotic
behavior)—see §2.1 for the definition of the compactification of R* on which we will
work;

2. choose an algebra of differential operators and a scale of function spaces on M, say
X* Y%, encoding the amount s € R of regularity as well as relevant asymptotic
behavior, such that for u € X* := ) ., &* small in some A* norm, the operator
Ly lies in this algebra and maps X'*° — V> := [, V*—see §§2.2 and 3.1 for the
function spaces we will use: conormal sections of certain vector bundles together
with certain leading order terms at null infinity; and §3.2 for the verification of the
mapping property;

3. show that for such small u, the operator L, has a (right) inverse

(L)t Y — &> (1.8)

on these function spaces—see §§4, 5, discussed below;
4. solve the nonlinear equation using a global iteration scheme, schematically

ug = 0;  Upr1 = ug + 0k, v = —(Ly ) H(Plug)); u= kli)ngo up € X, (1.9)

See §6.

5. (Optional.) Improve on the regularity of the solution u € X, provided the data
has further structure such as polyhomogeneity or better decay properties, by using
the PDE P(u) = 0 directly, or its approximation by linearized model problems in
the spirit of 0 = P(u) ~ Lou + P(0) and a more precise analysis of Lg. See §7,
where we prove the polyhomogeneity for asymptotically Minkowski metrics.

We stress that steps 1 and 2 are nontrivial, as they require significant insights into the
geometric and analytic properties of the PDE in question, and are thus intimately coupled
to step 3; the function spaces in step 2 must be large enough in order to contain the solution
u, but precise (i.e. small) enough so that the nonlinearities and linear solution operators
are well-behaved on them.

Note that if one has arranged 3, then the iteration scheme (1.9) formally closes, i.e. all
iterates ug lie in X*° modulo checking their required smallness in X*. Checking the latter,
thus making (1.9) rigorous, is however easy in many cases, for example by using Nash—
Moser iteration [Ham82, SR89], which requires (L,)~! to satisfy so-called tame estimates;
these in turn are usually automatic from the proof of (1.8), which is often ultimately built
out of simple algebraic operations like multiplications and taking reciprocals of operator
coefficients or symbols, and energy estimates, for all of which tame estimates follow from the
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classical Moser estimates. The precise bookkeeping, done e.g. in [HV16], can be somewhat
tedious but is only of minor conceptual importance: it only affects the number of derivatives
of the data which need to be controlled, i.e. the number N in (1.6); in this paper, we shall
thus be generous in this regard.

As a further guiding principle, which applies in the context of our proof of Theorem 1.1,
one can often separate step 3, i.e. the analysis of the equation L,v = f, into two pieces:

3.1. prove infinite regularity of v but without precise asymptotics—see §4, where we
accomplish this using simple energy estimates;

3.2. improve on the asymptotic behavior of v to show v € X*°—see §5, where we use
integration along approximate characteristics as well as spectral theory/normal op-
erator arguments for this purpose.

The point is that a ‘background estimate’ from step 3.1 may render many terms of L,
lower order, thus considerably simplifying the analysis of asymptotics and decay; see e.g.
the discussion around (1.22).

Remark 1.3. Let us compare this strategy to proofs using bootstrap arguments, which
are commonly used for global existence problems for nonlinear evolution equations as e.g.
in [CK93, LR10, Luk13]. The choice of bootstrap assumptions is akin to choosing the
function space X*° (and thus implicitly J*°) in step 2, while the consistency of the bootstrap
assumptions, without obtaining a gain in the constants in the bootstrap, is similar to
proving (1.8). However, note that the bootstrap operates on a solution of the nonlinear
equation, whereas we only consider linear equations; the gain in the bootstrap constants
thus finds its analogue in the fact that one can make the iteration scheme (1.9) rigorous, e.g.
using Nash—Moser iteration, and keep low regularity norms of uj bounded (and vy, decaying
with k) throughout the iteration scheme. In the context in particular of Einstein’s equation,
a bootstrap argument has the advantage that the gauge condition is automatically satisfied
as one is dealing with solutions of the nonlinear equation; thus the issue of constraint
damping does not arise, whereas we do have to arrange this. In return, we gain significant
flexibility in the choice of analytic tools for the global study of the linearized equations
(e.g. methods from microlocal analysis, scattering theory), as used extensively in [HV18];
bootstrap arguments on the other hand are strongly tied to the character of P(u) as a
(nonlinear) hyperbolic (or parabolic) and differential operator, or at least to its locality in
‘time’, and it is much less clear how to exploit global information (e.g. resonances).

Before discussing Einstein’s equation in §1.2, we first describe this strategy for scalar
nonlinear wave equations on Minkowski space. The most significant part of the work
required to implement this strategy is the analysis of the linear operators called L, above;
we thus begin in §1.1.1 by explaining how we obtain estimates for solutions of linear wave
equations on Minkowski space in a manner that will work for linearizations of the gauge-
fixed Einstein equation in §4. In §1.1.2, we then put a few examples of nonlinear scalar
equations into the abstract general framework described above, including a discussion of
polyhomogeneity (step 5 above) in §1.1.3.

1.1.1. Linear waves in Minkowski space. For step 1, we seek a convenient compactification
M of R*. The goal, from the PDE perspective, is for the asymptotic behavior of linear
waves on R?* to have a simple description on M; closely related to this is that the asymptotic
behavior of natural geometric objects such as (null)geodesics should be simple. Consider
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first ‘null infinity”: a (rescaled) linear wave on R* has a limit as » — oo along any null-
geodesic, e.g. the one defined by t — r = sg, w = wy € S? (using polar coordinates on R?)
for (sp,wp) € R x S2. Thus, we want to define M in such a way that a sequence of points,
with  — oo, along such a ray has a unique limit in M that is, one boundary hypersurface
of M should be equal to (the closure® of) all such limiting points, with a bijection between
(s0,wp) and points in (the interior of) this boundary hypersurface, and such a boundary
hypersurface then deserves the name .#*. (The interior of £ is thus (#1)° 2 R x §2))
The radiation field is then the restriction of the rescaled wave, extended from R* to M by
continuity, to £+ C M (or (#1)° in standard terminology).

For other asymptotic regimes, there are a number of choices one can make on Minkowski
space: the Penrose diagram, or the conformal embedding of Minkowski space into the
Einstein universe give two (closely related) compactifications of R* in which future timelike
and spacelike geodesic rays have limit points. In order to facilitate the generalization to
compactifications of asymptotically Minkowskian spacetimes in §2, we choose to work with
a compactification in which the closure of the set of these limiting points, called future
timelike infinity I and spacelike infinity I°, are 3-dimensional (rather than 2-dimensional,
as in the Penrose compactification); coordinates in their interiors are z/t with |z/t| < 1,
t='=01in (I7)°, and (t/r,w) with |t/r| < 1, 7~' =0in (I°)°.

At future timelike infinity T, the asymptotic behavior of waves is governed, quite gener-
ally on suitable asymptotically Minkowski spacetimes, by quantum resonances [BVW15];"
also, nonlinear interactions are much simpler to deal with than near .#*. (This is a further
reason to keep (£ 7)° and (I1)° separate: it keeps the delicate analysis at .# T separate
on M from the more straightforward analysis at I7. The analysis at I° is even simpler.)
We also point out that it is a specific feature of exact Minkowski space that one can ‘blow
down’ IT; that is, suitably rescaled linear waves are smooth directly on the Penrose com-
pactification, and the blow-up of timelike infinity T and spacelike infinity i in the Penrose
diagram, as in Figure 1.1, is not required; on more general asymptotically Minkowski space-
times on the other hand, one needs to resolve it and " via real blow-up, obtaining I+ and
I°, in order to exhibit linear waves as polyhomogeneous (read: having a simple asymptotic
description) functions on the compactification.

Thus, we begin by defining R%:
Definition 1.4. The radial compactification of R?* is defined as
RY:=R*U([0,1)g x S¥)/ ~, (1.10)

where ~ identifies (R, w), R > 0, w € S, with the point R~'w € R*. The quotient carries
the smooth structure in which the smooth functions are precisely those which over R* (the

6We also want to capture the asymptotics of the radiation field itself, leading us to consider the limits
S0 — oo of such limiting points.

See [BVW15, Theorem 1.1] for the rough theorem. Here, quantum resonances o; € C are poles of
the meromorphic continuation of the resolvent of an asymptotically hyperbolic Laplacian (plus a potential)
arising naturally by Mellin-transforming the wave operator, or rather L as in (1.13), in (t? — 7’2)1/2; linear
waves then have expansions into ¢“7a;(x/t) for suitable distributions a;, smooth in |z/t| < 1. For present
purposes, one can deduce the asymptotic behavior of linear waves equivalently by relating the linear scalar
wave equation to the conformal wave equation on static de Sitter space and the asymptotics of its solutions;
see §5.2. Even so, we shall use spectral theoretic methods to accomplish the latter.
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interior of R%) are smooth in the usual sense, and which over [0,1)r x S, are smooth in
(R,w) down to R = 0.

The function p = (1 + t* + r2)~1/2 € C®(R%) is a boundary defining function, i.e.
OR* = p~1(0) with dp nondegenerate everywhere on dR%. Letting v = (t — 7)/r away from
r = 0, all future null-geodesics tend to ST = {p =0, v = 0}, and we then define M as the
closure of t > 0 within the blow-up® [R%; 5] of R% at ST (see Figure 1.1), i.e. the smooth
manifold obtained by declaring polar coordinates around ST to be smooth down to the
origin. We refer to the front face .# T of this blow-up as null infinity or the radiation face;
it has a natural fibration by the fibers of the map .# — ST, which we call the fibers of
the radiation face/null infinity/# . (The interior of a typical fiber is equal to Ry, x {wo}
for some fixed wy € S2.)

We can equivalently describe M by giving a list of local coordinate patches and how
(pieces of) R* are glued to them. We describe two exemplary coordinate charts here: the
first one is

[0,1)pg X [0,1),, x S,

and we identify (po, pr,w) for po, py > 0 with the point (¢, ) € R x R3 for t = p; ' (p; 1 — 1),
T = palpflw. Thus,

po=(r—t)"1 pr=(r—1t)/r (1.11)
then I°, resp. .# 7 is locally given by pg = 0, resp. p; = 0; thus, this chart describes a
neighborhood of 19 N .#7* i.e. the transition from spacelike to null infinity. (For example,
{po =0, pr = c} for some fixed ¢ € (0,1) consists of the points ‘at (spacelike) infinity’ of a
spacelike cone in Minkowski space, while {pg = ¢, pr = 0} consists of the points ‘at (null)
infinity’ of a null cone.) See Figure 1.2.

The second coordinate chart is

0,1)5, x [0,1),, x SZ,
and (pr, p4+,w) for pr,p+ > 0 is identified with (¢,z) for ¢t = pll(ﬁl_l +1), = ﬁl_lpjrlw;

thus

pr=(t—r)/r, py=(t—r) " (1.12)
(Now {pr = ¢, p+ = 0} for ¢ € (0,1) consists of the points ‘at (future timelike) infinity’
of a timelike cone in Minkowski space.) When the coordinate system in which we work is
clear, we simply write p; instead of pj.

To motivate a preliminary choice of function spaces for step 2, recall that the behavior
of solutions of Ogu := —u,,* near £ can be studied using the Friedlander rescaling

L= p~*Oyp. (1.13)

8The prototypical example of a blow-up is that of the origin in R™: we have [R"; {0}] [0, 00), x S™7 1,
i.e. the origin in R"™ is resolved, and r = 0 is no longer merely a point, but a full (n—1)-sphere. The front face
of this blow-up is {r = 0} = S™ !, and the blow-down map is the map (r,w) + rw: it is a diffeomorphism
inr > 0, but at r = 0 collapses an (n — 1)-sphere to a single point (the origin). In the setting of interest for
us, the blow-up [M; X]| of an embedded boundary submanifold X C M is, in a similar manner, the union
(M \ X)U SN*tX of the complement of X and the inward pointing spherical (i.e. the quotient by the R
action in the fibers of the) normal bundle of X in M. See the local coordinate descriptions below, as well
as [Mel96, Chapter 5] for a detailed discussion of blow-ups.



STABILITY OF MINKOWSKI SPACE 15

t
A
N
s
// - \\\
2 AT R I
’ P s ~ —
e | (=0
g 4 7 cet So
s - P . ~
1 1 /,/’/ PO
I = 23 7
pPr = % e 7 7
7 7 7
1 2 3 4 5
}\- \2- \//'- t — 1- >
Y Y Vv Y > PI v

FIGURE 1.2. Illustration of the coordinate chart (1.11). Shown are a number
of level sets of pg (red dashed lines) and p; (blue dashed lines) projected
onto the (¢,7) plane. Indicated on the top right is the (po, pr,w) coordinate
system including the boundary hypersurfaces I° and .#* which are glued
onto R*.

This operator has smooth coefficients down to the interior (#1)° of null infinity: it is
equal to the conformal wave operator U2, — %szg, and pQQ is a smooth, nondegenerate

Lorentzian metric down to (.#7)°: in local coordinates p = r=! > 0, 2! =t —r € R,
w € S? near (£ 1)°, we have p?g = —2dz' dp — ¢ + p*(dz')?. Thus, solutions of Lu = 0,
with C2°(IR?) initial data, are smooth up to .#* and typically nonvanishing there. We shall
refer to this reasoning as Friedlander’s argument below. (A more sophisticated version of
this observation lies at the heart of Friedrich’s conformal approach [Fri83] to the study of
Einstein’s equation.) However, for more general initial data, and, more importantly, in
many nonlinear settings (see §§1.1.2 and 1.2 below), smoothness will not be the robust
notion, and we must settle for less: conormality at OM. Namely, let V(M) denote the
Lie algebra of b-vector fields, i.e. vector fields tangent to the boundary hypersurfaces of M
other than the closure ¥ of the initial surface 3° = {t = 0}, a function w on M is conormal
iff it remains in a fixed weighted L? space on M upon application of any finite number of
b-vector fields. For M defined above, W, (M) is spanned over C*° (M) by translations 9; and

0, as well as the scaling vector field t0; + x0,., boosts t0,: + x'0;, and rotation vector fields
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70, — 270,:.° (Note however that the definition of V(M) depends only on the smooth
structure of M .1°)

Let us now explain how to obtain a background estimate, step 3.1 above, for the forcing
problem Lu = f with trivial initial data. First, we can estimate u in H' on any compact
subset of R* N {¢t > 0} by f on another compact set. Then, on a neighborhood of (1°)°
which is diffeomorphic to [0,1),, x (0,1), x S?, where

po =11, T:=t/r
with pg a local boundary defining function of I°, this problem roughly takes the form
(D2 = (poDypy)?* = A)u = f, (1.14)

where we use the standard notation
1
D=-0, i=+v-1. (1.15)
)

In (1.14), A = Ay > 0 is the Laplacian on S?, and f has suitable decay properties making
its norms in the estimates below finite. This is a wave equation on the (asymptotically)
cylindrical manifold [0,1),, x S?. Let

Up={0<7<¢, po<1}, ce(0,1).

For any weight ag € R, we can run an energy estimate using the vector field multiplier
o 2%9, and obtain

’quOOHl (Ug) ~ Hpr00L2 (Uo) (1.16)

for f supported in Uy; see Figure 1.3. Here L% is the L? space with respect to the b-density
d . . _ .

dT%‘dm, the weighted L% norm is defined by ”prgOLg = lpo aofHle), and Hﬁ is the space

of all uw € L such that Vu € L for all V € Vi,(M); in Uy, V,,(M) is spanned (over C*(M)
by 0r, poOp,, Y, so we let

HUH GO HL(Up) - = [|ul a0 L2 (Up) + (|07 ul| pa0 L2 (Up) + lpoDpy | po0 L2 (Uo) + HVUH G0 L2 (Up)*

In order to obtain a higher regularity estimate, one can commute any number of b-vector
fields through (1.14); the estimate (1.16) only relies on the principal (wave) part of L;
lower order terms arising as commutators are harmless. Thus, f € pf° H2® (weighted L?-
regularity with respect to any finite number of b-vector ﬁelds) implies v € pg" Hp®, w1th
estimates.

The same conclusion holds for the initial value problem for Lu = 0 with initial data
which near I° are (u|,—g, d-tt|r=0) = (u|t=0,70uli=0) = (uo,u1), uj € pi° H°(R3), where
R3 is the radial compactification of R3, defined analogously to (1.10), which has boundary

9n the coordinate chart (1.11), V(M) is spanned by pod,, = —td — 10y, p18,, = —r(d; + 0,), and
rotation vector fields. In the chart (1.12), V,,(M) is spanned by prd,, = —r(0: + 0r), p+0,, = —t0; — 0,
and rotation vector fields. It is then straightforward to check, in either of these two coordinate systems, that
translations, scaling, and boosts are linear combinations, with C°° (M) coefficients, of these vector fields.

10The smoothness of elements of Vo (M) on the compactification M in particular constrains their growth
as one leaves every compact set of R*. As ‘counterexamples’, one can check that the vector field ¢38;,
expressed in local coordinates near M, is singular near any point of dM (though of course it is smooth
on R*!); similarly, the vector field td; is singular at .# T in the sense that it does not extend, by continuity
from R*, to be tangent to .# T as is required from b-vector fields on M; it is, on the other hand, a smooth
b-vector field down to (I°)° and (IT)°.
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defining function py = r~!. The assumption (1.6) on the size of initial data is a smallness
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FIGURE 1.3. The domain Uy on which the energy estimate (1.16) holds.
Left: as a subset of M. Right: as a subset of the Penrose compactification.

Re-defining p = r~! near S, a neighborhood of I' N .#* is diffeomorphic to [0,1),, X
[0,1),, x S?, where (as in (1.11))

po:=—p/v=(r—t)"Y pr:=—v=(r—1t)/r (1.17)
are boundary defining functions of 1° and .# T, respectively. (Thus, a function bounded by
Pl p7 decays like 779 near (1°)° and like r~% near (.#7)°.) The lift of L to M is singular
as an element of Diff%(M ) but with a very precise structure at .#*: the equation Lu = f
is now of the form

(28/)1 (poaﬂo - pIaﬂI) - A)u =f (1.18)
modulo terms with more decay; here, ignoring weights, prd,, ~ 0;+ 0, and po0,, — p10y; ~
Oy — O, are the radial null vector fields. Assuming f vanishes far away from .#*, we can run
an energy estimate using V' = p, 2a0 p;%” Vo as a multiplier, where Vo = —cp;0,; + po0,, is
future timelike in M \ #+ if we choose ¢ < 1; note that V; is tangent to I° and £+ (and
null at #); it is necessary to arrange this tangency for compatibility with our conormal
function spaces, but it comes at the expense of giving control at .#* that is weaker (but
more robust, i.e. holds for a larger class of spacetimes) than the smoothness following from
Friedlander’s argument. A simple calculation, cf. Lemma 4.4, shows that for a; < ag and
ar <0,

1/2 .
”qugop?IL% + H(p08P07p18917pI/ W)U’Hpgop?IL% S ”prHpSOp?IL% m UI’ (119)

see Figure 1.4, where L? is the L? space with integration measure %%]dg\. The as-
sumptions on the weights are natural: since 9; — 9, transports mass from I° to #1, we
certainly need a; < ag, while ay < 0 is necessary since, in view of the behavior of linear
waves discussed after (1.13), the estimate must apply to u which are smooth and nonzero
down to £T. In (1.19), derivatives of u along b-vector fields tangent to the fibers of the
radiation face are controlled without a loss in weights, while general derivatives such as
spherical ones lose a factor of p}/ 211 When controlling error terms later on, we thus need
to separate them into terms involving fiber-tangent b-derivatives and general b-derivatives,
and check that the coefficients of the latter have extra decay in pr; see §2.4.

Hhis is to be expected: indeed, letting x := p}/Q, the rescaled metric x_Q(p2g) is an edge metric

do  do°

[Maz91], i.e. a quadratic form in %, =, %, with 0” coordinates on S?, for which the natural vector fields

are precisely those tangent to the fibers of # ", that is, po9,,, ©0» = 2p10,,, and g = p}/gaga.
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FIGURE 1.4. The domain U; on which the energy estimate (1.19) holds.

From (1.18), L € p; 'DiffZ(M) is equal to the model operator
L= 200, (P00py — P10p;)

modulo Diff(M) (i.e. ignoring second order differential operators, such as A, which are
sums of at most twofold products of b-vector fields). The commutation properties of this
model are what allows for higher regularity estimates:'? (p; times) equation (1.18) com-
mutes with pod,, (scaling), prd,, (roughly a combination of scaling and boosts), and spher-
ical vector fields which are independent of py and p7.'* In the end, we obtain u € po° pyt HE®
when f € p§op¥ 1 HEo.

Lastly, near T, one can use energy estimate with weight pl_z‘” pfa*, a4+ < ay large

and negative, multiplying a timelike extension of the above Vj; higher regularity follows
by commuting with the scaling vector field p;.8,,, where p; is a defining function of I,
and elliptic regularity for C(p;D,,)* — L, C' > 0 large, in I away from .# T, which is a
consequence of the timelike nature of the scaling vector field p1.8,, in (I7)°. See Figure 1.5.
Note that it is only at this stage that one uses the asymptotically Minkowskian nature of the
metric in a neighborhood of all of IT; when dealing with a more complicated geometry, as
e.g. in the study of perturbations of a Schwarzschild black hole, establishing this part of the
background estimate (as well as the more precise asymptotics at I discussed momentarily)
becomes a major difficulty.

It '
j—i_ j+ // \\

IO IO /’/ AN

FIGURE 1.5. The neighborhood (shaded) of I on which we use a global
(in I'") weighted energy estimate.

12Gee the discussion after (1.28) for an even stronger statement.

1Bwe briefly sketch the argument: denoting the collection of these vector fields—which span V(M)
locally—by {V;}, this gives L(Vju) = V;f + [L, V;]u with [L,V;] € Difff (modulo multiples of L which
arise for V' = p;0,,, and which we drop here), which is one order better in the sense of decay than the a
priori expected membership in pleiffﬁ due to these commutation properties. Write [L, V;] = Cj; Vi with
Cj € Diff}, and apply the estimate (1.19) to Vju; then the additional forcing term [L, V;]u obeys the bound
Dok HpIOjkaUHpgop?I L2 SOk HVkqugOp(IL,leé, which close to .#T is bounded by a small constant times

the left hand side of (1.19), with Vju in place of u and summed over j, due to the gain (of at least 1) in
the weight in pr.
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Putting everything together, we find that

(e

feppy i HE (M), f=0near ¥ = u € pi°p% p’t H* (M), (1.20)

for a; < min(ag,0) and a; < a7.'

For nonlinear applications, the information (1.20) on w is not sufficient: the decay rate
at £ is limited, and we do not have a good decay rate at I either, cf. the discussion of
P py! following (1.17). Let us thus turn to step 3.2 and analyze Lu = f for f, vanishing
near X, having more decay,

Feye = pbop U HRO(M); by < by < bo, br € (0,1). (1.21)

The background estimate (1.20) gives u € pgopl_ﬁpi““Hﬁo for all € > 0. Near I° N .#* then,
the conormality of u allows for equation (1.18) to be written as

P10, (P00 — P10y, )u = L(prf + prdu) € pipt HZ® on U, (1.22)

i.e. L effectively becomes the composition of (linear) transport equations along the two
radial null directions. See Figure 1.6. Integration of po0,, — pr0p; is straightforward, while
integrating pr0,,, which is a regular singular ODE with indicial root 0, implies that u has
a leading order term at .#; one finds that

uw=u4u,; u® e pgoﬂﬁo(f+), up € pgopl}IHﬁo(M) near I°N .7,

which implies the existence of the radiation field.!> The procedure to integrate along
(approximate) characteristics to get sharp decay is frequently employed in the study of
nonlinear waves on (asymptotically) Minkowski spaces, see e.g. [LR10, §2.2], [Linl17], and
their precursors [Lin90, Lin92].

7 POOPU - Pfam
j-ﬁ-

0
1 —P10p;

FIGURE 1.6. The integral curves of the vector fields 0; + 0, ~ —pr0,, and
O¢ — Or ~ poOp, — p10p,; . Integration along the former gives the leading term
at £, while integration along the latter transports weights (and polyho-
mogeneity) from I° to .#+.

At #T NI*, the same argument works, showing that u(®) and uy, are bounded by Cp%*

and C,oll”’p(_l,:r near I (i.e. by t7% as t — oo with 7/t in compact subsets of [0,1)). Im-
proving this weight however does not follow from such a simple argument. Indeed, at
I™, the behavior of u is governed by scattering theoretic phenomena: the asymptotics are
determined by scattering resonances of a model operator at I, namely the normal oper-
ator of the b-differential operator L at I™, obtained by freezing its coefficients at I', see

14F’roving this estimate for large, negative, but nonexplicit a4 is easy, while obtaining an explicit value
of a4 does require explicit straightforward (albeit lengthy) calculations. We accomplish this in §4.3 by
identifying L with the conformal wave operator on static de Sitter space for a suitable choice of p.

Lopor rapidly decaying f, one can plug this improved information into the right hand side of (1.22),
thereby obtaining an expansion of u into integer powers of p; and recovering the smoothness of v at .
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equation (2.2). We thus use the arguments introduced in [Vasl3], see also [HV15, Theo-
rem 2.21], based on Mellin transform in p4, inversion of a ‘spectral family’ E(a), which is
the conjugation of the model operator (called ‘normal operator’ in b-parlance) of L at I
by the Mellin transform in I, with o the dual parameter to p, and contour shifting in
the inverse Mellin transform to ﬁAnd the correct asymptotic behavior at I*: the resonances
o € C, which are the poles of L(c)™!, give rise to a term plfv, v a function on IT, in
the asymptotic expansion of u. (See §§5.2 and 7 for details.) The resonances can easily
be calculated explicitly in the present context, and they all satisfy —Imo > 1 > b;. The
upshot is that

Fey® = uex® = {Hxu® +uy: ul® e gl ol HE (), wy € plo o o HE (M)},
(1.23)
where x cuts off to a neighborhood of .#*.

For later use as a simple model for constraint damping, consider a more general equation,
Lyu= p (0, — 290 (pu) = f, (1.24)
for v € R; near .#* and I°, this now roughly takes the form

(207 (P18, = 1) (P00py — pr8p;) — B)u = .
Once the conormality of u is known, integrating the first vector field on the left gives
a leading term pJ, which is decaying for v > 0. (One can show that the background
estimate (1.20) holds for a; < +, but even an ineffective bound a; < 0 would be good
enough, as the transport ODE argument automatically recovers the optimal bound.)

Remark 1.5. Note that for small v, the normal operator of L., at I is close to the normal

operator for v = 0, hence one would like to conclude that mild decay plf, by <1,at It
still holds in this case. This is indeed true, but the argument has a technical twist: L,
does not have smooth coefficients at T as a differential operator (unlike L in Friedlander’s
argument) due to the presence of derivatives which are not tangential to S*. However, we
still have L. € Diff2(R%); we thus deduce asymptotics at It via normal operator analysis
on the blown-down space R*, analogously to [BVW15, BVW16]. See §5.2.

Remark 1.6. The improved decay at .# " translates into higher b-regularity of u on the
blown-down space R*, as we will show in Lemma 5.7; in the language of [BVW15, Proposi-
tion 4.4], this corresponds to a shift of the threshold regularity at the radial set by v coming
from the skew-symmetric part of L..

1.1.2. Non-linearities and null structure. Equipped with this understanding of linear waves,
we now discuss steps 2—4 of the abstract strategy of §1.1. In particular, we will show how
the absence of a ‘null structure’ for a semilinear wave equation well-known to exhibit finite-
time blow-up manifests itself from the global, Newton iteration scheme perspective; we will
also discuss examples of equations that do satisfy a null condition, of the type arising when
studying the linearization of the gauge-fixed Einstein equation.

To begin, recall that if u is conormal on M, then its derivatives along 9y := 0; + 9, or
size 1 spherical derivatives 7'V have faster decay by one order at .# ¥, whereas its ‘bad’
derivative along 9 := 0; — 0, does not gain decay there; indeed, modulo vector fields with
more decay at .# T, we calculate near I° N . using (1.17)
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note the extra factor of pr in 9p. All these derivatives gain an order of decay at I°, hence
the structure of nonlinearities is relevant mainly at .#"; let us thus restrict the discussion to
a neighborhood of I° N .#*. (Similar considerations apply to a neighborhood of It N .#+))
Consider the nonlinear equation gu — (01u)? = f, or rather the closely related equation

P(u) = Lu — p Y (01u)? — f, f € Y™ small, (1.25)

with L given by (1.13); this is well-known to violate the null condition introduced by
Christodoulou [Chr86] and Klainerman [Kla86]. From our compactified perspective, the
issue is the following. For u € X, the linearization L, = L — 2p~1(01u)0; is, to leading
order as a b-operator,
207 (pr0p; — 014) (P00py — P10y, ),

so the indicial root at % is shifted from 0 to dyu| s+. Therefore, a step L,v = —P(u)
in the Newton iteration scheme (1.9) does not give v € X*°. A Picard iteration, solving
Lov = —P(u) would, due to the leading term of p~!(81u)? of size p; ', cause v to have a
logarithmic leading term when integrating the analogue of (1.22). Neither iteration scheme
closes, and this will remain true for any modification of the space X'*°, e.g. if one allowed
elements of X'*° to have leading terms involving higher powers of log pr. In fact, solutions
of global versions of this equation blow up in finite time [Joh81].

Assuming initial data to have sufficient decay, the nonlinear system Lu{ = 0, Lu; —
p~1(01u$)? = 0 on the other hand can be solved easily if we design the function space x>
in step 2 to encode a p? leading term for u§ at £, as in (1.23), and two leading terms, of
size log pr and p?, for uj. Extending this model slightly, let v > 0, recall L, from (1.24),
and consider the system for u = (ug, u§,u1),

P(u) = (Lyug, Lu§— p~(d1ug)?, Luy — p~ 1 (01uf)?) = 0; (1.26)
which is a toy model for the nonlinear structure of the gauge-fixed Einstein equation with
constraint damping, as we will argue in §1.2. Only working in (.#)°, i.e. ignoring weights
at 1Y and I for brevity, the above discussions suggest taking b; € (0,7) and working with
the space'®

X = {u = (up,uf,u1): (ug,uf — uf(o),ul - ugl) log pr — ugo)) € pl}IHgo(M)}, (1.27)

where ui(o), ugl), ugo) € C®((F1)°) are the leading terms. Then

P X® 5 Y® = {f = (fo. f&, A1) (fo £5, Fr — p7 V1) € py YO HERY,

where fl(o) € C°°((#1)°). The linearization L, of P around u € X then has as its model
operator at .# T

vy 0 0
L =207 (p10pr = A)(p00py = p10pr)s Au= (0 0 0, (1.28)
0 9”0
which has a (lower triangular) Jordan block structure, with all blocks either having positive

spectrum (the upper 1 x 1 entry) or being nilpotent (the lower 2 x 2 block). Thus, by
integrating prd,, — A, we conclude that for L,v = —P(u), we have v € X*°, thus closing

16Here as well as in the previous example, one could of course work with much less precise function
spaces since the full nonlinear system is lower triangular; for the Einstein equation on the other hand, we
will need this kind of precision.
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the iteration scheme (1.9). A background estimate as well as its higher regularity version,
which is the prerequisite for LY being of any use, can be proved as before. Error terms
arising from commutation with A, have lower differential order and can thus be controlled
inductively; that is, only the commutation properties of the principal part of L2 matter for
this.

Remark 1.7. A tool for the study of the long time behavior of nonlinear wave equa-
tions on Minkowski space introduced by Hormander [Hor87] is the asymptotic system, see
also [H6r97, §6.5] and [LR03]: this arises by making an ansatz u ~ er U (t —r, elogr, w) for
the solution and evaluating the €2 coefficient, which gives a PDE in 1+ 1 dimensions in the
coordinates t —r and £ := elogr which one expects to capture the behavior of the nonlinear
equation near the light cone; if the classical null condition is satisfied, the PDE is linear,
otherwise it it nonlinear. The weak null condition [LR03] is the assumption that solutions
of the asymptotic system grow at most exponentially in ¢, and for the Einstein vacuum
equation in harmonic gauge, solutions are polynomial (in fact, linear) in ¢. The latter finds
its analogue in our framework in the nilpotent structure of the coupling matrix in (1.28).
(However, quasilinear equations with variable long-range perturbations, see the discussion
around (1.35), cannot be treated directly with our methods, corresponding to the difficulty
in assigning a geometric meaning to the asymptotic system in such situations.) For works
which establish global existence of nonlinear equations even when the asymptotic system
has merely exponentially bounded (in ¢) solutions, we refer to Lindblad [Lin92, Lin08] and
Alinhac [Ali03].

1.1.3. Polyhomogeneity. Consider again equation (1. 14) near (I°)°, now assuming that f
is polyhomogeneous. For simplicity, let f = p§" f. + f, where f, € C®(0R%), z € C, and f
decays faster than the leading term, so f € pgo Hp© with by > —Imz. A useful characteri-
zation of the polyhomogeneity of f is that the decay of f improves upon application of the
vector field poD,, — z in the notation (1.15). The solution u satisfies u € py° H2° for any
ap < —Imz; but o' := (pgD,, — 2)u solves'”

Lu/ = (pODpO - Z)f = (pODpo - )f € P Hb )
sou € pOOH <. T hlb is exactly the statement that u has the form u = pifu, + u for some

Uy € C°°(8R4) u € Po O Hpe. If f has a full polyhomogeneous expansion, an iteration of this
argument shows that v has one too, with the same index set.

Near the corner 19 N .#* then, one can proceed iteratively as well, picking up the terms
of the expansion at .#* one by one, by analyzing the solution of the product of trans-
port equations in equation (1.22) when the right hand side has a partial polyhomogeneous
expansion at .#*: the point is that pgd,, — prd,, transports expansions from I 0to o1,

ultimately since it annihilates pi? ,OZIZ See Lemmas 7.5-7.7.

To obtain the expansion at I, we argue iteratively again, using the resonance expansion
obtained via normal operator analysis as in the proof of [HV15, Theorem 2.21]. One needs
to invert the normal operator family of L on spaces of functions which are polyhomogeneous
at the boundary dI", which is easily accomplished by solving away polyhomogeneous terms
formally and using the usual inverse, defined on spaces of smooth functions, to solve away
the remainder; see Lemma 7.8.

17Commutator terms have improved decay at po = 0 as before, hence are dropped here for clarity.
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1.2. Analysis of Einstein’s equation. For Einstein’s equation, the strategy outlined in
§1.1 needs to be supplemented by a preliminary step, the choice of the nonlinear operator P,
which in particular means choosing a gauge, i.e. a condition on the solution g of Ric(g) =0
which breaks the diffeomorphism invariance; by the latter we mean the fact that for any
diffeomorphism ¢ of M, ¢*g also solves Ric(¢*g) = 0. Following DeTurck [DeT82], the
presentation by Graham-Lee [GL91], and [HV18], we consider the gauge-fixed Einstein
equation

Py(g) = Ric(g) — 0" T(g) = 0, (1.29)

where 0* is a first order differential operator with the same principal symbol (which is
independent of g) as the symmetric gradient (53u)., = 2 (Upp + Uy ); We comment on the

choice of 6* below. Further, the gauge 1-form is

Y (95 9m)u = (99m' 99Gogm)u = 9uwg™ (T(9)ix = T(gm)in): (1.30)

where §; is the adjoint of 47, i.e. the (negative) divergence, G, = 1 — %g try is the trace
reversal operator, and g, is a fixed background metric; we write Y(g) = Y(g; gm) from
now on. This is a manifestly coordinate invariant generalization of the wave coordinate
gauge, where one would choose g,, = g to be the Minkowski metric on R* and demand that
a global coordinate system (z#): (M°,g) — (R% g) be a wave map. (Friedrich describes
T (g) = 0 and more general gauge conditions using gauge source functions, see in particular

[Fri85, Equation (3.23)].)

Two fundamental properties of Py(g) are: (1) Py(g) is a quasilinear wave equation, hence
has a well-posed initial value problem; (2) by the second Bianchi identity—the fact that
the Einstein tensor Ein(g) := G4Ric(g) is divergence-free—the equation Py(g) = 0 implies
the wave equation

5,G40" Y (g) =0 (1.31)

for T(g), which thus vanishes identically provided its Cauchy data are trivial; we call
59Ggg* the gauge propagation operator. Therefore, solving (1.29) with Cauchy data for
which Y(g) has trivial Cauchy data is equivalent to solving Einstein’s equation (1.1) in the
gauge Y(g) = 0.

Since we wish to solve the initial value problem (1.4), we need to choose the Cauchy
data for g, i.e. the restrictions gy and g; of g and its transversal derivative to the initial
surface X° as a Lorentzian metric on M° such that v is the pullback of gy to ¥° and k
is the second fundamental form of any metric with Cauchy data (go, g1); note that k only
depends on up to first derivatives of the ambient metric, hence can indeed be expressed
purely in terms of (go,g1). These conditions do not determine gg, g; completely, and one
can arrange in addition that Y(g) vanishes at ¥° as a 1-form on M. Provided then that
Py(g) = 0, with these Cauchy data for g, holds near 3°, the constraint equations at ¥° can
be shown to imply that also the transversal derivative of Y (g) vanishes at X° (see the proof
of Theorem 6.3), and then the argument involving (1.31) applies.

If the initial data in Theorem 1.1 are exactly Schwarzschildean for r > R > 1, the
solution g is equal (i.e. isometric) to the Schwarzschild metric in the domain of dependence
of the region r > R; more generally, for initial data which are equal to those of mass m
Schwarzschild modulo decaying corrections, we expect all outgoing null-geodesics to be bent

in approximately the same way as for the metric gﬁl. Thus, we should define the manifold
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M in step 1 so that £ is null infinity of the Schwarzschild spacetime. Now, along radial
null-geodesics of g2 , the difference ¢ — r, is constant, where

r« =1+ 2mlog(r — 2m) (1.32)

is the tortoise coordinate up to an additive constant, see [Wall0, Equation (6.4.20)]. Corre-
spondingly, we define the compactification ™R4 near t ~ 7, such that p = ~! is a boundary
defining function, and v := (¢t — r)/r is smooth up to the boundary; ™M is defined by
blowing this up at ST = {p =0, ™v = 0}. (This is smoothly extended away from ¢ ~ r, to
a compactification of all of R%.) Thus, R4 and the Minkowski compactification R* = ‘R4
are canonically identified by continuity from R*, but have slightly different smooth struc-
tures; see §2.3 and [BVW16, §7].) The interior of the front face .#* of the blow-up is
diffeomorphic to Ry x S?, where s := ™v/p =t — r, is an affine coordinate along the fibers
of the blow-up. We denote defining functions of I° (the closure of {p = 0, ™v < 0} in ™M),
4+ and It (the closure of {p =0, ™v > 0} in ™M) by po, pr, and p,, respectively.

It is then natural to fix the background metric g,, to be equal to g;?l near 19U .#* and
smoothly interpolate with the Minkowski metric near » = 0 (which is nonsingular there,
unlike g5). We then work with the gauge Y(g; gm) = 0, and seek the solution of

P(h) :=p*Po(9) =0, g=gm+ ph, (1.33)
with h to be determined; the factors p are introduced in analogy with the discussion of the
scalar wave equation (1.13).!% Here, p is a global boundary defining function of ™R%; one
can e.g. take p = r~! away from the axis 7/t = 0, and p = ¢t~! near r/t = 0. Now, due to the
quasilinear character of (1.29), the principal part of L;, := Dy P depends on h: it is given
by %Dg. Thus, one needs to ensure that throughout the iteration scheme (1.9), the null-
geometry of g is compatible with ™M, in the sense that the long range term of g determining
the bending of light rays remains unchanged. To see what this means concretely, consider
a metric perturbation A in (1.33) which is not growing too fast at &, say |h| < p; € for
€ < 1/2 (that is, |h| < r¢ when t — r, remains in a bounded interval); one can then check
that, modulo terms with faster decay at .,

Og = 2p7 " (01001 + 200h00(P08p0 — p10p;)) (p00py — p18p,) mear 1901 .7+, (1.34)

which identifies

hoo = h(0o, o), 0o = O¢ + Oy, (1.35)
as the (only) long range component of h; see the calculation (3.15).!? Indeed, the first
vector field in (1.34) is approximately tangent to outgoing null cones, so for hgy # 0 at
7 outgoing null cones do not tend to (.£1)°. (Rather, if hog > 0, say, they are less
strongly bent, like in a Schwarzschild spacetime with mass smaller than m.) Whether or
not hgp vanishes at .#* depends on the choice of gauge. A calculation, see (A.5), shows
that the gauge condition Y(g) = 0 implies the constancy of hgy along .#T; but since
hoo is initially O due to g,, already capturing the long range part of the initial data, this

18Note that we use gm in two distinct roles: once as a background metric in the gauge condition, and
once as a rough first guess of the solution of the initial value problem which (1) already has the correct long
range behavior at null infinity and (2) is globally close to a solution of the Einstein vacuum equation if m
is small. See also Remark 6.6.

191n the case that hoo vanishes at .#*, the approximate null directions p10,; and po0y, — p10,; have
the same form as in the discussion surrounding (1.22), however, due to our choice of compactification ™M,
they are now the radial null directions of Schwarzschild with mass m. (Integration along these more precise
characteristics was key in Lindblad’s proof of sharper asymptotics in [Lin17].)
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means that hoo|,+ = 0 indeed—provided that P(h) = 0 with Cauchy data satisfying the
gauge condition, as we otherwise cannot conclude the vanishing of T(g). We remark that
T(g) = 0 implies the vanishing of further components of h, namely 7~ *ho, = h(9g, 71 9pa)
and T’_anbhab, hap := h(0ga, Ops ), which we collectively denote by ho; see (3.4) and (3.11),
where the notation hg =: mph is introduced.

As we are solving approximate (linearized) equations at each step of our Newton-type
iteration scheme in step 4, we thus need an extra mechanism to ensure that Y(g), g =
gm + ph, is decaying sufficiently fast at .# T to guarantee the vanishing of hoy at #T.
This is where constraint damping comes into play. Roughly speaking, if one only has an
approximate solution of Py(g) ~ 0, then we still get 6,G40*Y(g) ~ 0; if one chooses ¢*
carefully, solutions of this can be made to decay at .# T sufficiently fast so as to imply the
vanishing of hgg. We shall show that the choice

0w =0 u+2y% @4 u—y(y-19u)gm, ¥ >0,

accomplishes this.?’ As a first indication, one can check that 25gmGgmg* has a structure
similar to (1.24) with v > 0, for which we had showed the improved decay at % .

Regarding steps 2 and 3 of our general strategy, the correct function spaces can now be
determined easily (after some tedious algebra): solving Lou = 0, where L;, = Dy P as usual,
one finds that ug = mou, so in particular the long range component ugg of u decays at £,
while the remaining components, denoted uf, have a size 1 leading term at .# %, just like
solutions of the linear scalar wave equation. This follows from the schematic structure

_ 0 U
pr! <013p1 - <g O)) (P00py — P10p;) (u%)

of the model operator at .# ™ in this case. However, for such u then, solutions of L,u’ =
—P(u) have slightly more complicated behavior. Indeed, the model operator at # has
a schematic structure similar to (1.28), acting on (ug, (u’)§;,u};), where we separate the
components of (u)§ into two sets, one of which consists of the single component

ulll = u(ala 81)7 a1 = 615 - ar*a (136)

while (u/)§; captures the remaining components, which are wugy, r~Yuyp, and the part
2 (ugy — % gabngucd) of the spherical part of u which is trace-free with respect to ¢. Cor-
respondingly, we need to allow u}; to have a logarithmic leading order term, just like the
component called u; in the definition of the function space (1.27). In the next iteration
step, Lyu” = —P(u'), no further adjustments are necessary: the structure of the model
operator at £ is unchanged, hence the asymptotic behavior of u” does not get more
complicated.?!’ We remark that due to our precise control over each iterate, encoded by
membership in X°°, the relevant structure of the model operators and the regularity of
the coefficients of the linearized equations are the same at each iteration step; in particu-
lar, the fact that equation (1.33) is quasilinear rather than semilinear does not cause any
complications beyond the need for constraint damping.

20For technical reasons related to the definition of the smooth structure on ™R4, we shall modify ¢
slightly; see Definition 2.9 and equation (3.3).

21The coupling matrix, called A, in (1.28), is in fact slightly more complicated here, see Lemma 3.8,
necessitating a more careful choice of the weights of the remainder terms of elements of the spaces X'*° and
V> at 1, whose precise definitions we give in Definitions 3.1 and 3.3.
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The decoupling of the model operator at .# T into three pieces—one for the decaying
components ug, one for the components u{; which have possibly nontrivial leading terms at
# 7T, and one for the logarithmically growing component wu11—is the key structure making
our proof of global stability work. The fact that the equation for the components ug decou-
ples is not coincidental, as they are governed by the gauge condition and thus are expected
to decouple to leading order in view of the second Bianchi identity as around (1.31).%> The
decoupling of w11 and u{; on the other hand is the much more subtle manifestation of the
weak null condition, as discussed in Remark 1.7.

The solution A of (1.33) is a symmetric 2-tensor in M°; as part of step 1, we still need
to specify the smooth vector bundle on M which A will be a section of. Consider first the
Minkowski metric ¢ on the radial compactification “R%. In R?, ¢ is a quadratic form, with
constant coefficients, in the 1-forms dt and dz?, which extend smoothly to the boundary as
sections of the scattering cotangent bundle °T* OR? first introduced in [Mel94]; in a collar
neighborhood [0,1), x R% of a point in 9°R?, the latter is by definition spanned by the

1-forms %, %i, which are smooth and linearly independent sections of ¢T™* R4 down to
the boundary. For instance, near r = 0, we can take p = t~1 and X = z/t, in which
case % = —dt and % = dx' — X' dt. Similarly then, g,, will be a smooth section of the

second symmetric tensor power S25T*™R4. Since our nonlinear analysis takes place on
the blown-up space ™M, we seek h as a section of the pullback bundle 8*S25T* R4, where
B: ™M — ™R4 is the blow-down map. For brevity, we shall suppress the bundle from the
notation here.
Theorem 1.8. Suppose the assumptions of Theorem 1.1 are satisfied, i.e. for some small
m € R and bg > 0 fized, the normalized data palﬁ and pa2k € pgngo(@) are small
n pgoHéVH and pgoHéV, respectively. Then there exists a solution g of the initial value
problem (1.4) satisfying the gauge condition Y(g) = 0, see (1.30), which on ™M s of the
form g = gm + ph, h € pgopI_EpIrEHgo(mM) for all € > 0; here p is a boundary defining
function of ™R4, and po, pr, and p4 are defining functions of I°, Z+, and I't, respectively.
More precisely, near # and using the notation introduced after (1.35) and (1.36), the
components hoo, 7 hop, and r‘zgabhab lie in

po Py HE® (M) (1.37)
for all by < min(1,bg) and € > 0, while hor, 7~ hyy, and r=2(hapy — %gabg“lhcd) have size 1
leading terms at # plus a remainder in the space (1.37) for all such by, e, and hyy has a

logarithmic and a size 1 leading term at # T plus a remainder in the space (1.37) for all such
br,e. At It on the other hand, h has a size 1 leading term: there exists h™ € p; “H°(IT)

such that h — h™ € pl_eplngo(mM) near I for any by < min(bg, 1).

Remark 1.9. Near ™. %, and indeed for » > 1 and t — r, < %r, the membership u €
pgoplfplfHﬁo(mM) (e.g. u being a metric coefficient of h, and by = —e as in (1.37)) is
equivalent, up to arbitrarily small losses in decay (due to switching from L? to L™ via
Sobolev embedding), to

Vi Vu| < r_bf(l + (ry — t)+)—bo+b1(1 + (t — r*)+)b++b1

221y practice, it is easier to analyze uo directly using the structure of the linearized gauge-fixed Einstein
equation, rather than via an (approximate) linearized second Bianchi identity, so this is how we shall proceed.
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for all N € Np, where each Vj is a rotation vector field in R3 or one of the vector fields
toy + r*(?r*, t&«* + 740¢, O, Oy.

See Theorem 6.3 for the full statement, which in particular allows for the decay rate bg of
the initial data to be larger and gives the corresponding weight at I° for the solution. The
final conclusion follows from resonance considerations, as indicated before (1.23), and will
follow from the arguments used to establish polyhomogeneity in §7. We discuss continuous
dependence on initial data in Remark 6.4. A typical example of a polyhomogeneous expan-
sion of h arises for initial data which are smooth functions of 1/r in r > 1: in this case,
the leading terms of the expansion of h are schematically (and not showing the coefficients,
which are functions on #)

ho ~ prlog=® pr, h§; ~ 1+ prlog=* pr, iy ~log=" p; + prlog=° p; (1.38)

at .# T, and h ~ 14 p, log=® p, at I'T; see Example 7.3. Here, log=F p; stands for functions
which are sums of products |log p;|‘as, 0 < ¢ < k, with a, functions on ..

While a solution g of Ric(g) = 0 in the gauge T(g) = 0 of course solves equation (1.29)
for any choice of §*, we argued why a careful choice is crucial to make our global iteration
scheme work. Another perspective is the following: implementing constraint damping
allows us to solve the gauge-fixed equation (1.29) for any sufficiently small Cauchy data;
whether or not these data come from an initial data set satisfying the constraint equations
is irrelevant. Only at the end, once one has a solution of (1.29), do we use the constraint
equations and the second Bianchi identity to deduce Y(g) = 0.

In contrast, consider the choice 5 = 6, in (1.29); the linearization of Py(g) around the
Minkowski metric g = g is then equal to %Dg, which is % times the scalar wave operator
acting component-wise on the components of a symmetric 2-tensor in the frame dz* ® dx” +
dz¥ @ dx, where 29 = t, 2%, i = 1,2,3, are the standard coordinates on R,}:;g. Solving
Oy (ph) = 0 with given initial data, which would be the first step in our iteration scheme for
initial data with mass m = 0, does not imply improved behavior for any components of h,
in particular hgg; this means that constraint damping fails for this choice of 5" Thus, the
next iterate g + ph in general has a different long range behavior, and correspondingly °M
is no longer the correct place for the analysis of the linearized operator in the next iteration
step—even though the final solution of Einstein’s equation is well-behaved on °A/ for such
initial data. With constraint damping on the other hand, the linearized equation always

produces behavior consistent with the qualitative properties of the nonlinear solution.

1.3. Bondi mass loss formula. The description of the asymptotic behavior of the met-
ric ¢ = gm + ph in Theorem 1.8 on the compact manifold "M and in the chosen gauge
allows for a precise description of outgoing light cones close to the radiation face .#7T.
Work on geometric quantities at .# T started with the seminal works of Bondi—van der
Burg-Metzner [Bon60, BvdBM62], Sachs [Sac62b, Sac62a], Newman—Penrose [NP62], and
Penrose [Pen65]; the precise decay properties of the curvature tensor—in particular ‘peeling
estimates’ or their failure—were discussed in [KN03b, Chr02], see also [Daf12]. (For studies
on conditions on initial data which ensure or prevent smoothness of the metric at .+ in
suitable coordinates, see [Fri83, Fri85, CMS95, AC93, VKO04] and [KN03a, §8.2].)

As remarked before, the logarithmic bending of light cones is controlled by the ADM mass
m, which measures mass on spacelike, asymptotically flat, Cauchy surfaces. A more subtle
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notion is the Bondi mass [BvdBM62], see also [Chr91], which is a function of retarded
time #! = t — r, that can be defined as follows: let S(u) C £+ denote the u-level set
of z! at null infinity; S(u) is a 2-sphere, and naturally comes equipped with the round
metric. If Cy, denotes the outgoing light cone which limits to S(u) at null infinity and which
asymptotically approaches the radial Schwarzschild light cone {#! = u}, one can define a
natural area radius v on Cy, equal to the coordinate r plus lower order correction terms; the
Bondi mass Mg (u) is then the limit of the Hawking mass of the 2-sphere {z! = u, # = R}
as R — o0o. See §8 for the precise definitions. A change %MB(U) of the Bondi mass reflects
a flux of gravitational energy to .# * along C,,. We shall calculate these quantities explicitly
and show:

Theorem 1.10. Suppose we are given a metric constructed in Theorem 1.8, and write
hi1 = hgll) log(r) + O(1) near F*, where hgll) € pgopfﬂﬁo(,ﬂ“L) is the logarithmic leading
term. Then the Bondi mass is equal to

1 (1)
Mg (u) :m+/ 1hy dg. (1.39)
i Jsw) 3r ag
The Bondi mass loss formula takes the form %MB(U) = —E(u), where
1

Eu) = — N2 Ny =712
(u) 327T/5(u)’ gd9, Nab =1""01hab] s+,

is the outgoing energy flux. Finally, Mp(—oc) = m and Mg(+o00) = 0.

We prove this for all initial data which are small and asymptotically flat in the sense
of (1.6). The Bondi mass was shown to be well-defined (and to satisfy a mass loss formula)
for the weakly decaying initial data used in [BZ09] by Bieri-Chrusciel [BC16] in the geo-
metric framework of [CK93], but the question of how to define Bondi-Sachs coordinates
remained open. Our result is the first to accomplish this for a large class of initial data,
and to identify the Bondi mass in a (generalized) wave coordinate gauge setting. (The
ctmin(bo,)=0 regularity of a conformally rescaled non-degenerate metric down to .#* is a
by-product of our analysis.) The key to establishing the first part of Theorem 1.10 is the
construction and precise control of the aforementioned geometric quantities leading to the
identification (1.39); the mass loss formula itself is then equivalent to the vanishing of the
leading term of the (1,1) component of the gauge-fixed Einstein equation at .#*. The van-
ishing of Mp(u) as u — —oo follows immediately from the decay properties of h there. On
the other hand, the proof that the total radiated energy [ F(u) du equals the initial mass m
proceeds by studying the leading order term h|;+ as the solution of a linear equation on I™
(obtained by restricting the nonlinear gauge-fixed Einstein equation to I1), with a forcing
term that comes from the failure of our glued background metric g,, to satisfy the Einstein
equation and which is thus proportional to m. This equation now is closely related to the

spectral family of exact hyperbolic space at the bottom of the essential spectrum;*® a cal-

(1)

culation of the scattering matrix acting on the incoming data given by hll1 and comparing

23This linear operator acts on the symmetric scattering 2-tensor bundle restricted to I'; see [Had17] for
the relation with the hyperbolic Laplacian acting on its intrinsic 2-tensor bundle. The spectral parameter
here is fized, and the definition of the scattering matrix (incoming data having logarithmic rather than
algebraic growth) is specific to working at the bottom of the spectrum; this is in contrast to the description
of the scattering matrix depending on the spectral parameter as e.g. in [GZ03].
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the (0,0) component of the outgoing data with hgo—which vanishes by construction!—then
establishes the desired relationship.

Theorem 1.10 shows that the logarithmic term in the asymptotic expansion of hij car-
ries physical meaning. Its vanishing forces m = 0, which by the positive mass theorem
means that the spacetime is exact Minkowski space. (The observation that [ E(u)du >0
immediately implies the nonnegativity of the ADM mass of the small initial data under con-
sideration here, which in this case was first proved by Choquet-Bruhat-Marsden [CBM76].)

Further geometric properties of the vacuum metrics constructed in this paper, such as
the identification of (#)° C M, resp. (I)°, as the set of endpoints of future-directed null,
resp. timelike, geodesics, will be discussed elsewhere.

1.4. Outline of the paper. In §§2 and 3, we set the stage for the analysis (steps 1 and
2): we give the precise definition of the compactification M = ™M on which we will find
the solution of (1.4) in §2.1; the relevant function spaces are defined in §2.2, and the
relationships between different compactifications are discussed in §2.3. In §2.4, we prepare
the invariant formulation of estimates such as (1.19); the results there are not needed until
§4. In §3.1, we define the spaces A*° and Y*° on M in which we shall find the solution h in
Theorem 1.8, and calculate the mapping properties and model operators of the (linearized)
gauge-fixed Einstein operator in §§3.2 and 3.3, respectively. (The necessary algebra is
moved to Appendix A.) The key structures (constraint damping, null structure) critical for
our proof will be discussed there as well. We accomplish part 3.1 of step 3—the proof of a
high regularity background estimate with imprecise weights—by exploiting these structures
in §4. The recovery of the precise asymptotic behavior in §5 finishes step 3.2. Putting this
into a Nash—Moser framework allows us to finish the proof of Theorem 1.8 in §6; the proof
of polyhomogeneity, thus of the last part of Theorem 1.1, is proved in §7. Finally, a finer
description of the resulting asymptotically flat spacetime near null infinity, leading to the
proof of Theorem 1.10, is given in §8.

For the reader only interested in the key parts of the proof, we recommend reading §§2.1
and 2.2 for the setup, §3.1 for the form of metric perturbations we need to consider, and §3.2
for an explanation of the main features of the linearized problem; taking the background
estimate, Theorem 4.2 (which uses material from §2.4, and whose proof roughly follows the
steps outlined in §1.1.1), as a black box, the argument formally concludes in §5. (Getting
the actual nonlinear solution in §6 is then routine.)
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2. COMPACTIFICATION

As explained in §1.2, we shall find the metric g in Theorem 1.8 as a perturbation of a
background metric g,,, which interpolates between mass m Schwarzschild in a neighborhood
{r>1, [t| < 2r} of I°U.# and the Minkowski metric elsewhere. In §2.1, we define such
a metric g,, as a smooth scattering metric on a suitable partial compactification ™R* of
R* to a manifold with boundary which is closely related to the radial compactifications
of asymptotically Minkowski spaces used in [BVW15, BVW16]. The ideal boundaries I°,
# T, and I are then the boundary hypersurfaces of a manifold with corners obtained by
blowing up ™R#* at the ‘light cone at infinity.” The spaces of conormal and polyhomogeneous
functions on this manifold are defined in §2.2.

Let us recall the notion of the scattering cotangent bundle **T* X over an n-dimensional
manifold X with boundary 0X. Over the interior X°, *T%.X := T%.X is the usual
cotangent bundle. Near the boundary, let

p>0, y=@H. ..,y ) erR! (2.1)
denote local coordinates in which 0X is given by p = 0; then the 1-forms %, d%j (j =
1,...,n—1) are a smooth local frame of 7" X | i.e. smooth scattering 1-forms are precisely

the linear combinations a(p, y)% +aj(p, y)d%j with a, a; smooth. (Equivalently, we can use

d(1/p) and d(y’ /p) as a smooth local frame.) The point is that, viewed from the perspective
of X°, such 1-forms have a very specific behavior as one approaches 0X. Tensor powers
and their symmetric versions S¥°T*X, k € N, are defined in the usual manner; the dual
bundle is denoted ¢T'X and called scattering tangent bundle. In the case that 0X =Y x Z
and X = [0,1), x 0X are products, so T*Y C T*X is a well-defined subbundle, then the
rescaling p~'T*Y C 5¢T* X, spanned by covectors of the form p~1n, n € T*Y, is a smooth
subbundle.

To give an example, calculations similar to the ones prior to Theorem 1.8 show that the
differentials of the standard coordinates on R™ extend to the radial compactification R" as
smooth scattering 1-forms; they are in fact a basis of S*T*R"”, and any metric on R" with
constant coefficients, such as the Minkowski or Euclidean metric, is a scattering metric, i.e.
an element of C>°(R™; S2 S°T*Rn).

The b-cotangent bundle PT* X is locally spanned by the 1-forms d—:, dy’ (j=1,...,n—1);
its dual is the b-tangent bundle PT X, spanned locally by p0, and d,;. The space V},(X)
of b-vector fields on X, consisting of those vector fields V on X which are tangent to 0.X,
is then canonically identified with C>°(X;"TX). A b-metric is a nondegenerate section of
S2bTX. The space Diff’g (X) of b-differential operators of degree k consists of finite sums
of k-fold products of b-vector fields. Fixing a collar neighborhood [0, €), x 9.X and choosing
local coordinates 47 on 0X as before, the normal operator of an operator L € Diff'g(X)
given in the coordinates (2.1) by L = >, <k @ja(p; y)(pD,)’ DY is defined by freezing
coeflicients at p =0,

N(L):= > aja(0,y)(pD,)' DY € Difff([0,00), x 0X). (2.2)
JHlel<k

This depends on the choice of collar neighborhood only through the choice of normal vector
field 0,|ax; see [Mel93, §4.15] for an invariant description. The Mellin-transformed normal
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operator family E(O’), o € C, is the conjugation of N (L) by the Mellin transform in p; thus,
in view of p=pD,(p"?) = p', one obtains L(c) by formally replacing pD, by o:
L(o):= Z aja(O,y)ajD;‘.

JHlal<k
This is a holomorphic family of elements of Diff*(9X). Analogous constructions can be
performed for b-operators acting on vector bundles.
2.1. Analytic structure. Fix the mass m € R; for now, m does not have to be small.
The Schwarzschild metric, written in polar coordinates on R x R3, takes the form

g;fl =(1- 2Tm)dt2 —(1- 2Tm)_1dr2 - 7‘2g

=(1- 2Tm)als2 + 2dsdr — r2g, (2.3)
where ¢ denotes the round metric on S?, and where we let
s:=1t—"ry, Ts: =1+ 2mlog(r—2m), (2.4)
so dry = -—5—dr. Note that level sets of s are radial outgoing null cones. Define
pi=r"" vi=r"1(t—r—x(t/r)2mlog(r — 2m)), (2.5)
where x(z) =1, z < 2, and x(x) =0, z > 3. Let then
C1:=10,€), X (—%,5)1, X Si, (2.6)

where we shrink ¢y > 0 so that t is well-defined and depends smoothly on p > 0 and v, via
the implicit function theorem applied to (2.5). This will provide the compactification near
the future light cone (and part of spatial infinity). Near future infinity, we use standard
coordinates (t,z) € R x R? on R*; define

o=t X =a/l, (2.7)

and put
Cy = [0,¢0),, x {X € R®: |X] < 1} (2.8)
For ey > 0 small enough, we can consider the interiors C7, (' as smooth submanifolds of
R* using the identifications (2.5) and (2.7). (Note in particular that the smooth structures
agree with the induced smooth structure of R*.) Let us consider the transition map between

C¢ and C$ in more detail: in Cf N CS and for ¢t~ small enough, we have x(t —7) = 0 and
7> %, so the map

(P X) = (p=py/1X], v = X" =1, w = X/|X]) (2.9)
extends smoothly (with smooth inverse) to p/, = 0. We then let
R? = (R4|_|Cl UCQ)/ ~

where ~ identifies C; and Cy with subsets of R as above, and the boundary points of C
and Cy are identified using the map (2.9). This is thus a smooth manifold with boundary,?*
though both R* and dR* = (0C, U C3)/ ~ are noncompact. In other words, R?* is only a
compactification of the region v > —%. See Figure 2.1.

24Different choices of x produce the same topological space, indeed C* manifold (« < 1); on the other
hand, the smooth structure at the boundary does depend on Yy, but only in the gluing region C; N Cy. All
resulting smooth structures work equally well.
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FIGURE 2.1. The partial compactification R* of R*, constructed from R,
(4, and Cs. Also shown is the hypersurface ¥ from (2.15).

The scattering cotangent bundle of R?* near the light cone at infinity has a smooth
partial trivialization *°T¢, R* = (dr) © (d(v/p)) ® p~1T*S?, thus if ¢ is a smooth function
with ¢(v) =1 for v < 1 and ¢(v) = 0 for v > 2, then

g = (1= 220N q(0/p)? + 2d(v/p) dr — r2g € CF(Ch; ST, RY). (2.10)

In v > 3 and for ¢y > 0 small enough, we simply have g,, 1 = dt? — dr? — r2g, which is thus
equal to

gm2 = d(1/p)? — d(X/p),)? € C(Ca; ST, RY)

on the overlap C1 N Cy. Thus, we can glue g, 1 and gy, 2 together to define a Lorentzian
scattering metric g, on C7; U Cy. We extend g, to a global metric:

Definition 2.1. Fix ¢ € C®°(R#4) such that supp ¢ C C; UCy, and so that ¢ = 1 near OR4.
With g,, as above, we then define

Gm = Gm + (1 — ) (dt* — dz?) € C®°(R*; S?5°T*R4), (2.11)
thus gluing g, to the Minkowski metric away from Cy U Cs.
By construction, g,, is equal to the Minkowski metric in a compact region of R* as well

as in a closed subcone of the interior of the future light cone, which we glue together with
the Schwarzschild metric near spacelike and null infinity.

Next, denote the light cone at future infinity by
ST:={p=0, v=0} C OR* (2.12)
and let

M’ = [R4; ST
denote the blow-up of R4 at S+, see Figure 2.2. That is, as a set,
M = (@\S"‘) U ([-7/2,7/2)5 % Si),

which can be endowed with the structure of a smooth (noncompact) manifold with corners
by writing it as

M= (0§ 0 (0, ) 772,700 X 52)) / ~
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where we identify a point in R% with coordinates (p,v,w), (p,v) # (0,0), with the point

(pr = \/p? +v2, o = arctan(v/p), w). The map
B: M’ — R%, (2.13)

equal to the identity map away from S*, and given by B(pr,0,w) = (p = prcoso, v =
prsino, w), is called the blow-down map. Note that g is a local diffeomorphism away from
ST, but is not injective at the front face

(R 57)) = p; ' (0)

of the blow-up. The point of doing this blow-up is that curves tending to S* but at different
angles o have distinct limiting points on the front face. Concretely, s = tan(o) = v/p =
t — r, is an affine parameter on the fibers S~1(p), p € ST, of the blow-down map, so
B~L(ST) is the set of all endpoints of future-directed outgoing radial null-geodesics of mass
m Schwarzschild, and radial null-geodesics with different ¢t — r, are separated all the way
up to B71(ST). It is thus natural to define:

Definition 2.2. Null infinity .#* is defined as the front face of the blowup of St C R%,

It = fi([R4; ST)).

It

St St
F+

OR1

FIGURE 2.2. Left: the partial compactification R? and its light cone at

infinity S*. Right: the blow-up M’ = [R%; 7] LA R?, with front face £
(null infinity) and side faces I (spatial infinity), I* (future timelike infinity).

The side faces of the blow-up are the connected components of the lift of the original
boundary hypersurface R4, i.e. of the closure of the preimage of OR*\ S under 3. In the
present situation, there are two side faces:

Definition 2.3. The future temporal face is

It = B=1((0C2 N dR*) U {v > 0}),

whose image B(I") is a closed 3-ball with boundary S*. The spatial face (more precisely:
the part of it that we chose to include in the compactification R*) is defined by

1Y = B~1(0R* N {v < 0}).
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Using S8, one can pull back natural vector bundles on R? to M’; for instance, the pullback
% gm, which we simply denote by g,, for brevity, is an element of C*°(M’; 3*S? S°T*R4) (and
constant along the fibers of ).

Let po = r~! for v + 1| < % and » > R, R > 1, and extend it to a smooth positive

function on all of R%. Denote then by ¢, the smooth function
ty, = po(t — 2mxo(r) log(r — 2m)), (2.14)

defined for |t|/(r) < 1, where xo = 0 for r < R and xo = 1 for r > 2R; this extends the
function v 4+ 1 smoothly into the interior R*, and dt;, is timelike on

¥ =t.1(0). (2.15)

(The main point of this construction is to write the initial hypersurface ¥ in a nondegenerate
way, i.e. as the zero set of a function whose differential does not vanish anywhere on it.)
Note that the function pg is, in a neighborhood of ¥, a boundary defining function of I°;
below, we shall use different boundary defining functions adapted to our needs, but keep
the same notation. See also Remark 2.6.

We restrict our analysis from now on to the following smooth manifold with corners:

Definition 2.4. The compact manifold with corners M is defined by
M :=M'n ({t, >0} U {t > 1(r)}).

One should think of this as (the compactification of) the causal future of ¥; and this is
indeed what it is if we endow M° with the Minkowski metric.

We regard the boundary > C M as ‘artificial,” i.e. incomplete, from the point of view
of b-analysis; recall Figure 1.1; abusing notation slightly, we shall denote the part 1° N M
of spatial infinity contained in M again by I°. We denote by po, pr, and p, € C®(M)
defining functions of I°, .#*, and It respectively; we further let p € C*(M) denote a
total boundary defining function, e.g. p = poprp+. Defining functions are well-defined up
to multiplication by smooth positive functions. We shall often make concrete choices to
simplify local calculations; by a local defining function of I°, say, on some open subset
U C M we then mean a function pg € C*°(U) so that for any K € U, po|k can be extended
to a globally defined defining function of I°. We remark that pgls, € C*°(X) is a defining
function of 0% within X.

Remark 2.5. The causal character (spacelike, null, timelike) of level sets of pg, i.e. of dpy,
depends on the particular choice of pg. On the other hand, the vector field po0,,, defined
using any local coordinate system, is well-defined as an element of PTj0 M, and thus so is
its causal character at I° with respect to the b-metric p?g,,: it is the scaling vector field
at infinity, see the discussion after equation (1.13), and spacelike away from the corner
19N 7+, Likewise, p+0p, is the scaling vector field at I, which is timelike.

Let us relate ¥ to the radial compactification R3 of Euclidean 3-space; recall that the
latter is defined using polar coordinates (r,w) € (0,00) x S? on R? as the closed 3-ball

R3 := (]R3 L ([0,00)p x S?))/ ~, where (r,w) ~ (po,w), po=1"", 7> 0.
Consider the map ¢: R* 3 z = (r,w) — (2mx(r)log(r — 2m),z) € X° C Ry x R3, which

x?

is the projection along the flow of 9;. Expressed near OR3, i.e. for small pg, this takes the
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form ¢(po,w) = (p,v,w) for p = pg and v = —1; thus, ¢ extends to a diffeomorphism
¥ =~ R3, (2.16)

Whenever necessary, we shall make the mass parameter m in these constructions explicit
by writing

MRA, MV N, TS, My, M0 Mgt Mt Mg ™y, e, (2.17)

In particular, R4 is the radial compactification of R* with the closed subset {|t|~! =

0, t/r < —% of the boundary removed; note here that on their respective domains of

definition, »~! and [¢|~! are indeed local boundary defining functions of OR4. Moreover, the
metric g, for m = 0 is equal to the Minkowski metric g. We shall explore the relationships

between ™R? ete. for different values of m in §2.3.

Remark 2.6. For m = 0, it is easy to write down global expressions for boundary defining
functions in ¢ > |r|, for instance (using notation similar to [Lin17])

Spo=0+q¢)", pr=tT"14+q¢)0+q), ’py=0+q)" %p=t"% (2.18)
here g+ = ¢4 (t — (r)) and q— = ¢4 ((r) — t), where ¢, (z) is a smooth function, ¢, (z) =z
for x > 1, and ¢4 (z) = 0, x < 0. One can write down similar expressions for general m
by using r, instead of r near .#+ U I', and inserting suitable partitions of unity to obtain
expressions which are globally smooth. While expressions such as (2.18) offer a quick way to
relate bounds by (°p0)? (°pr)? (°p, )%+ into bounds in terms of standard coordinates on R*,
they are of course cumbersome to work with if one used them as parts of local coordinate
systems on M. Furthermore, since we fixed a smooth structure of ™M, boundary defining
functions on ™M are well-defined up to multiplication by smooth, positive functions with
smooth, positive reciprocals; therefore, decay rates, such as ag,as,ay above, with respect
to one particular set of choices of boundary defining functions of ™M are the same as for
any other set of choices on the same manifold ™M. The advantage of defining ™M is then
that one can work with any convenient choices of (local) boundary defining functions for
any particular local coordinate calculation or estimate for a PDE on ™M, and the decay
rates in such an estimate, when expressed in terms of one’s chosen defining functions, make
invariant sense.

Working on ™R4, the following coordinates are convenient for performing calculations
near the light cone at infinity S*:

Definition 2.7. We define the coordinates ¢ = 2° and s = z! as follows:

1

q::ﬂ:0 =t+ry, Si=x =171y

Their level sets are null hypersurfaces for the mass m Schwarzschild metric. Using
dq = ds + 2dr, and (2.4),

SST*RY = (dq) @ (ds) © r T*S? (2.19)
therefore defines a smooth partial trivialization near S¥; recall that p = r~! there. Simi-
larly,

Oy = a$0 = 8q = %(& + 87~*), o = 8$1 =05 = %(6t — 87-*)
are smooth scattering vector fields on R?%, and together with »~!T'S2, they give a smooth
partial trivialization of *TR4 near St.2° Letting 2%, a = 2, 3, denote local coordinates on

250m the other hand, ¢~ is not smooth on ™R? for m # 0; see Lemma 2.8 below.
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S?, we will denote spherical indices by early alphabet Latin letters a, b, ¢, d, e, and general
indices ranging from 0 to 3 by Greek letters. The components of a section w of S°T*R* in
the splitting (2.19) are denoted with barred indices:

wg :=w(Bp), wi:=w(d), wa:=w(pdy) =71 "tw(d,). (2.20)

Thus, the components of a tensor with respect to this splitting have size comparable to the

components in the coordinate basis of T*R?*. The splitting (2.19) induces the splitting
S2seT*RA = (dg?) @ (2dqds) @ (2dq @4 r T*S?) (2.21)
@ (ds?) @ (2ds ®s r T*S?) @ 2 S*T*S?, ‘

as well as the dual splittings of the dual bundles **TR* and S?°TR4. We will occasionally
use the further splitting
S*T*S* = () @ (g)*. (2.22)

For calculations of geometric quantities associated with the metric, the bundle splittings

induced by the coordinates ¢, s, 22, 23, i.e.

T*R* = (dq) @ (ds) @ T*S?,
S2T*RY = (dg?) ® (2dq ds) © (2dq @, T*S?) @ (ds®) @ (2ds @, T*S?) @ S*T*S?,

are more convenient. Components are denoted without bars, that is, for a 1-form w and
for p = 0,1, we have w, := w(9,) = wp, while we let w, := w(d,) = rwa. In short, we have

wp = r*s(“)wu, s(pt, . pun) = #{: ux € {2,3}}, (2.24)

likewise for tensors of higher rank.

(2.23)

On the resolved space M, the null derivatives 0y, 01 can be computed as follows: near
19N .7+, we can take

po=—p/v=_(re =)', pr=—v=(r.—t)/r, p=popr=r"; (2.25)
then
8o = —3popr(1 = 2mp)p1dy,, (2.26)
01 = po(po0p, — (1 = 3p1(1 — 2mp))p10,,), .
and dually

A similar calculation near I™ N .7 yields

0o = fopopip+ - P10y, O1 € pop+Vo(M), (2.28)
for some fy € C*°(M), fo > 0, depending on the choices of boundary defining functions.

2.2. Function spaces. We first recall the notion of b-Sobolev spaces on err’d := [0, 00)2 x

R first, we set HO(RPY) = LE(RD?) = L2(RP% ]9 .. 20qy|); for k € N then,
H,’;(]Ri’d) consists of all u € L such that Vi ...Vju € L2 for all 0 < j < k, where each
Ve is equal to either 2P0 or Oy« for some p = 1,...,d, ¢ = 1,...,n — d. For general
s € R, one defines Hg(]R?r’d) by interpolation and duality. One can define b-Sobolev spaces
on compact manifolds with corners by localization and using local coordinate charts; we
give an invariant description momentarily. Note that the logarithmic change of coordinates
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—loga?, 7 =1,...,d, induces an isometric isomorphism Hg(Rﬁr’d) =~ H%(R"™) with the
standard Sobolev space on R”.

Now on M’, fix any smooth b-density, i.e. in local coordinates as above a smooth positive
multiple of |dx—‘ﬁ1 . %dyL then the space L2 (M') with respect to this density is well-defined;
the space L (M) of restrictions of elements u € L3(M’) to M is similarly well-defined, and
since M is compact, any two choices of b-densities on M’ yield equivalent norms on L2 (M).
More generally, if by, by, b, € R are weights, we define the weighted L? space

br b — —b; —b
PPy % HO(M) = pff ol o LE(M) = {uz pg ™ p; " p " u € LE(M)}.

The b-Sobolev spaces of order £ = 0,1,2, ... are defined using a finite collection of vector
fields # C W,(M’) such that at each point p € M, the collection ¥, spans PT, M, namely

HEY (M) :={uc LEM): Vi...Viju€ LE(M), 0<j <k, Vi€ V};

the norm on this space is the sum of the L? (M )-norms of u and its up to k-fold derivatives

along elements of #. One defines pgo pZ}I P +H|D (M) and its norm correspondingly. Note

that the vector fields in # are required to be tangent to I, #*, and It, but not to
Y; thus, we measure standard Sobolev regularity near ¥, and b- (conormal) regularity at
19 7+ and IT. (Thus, our space Hf(M) would be denoted HF(M) in the notation of
[Hor07, Appendix BJ.) Due to the compactness of M, any two choices of collections ¥
and boundary defining functions pg, pr, p+ give rise to the same b-Sobolev space, up to
equivalence of norms. (For instance, any other defining function pj, of I 0 is related to pg by
Py = apy where 0 < a € C*°(M) (and thus by compactness of M, C~! < a < C for some
C > 1); the equality of the weighted spaces defined using pg or pj is then a consequence of
the fact that multiplication by a”, or in fact by any smooth nonzero function on M with
smooth reciprocal, is an isomorphism on H{*(M).) The space H*(M) = (>, HF (M) and
its weighted analogues have natural Fréchet space structures; we refer to their elements as
conormal functions. We shall also use function spaces with infinitely decaying weights, so
for instance

FHE(M) = () oy HE (M), (2.29)
breR
as well as spaces of the form
br—0 b
PO HE (M) = () p) Hi(
>0

similarly for spaces with more weights.
Weighted b-Sobolev spaces of sections of vector bundles on M are defined using local
trivializations. We will in particular use the space

K:bo,br,b — orkibo,brub
Hy ™ (B) = Hy " (MG E) _Po P]P+Hb(M E), (2.30)

with E denoting the trivial bundle C := M x C — M, or E = B*°T*R% or E =

(*S2scT*R4, When the bundle E is clear from the context, we will simply write H_ kibo,br b
When estimating error terms, we will often use the 1nclu810n

Coo(@)ccoo( ) Hoo —0,—-0, 0 mHoo—e—e—e

e>0
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For the last part of Theorem 1.1, we need to define the notion of polyhomogeneity (or
E-smoothness) and discuss its basic properties; see [Maz91, §2A] and [Mel96, §4.15] for
detailed accounts and proofs. An index set is a discrete subset £ C C x Ny such that

(2,4) €€ = (2,4) €€ Vi <7; (2.31a)
(20,4e) € &, |zl + je = 00 = Imzp — —o0; (2.31b)
(2,j) €€ = (2—1,j5) €€. (2.31c)
We shall write
Imé <c <= Imz<c V(z,k) €, (2.32)

likewise for the nonstrict inequality sign. Note that by condition (2.31b), every index set £
has an upper bound Im &£ < C for some C'; more precisely, if £ is an index set and C’ € R,
then there are only finitely many points (z,k) € £ with Im 2z > C’.

Let now X denote a compact manifold with boundary 0X, and let p € C*(X) be a
boundary defining function. The choice of a collar neighborhood [0,1), x 0X makes the
vector field pD, = %,08,3 well-defined, and any two choices of collars give the same vector
field pD, modulo elements of pV,(X). Let £ be an index set. The space Aghg(X ) then
consists of all u € p~*H*(X) = Uyer ¥ H®(X) for which

H (pD, — 2)u € pN H*(X) for all N € R; (2.33)

(z,5)€€
Imz>—-N

equivalently, there exist a(, ;) € C*°(X), (z,7) € &, such that

u— Y p*(logp)ay € pNHP(X). (2.34)

(z.9)€€
Imz>—N

(Condition (2.31c) ensures that this is independent of the choice of pD,.) In particular,
u € p~mE-0[(X). When no confusion can arise, we write

(a,k):={(a—in,j):neNy, 0<j5<k}, a:=(a,0). (2.35)

For example, .A;ﬁg(X ) = p*C>°(X). We also recall the notion of the extended union of two

index sets &1, &, defined by
E1U&E =& UEU{(2,k): 3(2,40) € &, k < j1+j2 + 13,
so e.g. 0UO = (0,1), as well as their sum
&+ & ={(27): 320, Je) € &, 2 =21+ 22, ] = j1 + ja};
(X) - AS

&1
thus A phg

ohe (X) c A5 +e2(X). For j € N and an index set £, we define

phg
jE€1 =&+ -+ &1,

with j summands.

If X is a manifold with corners with embedded boundary hypersurfaces Hi,..., Hg to

each of which is associated an index set &;, we define Aii}’g}“’g’“ (X) as the space of all

u € p~ HP(X), with p € C*°(X) a total boundary defining function, such that for each
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1 <i < k, there exist weights b; € R, j # 4, such that, with p; € C*>*(X) denoting a defining
function of H;,%¢

N b
H (piDp; — 2)u € p; HijHﬁo(X) near H;.

(2.)€E; i

Imz>—N
This is equivalent to u admitting an asymptotic expansion at each H; as in (2.34), with
each a(, ;) polyhomogeneous with index set &; at each nonempty boundary hypersurface
H 5N H; of H;.

We shall also need spaces encoding polyhomogeneous behavior at one hypersurface but

not others; for brevity, we only discuss this in the case of two boundary hypersurfaces

H, Hy: for an index set £ and « € R, Aifg , consists of all u € p~>°Hy® such that

H (p1Dy, — 2)u € pl p3 H® mear Hy, for all N € R;

(2,5)€8;
Imz>—N

this is equivalent to u having an expansion at H; with terms a, j) € p3 Hy°(Ha).

We briefly discuss nonlinear properties of b-Sobolev and polyhomogeneous spaces; for
brevity, we work on an n-dimensional compact manifold X with boundary 0X, and leave
the statements of the obvious generalizations to the setting of manifolds with corners to
the reader. Thus, if s > n/2, then H{(X) is a Banach algebra, and more generally u; - us €
P2 HE(X) if uj € p% Hi(X), j = 1,2. Regarding the interaction with polyhomogeneous
spaces, if £ is an index set, then Aghg(X) -ptHY(X) C p* H{(X) for all a,s € R when
e > Im¢&; in the case that & = (ap,0) U & with ImE&’ < Imag, we may take e = Imay.
One can also take inverses, to the effect that u/(1 —v) € H(X) provided u,v € HJ(X),
s >mn/2, and v < C < 1, which follows readily from the corresponding results on R", see
e.g. [Tay96, §13.10], by a logarithmic change of coordinates.

For comparisons with the Minkowski metric, we study the regularity properties of t=1
on ™R%, Define the index set

glog = {(_Zk7]) ke NO» 0< ] < k}v gl,og = glog \ {(070)} (236)
Lemma 2.8. Letting U = {t > 2r} C MR, we have
- Elog 00 - 00 — 00
11 e p ASN(U) C pCR(U) + FOHFE(U) € pOHR(D), (2.37)

and t~/p € C®(U N OR?) is everywhere nonzero.

Definition 2.9. We define p; € C"O(m@) to be any boundary defining function satisfying
pt/p=1t"1/pat UnNomR

By Lemma 2.8, this fixes p; in U modulo p2C>("R4); away from U, p; is merely well-
defined modulo pC>®(™R*).

Proof of Lemma 2.8. Using the notation of §2.1, we have t ! € C°°(Cs). Thus, it suffices to

. Elog

work in C; N {v > —%}, where we can take p = r~!; we then need to prove f := pt € Aplhg

2645 before, the vector fields p; D,,, defined using a collar neighborhood of H;, are in fact well-defined
modulo p; Vs (X), which is all that matters in this definition.
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and f| srz 7 0 there, which implies the claim about t1/p=1/f as Ailﬁg is closed under
multiplication. Note that f € C*°(R%), and f > 1. Let y(z) = x(z7!) € C>((0, 00); [0, 1])
in the notation (2.5), so Y(z) =0, 2 < %, and Y(z) =1, z > 1, then

f=1+v—2mpx(f)(logp —log(1 — 2mp)). (2.38)
Note that near p = 0, f = p~'t~! is the unique positive function satisfying this equation:
indeed, if f’ is another such function, then |f — f'| < (plogp)|f — f'|. At p = 0, we have
f=14wv. Thus, let £k > 2 be an integer, and consider the map

T: f = —2mp(log p — log(1 — 2mp))X(1 + v + f)
on p'OHE([0,ex), x (=1/2,5)), where § € (0,1) is fixed. Now

IT(F) =T () -3z < Crllplog p — plog(L = 2mp)| gl Xlicrlf = F'll o-s g

choosing €; > 0 sufficiently small, the first norm on the right can be made arbitrarily small.
By the contraction mapping principle, this gives f —1—v € p1*5H§° since k was arbitrary.
We can now improve the remainder term by plugging this into (2.38), which gives

f= (1 +v—2mx(1+v)(plogp — plog(l —2mp))) € p? O HE®,

so f € Ailﬁg + p2*5H§°. Using that y o (-) maps Ailﬁg into itself, as follows from the testing

definition (2.33), the desired conclusion follows from an iterative argument. O

2.3. Relationships between different compactifications. The only difference between
the compactifications ™R? for different values of m is the manner in which a smooth collar
neighborhood of R4 is glued together with R*. Since this difference is small due to the
logarithmic correction in (2.5) being only of size r~!logr, different compactifications are
closely related; see also [BVW16, §7]. Indeed:

Lemma 2.10. The identity map R* — R* induces a homeomorphism ¢: mRE — OR4, which
in fact is a polyhomogeneous diffeomorphism with index set Eog; that is, in smooth local
coordinate systems near O™RA and 8°R?, the components of both ¢ and ¢~ are real-valued
functions on [0,00) x R3 of class Ailﬁ’g. Moreover, ¢ induces a smooth diffeomorphism
IR = ORA, which restricts to ™B(MIT) = O8(°I1), and also induces a smooth diffeo-
morphism ™It =01+,

Proof. We have Ailﬁé C C® + p7YH® C €Y so it suffices to prove the polyhomogeneity
statement. Defining the smooth coordinates p and v as in (2.5), and the corresponding
smooth coordinates %p = r~1 and v = 7~ (t — r) on R4, we then observe that %p = p,
while in the notation of equation (2.38), we established that 1 +% = f € Affﬁ’g on ™R4,
giving the desired conclusion for ¢. For ¢~!, we write v = %0 — r=x(¢t/r)2mlog(r — 2m)
and note that t/r € C*°(°R%). For the last claim, we observe that

v=" at 9"R4 (2.39)

under the identification with 8°R? given by ¢. This also shows that the sets ™3 (mIt) =
{v > 0} and °B(°T") = {% > 0} are diffeomorphic. On ™M, resp. °M then, v, resp.
Oy, are local defining functions of the boundaries ™I, resp. 9°I*, hence by (2.39), the
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identification ™I =2 91 in the interior of ™IT indeed extends smoothly to its boundary.
O

In a similar vein, the scattering (co)tangent bundles can be naturally identified over the
boundary:

Lemma 2.11. The identity map T*R* — T*R* extends by continuity to a continuous
bundle map °T* R4 — 5°T* OR4 which restricts to a smooth bundle isomorphism over the
boundary.

Proof. Since away from r = 0, (d(r~!)) and r T*S? are smooth subbundles of =T~ mR4
for any m, it suffices to show that d(t~1), which is a smooth section of ST* OR4, _extends
by continuity from R* to 0™R% and restricts to a smooth section of T* _™R4 By

OmR4
Lemma 2.8, we have t = p~Lf, f € Ailﬁ’g, sodt = fd(p~!) + p~ldf; but f\amRzis smooth
indeed, while in a local product neighborhood [0,1), x R3 of a point in ™R4, p~ldf =
(pﬁpf);l—g + (BXf)dTX restricts to the smooth scattering 1-form (BXf)dTX on O™MR4. O

Let us discuss this on the level of function spaces. The map ¢ in Lemma 2.10 induces
C™(MR%) C Abres (R4) and vice versa. Moreover, it induces an isomorphism

phg
("p)*Hy 1oc ("RY) = (Op)* HE 1, ("RY), s,a €R, (2.40)

as follows from ¢ € Ailﬁ’g.

spaces ™M, the failure happening at ™. ; there, let us use

"p="p=r"Y "Mv="0—2m(°p)log((°p) " = 2m), v =r""(t - 7).

The corresponding statement is not quite true on the blown-up

Now, the b-tangent bundle on °M is spanned near >+ by spherical derivatives,

&l &l
08, amv’ 07}80,0 S (m’U + A log)amv7

Opaop & mpa’mp + Aphg phg

and °pdo, = ™pOm,; due to the logarithmic loss at .#+, we thus only have
("p0)" ("pr)" (" )" Hi 1o ("M) © (°0)" (1) ¢ (Cp ) H o ("M)

for all € > 0, but the inclusion fails for ¢ = 0. That is, conormal function spaces are the
same on ™M and °M up to an arbitrarily small loss in the weight at .# 7.

Polyhomogencous spaces on ™R? for different values of m are related in a simple manner:

if £ C C x Ny is an index set and g is given by (2.36), then ¢ induces inclusions
ASpg("RT) o A (ORT), A5, (ORT) o Ay 7 (MRT); (2:41)
this is only nontrivial where the two compactifications differ, i.e. away from r = 0, i.e.
where we can use ! as a boundary function for both °R% and ™R%. Considering a single
term r~%(logr)* f("v,w), with w € S and f smooth, in the expansion of an element of

Aghg(m@), the first inclusion in (2.41) follows from f o ¢ € Ailﬁg (°R%), which in turn

can be seen by Taylor expanding f(°v — 2m(°p)log((°p)~! — 2m),w) in the first argument
around %v. The proof of the second inclusion is similar. See [BVW16, Proposition 7.8] for
an alternative argument.

Polyhomogeneity on different spaces ™M on the other hand is much less well-behaved:
for instance, a function u € C*° (™M) compactly supported near a point in (".#)°, m > 0,
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sou € Ag’}?é@(mM ), is not polyhomogeneous on °M: it vanishes near (°.#7)° and (°I7)°,

but is nontrivial at the corner 2.7+ N 01+,

2.4. Bundles and connections near null infinity. In the energy estimate (1.19) for the
toy problem (1.18), derivatives of u along vector fields tangent to the fibers of 3: .# T — ST
are better controlled than general b-derivatives. In this section, we introduce analytic
structures on the blow-up M of R* capturing this in an invariant manner.

Definition 2.12. For vector bundles F; — R4, 7 =1,2 let

M+, g+, C Diffy,(M; 8* By, 5" Ey)
denote the C*>°(M)-module of all first order b-differential operators A which satisfy the
following condition near .#: if F; = U x Cki, j = 1,2, is a local trivialization of E;,
with & C R* a neighborhood of ST, see (2.12), and we pull these trivializations back to

B*E; = B7HU) x CFi, then A = V + f, where V is a ko x k; matrix of vector fields
Vij € V(M) which are tangent to the fibers of 3, and f € C°°(M)*2*¥1. Let moreover

OMﬁ*Elﬁ*Ez C Mp+p, 8B
denote the submodule for which f| ,+ =0

For a single vector bundle £ — R4, we write (O)Mﬂ*E = (O)MB*Eﬂ*E. Whenever the
bundle E is clear from the context, we shall simply write (O M := (O A gxg. For k € N, we
write M¥ C Difff for sums of k-fold products of elements of M.

It is easy to check that the definition of Mg«g, g+E, is independent of the choice of local
trivializations; for M, this is true as well, since vector fields tangent to the fibers of /3
annihilate the matrices for changes of frames of Fy and Es which lift to be constant along
the fibers of 5. We make some elementary observations:

Lemma 2.13. We have:

(1) pDiffL(M; B*E) C "Mp:p C Mpeg;

(2) if A,B € Mg«g, and A has a scalar principal symbol, then [A,B] € Mpg-g.
Strengthening the assumption to A, B € “Mg«g, we have [A, B] € "Mg:g;

(3) there is a well-defined map

Mc 2> A A®1d € "Mg.p/p; C°(M;End(8*E)).

Proof. (1) and (2) are clear from the definition. The map in (3) is given in a local trivi-
alization E = U x C* of E near ST as A - Idgy;, € Difff (M)***; the transition function
between two different trivializations is given by C € C*°(U; Ck**), which pulls back to M
to be constant along the fibers of 3; but then C~1(A - Idgxx)C — (A - Idgxs) = C7LA(C) €
C>°(M;CF**) | with A acting component-wise, vanishes on .#* by definition of Mc. O

In local coordinates [0, €0)p, X [0,€0)p, X R2; 5 near I° N .#* as in (1.17), with R? a
local coordinate patch on S?, elements of Mc are linear combinations of P00y, P10p;, and
pr0za, a = 2,3, plus smooth functions. We thus see that (O)MQ is generated over C*°(M)
by (pr)C>(M) and lifts of elements V € Vi, (R?) which vanish at ST as incomplete vector
fields, i.e. V|g+ = 0 € Tg+R4. (This should be compared to the larger space W}, (M), which
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is generated by lifts of elements V' € V,(R4) which are merely tangent to Sy.) Note that
by (2.28), we have

p~ 00, py piton € "M (2.42)

for a fixed choice of p, the operators p~'dy and 9; acting on sections of any bundle 3*F
are therefore well-defined, modulo p; C* and pop;p+C® valued in End(8*E), respectively.

The modules defined above are closely related to a natural subbundle of P74 M:
Definition 2.14. Denote by
PTyeM CPT e M

the rank 2 subbundle generated by all V € PT,+ M which are tangent to the fibers of 3,
see (2.13), and let T M be any smooth rank 2 extension of T ,+ M to a neighborhood of
#T. Let then

PTM)* :={a ePT*M: a(V) =0 for all V € °TM} c PT*M
denote the annihilator of #TM in PT*M.

Near I°N .7+, we can for instance take #T'M C PTM to be the subbundle whose fibers
are spanned by p;d,, and po0p,.

Remark 2.15. Another equivalent characterization of M is that the principal symbols of
its elements vanish on (°T,+M)L. We also note that for p € .#F, there is a natural
isomorphism

(PTM)y = Tj, S (2.43)

Indeed, given V € prM , note that 8,V € PT4+ R is tangent to ST, hence has a well-defined
image in 7,S; and V € BTpM is precisely the condition that this image be 0. Thus, the
isomorphism (2.43) is obtained by mapping n € Tg(p)SJr to PT,M 3 V = n(B.V).

Using this subbundle, we have
Mc = C®°(M;PTM + p/°TM) +C>®(M) C Diff} (M),
where we write
C®(M;PTM + p/PTM) := C®°(M;PTM) + p; C*°(M; T M). (2.44)

Note here that the sum of the first two spaces on the right is globally well-defined on M even
though we only defined #T'M in a neighborhood of .#7: this is due to PTM c PTM. The
general modules Mg- g, g+, have a completely analogous description obtained by tensoring
the bundles with Hom(5*E1, 8*E»).

We next prove some lemmas allowing us to phrase energy estimates for bundle-valued
waves invariantly.

Lemma 2.16. Let E — R? be a vector bundle, and let d¥ € Diff'(R*; E,T*R4 ® E) be a
connection. Then d¥ induces a b-connection, i.e. a differential operator

d¥ e Diftl(M; B*E,"T*M © 8*E), (2.45)
on B*E — M. If d¥ is another connection on E, then, with notation analogous to (2.44),

df —d¥ € ¢ (M; ((°*TM)* + p/°T*M) @ End(8*E)). (2.46)



44 PETER HINTZ AND ANDRAS VASY

Proof. Fix a local frame €' of F, then for u; € C*°(M) C C®(R*), we have
dE(uiei) = du; @ €' + u; dFe’.

Now the map u; — du; extends to M as the map u; — bdu;, with Pd € Diff} (M; C,PT* M);
and f':= dFe’ € C°(R%; T*R? ® E) canonically induces 5*f* € C®(M;°T*M ® *E) by
,B*fli(V) = f{(B,V), V € PTM. Therefore, the expression d¥(u; - B*e?) = Pdu; @ f*e + u; -
B* f* proves (2.45).

Letting f% := dfe’, we have (dF —d®)(u;-f*€?) = u;- (8 fi—B* f1). But PT 1+ M C ker s,
so the bundle map d¥ — d¥ annihilates T M at #7, giving (2.46). O

Lemma 2.17. In the notation of Lemma 2.16, suppose E is equipped with a fiber metric
(-, )E, and let

K € C®(M; (S*PTM + p; S*"TM) ® End(B*E)). (2.47)

Moreover, let B € C*°(M;Hom(PTM,PT*M)) denote a fiber metric on P T'M. Then, acting
on sections of B*E, we have

(dPY*BKd¥ — (df)*BKdF € p;Diff}(M; 8*E), (2.48)

where we take adjoints with respect to the fiber metrics on "TM and E, and any fized b-
density on M. Moreover, if (dE)Jr denotes the adjoint with respect to another fiber metric
on E, then (d¥)TBKd¥ — (d¥)*BKdF ¢ pIDiﬂ“%)(M;ﬁ*E).

Note that for K as in (2.47) with both the S? 5T M and the S? T M summands positive
definite, and adding weights, the pairing ((d*)* BKd"u,u) provides the control on fiber-

tangential derivatives of u as in the toy model (1.19), but is weaker by p}/ % for general
b-derivatives; we will take care of this in Definition 4.1. The space in (2.48) will be weak
enough to be treated as an error term (similar to the Diff}, spaces arising as error terms in
Lemma 3.8 below).

Proof of Lemma 2.17. We write the left hand side of (2.48) as
(dPY*BK (d¥ — dP) + (d¥ — d¥)*BKd",
with one summand being the adjoint of the other. Now, (d¥)*B € Diff\ (M;*TM ® B*E,
B*E), while Lemma 2.16 implies
K(d¥ —d¥) € p; C®(M;"TM ® End(5*E)).
This proves (2.48). (élternatively, one can analyze the second summand directly, using that
over p € M, ((d¥ —dE)*(B(V)®e),e)r = (e, (d¥ —dP)(V@e))p for V € PT,M, e € €
Eg(p.) For the second part, note that the two adjoints are related via (dBY = c~1(dF)*C
for some C' € C*(R4; End(FE)), hence d¥ := (d)* = d¥ + C*[d¥,(C~1)*] is a connection
on E, and therefore
(dBY — (dBY)BKdF = (d¥ — df)*BKd¥ € p/Diffi (M; *E)
by what we already proved. O

Lemma 2.18. Equip E — R* with a fiber metric and fix a b-density on R%. Then for
principally scalar W &€ OMB*E, with principal symbol equal to that of the real vector field
Wy € W(M), we have W + W* € —div Wy + p; C®°(M;End(B*E)).
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Proof. In alocal trivialization on E, we have W = W1 @1+Wy, Wy € pr C*°(M;End(8*E)),
while the fiber inner product k on FE is related to the standard Euclidean fiber inner product
k in the trivialization by k(e, ¢') = k(Ce, Ce') for some C smooth on R%, hence fiber constant
on M. Denoting adjoints with respect to k by {, and letting C' := 6’*6’, we thus have

W+ W= (Wi @1+ C W] @1)C) + (Wo + W)
€ —(divivy) @ 1+ CH W] @1,C] + p; €,

with the second term also lying in p; C* since C' is fiber-constant. U

3. GAUGE-FIXED EINSTEIN EQUATION

As motivated in §1.2, we work in the wave map gauge with respect to the background
metric g, constructed in §2.1, since we expect the solution g of the initial value problem
(1.4) for the Einstein vacuum equation with initial data asymptotic to mass m Schwarzschild
to be well-behaved on the space M. The gauge condition reads

(93 9m)u = (99m 04Go9m)u = 9™ (T(9)n — Tgm)ir) = 0, (3.1)
where we recall the notation Gy = 1 — %g trg, and (04u), = —uu,”. For brevity, we shall
write

T(g) = T(g; gm),

when the background metric g,, is clear from the context. A simple calculation shows that
if h e HEO;fﬁ’fe’*E(mM), € > 0 small, is a metric perturbation, and g = g,, + ph, then the
gauge condition Y(g; g,) = 0 implies that the d;-derivatives of the good components hoo,
hop, and thh := ¢%hz; decay towards .. (See equation (A.5) for this calculation for A
with special structure.) A key ingredient of our iteration scheme is therefore constraint
damping, which ensures that the gauge condition, or, more directly, the improved decay of
the good components at .# T, is satisfied to leading order for each iterate h. We implement
constraint damping by considering the gauge-fixed Einstein operator

P(h) == p~*Po(gm + ph), Po(g) := Ric(g) — 0" Y (g; gm), (3.2)
where on 1-forms u

o u = Ot — 27% ®s U+ 'y(Lpt_1vgmptu)gm (3.3)

't

is a modification of the symmetric gradient d;, by a 0-th order term; here p; is fixed
according to Definition 2.9. We discuss the effect of this modification in §3.3, see in par-
ticular (3.26a). From now on, the mass parameter m will be fixed and dropped from the
notation whenever convenient.

3.1. Form of metric perturbations. One can easily establish the existence of a solution

of (1.4) near I°\ (I N .#T) for normalized initial data (see Theorem 1.8) which lie merely

. 1/2+0 . . . . . .
in ,00/ + Hpe; this is due to nonlinear interactions being weak at I 0 which in turn can

ultimately be traced back to the null derivatives (2.28) coming with extra factors of pg.%”
However, we will use (and prove) the existence of leading terms of the perturbation h of

27This is related to the solvability of semilinear equations with initial data or forcing terms which are
mildly growing at spatial infinity, see [HV15, Theorem 5.14], where one can take the weight [ < —1/2 in
certain circumstances. This is also the level of decay for which Bieri [BZ09] establishes the global stability
of Minkowski space.
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g = gm+ph at FT; as discussed around (1.18), this requires the initial data to be decaying

to mass m Schwarzschild data. At IT however, weak control, i.e. h € pJ_rl/ 2+0H§° away

from £, suffices due to the nonlinear interactions being as weak there as they are at
I°. (The decay of our initial data does imply the existence of a leading term at I, see
§7.) Motivated by this and the discussion of constraint damping above, and recalling the
notation (2.30) and the bundle splittings (2.19) and (2.21), we will seek the solution h of
P(h) = 0 in the function space X%ibo:br-br.b+ .

Definition 3.1. Let k € Ny U {co}, and fix weights®®
—1 < by <0< by <bp <min(3,b);

let further x € C*°(M) be identically 1 near .#*, with support in a small neighborhood
of # where the bundle splitting (2.19) is defined; different choices of x will produce
the same function space, as we shall discuss below. The space X*:b0:b1:81:0+ congists of all
h e HP 7V (M %52 5 T*RT) such that

k;bo, b’y b k3bo,b bt/ o "
Xhoo, xtkh € H"""(C), xhgy € Hy 7 (B(r T*S?)), (3-4)
Xhi1 = xh{Y log pr + xh{Y + B, (3.5)
0 0 0
x(hot, hyg, haB) = X(h(()1)> h§5)7 hég)) + (hOI,ba hlE,b? hrzB,b)a (3.6)

where the leading and remainder terms are
¢ 0 0 0 bo by rrk
hgl)’ h((n)v hgg)v h((—lz,) € P00P++Hb(j+)a
K;bo,b1,b
hotbs hitps iy Papn € Hy o7,

the latter supported on suppy and valued in the bundles C (for £ = 0,1), C, B*(r T*S?),
and *(r? S2T*S?), respectively; we describe the topology on Xkibobrbpbt helow. Here, we
use a collar neighborhood to extend functions from .#T to a neighborhood of .#* in M,
and to extend the relevant bundles from .#* to smooth subbundles of 3*S?5°T*R% near
# T all choices of collar neighborhoods and extensions give the same function space. We
shall suppress the parameters by, by, b7, b4 from the notation when they are clear from the

context, so
xk . akibobr,byby

Remark 3.2. The partial expansions amount to a statement of partial polyhomogeneity:

for example, the condition on hg; in (3.6) for k = oo can be phrased as hg; € A{tolﬁl’gl +

Hgo ibo,br ’b+, and similarly for k < oo if one replaces the first summand by a function space

capturing the finite regularity of the leading term at .#T. In view of the existence of
at most logarithmically growing leading terms of h € X* at .#%, we automatically have
h c Hk§b07*0»b+

b .

Thus, h € X* decays at I°, while (3.4) encodes the vanishing of the good components
at #; (3.5) and (3.6) assert the existence of leading terms of the remaining components,

28The imposed upper bound of % for by and b} simplifies the arithmetic in §4 but is otherwise artificial;
the natural bound is by < b7 < min(1,bo), with the upper bound 1 arising from the expected presence of
lower order terms in expansion of the metric at .# ™ as well as from the requirement that the function space
be independent of the choice of collar neighborhood of # .
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in the case of hi1; allowing for a logarithmic term;?’ at I finally, h is allowed to have mild
growth. The existence of leading terms of h € Xk0br:ib+ at 7+ implies in particular that

p10p by € Hg—l;bo,bz,b+7 (i, ) = (0,1), (1,b), (a,b),
Plaplhn S hgll) + H{:_l;bo’bl’bJr’ (p[apI)thl c H§_2;b0’bl’b+,

which we will frequently use without further explanation.

(3.7)

For h € X°bobrbrbt e describe P(h) using a closely related function space:

Definition 3.3. For k € Ny U {oo} and weights bg, b, b}, by as above, the function space
Ykibo bbb consists of all f € H{f;bo’*z’b*(M;ﬁ*SQ sCT*R4) so that near &+,

k;bg,—1+b" b k;bg,—14by,b
f007 fDBa Jl’/ffej—[b ’ ! J'_7 f017 f157 fdgeHb 0 ! +7

0) _ 0 bo b k;bo,—1+b7.b
Ji1 = f1(1)P11 + fi1,p, f1(1) € poopr{f(er), fiy € H i

The shift by —1 in the decay order at .# T is due to the linearized gauge-fixed Einstein
equation, or even the linear scalar wave equation, being pl_l times a b-differential operator
at £, cf. (1.18). A calculation will show that for h as above, the gauge-fixed Einstein
operator P(h) defined in (3.2) satisfies P(h) € Y™oio:brbrbt see Lemma 3.5 for a more
precise statement. Note here that P(h) is well-defined (i.e. g, + ph is a nondegenerate
symmetric 2-tensor, making P(h) computable) in a neighborhood of M due to the decay
(in L) of g = gm + ph to gm. In order for P(h) to be defined globally, we need to assume
ph to be small in L°°.

Fixing a smooth cutoff y as in Definition 3.1, we can define a norm on ¥,
the notation of Definition 3.3 by setting

(3.8)

/ .
b[ b1 7b+ using

||f||yk;b0,b’1,b1,b+ = ”(XfOO, Xf()l_)a Xt/i‘f)HH:;bo,fl+b’I,b+ + ”(XfOL Xfll_)a Xfa,l_;)HHllj;bo,—1+bI,b+

0 0
F I o ot gy + 1 = A i sor 1] -2

where the choice of py-weight in the remainder term is arbitrary (as long as it is fixed and less
than —1). Equipped with this norm, Y*ibo-b1 b1:b+ is a Banach space. A completely analogous
definition gives a norm ||- ka;boﬁbpb’pby The spaces X°0-0107b+ and Yooibo:brbibs equipped
with the projective limit topologies, are Fréchet spaces.

In particular, using the Sobolev embedding H{(M) < L*(M) (which uses that 3 >
dim(M)/2), we have an embedding X3 < p° prt plf L*°; thus, P(h) is well-defined globally
on M provided h is small in X3.

It will occasionally be useful to write

xb=xh oxt, Y=y, o), (3.9)

where yghg = {Xfl((l)): 1((1)) € pgoplf HF(#7)} encodes the leading term of elements of V¥,
while y,’; ={f ek fl((lj) = 0} captures the remainder terms (i.e. with vanishing leading
terms at #1); the spaces X;]fhg and X}f are defined analogously.

29The slightly faster decay b’ of the good components as compared to the decay b; of the remainder terms
of the other components is needed to handle the logarithmically large size of the coefficients coupling good

components into the others, encoded in the (47 1) entries of Ap and B in Lemma 3.8; see the discussion
following (3.26¢).
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In order to exhibit the ‘null structure,” or upper triangular block structure, of the lin-
earized gauge-fixed Einstein operator D, P for h € X at .# in a compact fashion, we
introduce subbundles of the symmetric 2-tensor bundle. We use the following notation:
given a nowhere vanishing section e of a complex vector bundle £ — U over base manifold
U, we denote by (e) the line subbundle of E whose fiber of p € U is given by {\e(z): A € C}.

Definition 3.4. Define the subbundles
Kf) = (2dsdg) & (2ds @ r T*S?*) @ (r’¢) ", K§:= Kf, & (ds?),
of §25¢T *@| g+, which we extend in a smooth but otherwise arbitrary fashion to a neigh-

borhood of ST as rank 5, resp. 6, subbundles of S25°T*R4, still denoted by Kf, and K§.
Furthermore, define near S* the subbundles

Ko = (dg®) & (2dg @ r T*S?) & (r’¢), Ki = (ds®). (3.10)

The only property of Ky and K11 which we will need is
K{® Ko = S**°T*R4, K¢, @ Ky = K§.

Denote by
mo: SET*RE = §25°T* R/ K§ = Ko, (3.11)
T K§— K§/K{, = Kn
the projections onto the quotient bundles,
76 i=1—my: S?*T*RY = K§,
and
miy = Ams: SECTRY = Ky, 7y o= (1 — 7pp)w§: S25°T*RE — K¢,. (3.12)
Writing
B*S? = grS?seT*RA (3.13)

from now on, the improved decay (3.4) of the good components of h € Xkibobrbpbe can
then be expressed, using local coordinates (62, 0%) on S?, as

moh = hoo dg? + hoa dg d6® + (th h) gy d6® d6® € HY"'1" (8°K),

similarly for (3.8). The refinement K¥, C K¢,
T h = 2hgy ds dg + 2hoy ds d9° + (hay — (3 ¥ h)gap) dO° d6°

will be used to encode part of the ‘null structure’ of the linearized gauge-fixed Einstein
equation at £, as discussed in §5; the component

7T11h = h11 d82
will capture the logarithmically growing (relative to r~!) component at .# 7.

Consider now a fixed h € X* which is small in X3 so that g := g,,, + ph is a Lorentzian
2m

metric on R*. Working near .# %, we recall g,, = (1 — “)dqds — 7‘2g and the barred index

notation (2.20), so with p = r=!, the coefficients of g in the product splitting (2.23) are
goo =1 hoo, go1 = % +r~Hhor —m), gob = hg,

~1 9 (3.14)
g =71""hi, g1 = hyp, Gab = —T"Fab + Thgp;
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the coefficients g"* of the inverse metric g=! = g1 —r~1g_ thg 't + r=2g lhg lhg 1 +

:34-3bg,3—0,34-3b
HEO +3% 30+ are

- :24-b9,2—0,2+2b _ 9—0.2—0.242b

g% € —dr~thyy + HTETORTOREE g0 @ 9y 4r =Y (m — hoy) + Hyo 020
- b ;3+b0,3—0,342b :2+4bg , 24V, ,24+2b
g% € 2r—2hy b 4 HEOTROSTOSEBRE L gl e gy 4 HOTTO T

00;3+bg,3+b",3+2b _ ;4+2b 74 0,4+2b.
1b€21" 2h0 +H 0 T +’ gabE—’l" gab 3hab+H00 +2bo + +

(3 15)
where we raise spherical indices using the round metric ¢, i.e. ho® = g“bhog etc. Thus,

9o g,uu ECOO+HOO 31+bo,1— 01+b+, g65+gab’ g _9 EPCOO—I-HOO ;14-bo,1— 01+b+ (316)

The calculation of the connection coefficients, components of Riemann and Ricci curvature,
and other geometric quantities associated with the metric g is then straightforward; the
results of these calculations are given in Appendix A.

3.2. Mapping properties of the gauge-fixed Einstein operator. Let h € A =
Xoeibo bbb+ Tn order to compute the leading terms of the gauge-fixed Einstein operator
P(h) = p=3Py(g9), g = gm + ph, see (3.2), we first use the definition (3.3) of 2(5* — 5;%)
(given explicitly by (A.2) in the case m = 0) and the observation, from (A.5), that T(g) €
H, 00:2+bo, 10,24+ (note that the explicit terms given in (A.5) lie in this space in view of
(2. 28) and the decay of the coefficients of h in Definition 3.1), to deduce that

25 — 5 )T(g) € Hoo 340,240 3+ (3.17)
The decay rate at I holds globally there—mnot only near IT N .#* where g,, = g . To see
this, it suffices to show that Y (g) € pfj’”Hgo near (I7)° (since 6* —d,,. € py Diffl, cf. (3.3),
then maps it into the stated space).*® But this follows from the fact that there g differs from
the smooth scattering metric g,, by an element of p n b*H > (with values in S25°T *]R4)
Concretely, choosing local coordinates y!, 42,y in OR?, near any point p € (I+)°,
can introduce coordinates 20 := pll, 2% = pjrly“ (a = 1,2,3), in a neighborhood of P
intersected with p > 0, and {0,u: p = 0,...,3} is a frame of sCTR? there; but then, using
On € py Vo (RY), one sees that T'(gy, + ph)Yy — T(gm)%y, is a sum of terms of the form

((gm + pR)"™ = (gm)"")0zx (gm)ro € beJrHﬁo - prCP(RY) C p%jb*Hgo (near p),
and (g, + ph)" 0.« (phye ), which likewise lies in p> " HZ® near p. (The Christoffel symbols
themselves satisfy T(gm)”, € pTCP(RE), T(gm + ph)¥y, € p+CZ(RY) + p 2+b+Hoo )
We can now prove:

Lemma 3.5. For any h € X*°, the tensor P(h) is well-defined near OM (in the sense
explained in the paragraph after Definition 3.3), and we have xP(h) € Y for any x €
C>®(M) with support sufficiently close (depending on h) to OM. We have P(h) € Y

rovided ||h||ys is small. More precisely, we have P(h)g; € Hy ibo, —1+8.b+ and
p X D Y, ab
P(h)11 € —2,()7281(90}“1 — lpilalhdéalhﬁ— + H ibo,~1+b1,b+ 3.18
4 de b
when p =r~! near ST.

30Recall that on M, we can take t~' as a local defining function of (I7)°; on ™M, this needs to be
modified by a term of size t~2 logt due to the different smooth structure.
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Proof. We use the calculations (near I° U .#+) of 09, Y(g) in (A.6) and of Ric(g) in (A.8);
in view of the calculation (3.17), it suffices to prove that p~3(Ric(g) — 6; T(g)) € Y
near OM. In a neighborhood of I° U .#7, this follows by subtracting (A.6) from (A.8)
and dividing by p? (thus shifting the three orders down by 3); the expression (3.18) is a
particular result of this subtraction.

It remains to justify the decay rate globally at I™, which is a slight extension of the
calculations justifying (3.17) above. We use local coordinates near p € (I7)° as above:
firstly, the membership of 5;mT(g) follows directly from the above arguments. Secondly,
the difference of curvature components R(gm + ph)*vix — R(gm)*vkx is a sum of terms of
the schematic forms 0,(I'(gm + ph)5y — T'(gm)iy) and (F(gm + ph)i, — L(gm)5i )T (gm +
ph)¥,, both of which lie in pier*Hgo by the calculations above. But by construction, see
equations (2.10)—(2.11), gy, differs from a flat metric by a smooth symmetric scattering
2-tensor of class p;C>(R%), which implies that R(gm)",xx € p3C®(R?) near p. Therefore,
the Riemann curvature tensor satisfies

R(gm + ph) € p}** Hy? (3.19)

as a section of *°TR4 @ (*°*T*R4)®3 near (I1)°, which a fortiori gives Ric(g) € pi+b+Hgo,
as desired. (The vanishing of P(h) modulo the faster decaying space pgngo near (1°)°
requires more structure of g,,, namely the Ricci flatness of the background metric g,,.) O

Note that one component of P(h) has a nontrivial leading term at .#*; in order for this to
not create logarithmically growing terms in components (other than the (1,1) component)
of the next iterate of our Newton-type iteration scheme (which would cause the iteration
scheme to not close), one needs to exploit the special structure of the operator D P. See
also the discussion around (1.26).

3.3. Leading order structure of the linearized gauge-fixed Einstein operator. For
h € xooibo.brby by small, write

Ly := Dy P, (3.20)
and let g = g, + ph. We shall now calculate the structure of L ‘at infinity,” that is, its
leading order terms at 19, #%, and I": at .# T, we will find that the equation Lyu = f can
be partially decoupled to leading order; this is the key structure for proving global existence
for the nonlinear problem later. Recall from [GL9I1] that

DyRic = 30, — 0:6,G 4 + %y,
Bo (W) = (Ry)" pnun” + 5 (Ric(g) ur, + Ric(g)y uag), (3.21)
D,Y(g)u = —6,Ggu — Cy(u) + %4 (u),
where (our notation differs from the one used in [GL91] by various signs)
Co(wn = 92 Co"s Cay =T(9 = Tlgm)uvi oW = T(9) wr.

Here, index raising and lowering as well as covariant derivatives are defined using the metric
g, and (Ogu)u = =" Thus, recalling the definition (3.3) of §*, we have

Ly =p (304 + (8" = 62)0,Gy + 6" (€ — D) + Rg)p, g = gm + ph, (3.22)
which has principal symbol
oa(Lp) = 3Gy = 3(gn)"", g = p’g, (3.23)
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where G € C*®(T*R?) is the dual metric function G(¢) = |[¢|4. As a first step towards
understanding the nature of Lj, as a b-differential operator on M, we prove:

Lemma 3.6. We have Ly € p; 'Diff2(M; *S?) (see (3.13)).

Proof. Since gy, is a smooth scattering metric, we see, using local coordinates 2# and the
membership 9,1 € pV,(IR*) as in the discussion preceding Lemma 3.5 to compute Christoffel
symbols, that

Ry, € p* C®(RY; End(S*°T*R%)), 4, € pDiff] (R%; S2CT*R4 SCT*RY),

and Oy, € p? Diff2(R%; S25T*R%). This gives Lo € Diff3(R%; S25°T*R%), and thus the
desired conclusion away from .#+. Near .+, any element of Diff}(R4) lifts to an element
of pj_lDiﬂ",lJ(M ); moreover, for Vi,V € Vb(@)7 the product V1 V5 lifts to an element of
pl_lDiﬁ% (M) provided at least one of the V; is tangent to S*. Thus, expressing [J,,, in the

null frame 0y, 01,9, (a = 2,3), we merely need to check that the coefficient of 97 vanishes
at S*; but this coefficient is gl = 0. O

As suggested by the toy estimate (1.19) and explained in §2.4, we need to describe lower
order terms of Ly, near £ in two stages, one involving the module M from Definition 2.12,
the other being general b-differential operators but with extra decay at py = 0. For illus-
tration and for later use, we calculate the leading terms, i.e. the ‘normal operator,” of the
scalar wave operator:

Lemma 3.7. The scalar wave operator Oy, = (see (3.23)) satisfies

o

ng c _4p—28081 +Hb §1+b0,—1+bp1+b+Mé+ (COO + H§0;1+b0,—0,1+b+)Diﬁ%(M). (324)

For the linearized gauge-fixed Einstein operator Ly, the analogous result is:
Lemma 3.8. For h € X* small in X3, we have
Ly =LY+ Ly,
where, using the notation (3.13) and fizing p = r~ near &7+,

Ly =—p~'((207'00 + An)Or — By),

=~ 00;14-bg,—1+b7,

o (3.25)
Lh c Hb 1+b+M%*S2 + (COO + 1—_1—50,14*1707 0,1+b+>DiH2b(M;6*SQ);

here p~10y and 0y are defined using equation (2.42) and Lemma 2.13(3). In the refinement
of the bundle splitting (2.21) by (2.22), Ay, and By, are given by

2y 0 0 00 0 0
—20tho1 0 0 00 0 0
0 0 v 00 0 0

Ap = 0 0 —201h® 0 0 v+201hor 591h™
—201h3 0y 00 0 0
2y 0 0 00 v 0
—20thg; 0 0 00 0 0
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and

0 0 00O0O0OTG O

2010thg1 0 0 0 0 0 O

0 000 O0OTG O

By, =12010ih17 0 0 0 0 0 O

20100hy; 0 0 0 0 0 O

0 000 O0O0OTG O

2000hhgz; 0 0 0 0 O O

The proofs of these lemmas only involve simple calculations and careful bookkeeping; they
are given in Appendix B. We thus see that at .# T, L; effectively becomes a differential
operator in the null coordinates 2° = ¢ and ' = s only, as spherical derivatives have
decaying coefficients; this is to be expected since r 1V, V € V(S?) C W,(M), is the naturally
appearing (scattering) derivative just like dyp and 9. We point out that a number of terms
of Ly, which are not of leading order at .#* do contribute to the normal operators at I°
and I7T; this includes in particular the spherical Laplacian, which is crucial for proving an
energy estimate.

For the analysis of the linearized operator Ly, the structure of the leading term L% will
be key for obtaining the rough background estimate, Theorem 4.2, as well as the precise
asymptotic behavior at .#, as encoded in the space X*°. To describe this structure
concisely, recall the projection 7y defined in (3.11) projecting a metric perturbation onto
the bundle Ky encoding the components which we expect to be decaying from the gauge
condition; and the projection 717 defined in (3.12) onto the bundle K1, encoding the (1,1)
component, which we allow to include a logarithmic term. Thus, in the splitting used in
Lemma 3.8, mp picks out components 1,3,6, w1 picks out component 4, and 7§, picks
out components 2,5,7. Suppose now h' satisfies the asymptotic equation LY’ = 0. Since
moAp| kg = 0and o Bh| kg = 0, the components moh’/, which we hope to be decaying, satisfy
a decoupled equation

2y
(2p~ '8 + Acp)01(moh/) =0, Acp:= | 0
2y

(3.26a)

O O
==

where Acp € C*°(M;End(Kjp)) is the endomorphism induced by mgAy, on 5*S%/K§ = K.
(Thus, this matrix is the expression for Ay, ¢ in the splitting of Ky & 3*5?/K§ induced by the
splittings (2.21)—(2.22) via the projection my.) Note that by equation (2.28), p~19 is pro-
portional to the dilation vector field —p;0,, (which is the asymptotic generator of dilations
on outgoing light cones), hence equation (3.26a) is, schematically, (pr0,, — Acp)(moh') = 0.
Choosing v > 0, the spectrum of Acp is positive, which will allow us to prove that moh'
decays at £, similarly to the discussion of the model equation (1.24); we will make this
precise in §84.1 and 5.1.

Next, using that 7§, Ap|k,, = 0 and 7{; By|k,, = 0, i.e. the logarithmic component hqy
does not couple into the other nondecaying components, we can obtain an equation for the
nonlogarithmic components 7§, which only couples to (3.26a), namely

20" 10001 (751 1') = (= Af, 1101 + Bf, 11) (moh'), (3.26b)
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—201ho1 0 0 20101ho1 0 0
—201hg; 0 0 20001hg; 0 0

the precise form of A?z,ll’ Bli,ll? mapping sections of Ky to sections of Kf,, is irrelevant:
only their boundedness matters (even mild growth towards .#* would be acceptable). The
operator on the left hand side of (3.26b) has the same structure as the model operator
in (1.22); the fact that the forcing term in (3.26b) is decaying will thus allow us to prove
that 7§, A’ is bounded at .# T, consistent with what the function space X* encodes.

Lastly, m11h/ couples to all previous quantities,
_ moh'
2p 16081(7‘(‘11]1/) = (—Ah71161 + Bh711) (ﬂ_co h/> , (3.26(3)
11

Api1i = (0 —201m® v+ 201her 0 0 %@ha?’),
B = (2010thy1 0 0 0 0 0).

The logarithmic growth of the first component of By, 11 is more than balanced by the fast
decay of the (0,0)-component of A’ that it acts on.

Remark 3.9. The fact that the logarithmic growth of hi; is rendered harmless due to its
coupling only to the faster decaying moh’ is the manifestation of the weak null condition
[LRO3] in our framework. Here, the faster decay of mph’' is accomplished by means of
constraint damping, whereas in [LR05, LR10] the faster decay of 7y applied to the difference
of the nonlinear solution and the background (Minkowski) metric follows from the gauge
condition which the nonlinear solution verifies, cf. [LR10, Corollary 9.7].

More subtly, the p?’ decay of h{y is required at this point to allow for an estimate of the

remainder of hq; with weight ptl” (> pll)l log pr). The last component of A 1, acting on
the trace-free spherical part of i/, in general has a nonzero leading term at .# +:31 hence,
solving the equation (3.26c), schematically p;0,,(O1m11h') ~ O1h® (011 5, Tequires 11 h/
to have a log pr term.

At the other boundaries I and I, we only need crude information about L; for the
purpose of obtaining an energy estimate in §4:

Lemma 3.10. We have Ly, — Lo € H S 077014 pig? (A1, g*52).

Proof. Near (IT)°, the stated pfb* decay is a consequence of the calculation of differences
of Christoffel symbols and curvature components as in the proof of Lemma 3.5. Near .,
we revisit the proof of Lemma 3.8: in the notation of equation (3.25), the expressions for Ay
and By give Lg — L8 € HgO;HbO’_O’Hb*Diff}ID. Regarding the second remainder term in Eh,
we note that the leading order terms, captured by the Diff% summand with C*° coefficients,
come from terms of the metric and the Christoffel symbols which do not involve h; thus,
these are equal to the corresponding terms of L. O

In order to obtain optimal decay results at I in §5.2, we shall need the precise form of
the normal operator of Lj, which by Lemma 3.10 is the same as that of Lg. Now, g, is

31The discussion of Theorem 1.10 shows that for nontrivial data, this leading term must be nontrivial
somewhere on 7.
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itself merely a perturbation of the Minkowski metric, pulled back by a diffeomorphism, see
(2.10). Tt is convenient for the normal operator analysis at I in §§5.2 and 7 to relate this
to the usual presentation of the Minkowski metric g = dt? — da? on R* in U = {¢ > %r}:

Lemma 3.11. The metric g lies in Ailﬁ’g (U; 8?5¢T* ™R4) for the index set Elog defined in

&l — —
(2.36), and g — gm € A 2 (U; ST ™RY) C p'=OHo(U; S 5T ™R4).

The failure of smoothness (for m # 0) of g is due to the logarithmic correction, see (2.5),

in the definition of the compactification ™R%. On the radial compactification R? on the
other hand, g is a smooth scattering metric.

Proof of Lemma 3.11. In the region Cs defined in (2.8), g,,, = g is smooth, see the discussion
after equation (2.10). In the region Cj, see equation (2.6), the spatial part dr? + r2g is a
smooth symmetric scattering 2-tensor on ™R%. In the region t > %r and for large r, the

claim follows from Lemma 2.8 in that region. U
Define
L= 30y + (8" = 55)04Gy, (0" — 6p)u = 29t™ " dt @ u — vt~ (vysu)g, (3.27)

cf. the definition (3.3), which is the linearization Ric(g) — 6*Y(g) around g = g, where
Y(g) is defined like Y(g) in (3.1) with g in place of g,,. Using Lemma 3.11, one finds

Le Ailﬁ’g - Diff2 (U; 82 °T*R*). Furthermore,

(c/*/

5 (1) - Diff2 (U; 2 S°T*R%); 3.28
b

but 9, € pl_lvb(M ), while derivatives along b-vector fields tangent to S lift to elements
of Vy(M); thus,

L—Lo€p; ' pl7°H - Difff (near I'™ ¢ M). (3.29)

4. GLOBAL BACKGROUND ESTIMATE

We prove a global energy estimate for solutions of the linearized equation Lpu = f with
h € X%, and show that u lies in a weighted conormal space provided f does; recall here the
definition (3.20) of L. The weak asymptotics of u at the boundaries I°, .#*, and It can
be improved subsequently using normal operator arguments in §5. At .# T, the estimate

loses a weight of p}/ % for general b-derivatives, as we will explain in detail in §4.1. We
capture this using the function space Hly

Definition 4.1. Let E — R4 be a smooth vector bundle. With Mp«g defined in §2.4, let
HE(M; °E) :={u € L} (M; B°E): Mg-gu C L}(M; B*E)},
HY,(M; 8°E) := {u € H}(M; 8°E): py/*Dift},(M; 5" E)u C L}(M; 5°E)}.
For k € Ng and e = 3, .7, define
HY(M; BE) = {u € L}(M; 3*E): Difff(M; f*E)u C H}(M; 3°E)}.
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If {A;} C Mp«g is a finite set spanning Mg+ over C*°(M), we define norms on these
spaces by

el gy = Wligcarsse )+ D A5l aroe
J

— 1/2
Hu”H;’fb(M;,B*E) = HUHH};”f)(M;ﬁ*E) + oy UHH]’;H(M;Q*E)‘

Note that for u € H}, we automatically have p;Diff{,(M)u C L2 by Lemma 2.13(1), so
the subspace H} C Hé encodes a p}/ 2

1,k Lk k+1
Hab and Hj’b are the same as H{ ™.

Fix a vector field

improvement over this. Away from .# T, the spaces

D, € Vp(R?) (4.1)
transversal to the Cauchy surface 3I; we extend the action of d, to sections u of a vector

bundle E using an arbitrary fixed b-connection d¥ on E, see (2.45), by setting 0,u :=
(dPu)(0,).

Theorem 4.2. Fiz weights bo, b}, br, by as in Definition 3.1, let v > b} in the defini-
tion (3.3) of 0%, and fix ap,ar,a; € R satisfying
a1<a’1<a0, ar <0, a’l<a1+b'I.

Then there exists ay € R such that the following holds for all h € X°o0brbpbe which are
small in X3: fork €N, u; € pSOH]];*J(E), j=0,1, and f € H]];_l;ao’al_l’a*(M; B*S?) with
mof € H{j_hao’a"_l’a+ (M; B*S?), the linear wave equation

Lyu=f, (u,0u)|s = (up,u1), (4.2)
has a unique global solution u satisfying

Hu”pgop?[p(f'Hié]f;l(Mﬁ*SQ) + Hﬂounpgﬂp;;pﬁH;’fﬁ(M;B*SQ)

(4.3)
< C(HuollpgoH{; lluall oo = + 1] r-riooiar-1as + H?TofHHf—l;ao,a’,—Lu)-
In particular, if the assumptions on u; and f hold for all k, then
w e HFO N gy e Hy Ottt (4.4)

We refer the reader to Remark 1.9 for a translation of the memberships (4.4) to pointwise
decay estimates. (For obtaining pointwise decay for any fized number of derivatives of u,
the estimate of (4.3) for sufficiently large k is of course sufficient.)

For completeness, we prove a version of such a background estimate with an explicit
weight a4 in §4.3. As we will see in §5.2, this allows us to give an explicit bound on the
number of derivatives needed to close the nonlinear iteration in §6. A nonexplicit value of
a4 as in Theorem 4.2 is sufficient to prove Theorem 1.1 if one is content with a nonexplicit
value for N.*? We will prove Theorem 4.2 by means of energy estimates, as outlined in

320me could obtain an explicit value for N even from a nonexplicit weight ay if one improved the
argument in §6, which proves precise decay rates at I*, to not lose regularity. We expect that this can be
accomplished by microlocal propagation estimates along .# and radial point estimates at .# TN IT, though
we do not pursue this here.



56 PETER HINTZ AND ANDRAS VASY

§1.1.1. Microlocal techniques on R* on the other hand, as employed in [BVW15], would
work well away from the light cone at infinity S, but since the coefficients of L;, are singular
at ST, it is a delicate question how ‘microlocal’ the behavior of Lj, is at ST, i.e. whether
or not and what strengths of singularities could ‘jump’ from one part of the b-cotangent
bundle to another at S™; since we do not need precise microlocal control of L;, for present
purposes, we do not study this further.

Since dt is globally timelike for g = g,, + ph provided ph is small in pX3 C L*, existence
and uniqueness of a solution u € HIIZC(M N R%; S2T*R?) are immediate, together with an
estimate for any compact set K € M NR?,

lell e rey < Ccluollpgo g + lluall oo = + 11 yr-riao.aras ), (4.5)

where one could equally well replace the norms on the right by standard Sobolev norms
on sufficiently large compact subsets of M N R* depending on K, due to the domain of
dependence properties of solutions of (4.2).

Using Lemma 3.10, it is straightforward to prove (4.3) near any compact subset of (1°)°,

where H;’kb_l is the same as H{f. Let us define po, p1, p near I° as in equation (2.25). Fix
€ > 0, and define for §,7 > 0 small

U:={pr>c¢€ po—npr <o} C M,

which for € small is a neighborhood of any fixed compact subset of M N (1°)°. (Since p;
is bounded from above, U can be made to lie in any fixed neighborhood {pg < &y} of I°
provided § and 7 are sufficiently small.) In view of (3.15), we have G € 49901 — r—2(K +
po VH®(U; S25°T*R%), hence the calculation (2.26) gives

Gy = Gop + py "HZ(U; SPPT*RY), Go = 20, (p10p; — podyy) — ¢ (4.6)

Thus, dp; and d(pg — npr) are timelike in U once we fix §,17 > 0 to be sufficiently small,
and thus U is bounded by ¥ N U and two spacelike hypersurfaces, U{9 = {pr = €} and
U9 = {po — npr = 6} (as well as by U N OM at infinity), see Figure 4.1.

FIGURE 4.1. The domain U with its spacelike boundaries Uf’ , and Uza . We
draw I° at a 45 degree angle as the level sets of the chosen boundary defining
function pg are approximately null (namely, ]dpo%o . = 0). The level sets of

pr are spacelike in pr > 0, but not uniformly so as p; — 0.

Proposition 4.3. Under the assumptions of Theorem 4.2, we have

ol oo s o < € ol oo sy + Nl oo s sy + 1o g (47)
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Proof. We give a positive commutator proof of this standard estimate, highlighting the
connection to the more often encountered fashion in which energy estimates are phrased
[DROS]. Let us work in a trivialization "T*R% = R4 xR?*, and fix the fiber inner product to be
the Euclidean metric in this trivialization. For proving the case k = 1 of the lemma, we set
L := Ly; it will be convenient however for showing higher regularity to allow L € Diff? 4
p[l)_olEfg"Diff%J to be any principally scalar operator with oy, o(L) = %Gb, acting on CN-
valued functions for some N € N; we equip CV with the standard Hermitian inner product.
(One may also phrase the proof invariantly, i.e. not using global bundle trivializations, as
we shall do in §84.1 and 4.2 for conceptual clarity.)

We will use a positive commutator argument: let V = —Vp; € V,(R4), with V defined
with respect to gp; this is future timelike. For f > 0 chosen later, let w = p, e/ 7, and let
1y denote the characteristic function of U. Put W = 1yw?V. Write L = Ly + Ly, where
Ly = %ng ® liox10, L1 € (C*® + pé_OHgo)Difflla. We then calculate the commutator

2Re(lywf, lywVu) = 2Re(Lu, Wu) = (Au,u) + 2Re(lywliu, lywVu) (4.8)
using the L? inner product, where A = [La, W]+ (W + W*)Lsy. A simple calculation gives
Ub,Q(A) (6) = KW(£7 6)7 where

Ky = —3(LwGy + (divy, W)Gy). (4.9)

(The K-current is often given in its covariant form 3(Lw gy, — (divg, W)gp).) Therefore,
A= ldf‘prd, since the principal symbols of both sides agree, hence the difference is a
scalar®® first order b-differential operator which has real coefficients and is symmetric—
thus is in fact of order zero, and since it annihilates constant vectors in CV, the difference
vanishes. Differentiation of the exponential weight in W upon evaluating Ky, will produce
the main positive term into which all other terms can be absorbed. Indeed, the identity
LivGy = fLyGy —2Vf®sV for V € V), and f € C™ gives
Kp = T(VEV) + fKy, (4.10)
where
T(X,)Y)=X®sY — 5gu(X,Y)Gy,
denotes the (abstract) energy-momentum tensor. (The energy-momentum tensor of a scalar
wave u, say, is given by T(X,Y)(du, du).) Therefore, Ky = w?(2F 1yKo + 1y K1 + Ka),
where
Ko=T(Vpr,V), Ki=-2aT(¥2,V), Ky=T(Viy,V).
Since Vpr is past timelike, the main term K is negative definite; K5 has support in
oU \ OM, so V1 being past timelike at Ula and UQB, K5 has the same sign as K there.
Lastly, K7 has no definite sign, but can be absorbed into Kgy by choosing f > 0 large:
indeed, \T(%, V)(£,€)| < —CT(Vpr, V) for some constant C' depending only on K, since
gb is a b-metric. Thus, (4.8) gives the estimate
(1yw(—2F Ko — K1)du, 1ydu) < 2(|[1gwVu|?® + |[1gwLiul/?)
+[Towf|? + Clllyw(dug, ur)|*.
In order to control u itself, consider the ‘commutator’
2Re(lywu, lywVu) = 2Re(u, Wu) = (—1gw(div V)u, lypwu) — (V(1yw?)u,u), (4.12)

(4.11)

33That is, it is a scalar operator tensored with the identity operator on C¥.
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where V(1yw?) = 2F lgw?(Vpr) — 2a0]lUw2% + w?V(1y). In the first, main, term,
Vpr= —|dp1|§b < —cg < 0 has a strictly negative upper bound on U; the third term gives

S-distributions at OU with the same sign as this main term at U and UJ since V' is outward
pointing there. Choosing F large to absorb the contribution of the second term, we get

coFH]lUwuH2 < 77FH]lUwuH2 + C'nF_lHIlUquH2 + C’HIlUquHQ,

so fixing n = cp/2, this gives || 1ywul/®* < CF 2| 1ywVu|? + Cr | 1lywuo||?. Adding C’
times this to (4.11) yields

(1yw(—2F Ko — K1)du, 1yydu) + C'|| Lywul|?
< (24 CCF )| 1pwVu? + 2| 1pwLiul?
+Cr (I[Tywf* + (C + C) | 1yw(ug, dug, u1)||).

Fixing C’ sufficiently large and then £ > 0 large, we can absorb the two first terms on the
right into the first term on the left hand side, using that —F Ko > —2F Ky — K; for large
F. This gives (4.7) for k = 1.

We now proceed by induction, assuming (4.7) holds for some value of k for all operators
L of the form considered above. If Lu = f, let X € (Difff (R%))" denote an N-tuple of
b-differential operators which generate Diff{ (R%) over C>°(R%); writing [L, X] = L’ - X for
L' an N-tuple of operators in (C* + pp CH°)Diff}, we then have (L — L')(Xu) = X f.
Applying (4.7) to this equation, we obtain the estimate (4.7) for Lu = f itself with k
replaced by k + 1. O

Given the structure of the operator Lj on the manifold with corners M as described in
§3.3, it is natural to proceed proving the estimate (4.3) in steps: in §4.1, we propagate the
control given by Proposition 4.3 uniformly up to a neighborhood of the past corner 1°N.#+
of null infinity and thus into (.#7)°. In §4.2, we prove the energy estimate uniformly up to
IT; the last estimate cannot be localized near the corner £+ N IT since typically limits of
future-directed null-geodesic tending to .# T N I* pass through points in IT far from .#*.

4.1. Estimate up to null infinity. We work near the past corner I°N.#* of the radiation
field; recall the definition of the boundary defining functions py and p; of I° and .#+
from (2.25), and let p = r~!. At .#*, we need to describe G}, more precisely than was
needed near (1°)°; we make extensive use of the structures defined in §2.4. Equations (3.15)
and (2.26) give

Gy = Gop + Gip + G, Gip = p g, — Gop € C°(M; S*PTM), (4.13)
with Gop, = 20,,(p10,; — poOy,) — G € p;1C=(M; S28TM + p; S?PT M) as before, and
Gy € py 0 p; U HRE (M; S?PTM + p S?PTM).

Dually, equation (2.27) gives

) .
gy € (C° + py ™ p HE®)(M; S*(PTM)™* + pr S2PT* M) (4.14)
. dpo (d d "
where the smooth term is p?g,, = —ZpI%(ﬁ + %) — ¢+ pFC>(M; S? bTM).

Fix 8 € (0,07). For small € > 0, we define the domain
Ue:=={pr <€, po— p? <1} c M, UP=Un{ie<pr<e}, (4.15)
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see Figure 4.2. Thus, U, is bounded by I°, .#%, {p; = €}, and U? = {pg —p? =1, pr < e€}.
At U?, we use (4.6) and (4.13) to compute

(d(po — )%, € 2807 P (0o + B}) + p2PC + o Op; T H, (4.16)

hence Ue8 is timelike for small enough €. As in the proof of Proposition 4.3, the main term
is the K-current of a timelike vector field with suitable weights:

Lemma 4.4. Fizcy € R, let W := pa%o 2‘”V, and V := —(1+ cv)pr0y; + poOp,, then

2a0

Ky € py 2 p 2" (26”(/303;)0 = p10,;)% = 2¢v(ao — ar)(pr,,)”

— (1 +2(ap —ar) + ev (1 - 2a1))p1$) (4.17)

+ pg 200 p 201 (020 - phtbo I ooy (A1 G2 BT 4 py S2PTM).
Furthermore,
divy, W € —2p%"p; 2a1 (1+2(ap —ar) + cv(l —2ay))

—2 2ar+1 1+b (4.18)

+ o aop ar+ (Coo p+o IHb)
Here, p;1|V\§b € 2cy +pr C°°+pé+b°pl;} HPe, so V is timelike for ¢y > 0. This calculation
also shows that the level sets of p; are spacelike in Ue. The term p; Ky (du, du) will provide

control of u in pg°pH H, (modulo control of |u|? itself, which we obtain by integration),
similarly to (1.19).

Remark 4.5. For easier comparison with energy estimates expressed in standard coordinates
on R*, consider the special case m = 0, so pg = (r —t)~! and p; = (r — t)/r; then
po0p, = —(r0, + t0;) (scaling) and p;0,, = —r(0; + 0,) (weighted outgoing derivative).
Thus, the multiplier vector field W in ¢t < r, r > 0, equals

W =20t (p — )07 (ey0, + (cy + )0y,

Proof of Lemma 4.4. Recall that Ky = %(ﬂ' — %(trgb m)Gy), ™ := —LwGy. Since V € M,

Lemma 2.13(2) shows that 7 := —EWéb, expressed using vector field commutators, lies in

the remainder space in (4.17); using (4.14), this implies try, ™ € p, 2OLOHH’Opl_mﬁbl’H]‘D’O,

so (trg, )Gy also lies in the remainder space. Similarly, G}, contributes a (weighted)
smooth remainder term to Ky . Lastly, for mp = —Lw Gy, o, the term %(m — %(trgb 70)Gp)
contributes the main term, i.e. the first line of (4.17) after a short calculation, as well as two
more error terms, one from éb, the other coming from the nonsmooth remainder term in
(4.14). The calculation (4.18) drops out as a by-product of this, and can also be recovered
by divy, W = —try, Kw. O

In order to get the sharp weights®* for the decaying components mou of u at £+ in
Theorem 4.2, we need to exploit the sign of the leading subprincipal part of Ly at # T,
given by the term involving p~'A,0; in Lemma 3.8, in the decoupled equation for mou, see
(3.26a) for the model. We thus prove:

34As explained before in the context of the weight at I™, this is not necessary, but easy to accomplish
here without lengthy calculations.
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Lemma 4.6. Define W = p&QaOp;%} (P00p, — (1 +cv)p10,;) similarly to previous lemma.
Let v € R, and fiz ag, a’; € R such that a’; < min(v, ag). Then for small ¢y > 0, there exists
a constant C > 0 such that

—2a7—1

Kw —29W @, p~'00 < =Cp*p; ™1 ((p10,,)* + (p00py)? + prh), (4.19)

in the sense of quadratic forms, in Ue, € > 0 small.

Proof. Using the expression (2.26) for py ! p;lal, we have

PgaopzaIHW ®sp 01
€ (poapo - plap1)2 - C\/plapl s (Poapo - plapl) + pr COO(M7 ﬁTM)

We can then calculate the leading term of pgao p?al 1 times the left hand side of (4.19) by
completing the square:

vey 2 ey
—2(y — aj) <P03po — p10p; — Mﬂﬂ%) —cy <a0 —aj - M) (p10p,)?

— 3(1+2(ag — af) + ev (1 — 2a))) pr &

The first term is the negative of a square, and so is the second term if we choose ¢y > 0
sufficiently small; reducing ¢y further if necessary, the coefficient of the last term is negative
as well, finishing the proof. O

Remark 4.7. For the value of ¢y determined in the proof, we have div, W < —Cpy 2ao pI_2aI

near ¢ by inspection of the expression (4.18).

Suppose now u solves Lpu = f with initial data (up,u1) as in (4.2). Note that the
estimates (4.5) and (4.7) provide control of u on U? for any choice of ¢ > 0; thus, it suffices
to prove an estimate in U, for any arbitrary but fixed € > 0. Let x € C*°(R) be a cutoff,
Xx(pr) = 1 for pr < €¢/4 and x(pr) = 0 for p; > €/2, and put w := xu, then u solves the
forward problem

Lyii = J = xf + [Ln W (4.20)

in U, with Hf”pgopﬁlilH{ffl(Ue) + HWOf”pEO,O(;II_ng*l(UE)
norm of f plus the right hand sides of (4.5) and (4.7). (Use Lemma 3.10 to compute the
rough form of the commutator term.) Note that © = yu is the unique solution of Lyu = f

vanishing in p; > %e. See Figure 4.2.

controlled by the corresponding

Thus, the estimate (4.3) of u in Ue is a consequence of the following result (dropping the
tilde on w and f):

Proposition 4.8. For weights by, by, br,ag,ay,ar, and for h € X, small in X3, as in

Theorem 4.2, and for k € N, let f € pgop?FlHé_l(Ue), mof € pgop(ll’_lH{f—l(Ue); suppose
f wvanishes in p; > %e. Let u denote the unique forward solution of Lyu = f. Then

”quSOp?IH;’fgl(Ue) + Hﬂou”pgop}l}H}fgl(Ue)
‘ (4.21)
< O(15 o o410y + 1051 g

)
Pr H]I; I(Ue)
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FIGURE 4.2. The domain U, and its subdomain U? where we have a priori
control of u, allowing us to cut off and study equation (4.20) instead.

Proof. The idea is to exploit the decoupling of the leading terms of L;, at .# given by
equations (3.26a)—(3.26¢): this allows us to prove an energy estimate (for the case k = 1)

c
< OISl 3 -1, + 17500 g0 1011 (4.22)

[[moull
P I

oy
where § > 0 fixed such that
ay -V, <a;—96, a;<a;—>4. (4.23)

The estimate (4.22) contains mu as an error term, but with a weaker weight due to the

decay of the coefficients of the error term Eh—which is dropped in (3.26a). On the other
hand, mou couples into w{u via at most logarithmic terms, hence we can prove

Il o, < CUTEA i1 3+ 1m0l g v ) (4.24)

Close to £, the last term in the estimate (4.22), resp. (4.24), is controlled by a small
constant times the left hand side of (4.24), resp. (4.22), hence summing the two estimates
yields the full estimate (4.21). The proof of (4.24) and its higher regularity version will itself
consist of two steps, corresponding to the weak null structure expressed by the decoupling
of (3.26b) and (3.26¢).

All energy estimates will use the vector field
‘/1 = _(1 + CV)plapI + poapo

from Lemma 4.4, with ¢y > 0 chosen according to Lemma 4.6. Denote ug := mou, u11 :=
Tu, uf; = 7w, and uf := 7iu = uyr +uf;. We expand Lyu = f as

7T[)Lh7T0u0 = 7T0f - 7TOLh7'('8’u,8, (4.25&)
TI'fthﬂ'fluil = Fflf — ﬂfthﬂ’ouo - wfthTrnun, (4.25b)
7['11Lh7T11U11 = 7T11f - 7711Lh7r0u0 - 7T11Lh7rf1u§1. (4.25C)

Here, we regard 8*Ko — M as a vector bundle in its own right, and ug as a section of
B*Ky: the inclusion Ko < S?°T*R# and the structures on the latter bundle induced by g
or gm play no role; likewise for K and Kf;.

Starting the proof of the estimate (4.22) using equation (4.25a), let us abbreviate L :=
moLpmo. By Lemma 3.8 and recalling the definition of Acp from equation (3.26a), we have

L=IL"+L, L°=—-2p"%0p01+ LY, LY = —p ' Acpd, (4.26)
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with L lying in the same space as Eh in (3.25) with 3*S? replaced by 8*Ky. Here, L{ denotes
a fixed representative in pl_l O Mg+, defined by fixing a representative of p, 19, € "M 8 Ko

—ag

see equation (2.42), in the image space of Lemma 2.13(3). Let w = p, pI_a/I; let further
1y, denote the characteristic function of U.. Fix V € "M 8*K,, With scalar principal symbol
equal to that of Vi. Let
W =1y W°, W°:=w?V.

Fix a positive definite fiber inner product B: PTM — PT*M on PTM, a connection
d e Diffl(@; Ky, T*R* ® Kjp) on Ky, and a positive definite fiber metric kg on Ky with
respect to which Acp = Agp; note here that Acp is constant on the fibers of &7,
hence indeed descends to an endomorphism of Ky|g+. Let (-,-) denote the L? inner
product with respect to ko and the density |dgy| ~ |%dp1 dg|; defining the b-density

duy, = py *|dgy| ~ ]%%dg\ to define LZ(M), we then have
(u,5) = {pr, o) 2. (4.27)

We shall evaluate
2Re(wLug, 1y, wVug) = (Cugp, up),

42
C:=L'W +W*L = [L,W] + (W + W*)L + (L* — L)W. (428)

Let Ky denote the current associated with the scalar principal part of W, see (4.9),
now understood as taking values in the bundle S2PTM ® End(8*Kj), acting on B*Kj
by scalar multiplication. While Ky provides positivity of C near .# for suitable weights
by Lemma 4.4—in particular, this would require a; < 0—we will show around (4.35) below
how to obtain a better result by exploiting the sign of Acp entering through (L* — L)W.

In the proof of Proposition 4.3, where we worked in a global trivialization, all terms of W
and L other than the top order ones could be treated as error terms; we show that the same
is true here by patching together estimates obtained from calculations in local coordinates
and trivializations. Thus, let {{;} be a covering of a neighborhood of ST containing U, by
open sets on which Ky is trivial, and let {x;}, x; € Cs°(U;), denote a subordinate partition
of unity; let x; € C°(U;), X; = 1 on supp x;. Fix trivializations (Ko)ly,; = U; ¥ C* and the
induced trivializations of 8* K. Write

L=1Ljs+ L1, W=W;1+W,po,
where Lo 1= %ng acts component-wise as the scalar wave operator and L, 1 is a first order
operator, while W1 := 1y w?V; acts component-wise, and W € Ly w?pr COO(Z/{j,BTM),
with the extra factor of p; due to the choice of V. On (Ko)ly;, let moreover d; denote the
standard connection, given component-wise as the exterior derivative on functions, and let

k; denote the standard Hermitian fiber metric; we denote adjoints with respect to k; by 7.
Now,

(Cuo,uo) =Y (Cjuo, x;tuo), (4.29)
where
Ci=> Cirtr Cine:=LiuWjo+WiLjp.
k
The usual calculation in the scalar case, see the discussion around (4.8), gives

ijgl = L;-QW‘J + Wj]:le,Q = d}LBKde,
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SO
(Cj21u0, Xju0) = (d* BKwdug, x;u0) + ((Cj21 — Cj21)uo, X;juo) (4.30)
+ <(d;r — d;)BKwdqu,Xju@ + <(d;BKwd] — d*BKwd)uO, XjU()).

Summing the first term over j yields

/ pIKWo(duo,duo)dub+/T(p1V]lUE,W°)(du0,du0) dp, (4.31)

Ue
upon application of the formula (4.10). The first summand—after adding the term (4.35)
below—is negative definite, controlling derivatives of ug as in (4.22); the second term gives
a contribution of the same sign: we have

T(prViy,, W°) = 6o @ w*T?,

with 79 < 0 since —V1y, and W° are future causal. The remaining terms in (4.30) are
error terms: the second term is equal to

(Wjauo, (Ljz — LTS xju0) + (Lj2uo, (Wja — W) xjuo).

Now, ko and k; are related by k;(-,-) = k:o(Q] Q] ), with QVJ € C>(U;; End(Ky)) invertible,
and then Al = Q5 1A*Q] for Q; := Q Q] when A is an operator acting on sections of K.

Thus, W;1 — W}tl = [Wj, Q;‘-](Q]- )*. On M, the constancy of @;, and hence of Q%, along

the fibers of 8 and V; € M give the extra vanishing factor p; in
Wix =W/ =Tu.prw’qn, g1 € C¥(87' (Uy); End(8Ko)),

with ¢;1 only depending on @);. Similarly, L;o — L}’*Q =[Lj2, Q;-‘](Qj_l)*; using Lemma 3.7
and [01, Q}] € pC*, we find (replacing the weight —0 there by —1/2 + b} for definiteness)

1/2+Y,

Ljy LT2 € (1)+b0 IHb (M) M=k + (COO+P1+bOP " HP®)Diff} (Us; B*Ko). (4.32)

Writing L oug = Lug — Lj1up and using the relationship (4.27), we thus get

_ Y 1/24)
[{(Cj21 — Cj21)u0, Xju0)| < CHijVIUOHL%(HijjIquHHé +IX5p; I7UU0||H¢)

(4.33)
+ C(RgprwLunllyz + IXorwLsaul ) IXorwuoll 2.

where the norms are taken on U.. Note that in all terms on the right, at least one factor
comes with an extra decaying power of py relative to wug, hence is small compared to wuyg
if we localize to U, for small € > 0, i.e. to a small neighborhood of .# . Next, we combine
Lemmas 2.16 and 4.4 in the same fashion as in the proof of Lemma 2.17 to estimate the
last two terms of (4.30) by

C(IXjprwuol gallxjwuoll L2 ™
(||XJP1wT (dug, dug)'/? HL2 wo) T ||XJPIwuo||L2(Ua))Hx]quHLz Uf’))

where the second term in the inner parenthesis comes from the pointwise estimate Ta(djuo,
djug)'/? < C(T?(dug, duo)'/* + |uo)).

The next interesting term in (4.29) is Cj 11 + Cj,10, specifically the term coming from the
‘constraint damping part’ L{ defined in (4.26). In a local trivialization, LY = —p~1Acpd; +
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L?J, L(l),j € C>(U;) (using the discussion around (2.42) for this membership), so we have
the pointwise equality
2 Re ko(Wuy, L(l]XjUO) = —2Re ko(W; 1uo, p_lACDE)lXjuo)
+ 2Re ko (W ouo, Lxju0) + 2 Re ko(W;,1u0, L?,ijuo);
letting
K= —20?(Vi ®s p101) @ Acp
€ pg 2 p, 21 (UL; (S2PTM + py S2°TM) @ End(5°Ko)),

the first term integrates to [ prK’(d;uo, djx;uo) dpy, which equals

[ pr o dxguo) di (4.35)

plus error terms of the same kind as in the second line of (4.30). The extra factor of pr in
W0 and L?} ; (as compared to W1 and LY) allows the remaining two terms to be estimated
in a fashion similar to (4.33). The remaining contributions to Cj 11 + Cj 10 are error terms
coming from L in (4.26) and can be estimated as in (4.33).

Lastly, the terms of (4.29) involving C; 20 can be rewritten and estimated as follows:
|2Re((L — Lj1)uo, Wiox;uo) + (Wjouo, [Lj2, x;]uo)|

< 2(llprwLuol gz + IXjprwLjuol 2) Ix;prwuoll 2
~ ~ UV ~  1/24¥
+IXGprwuoll gz (1X5p; wuoll gy + 1X5e, ™ wuoll g );

the norms are taken on U, and we use that [L; 2, x;| lies in the same space as (4.32). We
note that by Lemma 3.8, the terms involving L;; here and in (4.33) can be estimated by

~ o o 1/240,
IXiprwLjyuollrz < C(IXsp, wuollay + X0, ™ wuoll gy ),

where x; € C°(U;) is identically 1 on supp x;.

This finishes the evaluation of (4.28); we now turn to the estimate of wuyg itself by wV u.
As in the proof of Proposition 4.3, this follows from integration along V. Concretely, we
consider a ‘commutator’ as in (4.12), that is,

2Re(1y. wVug, p; twug) = —(p;* divg, (1. w?Vh)ug, ue) + F, (4.36)

where |E| < C||wu0||L%||p1wu0HL12) by Lemma 2.18. Using the negativity of the divergence
near £ due to Lemma 4.4 and Remark 4.7, and that V; is outward pointing at Uf , SO
Vi(1y,) is a negative 5-distribution at U?, we get

lwuoll 22w, + llwuoll L2 way < CllwVuolr2w,); (4.37)

recall here that ug vanishes in p; > §, hence there is no a priori control term on the
right. Subtracting this estimate from (4.28) (the latter having main terms which are neg-
ative definite in dug), the main terms are the left hand side of (4.37) and er pr(K' +
Kyyo)(dug, dug) dpp from (4.31) and (4.35). By Lemma 4.6, they control ||w“0||H}¢(UE)3 the

error terms in U, can be absorbed into this, while those at U in (4.34) can be absorbed
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into the second terms of (4.31) and (4.37), due to the extra decaying weights on at least one

of the factors in each of those error terms as discussed after (4.33). Thus, we have proved

<C(lmofll ,, . (438)
Po P

U
fuoll ,

c, C
'flL% + ||7r0Lh7r0u0||pgop;}71LE)a

o,
valid for @/ < min(ag,7). Since Lj, is principally scalar, moL,7§ is a first order operator,
and by Lemma 3.8, we have
_o —1+b 0 — . *

moLnmg € py Opp Mpeicy + (C + pyp;  HE®)Dift} (M; 5% Ko); (4.39)
since @ < ay + b} < ar + 3, the second term in (4.38) is bounded by ||u8||p80p?176H1]
for sufficiently small 6 > 0 (by the assumptions on the weights in Theorem 4.2), which
establishes the estimate (4.22).

The proof of the estimate (4.24) proceeds along completely analogous lines, using the
weight w = py®p;*" and positive commutator estimates for the equations (4.25b) and
(4.25¢). The main difference is that 711 Lym11 and 7§, Ly 7§, have no leading order subprin-
cipal terms like mo Ly, mo does, hence we need a; < min(ayg,0) for K2y, to have a sign—this
is the case a}; = ay, v = 0 in the notation of Lemma 4.6. In order to estimate the coupling

terms on the right hand side of (4.25b), we use Lemma 3.8, so
w1 Lamo € (p7'C% + py 07 TOHR )M+ (C™° + py " py VHiX)Dift}, (4.40)
w6 Ly € ok Op; M+ (C + p0p; 0D},
which gives
luallgoperan, < OO o001 2 + ol rvs . + il o iy )i (441

for our choice (4.23) of §, the second term is bounded by a small constant times the left
hand side of (4.22). For analyzing the equation (4.25c) for u;1, we observe that w1 Lpmo
lies in the space (4.40), while

mLm§y € (o5 pr T HE (T U + pyCpp T HE) M+ (C° + pfyOpy O HY®)Dff,
where we exploit that h® has a leading term at .# . Thus,
/
sl go e, < €Il oo -1+ ool oo+ il goserr ) (442)

In order to obtain the estimate (4.24), we add (4.41) and a small multiple, 7, of (4.42), so
that nC’ < 1 and u§; can be absorbed into the left hand side of (4.41); note that the wujy
term in (4.41) is arbitrarily small compared to the left hand side of (4.42) when we localize
sufficiently closely to #*. As explained at the beginning of the proof, this establishes the
desired estimate (4.21) for k = 1.

To prove (4.21) for k > 2, we proceed by induction on the level of the hierarchy (4.25a)—
(4.25¢) and the corresponding estimates (4.22), (4.41), and (4.42). The key structures
for obtaining higher regularity are the symmetries of the normal operators of myLymg etc.
at #*. Namely, —2p=20001 € 0,,(p00p, — p10,,) + Diffi commutes (modulo Difff) with
p00p,, while for the vector field prd,, generating dilations along approximate (namely,
Schwarzschildean) light cones, we have

[—2p‘28081,p16p1] S —2,0_280(91 + Diff%.

Commutation with spherical vector fields is more subtle: we need to define rotation ‘vector
fields” somewhat carefully. We only define these on S*Kj, the definition for the other
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bundles being analogous. Using the product splitting R, x Ry x S? of R* near ST, denote
by {Q1,:4=1,2,3} C V(S?) = W,(M) a spanning set of the space of vector fields on S?,
e.g. rotation vector fields, though the concrete choice or their (finite) number are irrelevant;
we can then define elements Q; € Diff{(M; 3*Ky) with scalar principal symbols equal to
those of €2y ; such that

(07100, Qul, [pg 01, Q] € prDiffy,(M; 8*Ko), (4.43)

where p~1do, py 19, denote elements in "M g*K,- (Note that the p;C* indeterminacy of
p~ 100, py t01 does not affect (4.43).) Here, it is crucial that we fiz py and p to be given
by (2.25) and thus rotationally invariant: €;1p9 = 0, so [, po] € prC™; we also have
[Qi, pr] € prC*> independently of choices. Regarding (4.43) then, we automatically have
membership in Diﬁ’%) by principal symbol considerations; to get the additional vanishing
at pr is then exactly the statement that the normal operators of p~'8y, resp. Po 19y, and
Q; commute. For p~'dy, whose normal operator is —%m@pl, this is automatic, while for
pg 01, we merely need to arrange [pod,,, ] = 0 at £+, which holds if we define ©; in the
decomposition (3.10) by 4 ; & WQM @& Q1,;. We therefore obtain

[—2[)_26061, Qz], [LO, Ql] S lef%,

with L? given in (4.26), which improves over the a priori membership in pleiff%. Let
us now assume that for the solution of equation (4.25a), we have already established the
estimate

0l 1 < OO
We use {G;} := {p00py, P10s;, 1, Q2, Q3, 1}, which spans Diff} (M; *K¢) over C>(M),
as a set of commutators. Writing L = moLymg, we then have

Sk + ||7TSUHpgop;1—aH;;I1). (4.44)

LGjug = fj + [L, G]’]UO, fi =Gjmof — GjWOLhW(C)uﬁ. (4.45)
We estimate the first term by
Hfj“ aopI Hk 1 — (”ﬂ-ofH 71Hb + || OUH aopa] 6HL1¢kb).
For the second, delicate, term, we use the above discussion to see that
[L,Gj) € ¢;L+py~ 1M o Diffl + (€ + po 0p; V)DIff} (4.46)

with ¢; = 1 if G; = p;0,,, and ¢; = 0 otherwise. Thus, [L,Gj] = ¢;L + CfGZ with
Cf IS pé_op;Hb}M + (C> + p(l) 0 _O)lefb, and therefore

L Giluoll o o= s = GillEUON Ly s iy +CZHquoHpgop;z—afale,k_l (4.47)

PI b PI H, 7 Z.,b

for & > 0 small; recall that our choice (4.23) of § leaves some extra room. Now, apply-
ing (4.44) to Gjug in equation (4.45) and summing over j, we can absorb the term (4.47)
into the left hand side of the estimate due to the weaker weight. This establishes (4.44) for
k replaced by k+ 1. The higher regularity analogues of the estimates (4.41) and (4.42) are
proved in the same manner; as before, this then yields the estimate (4.21) for all k. [l

This proposition remains valid near any compact subset of £+ \ I'T: the proof only
required localization near .# . At this point, we therefore have quantitative control of the
solution of the initial value problem for Lju = f in any compact subset of M \ IT.



STABILITY OF MINKOWSKI SPACE 67

4.2. Estimate near timelike infinity. Near the corner I* N ., fix the local defining
functions

pri=v=_(t—r)/r, py=(t—ry)"" (4.48)
of #% and I, and let p := prpy = r'; these only differ from the expressions for the
defining functions p; and py used in §4.1 by a sign. We thus have G}, = p™2G = Gop, +
Gl,b + éb for

Gop = —20p,(p10p, — p+05,) — & € p;*C>°(M; S*PTM + p; S*PTM) (4.49)

+b

and Gy, € C®°(M; S2PTM), Gy, € pjl 'fpf“HgO(M; S28TM + p; S2PTM), while

b € (C + pyt ph 0 HEo) (M S2(PTM)™ + p; S2PT* M)
with smooth term given by p?g, = 2p1%(% + %) + p2C>®(M;S?PT*M). In order to
be able to work near all of IT, we first prove:

Lemma 4.9. There ezists a defining function py € C°(M) of I such that dp /p+ is past
timelike near It for the dual b-metric p~2g..t. Moreover, if C > 0 is fized, then for any
h € X°° with ||h||xs < C and for any € > 0, there exists 6 > 0 such that dpy/p+ is past
timelike with |dp+/p+|2Gb > 0 in {p; > ¢, py < 8} for the dual b-metric Gy, = p~2g~ !,
9= gm + ph.

Proof. For the second claim, note that in p; > € > 0, we have G}, — p~2g,,} € pfb““LOo
with norm controlled by ||| y3, so

1+b
(dp-/p+1s, € ldp+/ 42y 1+ pi T HES (4.50)

is indeed positive near p; = 0. To prove the first claim, we compute on Minkowski space
|f61df0|2 =1, fo =t/(t>? —r%) in t > r, computed with respect to the dual metric of
t=2(dt?> — dr?).%® Similarly, in r/t > %, and t > r, large, we have \f;ldf*\z_ggm > 0
for f. = t/(t> — r?): this is a simple calculation where g,, = g5 is the Schwarzschild
metric, and follows in general by an estimate similar to (4.50) since g, differs from gfn
by a scattering metric of class ,01_0H]§o inr/t < %. Moreover, f, is (apart from minor
smoothness issues, which we address momentarily) a defining function of I near .#*. But
fo— [« € p> PH for r/t € (i, %), hence [’ := xf« + (1 — x)fo has \(f/)*ldf’|/2),29m >0
near I, where x = x(r/t) is smooth and identically 0, resp. 1, in r/t < %, resp. r/t > %.
Fixing any defining function p/, of I, Lemma 2.8 implies f' € p/, C*°(M)+(p/,)* " H*(M)
(with the nonsmooth summand supported away from .# ™ by construction), so we may take
p+ € C°°(M) to be any defining function of I'" such that f' — p; € (p )2 " H®. O

For the remainder of this section, py+ will denote this particular defining function. Near
I'" N 77", we need to modify p, in the spirit of (4.16) in order to get a timelike (but not
quite smooth) boundary defining function. Thus, fix 8 € (0,b}) and some small n > 0, and

let pg € p’? C>(U) be a nonnegative function in a neighborhood U of I such that pg = n®
in p; > 2n, pa(pr) = pf in py < . and 0 < ply < Bpf~; let then

P = p(1+pg) € pi(1+p]) C(M). (4.51)

35See also the related calculations and geometric explanations around equation (4.64).
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It is easy to see that p o Hb(M) = pi*Hé?(M), likewise for weighted H , and H s}, spaces.

Lemma 4.10. Fiz C > 0. Then there exist n,6 > 0 such that for all h € X°° with
|kl xs < C, we have ]dﬁ+/ﬁ+]2Gb >0 inpy <6.

Proof. We compute the G-norms
‘dm ’dp+‘ pID ( <dp+ dp1>+ PV @‘2)
L+ps\ \py o pr Lt+pglpr 1/

In p; < 21 and thus near .# ", we first note that p, = fp, with f > 0 smooth; since df / f
thus vanishes at .#+ N I" as a b-1-form, we have

2<dﬁ dp1
P+ prI
thus the second summand of (4.52) is 2 p;

(4.52)

_ —14¥
> € (2+prC®+ py C)pr +p P HER,

840 pr < in and p; small. The first and

-1+

third terms on the other hand are dominated by this, as they are bounded by p, and

Py HZB, respectively. In 277 < pr < 2n and p4 small, the parenthesis in (4.52) is positive,

the second summand being bounded by pI_H’B ; the prefactor being positive due to pf8 >0,
the claimed positivity thus follows from Lemma 4.9. (]

We also note that p4d,, , which is well-defined as a b-vector field at I™ and equals the
scaling vector field in (I1)°, is past timelike in (I7)°. Let
U={pyr<é}cM

denote the neighborhood of It C M on which we will formulate our energy estimate. Near
7T, we need to exploit the weak null structure as in §4.1; thus, let

X € C°([0,00),,), x =1 near p; =0, (4.53)
denote a smooth function on U localizing in a neighborhood of .# T where the projections
7 ete. are defined, see the discussion around Definition 3.4.

Proposition 4.11. For weights b, br, by, a’, ar as in Theorem 4.2, there exists ay € R such
that for all h € X> which are small in X3, the following holds: Let f € pr ! a*Hg_l(U),

xmof € pI - a*Hk I(U), and suppose f vanishes in py > 5(5. Let u denote the unique
forward solutwn of Lyu= f. Then

HUHP?IP?H%E(U) + HXWOUHp;

< OISl a1 s gy + o |

T A )
o (4.54)

a/Ifl ay k—1 )
Pr Py Hb (U)

Proof. We first consider & = 1. Near 9I", we will make use of the vector field V] =
(1 — ev)p10y, — p+0p,, cv > 0 small, analogously to Lemma 4.4; away from 9I*, the

vector field Vi’ := —Vp, /py is future timelike. Fix c19r < —% and consider the vector field
—9a; o2
V= p; 25 a*VO, then
—2a5—1 o

—2af .
Ky, € p; Py <2CV(G& — ar)(p10p,)* + 2a1(p18p, — p105,)°

+ (51 —ev) + al —ar+ CVGI)PI$>
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oy 2 oy L (M S2 AT M + py §2PTM)

— —2a9
1S < p 2a1 1p+ +

Lemma 4.6, if V] = p;
for ¢y > 0 sufficiently small

. . - —2af
as a quadratlc form, and divg, Vi S —p; 2a1p+ “

*VO, then Ky, — 27V} ®s p~ 101 is negative definite near I+

Analogously to

ZaI 0™

To explain the idea for obtaining a global (near I™) negative commutator, consider the

_ 1
timelike vector field Wy := xVi+(1—x)p. V ,and let W = ﬁ+2a+ Wo; then formula (4.10)
gives

1 ~
K = 5, " K, + 20, 5, T(Wo, — 2+, (4.55)

Letting
0 1
a4 *=ay +ag,
the first term gives control in p}’ p'fH L near #* ina p081t1ve commutator argument. On

the other hand its size is bounded by a fixed constant times p 204 p1 > € > 0; but there,

0
T(Woy, — ) >, + * in the sense of quadratic forms on PT*M since Wy and —dp, /p, are
both future timelike. Therefore, choosing a}F large and negative, we obtain

KW S _Cp;2a1_1p_7_2a+K{}V,

where K, is positive definite on "T*M in p; > € > 0, while near .# %, we have K{;, =
Ky + pr Ko, with K7, resp K>, positive definite on "T* M, resp. (*T'M)~+. This gives global
(near I1) control in p}’pi  HY, .

We now apply this discussion to the situation at hand. For brevity, let us use the same
symbol to denote a b-vector field in M and an arbitrary but fixed representative in Mg« g
according to Lemma 2.13(3), similarly for b-vector fields with weights (such as V; and V});
the bundle E — R* will be clear from the context. For a}r € R chosen later, consider then
the operator W acting on sections of 3*S2,

1 0

W= 5;2a+W0, Wo = x(moVimo + 7§, Vim§) + nria Vim) + (1 — X)Pfhvo"’ (4.56)
where n > 0 will be taken small, as in the discussion after (4.42). (Since u vanishes in p; >
%5, we do not need to include a cutoff term here.) ‘Integrating’ along W via a commutator
calculation for 2 Re(Wu, p; 'u) as in (4.36) gives control on u in the function space appearing
n (4.7) in terms of Wu. The evaluation of the commutator 2 Re(Lpu, Wu) = (Cu,u),
C=[Lp, W]+ W+ W*)Lj+ (L} — Lp)W, then combines the three separate calculations
for the equations (4.25a)—(4.25¢) into one: near .# T, one writes Ly, in block form according
to the bundle decomposition 5*S? = Ko ® K¢ 1@ K 11, with the diagonal elements 7oLy mg
etc. giving rise to the main terms of the commutator, while the off-diagonal terms can be
estimated using Cauchy—Schwarz and absorbed into the main terms due to the weak null
structure, as explained in detail in the proof of Proposition 4.8. Away from .# T, all error
terms can be absorbed in the main term, corresponding to the second term in (4.55) upon
choosing a}r < 0 negative enough. This proves the proposition for k£ = 1.

Suppose now we have proved (4.54) for some k > 1. First, the b-operator L;, automati-
cally commutes with p;9,, to leading order at I™; concretely, Lemma 3.8 gives

—14Y; 1+b —0 1+4b .
[Lhap+ap+] €Epr Ty +M%*S2 + (p+ C= + py OP+ +H§O)D1ﬁ%'
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Here, by an abuse of notation, p;0,, € "M g+s2 is defined by first extending the vector
field p48,, € C®°(I*, T+ M) to an element of Mg, and then taking a representative of
the image space in Lemma 2.13(3); for this particular vector field, such a representative is
in fact well-defined modulo p;p; C°°(M;End(3*S?)), the extra vanishing at p, being due
to the special (b-normal) nature of p40,, .

Therefore, commuting p;d,, through the equation Lyu = f, we have the estimate

P el Ao
(4.57)
< ar— a /I ay— ay —
< OIS i o g+ IXROS ] s+ 0] s )
by the inductive hypothesis, where we used a; — 6 > a} — b} for § > 0 small to bound
the forcing term [Ly, p40,,]Ju by the third term on the right; see the related discussion

around (4.39).

Second, the timelike character of p;.d,, at (IT)° for € > 0 implies that C(p4+D,,)* — Ly,
is elliptic in pr > € for large C' (depending on €); therefore, letting x,; € C°(U \ #T),
j = 1,2, denote cutoffs with x; = 1 on supp(l — x) and x2 = 1 on supp xi1, we have an
elliptic estimate away from .# T,

Ixvull o graer < ClIxap+Fpsull oo gy + Il 2 g + lx2 o i) (4.58)

for u supported in py < %5 . Near .#T on the other hand, we have the symmetries of null
infinity at our disposal, encoded by the operators p;0,, and the spherical derivatives (1;,
see the discussion around (4.43). Let x € C*°(U) be identically 1 on supp x, and supported
close to # . Defining the set of (cut-off) commutators {xG;} := {xpr0,,, X1, xQ2, xQ3}
which together with p4d,, spans V(M) near .#7, and recalling the commutation rela-
tions (4.46), we find

"XGju||P?IPi+H§',€EI + "XWOGju‘|p?}ﬂi+H§lf§1

< ar— a /I
< C(Ifl o1 o0 g + o oo o (4.59)

# DD IRG gt e 4 IR gt )
But for any n > 0, we have the estimate

IRGetull o521 iz < WGl o s + Colbxaul s g

and the second term can in turn be estimated using (4.58). Summing the estimate (4.59)

over j and fixing n > 0 sufficiently small, we can thus absorb the terms involving XYGu into

the left hand side, getting control by the norm of f, plus a control term C||p40, +u||pa+ k-
+ b

Adding to this estimate 2C' times (4.57), this control term can be absorbed in the left hand
side of (4.57). This gives control of u as in the left hand side of (4.54) with k replaced by
kE + 1, but with an extra term on the right coming from the last term in (4.57); however,
this term has a weaker weight at 1T, pff(kb” > pi*, hence can be absorbed. This
gives (4.54) for k replaced by k + 1. O

Combining the estimate (4.5) in compact subsets of M° with Proposition 4.3 near (I1°)°,
Proposition 4.8 near £+ \ (41 N IT), and Proposition 4.11 near I proves Theorem 4.2.
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4.3. Explicit weights for the background estimate. We sketch the calculations needed
to obtain explicit values for the weights in the background estimate. More precisely, we
prove the following slight modification of Theorem 4.2:

Theorem 4.12. Let a; = —%. There exists an € > 0 such that for aj < a;j < a’I <
min(0, ag) with |ag|, |a’I|,/ lar|, br, V) < v < € subject to the conditions in Definition 3.1,
as well for h € X°bobrbrbe ith ||h||xs < €, the unique global solution of the linear wave
equation
Lyu=f, (u,0pu)ls = (uo,u1)
satisfies the estimate
¢ a a
HUHpgop?IpajH;’fb—l + H7T11U\|pgopf;1p++H;l’€b—l + HWOU”p

U
ay @7 ay 1 k-1
o Pr P+ H/,b

< C(Jluoll o g + Nl o g (4.60)

N gy + 151 e siar s+ 1051 ot )

Proof. The usage of an intermediate weight a; € (ar,a}) allows for a small but useful
modification of the argument following (4.42): namely, in the notation of that proof, we
are presently estimating ui; with weight p}’, while the term u§; coupling into the equation
for wyy via w1 Ly7, is estimated with weight p7’ < pj’, hence automatically comes with
a small prefactor if we work in a sufficiently small neighborhood of .#*. Correspondingly,
in the proof of Proposition 4.11, we would replace the third inner summand in (4.56) by

= = —92a; «—2af . . . . .
T Vi, with Vi = p; 2‘”pJr a*VO’ in order to obtain (4.60) (with a4 < 0 not explicit at
this point yet).
The only part of the proof of Theorem 4.2 in which we did not get explicit control on
the weights is the energy estimate near I™. In order to obtain the explicit weights there,

we note that for v = 0, h = 0, and Schwarzschild mass m = 0, we simply have 2L; = O,
the wave operator of the Minkowski metric g = dt?> — dz?, which acts component-wise on
S2T*R?* in the trivialization given by coordinate differentials. Recalling from (2.17) that
9M denotes the manifold with corners constructed in §2.1 for m = 0, we shall prove that
the solution of the scalar wave equation t3Dgt_1u = f, with f € p?’flpjfL% supported in
p+ < 1, satisfies the estimate
ar a < ar—1 a .

el or s, S 111 s (4.61)
for ay = —% and a; < 0 small, using a vector field multiplier argument; here, p; = %p;
and py = %p;. But then, if the weights ay,a’,a; etc. are very close to one another, the
nonscalar commutant used in (4.56), modified as above, is very close to being principally
scalar away from #7; correspondingly, a slight modification of our arguments below for
the Minkowski case (4.61) yield the estimate (4.60) for £ = 1. Higher b-regularity follows
as in the proof of Proposition 4.11.

In order to prove the estimate (4.61), we introduce explicit coordinates near the tem-
poral face IT C M within the blow-up of compactified Minkowski space. First of all, the
calculations in A.3 imply

0t ™" = Ogyg — 2, (4.62)

— —4ds
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where
gas = t2(dt* — da?) (4.63)

is the de Sitter metric; notice though that we are interested in ¢ > 1. Thus, consider the
isometry
. 1

(t,.’]j) — (T,ZE) = m(t,l‘) € [0,00);- X R% (464)
of gas, defined in t > r = |z|: it maps I'" to (0,0) and & to {7 = |Z|}, see Figure 4.3. (The
map (4.64) is the change of coordinates between the upper half space models of de Sitter
space associated with ¢ on the one hand and its antipodal point on the future conformal
boundary of de Sitter space on the other hand; see [HZ18, §6.1] for the relevant formulas.)

7 N\
/ \ | |

|
A I
|

|
[
L

FicURE 4.3. Left: part of the conformal embedding of Minkowski space
into the Einstein universe (E,dt? — gs3), E = R x S3. Right: conformal
embedding of de Sitter space into E, and the backward light cone of a point
q on its conformal boundary, whose interior is the domain of the upper half
space model (4.63) of de Sitter space, which near ¢ is equal to the static
model of de Sitter space near its future timelike infinity, ¢. The coordinates
(7,2) are regular near ¢ = (7 = 0,2 = 0).

Define the blow-up M’ := [[0,00)7 x R2,{(0,0)}] at the image of IT. Then the lift of
{# <|%|} to M’ is canonically identified with a neighborhood of I C M. Concretely,

(01, Z) = (#,8/7) = (t/(t* — 12),2/t) € [0,00) x R

gives coordinates on M’, in which U := [0,1),, x {|Z| < 1} is identified with a collar
neighborhood of It C M so that

A2 722 2 2 dﬂi dp+ 9
gas = 7 7(d7° —di”) = (1 = |Z|°)—- —2Z dZ— — dZ~. (4.65)
P+ P+
Furthermore, p; := 1 — |Z|? = 1 — 72/t? is a defining function of #* in U. Let us write
R :=|Z|. Instead of the vector field Vioc = (1 — ¢v)p10,; — p+0,, , which is defined locally
near .# 1 and was used in the proof of Proposition 4.11, we use the global vector field

Vo = —(1+ R*)p19p, — (1 —cv)(1 — R*)ROg

which is equal to Vi, near £+, up to an overall scalar and modulo p;V}, + py)Vy; more-
over, Vp is timelike in U \ .#* for small ¢y > 0. Considering the commutant/vector field
multiplier W := pI_Q‘” pfa*VO with ay = —% and ay < 0 small, the expression for the

K-current Ky is somewhat lengthy, so we merely list its main features in 0 < R < 1,
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writing p?”“pi“* Kw =: K1+ K, with K; a section of 5*(p49,, ,0r) (considered a 2 x 2
matrix in this frame) and K a scalar:

— tr Ki|ep—0 = —2(1 — R* — a;R?*(4 + R?)) < 0, which persists for small ¢y > 0;
— det Ki|ey—0 = —4a;(1 +ay)R*(1 — R?) > 0 and

(Oey det K1)|ey—o = —16aF(R? — 1 +gaj)(z?,z + 3;’;&[) > 0,

so det K1 > 0 for small ¢y > 0;
— K|ey—0 = —2(1 + a;R?) < 0, which persists for small ¢y > 0;
- p?afpi(” divg Wley—o0 = 6 — (2 — 4ay) R% > 0.
Thus, fixing ¢y > 0 to be small, the main term arising in the evaluation of the commutator
—2Re((Ogys — 2)u, Wu) is f;; —Kw (du, du) + 4(divg,s W)[ul? %= dZ, which thus gives the

desired control on u in H,, except |u|? itself is only controlled in p}’ ,o(f_l/ QL% due to the
weaker weight of divg,, W at .#; control in p}’ p‘f L% is obtained by integrating p,0,, u €
Py pSt LR from py = 1. This yields (4.61). O

gds

5. NEWTON ITERATION

Fix bg, b, b}, b4 and ~ as in Theorem 4.2. Recall that we want to solve the symmetric
2-tensor-valued wave equation

P(h) =0, (h)auh)‘E = (h07h1)

for initial data (ho, h1), hj € pgngo(E), small in a suitable high regularity norm, and we
hope to find a solution h € X°:b0:brbrb+ - Following the strategy, outlined in §1, of solving a
linearized equation at each step of an iteration scheme, we consider, formally, the iteration
scheme with initialization

Loh® =0, (A9 8,h)|s = (ho, h1),
and iterative step AVt = p(N) 4 (V41 where
Lyoou™*D = —P(™), (RN, 9, iN+D)|5 = 0.

Assume that R(Y) € x> has small X® norm. In order for this iteration scheme to close, we
need to show that h(V+t1) € x> Since P(h(N)) € Y* by Lemma 3.5, this means that we
need to prove:

Theorem 5.1. For weights as above, there exists € > 0 such that for h € X00:b0,b1,b] b+
with ||h||xs < ¢, the following holds: if f € YoM brbibe and ho, hy € pt? H(X), then the
solution of the initial value problem

Lyu = fa (u7avu)|2 = (u07u1)7

. . /
satisfies u € Xbo:brbb

Remark 5.2. We recall that membership, of a scalar function « for simplicity, in ,080 Hee (R3)
is equivalent (up to an arbitrarily loss in decay) to pointwise estimates |V} - - - Viyu| < (r)~%
where the V; are translation, rotation, or scaling vector fields on R3. The membership
h € xbo:brbpby means pointwise decay of various components of h towards leading order
terms at T or to zero; see Definition 3.1 and Remark 1.9.
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According to Theorem 4.2, we have the background estimate
ue H 00 (0 3782), mou € HYZP U0 (M grS2), (5.1)

for suitable a,.. We shall improve this to u € Xbo.br 10+ using normal operator analysis
in several steps, which were outlined around (1.22): using the leading order form (3.25) of
Ly, or rather its decoupled versions (3.26a)—(3.26¢), we obtain the precise behavior of u
near £\ (LT NIT)in §5.1 by simple ODE analysis; the correct weight at I but losing
some precision at £ near its future boundary in §5.2 by normal operator analysis and
a contour shifting argument; and finally the precise behavior near .# T, uniformly up to
FZ T NI, again by ODE analysis in §5.3.

For later use, we record the mapping properties of P and its linearization on the poly-
homogeneous and conormal parts of X'**—recall (3.9).

Lemma 5.3. Let h € X0brbrbs aith ||h|| s small; write h = hpng + h, hpng € X ohe?
hy, € X°. Then: (1) P(hpng) € Y, (2) LY: he — YV, (3) LY, Lp: X° — Ve,
(4) Ly: X%, — V.

The point is that the behavior (2)-(3) of the leading term L and simple information (1)
on the nonlinear operator automatically imply precise mapping properties (4) of the error
term Lj; which are not encoded in (3.25).

Proof of Lemma 5.3. Part (1) follows from Lemma 3.5. One obtains (2) by inspection
of (3.25); note that LY is only well-defined modulo terms in (C*° —|—p[1)+b°p1 p1+b+ H®)Diff}
which always map X F — Y. Likewise, the first part of (3) follows from (3.25); the fact
that the ‘good components’ (encoded by the bundle Kj) have a better weight b than the
weight by of the remaining components (in K() is again due to the structure of L% discussed
after Lemma 3.8. The second part of (3) is clear, since this concerns the remainder operator
Eh, whose coefficients are decaying relative to pI_IDiff%, acting on X°°, which consists of

tensors decaying at &,

Finally, to prove (4), we take upp, € X5 ohe and write Lhuphg = Dy P(uphg) — Lhuphg The
second term lies in Y*° by (2), while the first term equals

d
%P(hphg + SUphg + hb)‘szo
d

1 ~
= Ts (P(hphg + suphg) + /0 L9Lphg+suphg+thb (hb) + thhg+suphg+thb (hp) dt)

but each of the three terms in parentheses depends smoothly on s as an element of Y
by (1), (2), and (3), respectively. O

i

s=0

5.1. Asymptotics near I° N .#+. With conormal regularity of u at our disposal, all but
the leading order terms of Lj can be regarded as error terms at #T: from (5.1) and

Lemma 3.8, we get

/7
u € Yoo ;b0,b1,b7 b4 + HOO ibo,—1-+b} 07a+'

Let us now work in a nelghborhood U C M of I°N.#* and drop the weight at I+ from the
notation. To improve the asymptotics of u§; := 7{,u, we use part (3.26b) of the constraint
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damping/weak null structure hierarchy as well as b}, > br: this gives
2020001y € pi oy HE.
Using the local defining functions pg and pr from (2.25) and multiplying by pr, this becomes
P10p; (P00py — P10y, )ui; € PgOPI}IH}SO~ (5.2)
We can integrate the second vector field from p; > €, where uf, € pSOHgo, obtaining
proy ui, € pgopl}IHgo; this uses by < by (see Lemma 7.7 for details). Integrating out

p19,, (see Lemma 7.6) shows that u$, is the sum of a leading term in plX H°(.#+ N U)

and a remainder in pgo p?l He(U). This then couples into the equation for wiy = m1yu,
corresponding to part (3.26¢) of the hierarchy:

ab bo b
P10p,(P00py — P10, )ur1 € prminf — %(alhab)al(ufl)al’) + po pr Hy' (5.3)
The first two summands lie in pgo HX(s/TnU) + pgo pl}’ HPe; integrating this along pr0,,
generates the logarithmic leading term of wy1. Thus, u;; = ugll) log pr + ug?) + u11}, with
ugjl) € pgngo(f+ NU) and unyp € pgopl}IHgo, as desired.

It remains to improve uy = mou. Write u = uppg + up, where upng € X;ﬁg and up, €
pgoplf Hp° according to what we have already established; note that the space gﬁg is
independent of the choice of by, b} € (0,1). Then

~ ~ ~ b/ 71
moLymoug = mo.f — moLn(mouo) — moLn(m§un) — moLn(mupkg) € plp,  HE®
for the first summand, this follows from f € )°o:bo.br b+ for the second summand from

ug € pgo p?l _OH§° and the decay of the coefficients of Eh, similarly for the third summand;
and for the fourth summand, we use Lemma 5.3(4). Using the notation of part (3.26a) of
the hierarchy, this means

bo b}
(p10p;, — Acp)(P00py — P10, )u0 € po’ py' HE®.
Since we are taking vy > b/, all eigenvalues of Acp are > b, so integration of p;0,, — Acp

and then of p/gﬁpo — p10,, (using b} < bg) gives ug € pgo pl}I Hge. We have thus shown that
u € X000 brb1bt near 19N 7t in fact, this holds away from I+,

5.2. Asymptotics at the temporal face. We work near I™ now and drop the weight
at I° from the notation. Recall from (3.27) the gauge-damped operator L on Minkowski
space; by Lemma 3.10 and (3.29), we have

—1— b . *
Ly — L € p; ' =°p " Hy®(M) - Diff} (M; 8°5%). (5.4)

We shall deduce the asymptotic behavior of u at I from a study of the operator L (and
its resonances) on a partial radial compactification N of R*—without blowing up the latter
at the light cone at future infinity. Before making this precise, we study L in detail as a
b-operator on N. Let

r=t' X=uz/t;
these are smooth coordinates on the radial compactification

N :=[0,00), x R%
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of R* in t > 0, see Figure 5.1. We have dx = td,, té. = 6x, t6; = 0%, and t0; =
—70; — X0x. Thus, if we trivialize S?5°T* “R4 using coordinate differentials, the explicit
expression of L given in §A.3 shows that L is a dilation-invariant element of Diff3(N;C'0),
i.e. L = N(L), recalling the definition (2.2) of the normal operator.

Note that L (and even Lg) has singular coefficients at I C ™M due to the gauge/con-
straint damping term: the singular terms come from —p~'A4;0; in Lemma 3.8. Likewise,
L, on the blow-up of N at the light cone {7 = 0, |X| = 1} at infinity, has coefficients with
pf_l singularities, which would complicate the normal operator analysis at the temporal
face %1, the lift of

B:={r=0, |X]| <1},
On the other hand, L does have smooth coefficients on the un-blown-up space N, and
we recall its well-understood b- and normal operator analysis at 0N momentarily. The
discussion of the relation between the blown-up and the un-blown-up picture starts with
Lemma 5.7 below.

1X] =1

Ficurge 5.1. Illustration of the compactification N near its boundary at
infinity ON = {r = 0}. Shown are future timelike infinity B = °3(°I"), its
boundary B = ST, and, for illustration, the light cone |z| = ¢ (dashed).

Conjugating L by the Mellin-transform in 7, thus formally replacing 70, by io, gives the
Mellin-transformed normal operator family E(a) € Diff?(ON; C'?), depending holomorphi-
cally on o € C; the principal symbol of Lis independent of o.

We already control u in Theorem 5.1 away from It C M, so only need to study u
(and how L relates to it) near ™I, whose image under the blow-down map ™3 on ™M is
identified with B, see Lemma 2.10. For s € R, we then define the function space H* (B;C!9)

as the space of all v € H _(ON;C°) which are supported in B. (We are using the notation
of [H6r07, Appendix B].) Let

X% .= {u e H*(B;C!): E(O)u e HY(B;CY)}, 9°:= H%(B;C!9).
Semiclassical Sobolev spaces are defined by Hf = H® with h-dependent norm ||| =

[(hD)*u|| ;> on ON = R%. Let further M C Diff'(9N;C!) denote the C>(9N)-module
of first order operators with principal symbol vanishing on N*0B, and fix a finite set
{A;} C M of generators.*® For k € Ny, we then define

H*(B;C'%) = {u € H®: Aj,-- - Ajuc H*, 0 <<k}
and the semiclassical analogue Hflk = H** with norm
HUquZ,k = llullfy, + > lIhAy) - (hAj)ull Gy,
0<¢<k

_36Near 0B, and omitting the bundle C'°, one can take as generators the vector fields (| X| — 1)X0x,
X790y — X1y,
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Lemma 5.4. Let C >0, and fix s < 3 — C. Then L( ): X5 — Y7L is an analytic family
of Fredholm operators in {o € C: Ima > —C'}, with meromorphic inverse satisfying

IZ) Sl < Culo) g g [Tmo] €. [Real > 1,
for any k € Ny.

Proof. For k = 0, this is almost the same statement as proved in [Vasl3, §5], see also
[BVW15] and the summary of the presently relevant results in [BVW16, §6]; adding higher
module regularity, i.e. k& > 1, follows by a standard argument, commuting (compositions
of) a well-chosen spanning set of M through the equation z(a)u = f; see [BVW15, Proof
of Proposition 4.4] and the discussion prior to [HV15, Theorem 5.4] for details in the closely
related b-setting (i.e. prior to conjugation by the Mellin transform). We shall thus be brief.

The only two differences between the references and the present situation are: (1) L(J)
is an operator acting on a vector bundle; (2) we are working with supported function
spaces in B, i.e. future timelike infinity, rather than globally on the boundary of the radial
compactification of Minkowski space. Since L(c) is principally scalar, (1) only affects the
threshold regularity at the radial set N*0B. For v = 0, L is simply a conjugation of %
times the scalar wave operator, acting diagonally on C'°, and in this case the threshold
regularity is given as s < % + Imo in [BVW16, §6], which is implied by our assumption
s < % — C. For small v > 0 (depending on the choice of s), this assumption is still
sufficient. A straightforward calculation (which we omit) shows that the eigenvalues of
o (3(8* — 63)04Ggt™1)|N+ap are > 0, hence the threshold regularity is s < 1+ Imo for
any v > 0. (This is closely related to the fact that the components of the solution of
Lu = f € C®(R*) do not grow at .#F; see Lemma 5.7 below for the relation between

growth/decay on M and regularity on R%.)

In order to deal with (2), it is convenient to first study f/( ) acting on supported distribu-
tions on a larger ball By := {|X| <1+ d} The only slightly delicate part of the argument

establishing the Fredholm property of L(o) acting between H*(Bs; C10)-type spaces is the
adjoint estimate: we need to show that L(o)* satisfies an estimate

[ull 1= (Bg) S NIL(0) ull s (Bg) + llull o (B3) (5:5)

for some sp < 1 — s; here H*(B3) denotes extendible distributions, i.e. restrictions of H
sections on ON to Bjs. This estimate however is straightforward to obtain by combining
elliptic, real principal type, and radial point estimates in Bj, as in the references, with
energy estimates for f( )* which is a wave operator (on the principal symbol level) in
Bs \ BI/Q, see e.g. [Zwol6, §3.2] where our L( )* is denoted P. High energy estimates for
L(0) on H*(By)-type spaces follow by similar arguments (using [Vas13, Proposition 3.8] for
the energy estimate).

Suppose now L(c)u = f € H*1(B) with u € H*(B,). Then energy estimates in By \ B
imply suppu C B. This and the Fredholm property of L on Bs yield the desired Fredholm

property of L: X% — )71 (specifically, the finite codimensionality of the range). Similarly,
the high energy estimates on Bs imply those on B, finishing the proof. U

Lemma 5.5. For small v > 0, all resonances o € C of L satisfy Imo < 0.
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Remark 5.6. One can in fact compute the divisor of L, i.e. the set of (z,k) € C x Ny such
that L(o)~! has a pole of order > k + 1 at o = z, quite explicitly for any : it is contained
in —1U—-2iU—i(1+v)U—i(1 4+ 2v), using the shorthand notation (2.35).

Proof of Lemma 5.5. For v = 0, and in the trivialization of S?T*R* by coordinate differen-
tials, L acts, up to conjugation and rescaling, component-wise as the scalar wave operator
on Minkowski space, for which the divisor is known to be —i, see [BVW15, §10.1]. For small
v, L is a small perturbation of this, and the lemma follows. (See also [Vas13, §2.7].) O

Since by equation (3.28), Ly — L € p' O H°Difff("R?), the normal operators as b-
differential operators on ™R* are the same, N(Ly) = N(L), hence the above results hold
for N(Lop) in place of L.

We next relate the relevant function spaces on ™M, ™R%. We only need to consider
supported distributions near ™i™ C ™M. We drop m from the notation. If p, € C>(M)
denotes a defining function of I such that p. > 2 at I°, let

Let M), C Diff{ (R4) be the C*°(R4)-module of b-differential operators with b-principal
symbol vanishing on PN*S+* 37 and define Hf)’lkOC(R‘l) to consist of all u € H{, (R?*) for
which Ay ---Apu EngJOC(@) forall 0 < ¢ <k, A; € My,. Supported distributions on a
compact set V' C R* are denoted H{j’k(V).

Lemma 5.7. For ay € R, d > —3, and k € Ny, the map Blynon: U\ OM = B(U) \ OR*
mduces a continuous inclusion

p?++d71/2pi+H]l;+d(U) N pa+H{f’k(ﬁ(U)), (5.6)

and conversely
ayt 174, ar+d—1/2 ay
U HER(B(U)) = pf T2 pi (), (5.7)

Thus, given the condition on supports, b-regularity near S is, apart from losses in
module regularity, the same as decay at .#+. See Figure 5.2. A version of the inclusion (5.7)
is (implicitly) a key ingredient of [BVW16], see in particular §9.2 there.

FIGURE 5.2. The neighborhood U of IT € M as well as its image in R*
under the blow-down map £.

3"The b-conormal bundle "N*S* ¢ bT§+@ is the annihilator of the space of b-vector fields tangent to
ST. In the coordinates (2.6), My, is spanned by pd,, pd,, v0y, and spherical vector fields.
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Proof of Lemma 5.7. First consider (5.6). Dividing by p™ = p}*p}’, it suffices to prove
this for ay = 0. Furthermore, elements of My lift to b-differential operators on M; in
fact, Diff{ (M) is generated, over C>(M), by the lift of My, to M. Therefore, it suffices to
consider the case k£ = 0 and prove

PP HAU) < BLBWU)), d> -1 (5.8)

For d = 0, this is a consequence of the fact that pr times a b-density on M pushes forward
to a b-density on R4, cf. (4.27). Next, note that V},(R%) lifts to p; ' V,,(M) and thus maps
PTHy 10c(M) = pf 1H§ 0 (M); the Leibniz rule thus reduces the case d € N to the already

established case d = 0. For general d > 0, (5.8) follows by interpolation; we discuss
d € (—3,0] below.

For (5.7), we again only need to consider a1 = 0, k = 0, and prove

: d—1/2
HY(B(U)) = py L3 () = p{ LY (B(V)). (5.9)
For d = 0, this is clear; for d = 1, integrating the 1-dimensional Hardy inequality,
o Ml S Il age,y u € C(Ry), in fact gives HA(A(WU)) < oL3(A(U)), where
x is a defining function for (AU) within RE. In particular, §*z € C*°(M) vanishes at .#*

and is hence a bounded multiple of p;, from which (5.9) follows. For general d € N, we use
the following generalization of the Hardy inequality: for u € C°(R.),

1 S92 Sd
Ha:_duHLz:H// / D (1) db dby - - - db da
0 0 0
1 S92 Sd
g// / (D ()| 2 dt dtg - - - dto da:
0

2 dq
~ (2d)!

For real d > 0, (5.9) again follows by interpolation.
For d € (—3,0], we dualize (5.8) with respect to L}(B(U)) and thus need to show
HE(BU)) < p5 PHEU), e = —d € [0,1/2). But this follows from (5.7), as in this

regularity range, supported and extendible Sobolev spaces are naturally isomorphic [Tay96,
§4.5]. Similarly, (5.9) for d € (—1,0] follows from (5.8) for d € [0, 3) by dualization. O

L2

Ju d)||L2

Returning to the proof of Theorem 5.1, we have already proved (1—x)u € X'* where xy =
x(p+) is identically 1 for p; < 3 and vanishes for py > 1. Consider xu € pl_oprgo(U ),
a4 < by, which satisfies

_1-0 by
Lixu = f1 = xf + [Ln, xJu € p; = p3 HX(U),
where we use that [Ly, x]u is supported away from I*. Let
a/, =min(ay +1+by,by) <0,

and fix d € (—1,-1 —a/)), then L, — N(Ly) € p;'7° 1H’*Hb (M) - Diff2(M) (see

Lemma 3.10) and Lemma 5.7 yield

N(Loyxu =: f € ppi=0p" HE(U) = p™ H™(B(U)). (5.10)
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Shrinking U if necessary, we may assume that ¢ > 1 + r, in U. It then suffices to use
dilation-invariant operators on ™R?* to measure module regularity at ™ST. Indeed, for
m = 0 and thus r, = r (the discussion for general m being similar), recall that with
R =|X]|, w = X/|X|, we can take 70, (1 — R)Og, 0., and 7O as generators of My,; but
TOr = ¢(1 — R)Og with ¢ = 7/(1 — R) € [0,1] bounded. Write (5.10) using the Mellin
transform in 7 as

1 N .
XU = — 7 L(0) " f2(0) do,
27 Imo=—«
initially for « = —a ; then ]?2(0’) is holomorphic in Im ¢ > —a/, with values in H®%°(B; 1),

and in fact extends by continuity to

Falo) € L2({Ima = —d\}; <a>—d—NHd’§V, L (B; gm)) (VN). (5.11)

(o

By Lemmas 5.4 and 5.5, L(¢)~!f2(0) is thus holomorphic in Imo > —a!, as well, with
values in H%1:°° extending by continuity to the space in (5.11) with d replaced by d + 1;
therefore yu € p“/+H5+1’°°(B(U)), SO Yu € pI_OpCf’Hﬁo(U) by Lemma 5.7, as we may choose
d arbitrarily close to —% — d/,. This improves the weight of u at It by a/, — a4 ; iterating
the argument gives yu € pl_oplr[-.[go(U).

5.3. Asymptotics near .# TN IT. It remains to show that the precise asymptotics at .# T
which we established away from IT in §5.1 extend all the way up to I, with the weight plf
at I™. This is completely parallel to the arguments in §5.1: working near I, we now have
LYu € Yooibobrbpbe HEO;bO’_Hb}_O’bJr, so with coordinates py, p4 as in (4.48) (dropping
the superscript ‘o’),
P11 (010, — prdy, Jusy € pf pyt HE®s

now, in py > 0 (and away from 1Y), u$; has a leading term at ., plus a remainder in
plI’I Hpe, while in pr > 0, uf; = w{;u lies in pljj Hpe. Using Lemma 7.6 to integrate the above
equation for u{,, we conclude that u{; is the sum of a leading term in pgo pl_’f HX*(FT) and
a remainder in pgo pl}’ plf Hpe, as desired. Similarly, we obtain the desired asymptotic be-

havior, uniformly up to I'", of u1; and then of ug. Therefore, u € X°00:brbrb+  completing
the proof of Theorem 5.1.

6. PROOF OF GLOBAL STABILITY

We now make Theorem 5.1 quantitative by keeping track of the number of derivatives
used and proving tame estimates, the crucial ingredient in Nash—Moser iteration. Fix the
mass m; for weights b, by, b7, by as in Definitions 3.1 and 3.3, let

Bk‘ = Xk;bo,bj,bll,lu_; Bk — yk);bo,b[,bll,b+ a Dk;b()’ Dk;bo . pSOH{j-Fl(E) oy pSOHé(X»

Let us write | - |5, resp. || - ||s, for the norm on B*, resp. B*. Put
B> =(1B* B*=[)B"
kEN kEN

We recall Saint-Raymond’s version [SR89] of the Nash—Moser inverse function theorem:
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Theorem 6.1 (See [SR89]). Let ¢: B® — B> be a C? map, and assume that there erist
d €N, € >0, and constants C,Cy, (Cs)s>q such that for any h,u,v € B® with |h|3q < €,

[e(h)|ls < Cs(1 + |hlsya) Vs = d, (6.1a)
¢ (h)ullaa < C1lulsa, (6.1b)
16" (h) (u, v)[l2a < Calulza|v]3a- (6.1c)

Moreover, assume that for such h, there exists an operator ¥ (h): B — B satisfying
¢'(h)w(h)f = f and the tame estimate

[ (h) fls < Cs(ll fllsa + [Plstall fll2a), Vs >d, feB>. (6.2)

Then if ||¢(0)||2a < ¢, where ¢ > 0 is a constant depending on € and Cs for s < D, where
D = 16d? + 43d + 24, there exists h € B, |h|3q < €, such that ¢(h) = 0.

This uses a family of smoothing operators (Sp)p~1: B® — B satisfying the estimates
|Spv|s < C&th*t\vlt, s>t |v — Spv|s < C’S7t957t|v\t, s < t. (6.3)

Acting on standard Sobolev spaces H*(R"™), the existence of such a family is proved in
[SR89, Appendix], and the extension to weighted b-Sobolev spaces on manifolds with cor-
ners is straightforward: the arguments on manifolds with boundary given in [HV18, §11.2]
generalize directly to the corner setting. For the spaces B®* = X® at hand then, one writes
h € B> as x1h + (1 — x1)h, with x; € C*°(M), j = 0,1,2, identically 1 in a small neigh-
borhood of £, and x;4+1 = 1 on suppy;. We smooth out (1 — x1)h € pgopfopiJrHﬁo(M)
(see (2.29) for the notation p7°) as usual and cut the result off using (1 — xp); since we
are working away from .# 7T, the weight of p; plays no role here. (The proof of [HV16,
Lemma 5.9] shows that cutting off the smoothing of (1 — x1)h away from its support does
not affect the estimates (6.3).) Near .# " on the other hand, we have x1h = (x1ha), where
we denote by h, the components of h in the bundle splitting (2.21). The decaying com-
ponents (3.4) as well as the remainder terms h, p, in (3.5)—(3.6) can then be smoothed out
and cut off using x2. To smooth out the leading terms, fix a collar neighborhood of .#T;
considering for example x1ho1 = Xoh(()(i) + X1ho1,p, see (3.6), we smooth out hgi) in the
weighted b-Sobolev space pgo p{fHﬁo (#71), extend the result to the collar neighborhood,
and cut off using xq; similarly for the other components of h.

Given initial data (hg, h1) € D>, we want to apply Theorem 6.1 to the map

¢(h) = (P(h), (h,0,h)|s — (ho, h1)), (6.4)

with P given in (3.2). Note that the smallness of ¢(0) in particular requires P(0) =
p3Ric(gm) to be small. Now, P(0) is nonzero only in the region where we interpolate
between the mass m Schwarzschild metric and the Minkowski metric (both of which are
Ricci-flat!), i.e. on supp dy U supp d¢ in the notation of (2.10)—(2.11); thus in fact P(0) €

Ag’l?g’o. It is then easy to see that [[P(0)|yx < Cym for all k € N, which is the reason why

we need to assume the ADM mass m to be small to get global solvability.
For h € X* with |h|3 small, the tensor
g = gm + ph
is Lorentzian (by Sobolev embedding) and hence ¢(h) is defined; since P is a second order

(nonlinear) differential operator with coefficients which are polynomials in g=! and up to
2 derivatives of g, and since h +— (h,d,h)|s is continuous as a map X* — DF=3/2 for
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k > 2, the estimate (6.1a) follows for d = 3. The estimate (6.1b) also holds for d = 3
and |h|3g < € small, since the first component of ¢'(h)u, namely Lpu, is a second order
linear differential operator acting on u, with coefficients involving at most 2 derivatives of
h; similarly for (6.1c).

The existence of the right inverse ¥ (u): B® — B is the content of Theorem 5.1;
we merely need to determine a value for d such that the tame estimate (6.2) holds. (As
stressed in the introduction, the mere existence of such a d is clear, since the estimates
on ¢ (u) are obtained using energy methods, integration along approximate characteristics,
and inversion of a linear, smooth coefficient, model operator in §4, §§5.1 and 5.3, and §5.2,
respectively.) Consider the first term on the right in (6.2): we need to quantify the loss
of derivatives of the solution v of Lyu = f, (u,0,u)|s = (ug, u1), relative to the regularity
k>0 of (f,(ug,u1)) € BF,

Now, dropping the H} regularity part of Theorem 4.2, we obtain u € pgopf,” p'f H]’;,

Tou € ,080 pCIL’ Pt H{f. The arguments near 1°N .7 in §5.1 first express u$; as the solution
of a transport equation (5.2), with the right hand side involving up to two derivatives of u;
since integration of this equation does not regain full b-derivatives, the leading terms (and
the remainder term) of u{; lie in H§_2, with the correct weight by at I° (and by at £ 7T);
next, this couples into the transport equation (5.3) for ui1, again with up to 2 derivatives
of u, so integrating this yields leading and remainder terms of uq; in H]l;_4; and similarly
then ug € pgopl}}H{j_G near I°N .7+,

On the other hand, improving the b-weight at I™ by 1 + b,, which we may take to
be arbitrarily close to 1 by taking by < 0 close to 0, uses the rewriting (5.10), which
due to the second order nature of L, — N(Lg) involves an error term (subsumed into fo
there) with 2 derivatives on u. Passing to the blow-down using Lemma 5.7 loses at most 1
module derivative; inverting N(Lg) gains 1 b-derivative (which is used to recover the p;°
bound at .#), but no module derivatives, so passing back to the blow-up, we have lost at
most 3 b-derivatives. Thus, improving the weight at I™ from a; to b, ~ 0 loses at most
dy := 1+ 3[a] derivatives relative to H}\.

These two pieces of information are combined near £+ NI in §5.3, where we lose at
most 6 derivatives, just as in the discussion near I N .1, relative to the less regular of the
two spaces H]];*G and H{f_d* from above; we thus take d = 6 + max(6,dy). If we use the
explicit background estimate, Theorem 4.12, so ay = %, this gives d; = 7 and therefore

d=13.

For this value of d, one may then verify the tame estimate (6.2) by going through the proofs
of Theorems 4.2 and 5.1 and proving tame estimates by exploiting Moser estimates; this is
analogous to the manner in which the microlocal estimates for smooth coefficient operators
in [Vasl3, §2], [HV15, §2.1] were extended to estimates for rough coefficient operators in
[Hin16, §§3—6], which were subsequently sharpened to tame estimates in [HV16, §53—4]. In
the present setting, obtaining tame estimates is much simpler than in the references, as
the estimates in §84—5 are based on standard energy estimates, so one can appeal directly
to the Moser estimates; or, in view of the fact that our energy estimates can be proved
using positive commutators (and are indeed phrased this way here), which also underlie the
tame estimates in these references, the arguments given there (using vector fields instead
of microlocal commutants) apply here as well. We omit the details, but we do point out
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that it is key that the proofs as stated only use pointwise control of up to 1 derivative of
h (via causality considerations and deformation tensors, see e.g. the calculation (4.16) and
Lemma 4.6) in order to obtain the main positive terms in the commutator arguments; thus,
control of |h|4 suffices in this sense, that is, the constant in (4.3) for £k = 1 only depends on
|h|4. The proofs of higher b-regularity use commutation arguments, which do not affect the
principal part of Ly, as well as ellipticity considerations around (4.58) which only require
pointwise control of h itself; correspondingly, at no point do we need to use the smallness
of any higher regularity norms of h. (See the end of [H6r97, §6.4] for a related discussion.)

Next, we deal with a small technical complication stemming from the fact that for m # 0,
the closure of {t = 0}, on which in Theorem 1.1 we compare the initial data with those of
the Schwarzschild metric in its standard form, inside of ™R? is not a smooth hypersurface
when m # 0, the issue being smoothness at d™R%; furthermore, our discussion of linear
Cauchy problems used ™3 # {t = 0} as the Cauchy surface. We resolve this issue by solving

the initial value problem for a short amount of time in the radial compactification “R%, with
initial surface {t = 0} (whose closure is smooth in °R%), pushing the local solution forward
to ™R4, and then solving globally from there. Recall the function t;, from (2.14), and the
notation (2.17). (Thus, %, is a rescaling of ¢, and °% = {%, = 0}.)

Lemma 6.2. Fizr N large, and let by > 0, ¢ > 0. Suppose v,k € C°(R3; S2T*R3) are
vacuum initial data on R3, that is, solutions of the constraint equations (1.5), such that for
some m € R,

F =y = x(r)((1 = 2Z2) " dr? + r2g) € py P Heo (R3; S 5°T*R3) (6.5)
and k € pg+b0H§°(@; S25cT*R3) satisfy
]+ 171, goves + Bl g0 < 6 (6.6)
where & > 0 is a sufficiently small constant; here x = x(r) is a cutoff, x = 0 forr < 1,
X =1 for r > 2. Then, identifying R3 = °% C °M via R? 3 2 +— (0,2) € R*, there ewists a
solution g of the Einstein vacuum equation Ric(g) = 0 in the neighborhood
U= {ty] < 1}, (6.7)

attaining the data (v,k) at °S (that is, (1.4) holds) and satisfying the gauge condition
Y(g;9m) = 0; moreover, g = gm + ph, where h € pgngo(U;SZSCT*OR4) has norm

|’th80HéV+1(U) <e.

Proof. Note that the metric g, is smooth on U C 9R%, as near I° it is given by the
Schwarzschild metric g;?;, see (1.3). Using the product decomposition R* = R; x R3, we
define a Lorentzian signature metric over the interior (°X)° = {t = 0} by

g0 = (1= x(r)20)de — 7 € C=((°8)"; S*TRY), (6.8)

whose pullback to Y is equal to —y. We next find g; € C>(°%; S?T*R*) such that k =
Iy +1g,; denoting by N = (1 — x(r)22)~1/29, the future unit normal, this is equivalent, by
polarization, to

go((VET — V¥ X,N) = k(X,X) VX e T(°%)°;
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Here, we view g as a stationary metric near ¢t = 0, which due to its symmetry under time
reversal ¢ — —t has vanishing second fundamental form: go(VEX, N) = 0. A calculation
in normal coordinates for gy shows that this is uniquely solved by

91(X, X) = —2(Nt)'k(X, X) = —2(1 — x(r)Z)2k(X, X). (6.9)

It remains to specify g1 (V,-) and g1 (N, N), which involves the gauge condition at ¢ = 0;
that is, for all V' € T{t:o}R4, we require

—Y(g0; gm)(V) = (T(g0 + tg1; gm) — Y(90; gm)) (V)
= (Ggog1)(V, V1) = (1 = x(r)22) 7 /(Ggog1) (V, N).
For V € T(°X)°, this determines (Gg,91)(V, N) = g1(V, N). Lastly, if E1, Es, E3 € T(°%)°

completes N to an orthonormal basis, this also determines (Gg,g1)(N, N) = $(g1(N,N) +
Zj gl(Ej’ E])) and thus gl(N, N)

The assumption on vy gives
ho = py (90 — gm) € pg Hi® ("% 5% *Tey,"RY). (6.11)

We claim that likewise

(6.10)

hy = py 21 € pi HE*(O%; STy ORY). (6.12)

We introduce the extra factor of pg since Po 19, is a smooth b-vector field on “R?* near °%
and transversal to it; that is, in (4.1), we can take

a,/ = palf)t.

Now the restriction of h; to S?5°T %% lies in pg‘)H{)’o , as follows from (6.9). (Recall that
s¢T'0% is spanned by coordinate vector fields on R3.) To prove (6.12), it thus suffices to
prove that Y (go;gm)(V) € pg+b°H§° for V equal to 9; or a coordinate vector field on R?;
this however follows from (6.11) and the local coordinate expression (3.1) of T, as such a
vector field V is equal to pg times a b-vector field on OR4.

This construction preserves smallness, i.e. we have ||hol| sy, 511 + |1l 20,8 < C9 for
Py H, Py Hi,

some constant C'. We can then solve the quasilinear wave equation P(h) = 0 in the neighbor-
hood U of °Y, e.g. using Nash-Moser iteration as explained above. (Since we are not solving
up to £+ where our arguments in §5 lose derivatives, one can use a simpler iteration scheme
here, see [Tay96, §16.1].) The constraint equations then imply that 9, (gm + ph; gm) =0
at 9%, see [HV18, §2.1]; since Y solves the wave equation (1.31), we have T = 0. O

To extend this to a global solution, we recall from Lemma 2.10 and the isomorphism (2.40)
that  pushes forward to an element of pl° HO(U'), U’ := {|™t,| < i}, and satisfies a
bound HthgOH{)V“(U') < Ce, with C a constant depending only on m. We can thus use
(ho,h1) = (h,0,h)|my as Cauchy data for the equation P(h) = 0. Note that the gauge
condition Y(g) = 0, g = gm + ph, holds identically near "¥; by uniqueness of solutions of
P(h) = 0 with Cauchy data (hg, h1), a global solution h will automatically satisfy Y(g) = 0,
as this holds near ™Y, and then globally by the argument given around equation (1.31).

Theorem 6.3. Fiz N large, bp > 0, ¢ >0, and 0 < n < min(%,bo). Then if m € R and
ho, h1 € pgoHﬁo(mE) satisfy

’m‘ + ||hOHP80HéV+1 + ||h1HP80HtI)V < (57
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where § > 0 is a small constant, then there exists a global solution h of
P(h) =0, (h,0yh)|ms = (ho, h1), (6.13)

that is, N
Ric(g) =0T (9) =0, g = gm + ph,
which satisfies h € X00brbrbe for oll weights by < b < min(1,by) and by < 0, and so
that moreover ||h|| yo:09,m.n/2,—n < €. If in addition Y (gm~+ ph; gm) = 0, 0, Y (gm + ph; gm) = 0
at "3, then g solves
Ric(g) =0
in the gauge Y(g) = 0.

As explained above, data for which the assumption in the second part of the theorem
holds arise from an application of Lemma 6.2. This assumption is equivalent to the state-
ment that the Riemannian metric and second fundamental form of "3 induced by a metric
gm + ph with (h,0,h)|ms; = (ho, h1) satisfy the constraint equations, and that the gauge
condition Y (h;gm) = 0 holds pointwise at "X. These are assumptions only involving the
data (hg, h1); the vanishing of 9, (h)|my for the solution h of P(h) = 0 with these data
follows as in the proof of Lemma 6.2.

Proof of Theorem 6.3. This follows, with by < b} < min(%,bo) at first, for N = 2d = 26,
from Theorem 6.1 applied to the map in (6.4). The constant § > 0 depends in particular
on the constants Cs in (6.1a) for s < D = 3287; that is, § = 6(HhoHpbOHD+1 + ”thpbOHD).

0 b 0 b
Repeating the arguments in §§5.1 and 5.3 once more shows that one can take by < b} <
min(1, bo); see also the proof of Theorem 7.1 below.

We remark that A is in fact small in X3% = A3 but if one is interested in the size of
up to two derivatives (e.g. curvature) of h, control of its X6 norm is sufficient by Sobolev
embedding. O

Remark 6.4. In other words, using the notation of the proof and d > 13, N = 2d, D =
16d? + 43d + 24 = 3287, and fixing m and by, we can solve the initial value problem (6.13)
for data in the space 7 :=J, Z(C), where

C) = {(ho, 1) ho, by € PP HEE(™S), ]+ ol o v+ Il o o < S(C),

An inspection of the proof of Theorem 6.1 in [SR89] shows that limc_,00(C) > 0, so Z in
particular contains all conormal data (hg, hy) for which |m|+ ||h()”pb0HD+1 + || ”pboHD < do,
0 b 0 b

where §p > 0 is a universal constant (i.e. depending only on m and by). Moreover, one
also has a continuity statement: for any choice of weights by, b},b; as in Theorem 6.3,
the solution h € A3%bo:brb1b+ of (6.13) depends continuously on (hg, hi) € 2, the latter
being equipped with the pgpoD g pg‘)H{? topology.®® Indeed, to obtain continuity at
the Minkowski solution, note that the map ¢ in (6.4) depends parametrically on the data
(ho,h1) € 2, but the constants appearing in the estimates in [SR89] can be taken to be

uniform when (hg, h1) varies in 2(C') with C fixed. Continuity at other solutions is similarly

38Hamilton [Ham82] shows that the data-to-solution map is in fact a tame smooth map D> 3
(ho,h1) — h € A o001 br by (defined in the neighborhood 2 of the origin of D).
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automatic, but the base point of the Nash—-Moser iteration (called up in [SR89, Lemma 1])
should then be given by the solution one is perturbing around.

The solution h of (6.13) in fact has a leading term at I, as will follow from the arguments
in §7, see the discussion around (7.16); this precise information was not needed to close the
iteration scheme, hence we did not encode it in the spaces X°.

The conclusion in the form given in Theorem 1.1 can be obtained by combining Lemma 6.2
and Theorem 6.3: using the coordinate ¢, on ™M, the initial surface % in Minkowski space
is given by t,, = —2mpox(r)log(r — 2m). A diffeomorphism of ™R* which near ™Y is not
smooth but rather polyhomogeneous with index set &g, and which is the identity away
from ™3, can be used to map {t, > —2mpox(r)log(r — 2m)} € ™M’ to ™M = {ty, > 0};
pushing the solution ¢ obtained from Lemma 6.2 and Theorem 6.3, which is defined on
t > 0, forward using this diffeomorphism produces the solution ¢ as in Theorem 1.1. (The
gauge condition satisfied by ¢ is the wave map condition with respect to the background
metric which is the pushforward of g¢,,.) We omit the proofs of future causal geodesic
completeness of (M, g), as one can essentially copy the arguments of Lindblad-Rodnianski
[LRO5, §16].

Remark 6.5. By Sobolev embedding, h obeys the pointwise bound
W < Cp(L4+t+r) 1+ (ry —t) )% V>0 (6.14)

and is small for fixed n > 0 if 6 = 6(n) > 0 in the theorem is sufficiently small; here,
we measure the size of h using any fixed Riemannian inner product on the fibers of 3*52,
equivalently, by measuring ;. |h(Z;, Z;)|, where {Z;} = {01, 0,1,0,2,0,3} are coordinate
vector fields. The bound (6.14) also holds for all covariant derivatives of h along b-vector
fields on ™M. In particular, by Lemma 3.11, [g—g| < Cp(1+t+7)"1*" 5 > 0. The Riemann
curvature tensor also decays to 0 as t + r — oo, with the decay rate depending on the
component: this follows from an inspection of the expressions in §A.2. Note however that
the components in the frame (2.23) have no geometric meaning away from .. Geometric
and more precise decay statements were obtained by Klainerman—Nicolo [KN03a).

Remark 6.6. If the ADM mass m of the initial data is large, there does not exist a metric
with the mass m Schwarzschild behavior near .#+ but Minkowski-like far from I° U .#+
which is sufficiently close to being Ricci flat for an application of a small data nonlin-
ear iteration scheme like Nash-Moser: this follows from work of Christodoulou [Chr09],
Klainerman-Rodnianski and Luk [KR12, KLR14], An-Luk [AL14], and (for the nonchar-
acteristic problem) Li-Yu [LY15]. On the other hand, for arbitrary m, but without the
smallness condition (1.6) on the data, one does obtain small data by restricting to the
complement of a sufficiently large ball. Working on a suitable submanifold of "M, defined
near I N % by pg < € + p? for 8 € (0,b9) and € > 0 sufficiently small, cf. (4.15), our
method of proof then ensures the existence of a vacuum solution on this submanifold; in
particular, the solution includes a piece of null infinity.

We can also solve towards the past: Lemma 6.2 produces a solution g of Einstein’s
equation in the gauge Y(g; gm) = 0 in a full neighborhood of {t = 0}, and we can then use
the time-reversed analogue of Theorem 6.3 for solving backwards in time, obtaining a global
solution g on R*. Note here that by construction, the background metric g,, is invariant
under the time reversal map ¢: t — —t on R*, hence the gauge conditions of the future and
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past solutions match. To describe the behavior of g on a compact space, as illustrated in
Figure 1.1, let us denote by ,,R* the compactification defined like ”R% in §2.1 but with ¢
replaced by —t everywhere. Thus, ¢ induces diffeomorphisms ™R?* = ,R%; denote by S~
the image of S*. The identity map on R?* induces an identification of the interiors of ™R4
and ,, R* which extends to be polyhomogeneous of class Aii’g on the maximal domain of
existence by a simple variant of Lemma 2.10. We then define the compact topological space
m@ to be the union of ™R* and ,,R* quotiented out by this identification; this is thus a
manifold of class Ailog, and in fact of class C* away from 8™R%N3,,R4, hence in particular

near ST as well as near ™3("™I *) and its image under ¢. Define the blown-up space

A = (R ST, 57,
i.e. blow up both ST and S™; these are closed and disjoint submanifolds, hence the order
of blow-up does not matter. Then ] M is a polyhomogeneous manifold, covered by the two
smooth manifolds "M’ and ,,M’ := [,,R%; S~], and with interior naturally diffeomorphic
o} Rf}’x. We denote its boundary hypersurfaces by #* and i* in the obvious manner, see
Figure 1.1, and I is the closure of the remaining part of the boundary. In view of the

isomorphism (2.40), weighted b-Sobolev spaces on |'M are well-defined. For future use, we
also note that polyhomogeneity at I° with index set & is well-defined provided

& + glog = &o, (615)
as follows from (2.41); note that given any index set &), the index set & := &) + Eiog
satisfies (6.15) (and is the smallest such index set which contains &) since Ejog + Elog = Elog-

It is useful to describe "M as the union of three (overlapping) smooth manifolds, namely
"M, M ="M, and the set U defined in (6.7). We can then define the function space

00;b0,b1,b7 ,b+
Xglobal

to consist of all distributions on R* which lie in pgo Hp° on U, and such that their restriction
as well as the restriction of their pullback by ¢ to ™M lie in X°0:bo:brbp.b+

Theorem 6.7. Given initial data v,k as in Lemma 6.2, there exists a global solution g of
the FEinstein vacuum equation Ric(g) = 0, attaining the data v,k at {t = 0} and satisfying
the gauge condition Y(g), which is of the form g = gm + ph with h € X;ngl’bl’bl’m’ for all
by < b} < by and by <O0.

7. POLYHOMOGENEITY

We state and prove a precise version of the polyhomogeneity statement, made in The-
orem 1.1, about the solution of the initial value problem which we constructed in §6. We
use the short hand notations (2.32) and (2.35).

Theorem 7.1. Let by > 0, and let &) C C x Ny be an index set with Im ) < —by. Suppose
v,k € C®(R3; S2T*R3) are initial data such that m € R, ¥, defined in (6.5), and k satisfy
the smallness condition (6.6), for N large and 6 > 0 small.® Assume moreover that the
initial data are polyhomogeneous (namely, Sg-smooth):

S1x 2k e AS (RB: 2T RS 7.1
Po s Py k€ A (R ). (7.1)

39We can take N = 26 as in (the proof of) Theorem 6.3.
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Let h denote the global solution of Ric(g) = 0, g = gm + ph, in M, satisfying the gauge
condition Y(g; gm) = 0. Then h is polyhomogeneous on M. More precisely, h is E-smooth,
E=(&,E,E4):

he AR,
with the refinements w$1h € Ai%fl’g+ and moh € Ai(fl’gl’ * near S, where the index sets
are the smallest ones satisfying™
E0DE + &y E0Dj(Eo—i)+i VjeN (7.2a)
at 19, with Elog defined in (2.36), while at A
Er D EUR2Er — 1) (7.2b)
£150U (& 0((Er + 1) U (261 — ), (7.2¢)
ErD0U&EU((Er + &) U (2£r)), (7.2d)
ErojEr—i)+i VjeN, (7.2e)
and finally at I,
£+ D (=i00) U ((€+ — 1) U—iU(E \ {(0, D})). (7.2f)

At I°, we only need to capture the index set arising from nonlinear terms in Einstein’s
equation since the background metric g, solves p~3Ric(g,,) = 0 identically near I°; the
addition of the index set &0 arises when pushing the solution near {t = 0} C °R* forward to
"M ; see (6.15). We point out that the index sets we obtain are very likely to be nonoptimal
due to our rather coarse analysis of nonlinear interactions.

Ezample 7.2. For data which are Schwarzschildean modulo Schwartz functions, i.e. 58 =0,
the above gives & = () and

g] = U (_1373]+1)7 g[ :OUE}7 g} - U(_Zjv?)]_ 1)a €+ = U (_ij7 %](]+3))
J€Ng jEN J€Ng

Recalling the notation log=¥ introduced around (1.38), this gives, schematically, leading
terms w11k ~ log=! pr + prlog=* pr, mh ~ 14 pr log=? pr, moh ~ prlog=? p; at .+ (near
the interior of which one can take p; = r~1), and h ~ 1 + pylog=Cp, at It (near the
interior of which one can take p, =t71).

Example 7.3. Consider 58 = —i: this corresponds to initial data which have a full Taylor
expansion in 1/r at infinity, beginning with O(r~2) perturbations of the Schwarzschild
metric. In this case, we get many additional logarithmic terms from & = 58 + Elog =

UjeN(—ijaj — 1), namely

&= (-ij. 3iBi+ 7 +1), &=00|]J(—ij 353 +5)),
j€Np JEN

& =UJ(—i5,3iBi +3)), & = | (i4,34(° + 55 +10)),
jEN j€Ng

so m1h ~ log=t pr + prlog=%p;, mh ~ 1+ prlog=tpr, moh ~ prlog=®p; at #*, and
h~1+pplog=8p, at IT.

40We shall prove that such index sets indeed exist.
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Remark 7.4. Let us consider the index set 58 = —j again. As indicated above, the addition
of E{Og in (7.2a) is only due to an inconvenient choice of initial surface which produces loga-
rithmic terms when passing from “R?* (which the initial surface in Theorem 7.1 is a smooth
submanifold of) to ™R#. If instead one is given the ADM mass m and initial data (7, k) on
™%, with (v, k) close to the data induced by g,, on ™% (measured in pgo HY(my; §2seT*my)
for suitable V), then the index set at I can be defined as in (7.2a) but without Elog- Cor-
respondingly, the index sets at the other boundary faces have fewer logarithms:

&r=J (~ij,5j+1). &=0uU|J(~ij,5 - 1),

j€Np JEN
&r=\J (=555 —2), & = J (~ij, 34(55 +11)),
JEN j€Np

so m1h ~ log=t pr + prlog=Yp;, n¢,h ~ 1+ p; log=* pr, moh ~ prlog=3pr at &+, and
h o~ 1+ pylog=8p, at IT. (The exponents in subsequent terms of the expansion are
smaller than in Example 7.3.)

The proof of Theorem 7.1 is straightforward but requires some bookkeeping: we will peel
off the polyhomogeneous expansion at the various boundary faces iteratively, writing the
nonlinear equation P(h) = 0 as a linear equation plus error terms with better decay, much
like in §5. As a preparation, we prove a few lemmas for ODEs which were already used in

§5:
Lemma 7.5. Let X :=[0,00),, u € p~H°(X), suppu C [0,1], and f := pD,u. Then:

(1) fep®HP(X), a <0 = ue p®HX(X);

(2) fepHP(X), a>0=uc Aphg( )+,0“H°°(X)'

(3) fe Aphg( ), € any index set = u € AihUgO( ); if (0,0) ¢ &, then u € Agﬁg( )
Proof. This follows immediately from the characterization of b-Sobolev and polyhomoge-
neous spaces using the Mellin transform [Mel96, §4]. Alternatively, one can explicitly con-
struct the unique solution of pD,u = f with support in p < 1: part (1) follows easily from
U= —1i fpl f %, while for part (2), u = —i fol f % +ifyf d—pp gives the decomposition into
constant and remainder term. The appearance of the extended union in (3 ) is due to the
fact that while pD,u = p**(log p)E, k € Ny, is solved to leading order by u = L p?*(log p)* for
z # 0, we need an extra logarithmic term for z = 0, as pD, (k+1 (log p)ktla ) —i(log p)*a
plus lower order terms. O

Adding more dimensions is straightforward:

Lemma 7.6. Let X = [0,00),, X [0,00),, xR, U ={p1 <1,p2 <1} C X, p = p1p2,
and let £1,& denote two index sets. Suppose u € p~* H*(X) has support in U, and let
fi=p1Dyu. Then:

(1) f€pPp H(X), a1 # 0 = u € AV (X) + pi* p3> H®(X);
( ) feAgllﬁfg( )7 al#OjUGAg}f’;( )+Ag11;i§( )

3) fe Aﬁgg&( )= ue Af);gov& (X); if (0,0) ¢ E, then u € Aiygov& (X).
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Lemma 7.7. In the notation of Lemma 7.6, with v € p~*° Hp°(X) supported in p1 < 1, let
f = (p1Dy, — p2Dpy)u. Let x = x(p1,p2) € C([0,1)?) denote a localizer, identically 1 in
a neighborhood of the corner py = po = 0. See Figure 7.1. Then:

(1) f € PR HE(X), by > by = xu € p} pl? H(X);

(2) fe Aﬁll’)‘%g( ), Im z # —b; whenever (z,0) € & = yu € A2 (X) + Abblr’)g}fg( );

phg
&1,E £1U&EE
(3) f e Al (X) = xue A} J7(X),

P2

A

supp X
/

} > 01
1

Figurge 7.1. Hlustration of Lemma 7.7 which describes solutions of the
transport equation along the vector field —p10,, + p20,,; one integral curve
of this vector field is shown here.

Proof. We drop the R factor from the notation for brevity. For (1), write u(p1,p2) =
—i [} f(t p1,tp) % and f = p{tpl f, f € HE®, then for 0 < e < by — by

?dpy dps
el inge < [ | 0T st [ 22
p1

P1 P2

1/2 2
[ (L remm sy
0 \Jp 2 14 P1
<</ tQ(bQ_bl_e)dt>-/// t%\f(m,m)\z@ﬁ%
- 0 t oJo Jo xI9 t I

< C”fHP’ilpZQLE’
as desired; higher b-regularity follows by commuting p;D,, through the equation for T

For the proof of (2), it suffices to consider a single term

e = p5 (log p2)*ar(p1), (7.3)
with ay, € p?ngo(Hl) supported in p; < 1. Let ug, = pi?(log p2)¥bx(p1), where by, = by(p1)
solves

(plel — Z)bk = Qg (74)

and is supported in p; < 1, then the error term
Ji—1 = (p1Dp, — p2Dpy)ur — fro = (11 Dy, — 2) — (p2 Dy, — 2))ur — fi

41A more conceptual proof, which does not rely on explicit integration of the vector field, uses a positive
commutator argument with the commutant a = x1(p1)xz2(p2)p; " 03 2, x5 € C([0,00)), x;j(p) = 1 near 0,
and x; <0, i.e. the evaluation of 2Im((p1D,, — p2Dp, )u, a2u>le) in two different ways: once by using the
equation satisfied by u, and once by integrating by parts and using that (p19,, — p20,,)a has a constant

sign on supp a Nsuppu. See (4.12) for a similar argument.
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= pi(log p2)¥tap_1(p1),  ap_y = ikby,

is one power of log p2 better than fi. Rewriting equation (7.4) as plel (pl_' br) = pl_izak €
p11+ImZH°°(H1) we can use Lemma 7.5 to obtain by € A% (Hi1) + pllHoo(Hl) therefore
uy € A (= k)( )—i—Aﬁl}’)}fgk (X). Proceeding iteratively, we next solve (p1.D,, —p2Dp, Jup—1 =
fr_1 to leadlng order, etc., reducing k by 1 at each step, and picking up one extra power

of log p1 at each stage by Lemma 7.5(3) (conjugated by p'*). We obtain u = Z?:o uj €

z,k) b1,(z,k)
‘A}()hg ( )+‘Ab1phg (X).

The proof of (3) proceeds in the same manner: if f is of the form (7.3), now with
ar € A}, (Hy), then by, € A5V (H1), 50w € ALY 7N (X) and fioy € A5 >F 7V (X)

phg \© phg phg
Iterating as before gives u € Aii;(z’k)’(z’k) (X). O

Proof of Theorem 7.1. We shall first prove that if the Cauchy data (hg, k1) in the notation
of Theorem 6.3 are polyhomogeneous at 0",

hg, h1 € ‘Aphg( E), (7.5)

then the conclusion of Theorem 7.1 holds. Now, by Theorem 6.3, we have h € X:bo.br Dbt
for all by < b} < by and by < 0. Note that since the gauge condition Y(g) = 0 is satisfied

identically, h solves Ric(g) — g*T(g) = 0 for any choice of §*; this will be useful as it will
allow us to work with simpler normal operator models.

For now, consider h as a solution of P(h) = 0 for v >V} as in Theorem 4.2. We write

1
0= P =m+ [ Lu(Wdt. mi=PO) € AL (7.6)

(In fact, supppo N (I° U #+) = 0 since gy, is the Schwarzschild metric near I1° N .#+.)
Let us first work near I°, away from I*. Suppose that for some ¢ > by, we already have
h e Aghg b T P6PT Of°, moh € Af)%’gbi_o + pSpI;I_OHﬁO, with the exponents referring to the

behavior at I® and .#, respectively. Then
1
Lm——m+/X%—memu (7.7)
0

we have Lo — Ly, € (A‘g%;o O 4 ptlp 1 OH®)Diff2 by an inspection of the proof of
Lemma 3.8, and it respects the improved behavior of myh, so we find

250—1‘,—1—0 c+1 —1-0 ryoo 280 —i,—1+b7— c+1 —14b5-0 1700

Denote by & = {(z,7) € &: Imz > —c} the (finite) set of exponents already captured,
and let & = {(z,j) € &: —c—1<Imz < —c}. Let

Rj:= ][] (poDp —2), R=RyoR,.
(Z,k)egj

Let N(Lo) € p; 'Diff3(M) denote the normal operator of Lo at I, i.e. freezing the coeffi-
cients of Ly at pg = 0 for a fixed choice of a collar neighborhood [0,€),, x I° of I% thus
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N(Lg) commutes with pg0,,, and Ly — N(Lo) € popl_lDiff%. Then Rh € pSpI_OHg" solves
the equation N(Lg)(Rh) = f, where

1+6,-0

fi=—R(Lo— N(Lo))h+ RLoh € pctlp7 O H®, mof € 050, H?,

due to 2y — @ C &; the Cauchy data of Rh lie in p8+1H§° due to the polyhomogeneity of
ho and hi. The background estimate near I° being sharp with regards to the weight at 19,

see Propositions 4.3 and 4.8, this gives Rh € pc? OH§°, moRh € pcﬂpl} Hye. Thus,
h e Aghgb + o5t p PHE®, moh € Af)%’gb + CHpI HOO. Iterating this gives

&o,—0 Eo,b/ 0
he Ay, moh € Aphglb near I". (7.8)

Following the structure of the argument in §5, we next prove the polyhomogeneity at
ST\ (LT NTT) using Lemmas 7.6 and 7.7. We now take v = 0 in the definition of P and
its linearization. Thus, let us work near I° N .#*, and assume that we already have

0,7 €o,c7—0 c £0.81 Eo,c1—0 E0,€1 Eo,c1—0
7T0h c 'Aphg + ‘Aphg b 7T11h S 'Aphg + ‘Aphg,b 5 7T11h S Aphg + Aphg,b 3 (79)

for some 0 < ¢; < ¢; < ¢y + 1. Using (7.6) and the structure of Ly, = L?h + Zth, we find

1 ~
7 LIS h = —7§po — / (751 Lanmiih + 7§ Lypmoh + 7 Lipmia h) dt. (7.10)
0
The proof of Lemma 3.8, condition (7.2¢), and the fact that & D & D &) D & — i give

T Eo—1,E & 0 2

Ly € (C% + A" + Apgg’b” )Diff7, (7.11)
- So—iE Eo—i,c1—0y e

ﬂ-flL?hﬂ-O € pI 1(Coo + "étp(lglgZ ! + ‘Ap?lgqu )Dlﬁ‘lljv

and WflL?hml = 0. Multiplying (7.10) by pr, grouping function spaces in the order of the
summands in the integrand above, and simplifying using 2&y —i C & and 0 C &7, this gives

80781+51+A50,251 Z_'_A(C/‘Ovc] .
’

Eo0,Er+Er—i
P10p; (P00py — p1Op,)mirh € Ayt ™70 + A phg phg,b

phg
the first space is contained in the second. In view of condition (7.2¢) (note that the index
sets in parentheses there lie in Im z < 0), we obtain

3 Eo,cf—0
mih € ADE 4+ AT, (7.12)

which improves on the a priori weight of the remainder term at .# . Next,
1
1 Lymih = —m11po — / (711 Lepmirh + w11 Limoh + w11 Lypm§ ) dt.
0

Lemma 3.8 and the membership (7.12) imply

0 —1/,00 Eo—1,E1 Eo—i,cr—0 .l

0 _c —1/ g&0—i,Er E0—i,¢ =0\ 1
mu Ly € pr(Appg ™"+ Appgp - DI,

with pr times the latter having a leading order term at .# *, cf. the discussion of (5.3);
together with (7.11) and (7.12), and using & C &1, one finds

50,514»5[ 50,25[ 50701
phg T AN T A o

plaﬂl(poapo —pjapl)ﬂllheAiiggl Z+A
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with the first space again contained in the second. Condition (7.2d) then gives
0,8~
mih € AE 4 A (7.13)

Lastly then, we can improve on the asymptotics of moh at .# T by writing
1
moLgmoh = —mopo — / (moLinmoh + moLipm§ b + moLypmiih) dt;
0

now ﬂoLgthl =0= 7I‘()Lgh7'('11 and 5} C & C &1, so, since v = 0,
£0,2E1—1 £o,c7+1-0

P15 (P00, — P10, )0l € A" + Ap(flgcfb ;
but condition (7.2b) and Lemma 7.7 imply
£0,&] Eo,c+1-0
phg T+ ‘Aphgﬁo )
an application of Lemma 7.6 gives the same membership for mgh, since we already know that
moh has no leading term at .# . This establishes (7.9) for (cz,¢}) replaced by (¢}, c; + 1),
and we can iterate the procedure to establish the full polyhomogeneity away from 1. Near
ZTNIT, the arguments are completely analogous, except we only have conormal regularity

pir HE® at I, Thus,

p10,,moh € A

£0,E},b+

moh € Apng phg.bs

c Eo0,Er,b+ £0,E1,b+
Tih € Apbg phg by 11 € At -

Next, we use this information to obtain an expansion at I™, similarly to the arguments
around (5.10). We shall use the linearization Ly, still defined using v = 0, and its normal
operator at I C M—instead of its normal operator at the boundary of R4, which obviates
the need to relate (partially) polyhomogeneous function spaces on R* and M. Namely, fix
a collar neighborhood

U:=[0,1),, xI", It ={ZeR* |Z] <1},

of I'™ in M, and denote by WV, _(U) C V(U) the Lie subalgebra of vector fields tangent
to I but with no condition at #*. Then for v = 0, we have Ly € Difff _(U) (the
algebra generated by V}, _), acting on sections of 3*S?|;;: by Lemma 3.8, Lo € Diff% (M) —
Diffa_(M ) certainly has smooth coefficients, and the same is true for L) = —2p20y0; =
Opy (p10p; — p+0,,) + Diffe(M), p; = 1 — |Z|*>. Furthermore, by Lemmas 2.10 and 3.10
as well as equation (3.29), the normal operator N(Lg) of Ly at I can be identified with
N(L), so that in fact N(Lg) = Og,q — 2, defined using the expressions (4.62) and (4.65),
acting component-wise on the fibers of the trivial bundle R!?, where we use Lemma 2.11
to identify 8*S?|;+ = 08*(S25°T*OR%)|o;+ = R!Y by means of coordinate differentials. By
[Vas13, §4] and the module regularity proved in [HV13],

Lo(o) ™t H=VR(IH) — HS*(I) (7.14)

is meromorphic for ¢ € C with s > % — Im o, where the bar refers to extendibility at

OI'™ = {|Z| = 1}, while the parameter k € Ny measures the amount of regularity under the
C>(It)-module Diff}(I"); that is, H5*(I) consists of H® functions on I which remain
in H® under application of any operator in Diff’g(] *). (This is analogous to Lemma 5.4,
except in the present de Sitter setting we work on high regularity spaces rather than the
low regularity spaces in the Minkowski setting, see [Vasl3, §5].) Strictly speaking, the
references only apply to the operator obtained from Ly by smooth extension across I to
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an operator on a slightly larger space than I*; but (7.14) follows simply by using extension

and restriction operators, and the choice of extensions is irrelevant since Lo(o) is principally
a wave operator beyond OI%.

The divisor R of Ly, see Remark 5.6, is then
R = —i; (7.15)

indeed, using the relation between asymptotics on global de Sitter space and resonances on
static de Sitter space as in [HV18, Appendix C], this follows from [Vas10, Theorem 1.1] for
n =4, A = 2, with the logarithmic terms absent: the indicial roots are 1 and 2, see [Vas10,
Lemma 4.13], and in the notation of (4.65), the difference of Oy 4 and its indicial operator
—(70:)% + 370; is 72A;, thus vanishes quadratically in 7 as a b-operator on [0,00); x R2.
Hence, for the formal solution u = 7v_ + 72vy constructed in [Vasl0, Lemma 4.13], the
Taylor series of vy only contain even powers of 7; 1 — 2Ny and 2 — 2Ny being disjoint, there
are no integer coincidences which would cause logarithmic terms.

Now, consider again (7.7): if x = x(p+) denotes a localizer near I", identically 1 near
I and vanishing near I°, we have

1
deh)==—xpo+[meVl+?£ V(Lo — Lu)(h) dt. (7.16)

We have xpg € Aph , with the exponents now referring to the behavior at #* and IT,
respectively. Suppose we already have

S, ’S S,’ El El I I

moh € ASLEY 4 AT wt e AP ARt mahe AE AR (7.7
Using that £, — i is closed under nonlinear operations, i.e. j(£4 —i) +¢ C E4, j € N, we
find Lo — Ly, € Aiﬁg ‘ pfjHHgo near (I7)°; see also Lemma 3.10. Using the structure
of Ly, near T NIt from Lemma 3.8 as above, and noting that supp[Lg, x]h C supp dy is
disjoint from I*, we deduce that

Lo(xh) € A, + AT + AT 4T 8 s e\ {(0,1)),

phg phg
where the weight of the remainder term is as stated since all (z,k) € &4 except for (0,0)
have Im z < 0. (Here & D & +i D &+ allows for a nonlogarithmic leading term at %,
capturing the worst component of elements of the space Y*° in Definition 3.3, and moreover
captures all nonlinear terms of (7.16).) Replacing Ly by N(Lg) causes another error term,

Lo — N(Lo))(xh) € ASHHER—1 4 glrtbestd g,
( 0 ( 0))(X phg phg,b ’

phg

ML) ) € AL, + AL A

phg
Mellin transforming in p; at Imo = —b,, inverting Lo( ) on Agl Jrz(I *) using Lemma 7.8
below, taking the inverse Mellin transform, and shifting the contour tolmo = —cy — 1, we
obtain

0,RUO0 OUSI, RUS])U(8+ %) OUgI,C++1

The index set at It is contained in £, by condition (7.2f), so this improves over (7.17) by the
weight 1 in the remainder term; the index sets at .# on the other hand are automatically
the ones stated (but now with the improvement at I1), as the presence of a nonzero term
in the expansion of 711h, say, at .#* corresponding to some element in (OUg 1)\ &1, would



STABILITY OF MINKOWSKI SPACE 95

contradict our a priori knowledge (7.17). Iterating this gives the polyhomogeneity at I,
as claimed.

Next, let us show that the smallest sets satisfying conditions (7.2a)—(7.2f) are indeed index

sets: we need to verify condition (2.31b). For &, this is clear since, letting £ := &£J + Sl’og,

Eo=E0U i —i)+i
jeN
and Img((]) < 0; note that this gives Im& < 0. At I, we take & = Upen &7 1, likewise for
Er and &1, where we recursively define Ero= Ero=Er0=10 and

El k1 = E0 U281y — 1), (7.18a)

g[7k+1 =0U (50 U((g],k + gj,k) U(2&rk — Z))), (7.18b)

Erpsr = (00ET((Er + 1) U (2818)) ) U | (G — 1) +3). (7.18¢)
JEN

It easy to see by induction that
Imé’}’k, Im(é’}yk \ (0, 0)), Im(é’Lk \ (0, 1)) < —¢, c:=min(l,—supImé&y) > 0,

for all k. Therefore, to compute the index sets in any fixed half space Imz > —N, it
suffices to restrict to j < N + 1 in (7.18c), which implies that the truncated sets S}JC;N =

7N {Imz > —N} etc. are finite for all k; we must show that £}, \ etc. are independent
of k for sufficiently large k& (depending on N). Note then: h

- ‘€},k+1;N only depends on &7 j;(nv-1)/2;
= & kt1;n only depends on Er g (n—1)/2; E1kiN—c; and €7 .y
— Erk+1;n only depends on & gN—c, Erpy(v—1)/2: E1k:Ns and 7 .y

Combining these, one finds that, a fortiori, 5},k+1;N7 g[,k+1;N, and & j41.n only depend on
the sets gj,k—E;N—w g_j’k,g;]\/,c, g[,k—f;max(N—c,(N—l)ﬂ)a ¢ =0,1,2. Therefore, for N > 0,
5},1@; n etc. are independent of k for £ > 3N/c, as desired. An analogous argument implies
that £4 is an index set as well.

Finally, we show that the polyhomogeneity of the initial data v and k£ in the sense
of (7.1) implies that the solution in the neighborhood U, see (6.7), of {t = 0} constructed
in Lemma 6.2 is indeed polyhomogeneous at I° N U with index set &; this however follows
from the same arguments used to prove (7.8) (and we can in fact ignore the weight at
#71). In fact, working on R4, we have h € Aii’lg(U) where & = U, en, (&) — ) + 1)
does not include the extra logarithmic terms from &,g; this relies on the observation that
the gauged Cauchy data constructed in the proof of Lemma 6.2, see (6.11)—(6.12), lie in

g/
Aphs ws
h in U forward to ™R*, we incur the logarithmic terms encoded in the index set &g,
see (6.15); this proves (7.5). O

(9%), which follows from an inspection of the proof. Upon pushing the local solution

To complete the proof, we need to study the action of E\Q(O')_l on polyhomogeneous
spaces. Let £ be an index set, and let ¢ € R be such that Im z < —c for all (z,0) € &; then

ASEHIY) € pf P HES(IT) € H-1/2He-Oeo(),
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Lemma 7.8. The opemtOT EB( )=t in (7.14) extends from Imo > —c as a meromorphic

operator family EB( )t Agﬁrgz( ) — Agﬁgg (I'") with divisor contained in RUE.

Proof. Given f € p; 1Aphg(I ), we shall explicitly construct a formal solution wuppe of

Lo( 0)uphg = f at I, which we then correct using the inverse (7.14) acting on C®(I7).
The construction uses that

Lo(o) = —D,,(prD,, — o) + Diff}(I"), (7.19)
which follows from the form (4.49) of the dual metric of p~2g,,. Thus, consider (z,k) € &,
fo € C®(OIT) = C>=(S?), and suppose f = p¥ ' (log p)* fx € p; lApig (I'") near p; = 0. If
z # 0, we then have

Lo(0) (=== = o) pf (lom p1)* i) — fone
= (z =)o ogpr) T o1 + (2 = 0) S

for some fr_1 € C®(0I"), and with f' € _lAphg
iteratively solve away the first term, obtaining u; € C>°(9I") such that

k k
Lo(o) (Z(Z—U) i (log pr)*” ) —f=> (=)},
j=0

Jj=0

( *) holomorphic in 0. We can

pzhg D= (I *) is holomorphic in ¢ and has improved asymptotics at OI™.
(0,k)

If on the other hand z = 0, f = p; Yogpr)* fr € Pr 1Aphg (I'"), we need an extra log py
term: there exist u; € C°°(0I") such that

k
Lo(o) (Zajl(logm)k“juj) f= Z(’*j i fpe o AR YT,

7=0 7=0

where fi € p; A

(Note that there is no term on the left with (log ps)°.) In general, given f € p; 1.Aphg(f ),
we can use these arguments and asymptotic summation to construct, locally in ¢, a family
Uphg € A'PE(IT), depending meromorphically on o with divisor contained in &, such that

phg
2/\O(U)uphg f=fe 'Aphg(I+> :COO(I+>

is meromorphic with divisor contained in &; applying j}\o (0)~! to this gives an element of
Co(IM) = .Aghg(lﬂ, and

U= E(U)flf = Uphg — f/B(U)ilf/

solves Lo (0)u = f, with divisor contained in RUE due to the second term. O

The global solution g = ¢,, + ph constructed on the space ' M in Theorem 6.7 is poly-
homogeneous as well; the only place where this is not immediate is I°, where however
polyhomogeneity is well-defined under the assumption (6.15) on the index set &, which is
already satisfied for the set & constructed in Theorem 7.1. Thus, the index sets of h at
I=, 7=, 1° 7% and IT are £, &1, &, &1, and &, , respectively, likewise for the refined
asymptotics of 7§, h and moh near #*.
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8. BONDI MASS AND THE MASS LOSS FORMULA

We shall first use a different characterization of the Bondi mass than the one outlined
in §1.3: the Bondi mass can be calculated from the leading lower order terms of the metric
g in a so-called Bondi-Sachs coordinate system in §8.2; in order to define these coordi-
nates, we first need to study a special class of null-geodesics in §8.1, namely those which
asymptotically look like outgoing radial null-geodesics in the Schwarzschild spacetime. For
simplicity, we work with the infinite regularity solutions of Theorem 1.8, and we only con-
trol the Bondi-Sachs coordinates in a small neighborhood of (.#7)°, as this is all that is
needed for deriving the mass loss formula. More precise estimates, including up to £+ NI+,
of this coordinate system, and a precise description of future-directed null-geodesics and
other aspects of the geometry near (null) infinity will be discussed elsewhere.

8.1. Asymptotically radial null-geodesics. Suppose g = gm + ph, h € Xbo:brbpbe
solves Ric(g) = 0 in the gauge Y(g;gm) = 0, where the weights are as in Definition 3.1;
by an inspection of the expressions in §A.2, the gauge condition implies improved decay of
certain (sums and derivatives of) components of the metric perturbation h, for instance,
T(g)o = 0 implies

Y e mr2 + H§°;2+b°’2+b”2+b+. (8.1)

We wish to study null-geodesics near (.#1)°. Introducing coordinates v* on TR* by writing
tangent vectors as v"0«, the geodesic vector field H € V(TR?) takes the form
H = v“@xu + F’;)\vﬁv’\&,u.

As usual, we will use 2° =t +r,, 2! =t — r,, and local coordinates z2, 2> on S?. Consider

first the case that A = 0, so g is the Schwarzschild spacetime near .#*. Radial null-
geodesics then have constant 2! and z°, b = 2,3, while v%(s) = 4(s) satisfies the ODE
0 = —mr(s)"2(v°)?, so #° = —mr=2(2%)2. We then use:

Lemma 8.1. We have r = r, — 2mlogr, + O(r; logry), and v, = %(xo —al).

Proof. Let ro(r) = 7 and
Trt1(re) = e — 2mlog(rg(rs) — 2m) = r, — 2mlog(rg) — 2mlog(1l — 2mr,;1),

then |rpr1 — x| < Or;Yrr —rr_1], k > 1, and the fact that |r; —ro| = O(logr,) show that
r—r1 = O(r;'logr,), hence evaluation of r; gives the result. |

Often, we will only need the consequence that

r= 32"+ O(log 2°) (8.2)
for bounded !, suggesting the approximation #° = —4m/(2?)~2(4%)? for the geodesic equa-
tion. Solving this by Picard iteration with initial guess x](s) = s gives

29(s) = s +4mlogs, il(s)=1+4ms !,

and subsequent iterations give O(s~!logs), resp. O(s~2logs), corrections to z{(s), resp.

i9(s). Let us generalize such radial null-geodesics:

Proposition 8.2. Fiz a point p € (S +)° with coordinates x*(p) =: &'. Then there exists a
future-directed null-geodesic v: [0,00) — M, v(s) = (z#(s)) such that y(s) — p in M and
2%(s) — 2% = o(s7!) as s — co.
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Proof. We will normalize v by requiring that 2°(s) ~ s + 4mlogs, and we shall seek
v: [s0,00) = M for sy > 0 large. For weights ag, a1, ¢¢ > 0, to be specified in (8.10) below,
we will solve the geodesic equation on the level of the velocity v¥* = &* using a suitable
Picard iteration scheme on the Banach space

X = {v=(v"): [sg,00) = R*: 3" € s71720CY vl € 571710, 0% € 8_1_¢C0}, (8.3)
where we use the notation
0(s) :=00(s) — (1 +4ms™1),

and where CY = C%([s, 00)) is equipped with the sup norm; as the norm on X, we then
take the maximum of the weighted C° norms of v° and v*, i = 1,2, 3. For v € X, we define
its integral x = I(v), ##(s) = vH(s), by

29(s) == s+ 4mlogs — /mﬁo(u) du,
. ‘ s 5 (8.4)
xz'(s) =1 —/ v'(u)du, i=1,2,3.
s
As the first iterate, we take
00(5), vh(s) =0, w0 = I(vo);
note that ||vgl|x = 0. For k >0, vy, € X, |Jvogllx <1, and zg = I(vg), let then

Vgey1(8) 1= v (00) +/ il () VE ()0 (u) du, - g = I (vgs1). (85)
Note that for some fixed constant C > 0,
|20(s) — s — dmlogs| < Cs™@, |zi(s) — | < Cs™, |zk(s) — &' < Os™%, (8.6)

which in particular allows us to estimate the Christoffel symbols appearing in (8.5). For
= 0, writing 7 (s) = r(zk(s)), and using the improved decay of various Christoffel symbols
due to the gauge condition Y(g) = 0, we have

Uy (s) = —dms™ / mry(u) "2 du —I—/ Oy (u™27) du,

" / Ogy(ulogu - 1- w1 7) 4+ O (u™ - 1-u™'79) (8.7)

+ Oy (u ogu - u™27%) 4+ Oy (u logu - w1701 .y~ 17%)
+ Oy (u - u™272%) du,

with the integrals on the first line coming from terms with (x, A) = (0,0) and using (8.1),
while the remaining terms come from (x,\) = (0, 1), (0,b), (1,1), (1,b), (a,b), in this order,
using that v) = O(1), v} = O(s717%), and v¢ = O(s717%). As for the notation, the
constants implicit in the Oy, notation depend only on sy and are nonincreasing with sg,
as they come from the size of the Christoffel symbols along xj(s), which satisfies (8.6).
By (8.2) and (8.6), we have

/ mr(u) 2 du = / Am(u2 4+ O(u3logu)) du = 4ms™t + O(s2log s).

Therefore, we have

’52+1( ) Sso s 4 g2 log s + Pl s‘w,
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which, for fixed oy < by, is bounded by %Os_l_ao for large sg, provided oy < min(¢t,1 +
ai,2¢ — 1); in particular, this requires ¢ > %

We obtain estimates on v}, (s), ¢ = 1,2,3, in a similar manner. Namely,

U’iﬂ(s) = / Os, (“_Q_b} : 12) + O, (u_2 1wy 40, (u_l_b'z 1. u_1_¢‘)

+ Oy (u™t w2720 L O, (ut w1 (8.8)

+ Oy (u-u 272 du
satisfies [vp,1(s)| Se 5710 4 s72% ) hence i, 1(8)] < 155717 provided the weights
satisfy op < min(b},2¢ — 1), and provided we increase so, if necessary.

Lastly, using the precise form of the leading term of I'j,,
oo
() = [ Ol )+ O 1eui o
S

(T T O (w7 1w ) (8.9)
+ Oy (u™? w272y L Oy (™t uT Ty
+ Oy (1 - u~ 2724 du,
Integrating the first term in the second line gives a term bounded from above by
ks < B (> ),
so we get [vf,(s)] < (3 + 75)s~ 17 provided ¢ < 1+ b} (which is consistent with ¢ > ).
Thus, the iteration (8.5) maps the unit ball in X into itself, provided we fix weights
ap € (0,br), a1 € (0,b]), ¢ € (3, 1+b)), (8.10)

and choose so large; recall here that 0 < by < b}, < 1. Moreover, taking so larger if
necessary, v — Vg1 is a contraction; such an estimate is only nonobvious for the difference
of quadratic terms in (8.5) involving the component v°; however, the corresponding terms
come with a small prefactor due to the smallness of the relevant Christoffel symbols.

Let now v := limy_,oo vz € X denote the limiting curve in TR*, and integrate it by
setting v := I(v). Then v satisfies the integral equation (8.5) with v and vg41 replaced by
v, so v is C', hence ~ is a C? geodesic. In particular, |v(s)|3(s) is constant, hence equal to
its limit as s — oo, which is

O(s 17112+ 0115717 + O(s71 - 1+ 57174
+O(s ogs-s7272) £ O(1- 57170 . 57178 L O(s? - s72724) = o(1), s — oo.
This proves that v is a null-geodesic with the desired properties. U

Note that v is the unique null-geodesic, up to translation of the affine parameter, tending
to p and such that 4 € X. (Indeed, for any such ~, the velocity 4 has small norm in a space
defined like X but with weights decreased by a small amount and for sg large enough. The
uniqueness then follows from the fixed point theorem.)

Definition 8.3. For p € (.#7)°, denote by ~,(s) the maximal null-geodesic such that
v =4, and x = 1, satisfy equation (8.4) and v € X, with X given in (8.3). We call 7, a
radial null-geodesic.
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We record the following stronger regularity property of the geodesics v,:

Lemma 8.4. In the notation of Proposition 8.2, let vy(s) = (z#(s)) denote a radial null-
geodesic; then we have

#(s) € 57 ([s0,00)), T'(s) € 87 ([s0,00)), T(s) € S™%([s0,00)),

for all weights ag < by, an < by, ¢¢ < 1+ b}, where 3°(s) = 20(s) — (s + 4mlogs),
T'(s) := xi(s) — &, and where S™([sg,00)) denotes symbols of order m, i.e. functions
u € C([s0,00)) such that for any k € Ny, |[ul¥)(s)| < Cp(s)™*.

Proof. Certainly x*(s) is smooth as a geodesic in a spacetime with smooth metric tensor.
The symbolic estimates for 9¥7#(s) for k = 0,1 follow immediately from the construction of
7p in the proof of Proposition 8.2; for £ = 2, they follow from the proof as well, specifically,
from the decay of the integrands in (8.7)—(8.9). Assuming that for some k& > 1 we have
10220 (s)| < (s)*077, 0 < j < k+ 1, with ag as in (8.10), likewise for Z*, i = 1,2, 3, we have

ok (927°) = 9%i0 — 972 (s + 4mlog s) = 970 + 9% (4ms~?),

and 0Fi% = —8§(F2V:b“:'v”). Note that 20(s) = O(s), 9:2°(s) = O(1), and 32(s) =
O(s7177) for 2 < j < k + 1. Expanding the derivatives using the Leibniz and chain rules
thus gives the following types of terms: for (u,v) = (0,0) and all derivatives falling on the
Christoffel symbol,

(OFT30)(2°)% = ¥ (4ms™ + O(s7> 7)) (1 4+ O(s™ " log 5))
= 85(4ms_2) + O(s_k_Q_bI)

by the inductive hypothesis and the b-regularity of the remainder term in 'Y ; the remaining
(1, v) = (0,0) terms are, with £; 4+ lo 4+ ¢35 = k and ¢3 > 0,

(aflrgo)(aﬁzi.O)(agsi,O) _ 0(872761 Lg 1t .3733) _ (’)(37]“3).

Estimating the terms with (u, v) # (0,0) does not require special care: derivatives falling on
## are estimated using the inductive hypothesis (thus every derivative gives an extra power
of decay in s); a derivative falling on T, on the other hand either produces (JoI'y, )",
which gains an order of decay due to the Christoffel symbol (recall that 9y is a b-derivative
which vanishes at .# ), or (8;T'),)#", which gains an order of decay due to &’ = O(s™1).
Thus, the bound 9%(927°) = O(s~#72720) follows from the same arithmetic of weights as
used after (8.7).

The arguments for the other components Z* are completely analogous, and in fact simpler
as no terms need to be handled separately. This finishes the inductive step, and thus the
proof of the lemma. O

We further note that for any compact subset K € (.#)°, there exists a uniform value
sp € R such that the null-geodesics v,, p € K, are defined on [sg, 00); since moreover 7,
arises, via v, = (%) as in (8.4), from the Banach fixed point theorem for a smooth (in p)
contraction, Lemma 8.4 holds smoothly in the parameter p, that is, making the dependence
on p explicit as a subscript, we have Z)(s) € C*(K; S ([sg,0))) etc.
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Consider now the union of radial null-geodesics tending to the points of particular S?
sections of 1. Concretely, for fixed z! € R, denote

S@):={pest:alp)=2"), Ca:= |J w((s0,0)) (8.11)

peS(z!)
where sg is chosen sufficiently large, which will always be assumed from now on. See Fig-
ure 8.1. Thus, on the Schwarzschild spacetime, C;1 is the part of the null hypersurface

z!' = z' on which 2° > 5.

FIGURE 8.1. The outgoing light cone Cj: limiting to the sphere S(z') C
(#1)°. Also shown are a number of radial null-geodesics.

Lemma 8.5. For ' € R, the set Cy1 is a smooth null hypersurface near .#+. Moreover,
if I' € R is a precompact open interval, then there exists a function u such that
w—al = e pt P HR(M); Cpo={u=3'}, z'el (8.12)
Proof. With coordinates %, a = 2,3, on S?, write v(z'; 5,22, 2%) := Yzt 52,2%)(8). First, we
shall prove that there exists a coordinate change of R o X Rig 35
(2! 2% 22, 2%) = (2° — amloga® + 00,22 + 02,27 + &%) =: (9°, B2, &%), (8.13)
depending parametrically on z' € I', and with PO ¢ S0, d* € S~% for weights as
in (8.10) (with the symbolic behavior in z"), such that the map
5(x", 2", 2%, 2%) == (2" B(z'; 2%, 27, 2%))
satisfies z' 0 § = 2%, i = 0,2,3. To do this, recall that, putting v* := a* o v, we have
70— (s+4mlogs) =70 € S70 4l — gzl = F1 € S~ and 4* — 2% =: 7 € S™%, so after
some simplifications, our task becomes choosing ®’ such that
3" = 4mlog(1 — 4m(z®)(logz® + 8%)) —3°(zL; @), @ = —F(z'; D); (8.14)

this can be solved, first with ®° € (20)~®C? etc. using the fixed point theorem, and then
in symbol spaces using the smoothness of ®° (which follows from the implicit function

theorem) and an iterative argument.

Let us drop ¥, 2, 23 from the notation. The desired function u is then defined implicitly

by uod = z'. Writing 2'(6(z!)) =: ' + f, where f € S~ by Lemma 8.4, we see that ¢ is
one to one for large 2°, as ! + f(z!) = y' + f(y') implies 0 > |z! — gt| — C(2%) "1 |zt — 71|,
so z' = ¢! if 20 is large. Writing v = ! + @, we thus need to solve

@ 4+ a) + fEt+a) =7 —= u=-fz'+0),



102 PETER HINTZ AND ANDRAS VASY

which by another application of the fixed point theorem has a solution uw € S™*!. Lastly,
note that the vector fields d,:, i = 2,3,4, and 2°0,0 span V,(M) near (£1)° in view of
pr = 1/2° hence S~ C p?l_OHgo near (.#1)°. Since we can take oy arbitrarily close to
b} by (8.10), the existence of u and smoothness of Cj:1 follows.

It remains to prove that C;1 is a null hypersurface. To this end, we sketch a different way
of constructing Cz1: let 20 > 0, and consider the 2-sphere S;1;0 = {20 = 2°, 2! = z'}. For
sufficiently large 2%, S;150 is spacelike; hence, for any p € S;150, there are precisely 4 rays
of lightlike directions in (7},Sz150)", and there exists a unique v(p) € (1,S7150)+ which is

future lightlike and outgoing (i.e. dr(v(p)) > 0), and for which v(p)? = 1+ 7?(—’;). By writing

out the condition g(v(p),d,) = 0 using the form (3.14) of g, one obtains an expression
for v(p)® in terms of a small multiple of v(p)! and certain metric coefficients, while using
[v(p)|Z = 0 (and using the nonvanishing of go1) gives an expression for v(p)' in terms of
a small multiple of v(p)®, plus certain metric coefficients. Solving this simple system, one
finds that the components of v(p) satisfy v(p)' = O(r~'=) and v(p)* = O(r~2%); they
are thus small when measured in the norm of X (restricted to a single point) in (8.3), cf.
the upper bounds on the weights in (8.10).

A small modification of the fixed point argument in the proof of Proposition 8.2 shows
that we can solve the geodesic equation with initial data v(p) in the backwards direction
up to a fized value of 2°, say 2 = C' >> 1; denote the union of these null-geodesic segments
emanating from points on S;iz0 by Czizo. Letting 2° — oo, it then follows that Cyiz0
converges over every compact subset of R* N {z% > C} to C;1 in the C' topology. By
construction, every Cjyizo is a null hypersurface; thus, its C! limit Cj1 is a null hypersurface
as well. O

The function w is uniquely defined by (8.12); thus, Lemma 8.5 shows the existence of a
neighborhood

(£ cUcM (8.15)
and a function u € z! + plI)}_OHﬁjOC(UJF) such that C;x NUT = {u = z'} for all ! € R.

Remark 8.6. The weight in (8.12) is consistent with the choice of the domain (4.15) whose
boundary component U? is spacelike, see (4.16).

Since |Vu|? = 0 by construction, the vector field Vu consists of null-generators of its
level sets C),; more precisely, we have Vv, Vu = 0, so restricted to the image of a radial
null-geodesic v, C Cy, we have (Vu)|, () = ¢p¥p(s) for some constant c,. Taking the inner
product with d; and using the form (3.14) of g yields 1 4+ O(s~%10) = (3 +0(s7h), so
letting s — oo gives ¢, = 2 and thus

(Vu)ly, (s) = 29p(s)-

We can then extract more information using r = %s + O(log s) and go1 = % + 257 (ho1 —
m) + O(s~%logs): Lemma 8.4 then gives 2(%,(s),01) = 1 + 4s71ho1 + O(s717%0), so

Ot — 2r thoy € py T OHEC. (8.16)
8.2. Bondi—Sachs coordinates; proof of the mass loss formula. The function u has

nonvanishing differential everywhere on Cz1 when 2 is large; we will use it one coordinate
of a Bondi-Sachs coordinate system (u, 7, 22, #3), where the coordinates #* and #¢, a = 2, 3,
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are geometrically defined and constructed below; with respect to such a coordinate system,
the metric takes the form

g = Guu du® + 2gys du dir — 72 gy (di® — ue du)(dﬁ’vb —ub du)
for some guu, Gur, qap, and U @ and quantities of geometric or physical interest such as
the Bondi mass and the gravitational energy flux can be calculated in terms of certain

lower order terms of these metric coefficients [BvdBM62, MW16]. We begin by defining 7.
Introduce a projection 7: UT — S? by

(Y1 0)(8)) =0, 0€S?,

which is well-defined due to Lemma 8.5; in fact, in the notation of its proof, using local
coordinates 2%, a = 2,3, on S?, we have

m(2, 2, 22, 2%) = (%2 + w20, 2%, %)) a2 3, (8.17)

which in particular gives

m(20, 2t 22, 2%) — (2%, 23) € S (8.18)
The map 7 defines a fibration of every C,,; these fibrations have natural sections, as we
proceed to explain invariantly. Let N := kerm, denote the subbundle (smooth in M°)

consisting of vectors tangent to the fibers of 7: this is the bundle of null generators of the
null hypersurfaces C,,, and therefore N 1 T'C,. This implies that the spacetime metric g
restricts to an element
9] € SH(TCu/N)".
On the other hand, the pull-back 7*¢ induces a Riemannian metric [7*¢] on TC, /N, i.e. an
isomorphism T'Cy/N — (T'Cy/N)*, hence [7*¢] [g] € End(T'Cy/N) is well-defined. We
then define the area radius 7 by the formula
7= det([ﬂ*g]_l[g]), 7> 0.

L 8.7. We have 7 —r € p' CH® and 8yi = L — mr=1 + py 1 Hge e

emma 8.7. We have 7 —r € p; 50 and g7 = 5 —mr— + p; o0 near (I 1)°.

Proof. 1t suffices to prove the first claim. We start by finding representatives in T'C', of a
basis of T'C, /N by considering the vector fields
Vo= foO1 + 04y, a=2,3, (8.19)

with f, to be determined. Working over the image of a fixed geodesic 7, [sg,00) — M, we
use ¥, = (1 + O(s7 1)) + O(s71791)0; + 3, O(s717%)9, and the form of g to calculate

90 Va) = (5 + O(s7)) (L +O(s7H)) fu + O(s);

demanding this to vanish determines f, = O(s!~#). Since ¢ < 1+ b} is arbitrary, we
conclude that

9(Va, Vi) = —12gap + rhay + O(r~10), (8.20)
while the observation (8.18) implies that m.(V,) € 8, + C%dy, C? = O(s~%), hence
(7 ) (Vas Vi) = b + O(s ™1 70110). (8.21)

Therefore,

i =1t det(1 — 7 (9" hap)ae—2,3 + O(s 170F0)) = p4(1 — L th h 4 O(s7101H0)),
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which is equal to 74(1+O(s~170110)) due to the decay of t h at .# T coming from the mem-
bership h € X°bobrbrby i e ultimately from the gauge condition. Taking fourth roots,
carrying symbolic behavior in s through the argument, and noting that these calculations
depend smoothly on the parameter p € (#)° completes the proof. O

Corollary 8.8. Define the punctured neighborhood Ut := U+\(f+)° of (F71)°, see (8.15).
Then if Ufis a sufficiently small neighborhood, (u,7,m): UT — R x R x S? is a coordinate
system on U™ .

Proof. This follows from Lemma 8.7 and the asymptotics of v and 7 in (8.12) and (8.18). O
Choosing local coordinates 2% on S? and letting 4% := 2% o = 2% + p}+b1 _OH];’O, we can
introduce the Bondi—Sachs coordinates

2

(u, 7,27, &%) (8.22)

1

on U; the metric g and its dual G = ¢g~' simplify in this coordinate system since, by

construction,
G(du,du) =0, G(du,dz®) = (Vu)(z*) = 0. (8.23)
Furthermore, using (8.16) and Lemma 8.7,

G(du, di) = 1+ py " He,
340, -0

ca g2ob °o—2 ab c—37 ab oo (824)
G(dz,di”) = = "¢ — 7" °h"" + p; Hye,

where the leading term in the first expression comes from g% (9;u)(9p7). In order to calcu-
late G(dr,dr) to the same level of precision, we need to sharpen Lemma 8.7.

Lemma 8.9. Near (£71)°, we have
o1 = =5 + (m + 3(hiy — 2hot) + rdohiy — 1V Veh™)r™ + pp PO HE,

Note that in (8.20), we already control g(Vg,V;) modulo terms more than two orders
beyond the leading term, which suffices for present purposes. On the other hand, the
remainder term in (8.21) is not precise enough.

Proof of Lemma 8.9. Put A := [r*¢]"'[r~?g] € End(T'Cy/N), so (#/r)* = det A, and
Lemma 8.7 gives A% = 62 — rthgt + p}+b’_OH§° and (det A) — 1 € p?—bl’_OHgo. Sup-
pose now that

O1(det A) = 2+ o(r™2), (8.25)
then Oy ((F — r)/r) = 3(det A)73/49 (det A) = 172+ o(r=2), so expanding the left hand
side as r=1 (917 4+ 3 — mr~!) + o(r~2) implies that

i =—35+ r~Ym + Th) + o(r™h) (8.26)

Our calculations will imply that the o(r~!) remainder is of size O(r~!~%719) but we shall
stick to o(r~1) etc. for brevity. Trivializing TC,,/N locally using the frame {V,: a = 2,3},
with V,, defined in (8.19), A becomes a 2 x 2 matrix-valued function. We can thus use
the formula 0;(det A) = (det A)tr(A~19,A), so it suffices to determine the function p in
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tr(A7101A) = r=2u + o(r=2). One contribution comes from differentiating [r~2g], which
by (8.20) and Y(g); = 0 yields
(g o)) = (=g = TR+ OGO @1 ) + O H))
= —r 10y thh — r2h%0 b + o(r2) (8.27)
= 27" 2(hy1 — 2h01) — 2r 2V aha® + 4 8ohat + o(r ).

The remaining contribution to tr(A~'8;A) is —tr([r*¢]~101[7*¢]) (using the cyclicity of the
trace). Let us work near a point zy € R*, and suppose 22, 2> are normal coordinates on S?
centered at the point m(zp). Then

(00 ) (Vas Vi) g = D1 ((gea © ™) (Vi) (Vi) D) |2,
= fedln(z0) (D1 (T2 Va) N V) + Gedln(zo) (7 Va) (91 (72 V5) ).
Now (V)¢ = 6¢ + O(r~1710) whose derivative along d; is of size O(r~1=110) 5o
O () (Va, Vi) = gc01 (V) + dacOr (1 Vi) + 0o(r™?)  at 2. (8.28)

Let us first calculate the contribution to this coming from the term 9, in V,. By (8.17) and

recalling the form of the map ® from (8.13) as well as its defining relation (8.14), we have
al(w*aa)b = 818(1;1317(:61 + w2, 22, 1:3) (8.29)
= —Olacﬁb(:r:l + ;2% — 4mlog 2® + :130, 2 + :132, 4 :I;?’); .

now 3, its z¢-derivatives (¢ = 2,3), and ®° are of size O((2°)~17%%0), so dropping ®? and
@3 gives an o(r—2) error; likewise, 9,037 = O(r~27br10), 50 replacing the second argument
by 20 gives another o(r~2) error.

To analyze this further, we need to digress: consider the 1-parameter family w(s;e) :=
V(@' +en?,23)(8) of null-geodesics, with 22, 23 fixed, and let

Y (s) := 0cw(s;0) = O1Y(a1 22,49)(5)

denote the Jacobi field along v(s) := w(s;0). The asymptotics proved in Proposition 8.2
give the a priori information

Y(s) = O(s7" )y + (1+ O(s 1 0))ay + > 0(s7 71100,

, . , (8.30)
.Y (s) = O(s 09y + O(s 171109y + 3~ 05721100
We shall determine the component Y (s)? by solving the Jacobi equation
(V4V5Y(s) + R(Y.4)3)" = 0. (8.31)

Heuristically, it suffices to calculate this modulo o(s~*) errors, as the second integral of
such error terms (integrating from infinity) is o(s~2); we will verify this heuristic in the
course of our calculations. Using 40 = 1+ O(s1), 41 = O(s~17brt0) 3¢ = O(s727br+0),
the a priori information (8.30), and the expressions for the curvature tensor in (A.7), one
finds

(R(Y,%)%)" = ROAu A YH4Y = —RPo01 (3°)2Y ! — RPo0a(70)2Y + o(s™4).
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Now, using the gauge condition YT(g)g = 0 and the expressions for Christoffel symbols
given in (A.3), one finds that in fact R’gp, = o(s~?), rendering the second term size o(s~%).
Let us calculate RPo1 = 9oT%; — Ty, + Fglfgu - FgOFZI more accurately than in (A.7).
In the third term, the only contribution which is not o(r~*) comes from p = 2,3, giving
—ir*:gﬁlhob + ir*‘lvbhm; the fourth term is 0(7’*4). For the second term, we use

T8 = g% Too0 + 9" T100 + g% Taoo = 0o(s™*) + 0(s™*) — (r20oho” — 372V hoo),

exploiting Y(g)o = 0. In view of the leading order vanishing of ho® and hgg at .#t,
we have 81F80 = —r729y(01he®) + %T_?’Wbalhoo + o(s7%); now O1ho® can be rewritten,
using Y(g)p = 0, in terms of hoi, hg, and hg; since these have (size 1) leading terms at
7t subsequent differentiation along 9y only produces nontrivial terms (i.e. not of size
o(r~*)) when acting on the r-weights. On the other hand, d1hoo = —r tho1 + o(r~!) from
Y(g)o = 0. Arguing similarly for the computation of 80F81, one ultimately finds that all
nontrivial terms cancel, so
Rbom = 0(?“74).

Thus, the curvature term of the Jacobi equation (8.31) is of size o(s~%) simply. Regarding
the first term of (8.31), the information (8.30) and a brief calculation give (V;Y)? =
O(s170r+0) (V5 Y)! = O(s717%49) ) and, using r~! = 2571 + O(s 2 log ),

(V5Y)" = 0,Y? + 044y
=9,V + s7Y? — 2573V hb + 45730 + 0(373),

with nontrivial contributions only from (u, A) = (0,1), (0,¢). In particular, VY satisfies

the same rough asymptotics as 9;Y in (8.30). Since differentiation of Rt and hy? along
gains a weight s'77 due to these components having a leading term, this and (8.31) imply

o(s™) = (V4 Vs Y)P = 0,(V5Y)? + s 4V V)P + o(s7%)
= 92Y? + 25710,V + 457y ghb — 854 + o(s™h)
= 57 2(05(s%05Y") — 2s 2 + o(s72)),
where B o
ji= lim (4h1® — 2V 4h"?)
is the value of this combination of metric coefficients at y(00) € .#*. Since lim, o s20,Y? =
0 due to (8.30), we find 9sY? = —2is™3 + o(s™3) and thus
VP =Jis72 + o(s7?) (8.32)
since limg_y00 Y? = 0.

Returning to the expression (8.29), dropping u gives an (’)(r‘2_b/1+0) error term by
Lemma 8.5; we thus conclude that
o1 (W*Ba)b = —818a7b(x1;xo,x2,x3)+o(r72) = (—Wah15+ %Wavdhw)rﬂ—l—o(rﬂ). (8.33)
We have another term in (8.28) coming from the term f,0; in V,; but f, and its derivative
along z! being of size O(r—*110) (see the proof of Lemma 8.7), it suffices to show that
(1.01)¢ = O(r~2) in order to conclude that J1(m.(f,01))¢ = o(r~2) is a lower order term.
But we can simplify (m.01)¢| (40 21 42 23) = 019¢ = —017¢(z"; 20, 22, 2%) + o(r~2) = O(r—2?)
(using (8.32)) in the same manner as we simplified (8.29).
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Finally then, plugging (8.33) into (8.28), and adding the result to (8.27) yields (8.25) for
p = 2(h1y — 2ho1) + 4rdoh11 — Yo Voh™,
which by (8.26) proves the lemma. O
We can also compute 914° = d17® modulo o(r~2), as this is glven by the component Y

of the Jacobi vector field of the proof of Lemma 8.9, so 612° = (hy 1Y7dhbd) 24 o(r7?).
In summary, we have shown that

du=o(r")dz’ + (1 +2r ho1 + o(r™"))dz’ +Z
di = (3 —mr~' +o(r™1))da”
+ (-5 + (m + L(hay = 2ho1) + rBoh11 — VL VR) ! 4 o(r 7)) dat (8.34)
+ Z o(
di® = o(r~2)da® + (( ¢ — V4 had) 2 4o(r?))da! +dz* + ZC o(r~1)da*,
where the remainders are in fact more precise: o(r—*) can be replaced by pk+b[ OHgo near
(F1)°, so a fortiori by O(r~*=01+9) We can now supplement (8.23)(8.24) by
G(d, di) = =1 + 2mr~' + 20phy; — 2r7 'YV, Voh® + pi PO H®, 5.35)
G(d#, di) = (hy® — LW ghbyr=2 4+ 2t pree '

(Note that in the first line, the logarithmically divergent terms hi; from g% (9p7)? and
gt (O17)? cancel.) Let us summarize the calculations (8.23)—(8.24) and (8.35):

Proposition 8.10. In the Bondi-Sachs coordinates (8.22), the dual metric G = g~! is
G =2(1 4 o(F))8u0; — (1 = 2m~" = 20phyy + 37 VaVoh®™ + o(# 1)) 02
P2+ LR 4 o(F 1)) (B0 + (Ua2 + 0(#72))07) (930 + (Upi 2 + 0(72)) %),
where U, = —%hm + %Wchag. The metric g itself takes the form
g = (1—2mi~" = 200h11 + L VaVoh® + o(# 1)) du? + 2(1 + o(# 1)) du di
= (fab — 7 Thgp 4+ o(F 7)) (d2* — (U + o(#72))du) (di® — (U2 + o(F72))du).

The o(+~*) remainders can be replaced by pk+b[ OHOO = O(r=F=br40) near (F)°. Fur-
thermore, the coordinate vector fields satisfy

O = (1 = (h11 + 2rdoha1 — %WavbhaE)Tfl + 0(7“71))80
+ (1 = 2ho1r t +o(r 1)1 + (—h1® + lW haB) - 0(7“_2))@17
8;:(2+4m7‘_1+0( ))5)0+0 131+Z
dga = 0(1)8y + 0(1)d; + 9y + Zco r~H..

(8.36)

Proof. The statement (8.36) on the dual basis of (8.34) follows by matrix inversion. O
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Remark 8.11. For comparison, the Bondi—Sachs coordinates on Schwarzschild are simply

u=z!', # = r, and spherical coordinates #* = 2%, and the metric takes the form

(g0) "t = 20,0y — (1 —2mi™ 102 —#2¢F,  go = (1 — 2ma)du® + 2dudri — 7.

Remark 8.12. Near (£ 1)° and relative to the smooth structure on M, the conformally
rescaled metric r2g is singular as an incomplete metric at .#*: indeed, 129y is a nonzero

multiple of 9,, by (2.26), and r?g(r?dy,r?0p) = rhoo = O(pI_Hb/I). On the other hand,
changing the smooth structure of M near (.# 7)° by declaring (71, u, #2, %) to be a smooth
coordinate system, so p; := 7! is a defining function of .#%, we have #=2g € CLbr=0,
Indeed, 8;, = —72d; is null, while (7729)(9;,,8,) = 1 + O(p3 7% is €170, and the
remaining metric coefficients have at least this amount of regularity. Since by Theorem 6.3
one can take by arbitrarily close to min(bg, 1), this gives

F2g € CY* Va < min(b, 1), (8.37)

relative to the new smooth structure. As mentioned in §1.3, smoothness properties of
conformal compactifications have been widely discussed, in particular from the point of view
of asymptotic simplicity [Pen65] and the decay properties of the curvature tensor [KNO3b,
Chr02]; see also [Fri04] for further references. Whether or not there exists a compactification
with smooth (or at least highly regular) .#*, meaning that the conformally rescaled metric
extends smoothly and nondegenerately across ., is a delicate issue as it depends very
sensitively on the precise choice of the conformal factor and the smooth structure near .#
and requires the identification of at least two ‘incommensurable’ geometric quantities.*’
The observation (8.37) shows that this cannot happen prior to the next-to-leading order
terms in the expansion of g at .# . Work by Christodoulou [Chr02] on the other hand (see
also [Dafl2, §1.5.3]) strongly suggests that the conformal compactification is generically at
most of class C1@.

1

Therefore, the mass aspect, see [MW16, Equation (37)], is —3 times the #~! coefficient
of the du® component,

Ma(p) = m+ (rdohir — iWaVbh(‘z’)\p, pe(Fh)°, (8.38)
and the Bondi mass Mg(u) := . fS(u) My dg is

1
MB(U) =m-+ — / rophi1 dg, u € R, (8.39)
4 S(u)

where we exploited that the divergence in the expression (8.38) integrates to zero.
Remark' 8.13. Recall that near (£71)°, hj; can be written as hgll) log pr + hg?) + pI}IHf;O,
with hgjl) €C™®((F1)°), j =0,1, s0 rdohi1] s+ = —%hgll) picks out the logarithmic term.

Theorem 8.14. The Bondi mass (8.39) satisfies the mass loss formula

d 1
— M =—— N12dg, Ny :=0uhr|s+. 8.40
a0 =g [ INGag, N = b (3.40)

Moreover, Mg(—o0) = m is the ADM mass of the initial data, while Mg(+00) = 0.

42An example would be given by two metric components which have nonzero leading terms of size pr
and prlog pr, respectively, though we reiterate that this depends on the choice of pr, i.e. of the smooth
structure.
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Proof. The formula (8.40) is an immediate consequence of Lemma 3.5, and Mp(—o0) =m
follows from the fact that rdghi € p(l;(’,ozr+ H*(71) decays to 0 as pg — 0.

Let us fix the boundary defining function p to be equal to r~! near .# ¥, and fix p; and
p+ near I'™ so that pypr = p. In order to prove Mp(+oo) = 0, we analyze the equation
satisfied by h™ := h|;+. The existence of this leading term was proved in §7 starting
with equation (7.16) (in which we do not use constraint damping); that is, restricting
that equation to I™ and using the Mellin-transformed normal operators E\O(O) = 1(0) €
p;lDiff%(I T) at frequency 0 (so this is the action of Ly on 2-tensors smooth down to I*
followed by restriction to 1), we have

L(O)h* = ~P(0)[1+ = —p*Ric(gm)|r+- (8.41)
Moreover, hfl has a logarithmic leading order term hZ log pr,
ht — hflog pr (dzt)? € ¢ (1) + phr HEo (1) < HY2Hbr=0(1), (8.42)
where b} = (p19,,h11)|ar+ = (—2rdohi1)sr+, so by Lemma 3.5
B (0) = 1/ IN|dz', 6€art.
4 J5=10)

Since L(0) is injective on H'/2T0(I*), the tensor h™ on IT is uniquely determined by
equation (8.41) and the ‘boundary condition’ (8.42). The strategy is to evaluate hgy|or+
in two ways: one the one hand, this quantity vanishes identically by construction of the
metric h in our DeTurck gauge; on the other hand, we will show that solving (8.41) directly
yields the relation

i /8[+ hgo|al+ dg = %m — ic, c = % - hzr dg, (8.43)
which thus gives the desired conclusion. For the proof of (8.43), let us split h™ = b/ + ",
where

W € C®(It; S2°THRY), b € hflogpy (dat)? + HY*HO(IF; 25T, R?) (8.44)
are the unique solutions with these properties solving the equations
L(0)W = —P(0)|+, (8.45)
L(0)h" = 0; (8.46)
the first equation is uniquely solvable in this regularity class due to P(0) € C°((I1)°). We

first solve (8.46) with the boundary condition (8.44), to the extent that we can determine
h{- This can be viewed as a calculation of (a part of) the ‘scattering matrix’ of the operator

L(0) on I'T,*3 which can be done explicitly: writing points in I using spherical coordinates
as Z = Rw eR3 R=r/te€[0,1], w € S?, we have

—2L(0) = R 2DRrR*(1 — R®)Dr + R2A, +2,
43Trivializing the 2-tensor bundle using coordinate differentials on R*, a conjugated version of E(O) acts

component-wise as the Laplacian of exact hyperbolic space with spectral parameter at the bottom of the
spectrum; see Equations (4.1), (6.11), and (6.13) in [HZ18].
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acting component-wise on the coordinate trivialization of SCT*R%; see (4.62) and (4.65).

Since L( ) is SO(3)-invariant, it suffices to calculate ugg|gr+ for the solution of L(O)u =0
for which u — clog ps(dz')? € ﬁ1/2+0(I+)' recall that ¢ was defined in (8.43). Now at I,

(do")? = dt* — 2 dt dw; + 25 dav; da, (8.47)

where we write z; for the Euclidean coordinates on R?; observe then that if Y, € C*(S?),
AYy = £(£ +1)Yy, denotes a spherical harmonic, then L(0) (u (R)Y(g(w)) = 0 holds for

up = R og(38), wi = R2log(18) + 2R™!, us = 2 log (1) + 3R72;  (8.48)

Taylor expanding at R = 0, one sees that R ‘uy is a smooth function of R2, hence u,Y} is
smooth there; moreover, u, satisfies the boundary condition u, —log pr = O(1), pr = 1 —R,
at R = 1. (In fact, uy is the unique solution with these two properties.) Using (_8.47), we

find B = ¢+ (uo dt* — 2uy dt dr + uy dr?), so writing dt = (dz® + da') /2, dr = %dwi, and
r = (dx® — dz')/2 near OI'" within I, this gives

hoolor+ = ¢+ (juo — u1 + juz) ‘R:l =-lc (8.49)

In order to solve (8.45), note first that the map h € C®(IT) — p~3Ric(g + ph)|+ is
linear in h,** hence writing g, =: g + ph, we have
PO+ = p~(Riclg + ph) — Ric(g)|r+ = L) — p~*0,5,G o
for later use, we note that in a neighborhood of I7 in I,
h = —2mp tr71(dt? + dr?) = —m((dz®)? + (dz')?). (8.50)

This suggests writing ph’ as the sum of —ph (to solve away the first term) and a pure gauge
term, so we make the ansatz

W= —h+p 'w+ T, (8.51)
where w € C*°((I)°; SCTI";@) solves™”
p26,Gybpw =0 := p~20,Gy(ph) € CP(IT; T} RY), (8.52)

and # is a solution of E(O)TL’ = 0 which we will use to solve away any singular terms. We
compute ¥ to leading order at I by using r25gr*1dt2 =0 and r25g7"*1d7"2 =dr, so

Y = —2mdr = —mdz® + mdax' +p1C°°(I+)

Write p~26,G, 0y = pDp~ ! where D = p=34,G g0 18 2 times the wave operator on 1-forms
on Minkowski space, re- Welghted to a b- operator as usual; then equation (8.52) becomes

D(i)(p7'w) = pr 0. 59

Now p7l9 € H-1/2-000(1+) while D(i)~': Hs~1(It) — HSOO(H) for s > —3, cf.
(7.14). Therefore, the solution satisfies w € pyHY/270°°(1) C p; O H(I7) (by Sobolev

44T his reflects the fact that the normal operator of the linearization of the Einstein equation around a
metric of the form g + ph only depends on the leading order part of the metric at IT, ie. on g; see also
Lemma 3.10.

45\We abuse notation by using the same expression for a b-operator on R? and its Mellin-transformed
normal operator at 0 frequency. Note that for a b-differential operator A, the operator ;1\(0) is independent
of the choice of boundary defining function (unlike A\(a) for o # 0); see also [Vas08, p. 762].
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embedding for functions of the single variable pr), which using the expression (A.1) implies
that w does not contribute to hg|gs+, namely (p_légw)ooyaﬁ = (p~*0owo)|gr+ = 0, where

we used that p~'9 is a multiple of the b-vector field p;d,, at .

A careful inspection of the solution of (8.53) shows that pflé’;w is not smooth. Indeed,

in the bundle splitting (2.19), we have D € —2p~2000; + DiffZ(°M), as follows from the
same calculations as (B.13), so using the expression (7.19) for ¢ = 4, we have D(i) €
0, (p10,; +1)+Diff (I'), which implies that'® w = prlog p; 9|+ +H/2~%(IT); therefore

(0~ 05w) |+ = (—da® da’ + (dz")*)mlog pr + HY/>~02(17).

Therefore, while we do have L(0)(—h + p~1é;w) = —P(0), we need to correct the 2-tensor
on the left by adding the unique solution k' of

E(O)E’ =0, = (dxo del — (d$1)2)mlogp1 n ﬁ1/2+0(l+)

in order for A’ in (8.51) to have regularity above H'/?(I*), which, as remarked before,
implies that it is the unique smooth solution of (8.45), as desired. Arguing similarly as

around (8.47)—(8.48) and noting that dz°® dx! = dt? — dr? = dt? — %dl’l dxj, the solution

is given by B = m(ug dt? — us dr?) — m(ug dt? — 2uq dt dr + ug dr?). This gives

hoolor+ = gm(uo — uz)|or+ —m- (=) = —gm.

In view of (8.50), we conclude that

hoolor+ = —hoolor+ + hplor+ = §m.
Adding this to (8.49) establishes the relation (8.43), and proves Mp(+o00) = 0. 0

Remark 8.15. The construction of Bondi-Sachs coordinates is local near (.#1)° and as such
did not rely on h being small. (The proof of Proposition 8.2 used the smallness of certain
Christoffel symbols in a weighted C? space, but this is automatic for any fixed h € X if
one relaxes the weights at .#* by a little and works in a sufficiently small neighborhood
of #*.) Likewise, the proof of Theorem 8.14 did not require i to be small. Therefore,
we in fact conclude that any (large) solution of the Einstein vacuum equation of the form
g = gm + ph (with m possibly large), h € X*°—which requires it to decay to the Minkowski
solution at IT—satisfies the conclusions of Theorem 8.14.

Let us connect this to the alternative definition of the Bondi mass and the mass loss
formula used in §1.3, which has a more geometric flavor [Chr91]. To describe this, consider
an outgoing null cone C, and let

Syi = Cu N {r =7}

denote the 2-sphere of constant area radius (which is a particular choice of transversal of
C,). Let L € (TC,)* be a future-directed null normal vector field, i.e. a smooth positive
multiple of Vu; then the null second fundamental form is

XL(X, Y) = g(VXL,Y), XY € TSuj,a.
46Using the arguments employed in the proof of Lemma 7.8, we in fact have pflw € logprC=(I") +

C>=(I™"), as follows by constructing a formal solution at p; = 0, starting with the stated leading order term,
and solving away the remaining smooth error using D(4) ™.
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Note that x,r, = axr for any function a. There exists a unique future-directed null vector
field
L€ (TS,z)" suchthat g(L,L)=2. (8.54)

Define TC,, := TS, ® (L), which is the tangent space (at S, ;) of a null hypersurface C,,
which is the congruence of null-geodesics with initial condition on S, ; and initial velocity
L. (L and C,, resp. L and C,,, are often called ‘outgoing’ and ‘ingoing,” respectively.) The
conjugate null second fundamental form is then

Xo(X,Y):=g(VxL,Y)=—g(VxY,L), X,Y €TS,;,

with the second expression showing that this depends only on L at S, ;. Letting g := g|s, -
denote the induced metric, the trace-free parts of x and y are

Xp=xr — 50trg(xr), X, = XL — 39trs(xe)-
Rescaling L to aL, we must rescale L to a~ 'L, so the product tryp, tr X1 is well-defined,

and we may drop the subscripts on x and x. The Hawking mass of Sy ; is defined as

. r
My (u,7) == = (1 +—
2 167 S(u,F)
where dS is the induced surface measure. For a 1-form, let us write its components w in
Bondi-Sachs coordinates as wy,, wg, wg, @ = 2,3, similarly for higher rank tensors.

Lemma 8.16. We have |My(u,7) — Mp(u)| < #7010 hence
lim My (u,7) = Mp(u).
r—00

trxtrde), (8.55)

Proof. We work in Bondi-Sachs coordinates, so T'S,, = (032, 033), and

G = —gab + Phap +0(7), (571 = =72 — i D 4 o(77?),
Let us take L = 9; and write x = xr, then x;; is the Christoffel symbol of the first kind,
L. = 9(Vo,qa 08, 050). By Proposition 8.10, g(0za, 0z«) = 0, therefore
Xab = 395945 = —"gab + 3ha + 0(1), (8.56)

which due to th h = o(1) gives

try=2/""+0(F%), R = —sha+o(1). (8.57)
Next, a simple calculation shows that the unique future-directed null vector field L defined
in (8.54) is given by

L= 2+ 0(# ")), — (1 —2mi™" — 200h11 + L+ Vo ¥ph™ + o(771)) s
+ (1% + 3¥ph )2 4 0(772)) 95

(The spherical component is determined by g(L,d:) = 0, ¢ = 2,3, the 9, component by
g(L,L) = 2, and the 0; component by g(L,L) = 0.) Working in normal coordinates on

s?, usmg Ui = —370uhgy — 1(Vahyp + Yohia) + 5(VaVehi® + Vo Veha®) 4+ o(1), Tpyy =
Tab — 2 hap +o(1), and T',; = o(7#?), the components of X i= XL are
Xap = Ll = (1 —2m — 2rdoh11 + chWdhEJ)gab + 7Ouhgp

‘ ] (8.58)
hap + 5(Vahyp + Yohia) — 1(VaVeh® + VoV cha) + o(1),
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which gives
try = —2¢" + (dm + 47 0ph11 — LV Vph™ — Vahi®)i 2 + o(#2),
R = POuhay + (VY ah™ = 5V ehi®)gab + Sha (8.59)
+ 3 (Vahig + Yohia) — 1(VaVehi® + VsV cha®) + o(1).

Finally, the surface measure on S, ; is | det g|'/?|di® di®| = (7 gab + o(#))|dz® dz’|, hence
the Hawking mass is My (u,7) = m + 4= fS 70oh11 dg + o(1) = Mp(u) +o(1). (As usual,
the o(1) remainder is really symbolic as 7 — 0 namely of class S~07+0.) O

With L and L defined as in the proof of the lemma, consider the conjugate null vectors
aL and a~'L. By (8.57) and (8.59), there exists a unique a = 1 + O(#71) such that

tr Xar + 1 Xo-17 = a1(a? trxy +try) = 0; (8.60)

thus X ., = 70uhg + O(1) = X + O(1), hence to leading order, the normalization (8.60)
does not change X- We can now calculate the outgoing energy flur through S, 1,

oo L (249 — L 2
Bt = g [ Pas = g [N o),

with Ngp = Oyhgp is as in Theorem 8.14.*7 Clearly, E has a limit E(u) = lim_, E(u,7)
at null infinity, and the Bondi mass loss formula (8.40) then takes the equivalent form

%MB(U) = —FE(u).

APPENDIX A. CONNECTION COEFFICIENTS, CURVATURE COMPONENTS, AND NATURAL
OPERATORS

We list the results of calculations used in the main body of the paper: geometric quan-
tities and relevant differential operators for the exact Schwarzschild metric in §A.1, its
perturbations (as considered in §3.1) near null infinity in §A.2, and near the temporal face
of the Minkowski metric in §A.3.

A.1. Schwarzschild. In the notation of §2.1, in particular around (2.23), the Schwarz-
schild metric

g= gf1 =(1- 2TW)dqu — r2g
and the dual metric g~ have components

2m

go0=0, go1=3%(1—-22), gop=0, g11=0, g16=0, Ggap=—""fas,

00 _ 01 _ _2 0b _ 11 1 b —2 ab
- 07 g - r—;m’ - 07 g - 07 g - 07 ga “ .

47Using (8.59), we could compute a as well as E(u,#) to one more order, exhibiting a #~' term plus a
o(#71) remainder for both.
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The only nonzero Christoffel symbols in this frame are T'pgp = =12V cas, re, = ]Z‘ab, and
oo = %mr_?’( — Qm), FcOb = —%('r — Qm)gbc, N _%mr—3(,r - 2m),
Fclb = 1 (’I" — Qm)gbca FOab = (7’ — 2m)gab, Flab = —%(r — Qm)gaby
rf, = mr I, = 41— 2065, T = —mr,

Fib - _%Til(l o 2Tm)5l§’ ng = _Tgaba Fclbb = Tgab.

The only nonzero components of the Riemann curvature tensor (up to reordering the last
two indices) are R%.q = 2mr‘1(5‘ggbd — Oggbe) and

ROy = —mr—3(1 —2), ROyq = —mrflgbd, Ry = mr—3(1 - 22),

Rlbld = —mT_lgbd, R%1q = —imr 3( . )63, R%0q = —fmr_3(1 - Qﬂ)éa
With respect to the rescaled bundle splittings (2.19) and (2.21), we have
g = (0,3(1—22),0,0,0,—¢)", trys = (0,725-,0,0,0, — tk),

further
1 0 000 0 BH-—2 0 0
0 0 000 (-2 1%8; 100 (11 i
Gi=lo 0 vr0 o [ B=| T gas TP
0 b 00l 0 0 3 3o+ (i - 5)
024000 Gy rlg —rly rolge

We also record dt = (3, 3,0)7, Vomt = (1,1,0), and, paralleling the definition of §*

from (3.3), we have, near S,

7"2m

d(t!
~2 8% &, () +1ugom 1 (om

10 0 0 0 0

1 1 1 1

11 9 1 1 0

2 2 2 2 A2
_ 41|00 i 1 0 0 0 (A-2)
=7 o1 0| "7 0 0 0

00 % 0 0 0

A.2. Perturbations of Schwarzschild near the light cone. We consider a metric g =
gm + ph = g2 + r~'h, with the perturbation h € X o0ibo,brb b+ lying in the function space
of Definition 3.1, and continue using the splittings (2.23) of (S?)T*R*; however, we express
the components of h using the rescaled splitting (2.21) as in (2.24), since for h € X all
components hyp lie in the same space H, oosbo,—€,b+, ; more precisely, they satisfy (3.4)—(3.6).
The components g,,, and g were already computed, see (3.14) and (3.15). Recall also the
observation (3.7) and the memberships (2.28). We shall write b — 0 for weights which can
be taken to be b— e for any € > 0; any two choices of € are equivalent due to the assumption
that all components of h have leading terms (possibly with a factor log py for hi1) at £ .
The only part of the analysis that relies on the precise structure of the gauge-fixed Einstein



STABILITY OF MINKOWSKI SPACE 115

equation is the analysis at # 7, so in the calculations below, the weight at .# T is the most
important one. We compute:

00:24bo, 24, 2+b
Tooo € Hy, pEr

-9 -1 0] 2+b0,2+b1,2+b+
T € 57‘ (m — ho1) — 57“ O1hoo + H ,
Oo;l+b0,1+b 7].+b+
Leoo € Hy ! :

1 00;24b0, 24,2+ by
Too1 € 5T 01}100 + H, 1 ,

00;3+b0,3—0,3+b
T'o1 € l?’ 8()}111 — ZT h11 + H 0 +

Y

14+bo,14b7,1+b
T € 81hgc— 8h01—|—HOO 0 1 +
0] 1+b0,1+b 7].-‘rb+
Loop € Hy, ! :
N 14+bo,14b7,1+b
T'iop € *7" abh(n — lalhog + HOO 0 d +,

00; bo7bl,b+

Leop € —5(r — 2m)goe + hye + Hy,
Toi1 € 37~ 2(ho1 —m) 4+ L01ho1 — %r‘laohu + ir‘th + H§°;3_0’3_073+b+,
T € 3r7'ovhay + 372k + HY” 3+b0,3-0,3+b4
Lot = Oihie — r710chay,
Tow € 101hgs + Lr~10,hor +H§o;1+bo,1+b1,1+b+7
Tip = 277 'Ophay,
| STS %( 2m) g + %r@lhgé — ihéa + %(81,1115 — dohyg) + Hgo;1+b0,1—0,1+b+’
2o = 2m)gap — oy + HZO,
Tigh € —5(r — 2m)gap — 1r01hgp + 3 (Bahyp + Ophra) + thgg + HyeH o000
Leap = =1 Veap + 37(0ahie + Ophaz — chygp).
The Christoffel symbols of the second kind are therefore

Loay €

19 € r2(m — hoy) — 7~ O1hoo + HyZ 2020240 (A.3)

1 00;24bo,2+b7,24+b ¢
I‘00 Hb )
00 3+b0,3+b ,3+b+

I'Go € Hy, ! ,

00;3+b0,2+b; —0,3+2b
F81 eEr 80h11 — 57“ hll + H +,

I‘(1J1 er alho() + Hoo 2+b0’2+b1’2+b+7
g, € — »,o 281h0 + ,,n 3Wch + HOO 3+b0,3+b1,3+b+
0, € —O1hgy + 7 t0phor — r thyp + H§0,1+b0,1+61,1+b+7
FOb c Hoo 1+b071+b1,1+b+’

G € 377 (1= 2m)55 + gr 2Ryt 4 OO

Fll er 81h11 + %7‘72}111 + 27“72(771 — h01)81h11



116 PETER HINTZ AND ANDRAS VASY

. 4r_2h1131h01 + 2r‘2h1J81h15+ Hgo;3+bo,3—0,3+2b+’
I, € 77 2(hoy —m) + 2r ' 01hoy — r~1doh1s
+ 1072k + 472 (m — hoy)Ohoy + HYTE ORI 08R0
Iy € —r 201 + l7“_3Y7Ch11 +2r2hy %01 hoy
P00y g + > 44-bo, 3+, —04+2be
09, € r'0hi + 1 thyy + 1~ h1g(91h,;g + HEO;HbO’HbII_O’H%*’
F%b € Orhgy + r~LOphor + .FI](;O;IJFZ’O’IH”’I'H’JF7
T € —gr™ (1= 2)o) — g Ouhy” — 0l
+ L2 (Oahy; — Byhyg) — Lr “2pedg, e 4 B 3+b0,2-4b),3+2by
I, € (=1 + 2ho1 — 2h11)Jap — (7 + 2m — 2h01)81ha5
+ (Vahys + Yohia) + shag + Hyo 170,170,142

Flb S (T’ — QhOI)gab Qhab 4 HOO bolnr,b+7
Do, € Py + 1 hnap — 377" (Vahy” + Voha® = Voheg) + Hy o et

We can then calculate Y(g)” = g" I'(9)%, — I'(gm)%y), see (3.1), to wit

9

Y(9)° € r~ 10 th h+ 2r2(ha1 — 2ho1) — 2r 2V ghy? (A.4)
+ 4r ' Bphyy + r2h%0 by + o 240,246 —0.24by
Y(g)' € 4r~1O1hoo + 4r~2hgy + Hy o0 Hon 24
T(g)° € —2r"201ho° + 22V Choy + 13V ah®? — 20 3hy© 4 HpTPHOSTII
and therefore
Y(g)o € 2r ' 01hog + 25 2ho1 + H§°;2+b0’2+b1’2+b+, (A.5)
Y(g9): € l7’*181 thh 4+ 1 7%(h1y — 2ho1) — T*QWdhlj
+ 20 0ohiy + Lr W by, + HT TR0
Y(g)e € 201hoz — 2r '0chor — ' Voheg + 2 has + H§°’1+b0’1+b”1+b+.
Using (A.1), this gives

0] 3+b0,2+b1,3+b+

(0g,, Y(9))oo € Hy, ’ "
(5;mT(g))01 eEr 8181]100 +r- 81h01 + HOO 3+b0,2+b1’3+b+’

(5;mT(g))0b € HOO 3—’_1)0’2"'17173‘*‘147

(55 Y9 € 5r 0101 thh+ 2r ' 0100hay — r 201Vl + 57710101 hg,

(81h11 — 281h01) + 7’ 2alhdealhde + Hoo ;3+b0,24b,—0 3.,.1;+

(05, Y(9))p €T alalhog 8b81h01 — 57“ Wdalh alhlb 4 HOO 3+b072+b173+b+

)
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(65, T (g))a € Hy 0020040

Next, we calculate the curvature components; as explained in §5, we shall need to know

the components Riczy modulo terms decaying faster than p3+b°, p?“bf , and p3+ *oat 19,

%, and It, respectively, in order to control each step in our iteration scheme. At 19, the
leading contribution to the curvature components will come from the Schwarzschild part of
g; cf. the calculations in §A.1. Thus, we compute

R0001 e —mr 3 + 7’718181}100 + 7’7281h01 + Hgo§3+b0’2+bl’3+b+, (A.7)

00;2+bo, 14+, 24Dy
R4 € H, ,

- - 24bo,14b7,2+b
R%14 € —0101hog + 17 10401ho1 — 1 B1hyg + HyS 0O

00;1+4bg b, 1+by
R Ocd € H ! )

00;3+b0,2+br,3+b4
R € H, ;

00;2+bo, 14+, 2+by
R4 € H, ;

0 00;24bo, 1+b},2+b
R4 € r7 i ®O10nhg, + Hy, ! ;

00;14-bo,1—0,1+b
RVyq € HXWTP i

- - ;2+bo,14+br,24b
RObolealalhog_'f’ 18b81h01+7’ 181h11§+Hl:O +bo0,1+0; ++7

o0i1+bo b, 1+b
R%0q € —mr™ gbd + H, e

Robld € —(7‘ + 2m — 2h01)8181h5d_+ (281h01 - 81h11)gbd

+ 81(8bh1J + (9dh15) + 231h0181hgg — %31h5681hczé + H§0;1+b0’170’1+b+,

bor—1+bb
RO € 101 (Y ahye — Yehgg) + Hy ' o

00;3+bg,2+b",3+b
R 001 € H 0 1 +

00:24+b0, 24+, ,2+b
Rlopq € Hy 7707070

00;2+bo, 14+, 2+by
Rl € H, ,

00;14-bo,1+b7,14+by
R Ocd € H ;

00;3+b0,2+b" ,3+b
Rl € mr™3 —r710101hog — v 201hoy + Hy, ~ 0T

00;2+b0, 148/, 24by
R'y04 € H, ;

- - :24bg,14+bs,2+b
RYy14 € 0101hgg — 1 1010ghor + 170 hy g + HYOHTOATORE

00;1+bo,b%,1+b4+
R led € H ! )

0] 2+b0,1+bl,2+b+
Ry € Hy, ;

o0;14bo,b ,1+b
Rlyq € Hy, ! ;

1 00;14bo,b,1+b+
Rpig € —mr— gbd—l-H 1 ,

oco3bg,— 1+’ b
Rlyeq € Hy, A
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a 00;4+4bo,3+b7 ,4+by
R%o01 € H, ;

a 00;3+bo,2+b%,3+by
R%0a € Hy, ;

s 00;3+bo,2+b%,3+b4
Ra()ld € —%mr 55; + Hb I ,

R,y € HEO;2+b0,1+b},2+b+’
R%01 € 3r720101ho" — 3r73Y O1hoy + r301hy @ + HpS ST
Ralod c _%mr—iiég + Hgo;3+bo,2+b1,3+b+’
R%14 € —%T_lalalhga + %7“_2(91(Y7ah1g + Wdhla) — %7‘_2ha58181hdfé
+ 7“_2(81h01 — %Olhn)ég + 7“_231h0181hga
— L2 R0 hg, + HE TR
R%cq € $r7101(Vahe® — Vehg®) + HEOQH’O’Hblf’%l”f7
Riyr € HOPH02Hor b

a 00;2+4bg,1+b",2+by
R%o0q € H, ! ,

R4 € %7"_131 (Wahgg . thcza) T HEO;2+bO’1+b,I’2+b+,
Ra € 2mr" (5 g — Gighe)
+ %((‘%hz}a(;g - alhggéz + 81hgagbc . alhéagbd) + ch:o;1+b071_071+b+’

and the Ricci tensor

00;3+bo,2+b7,3+b 1
Hy, ,

)

00;3+bo,2+b7,34+b 1
Hb

=)
—-
o
<
—_ —  — —
o
(Sl
m

11 € %T_lalal Vf h — T_Qalvdhlg + %T_2hcz€8101hgé (A.S)
+ 7“72(31h11 —201ho1) + ir7281hd_é81hgé + H§°;3+b0’2+b1’3+b+,

Ric(g)lg € T_lalalhog — r‘2818bh01 — %T_Qalvdhgg + r‘%ﬁhlg + H?;3+b0’2+b1’3+b+,

RlC(g) EG Hoov3+b072+b/]73+b+
a b .

A.3. Perturbations of Minkowski space near the temporal face. We work on R* =
R; x R3, equipped with the Minkowski metric g= dt?> — dz?, and consider the linearization

of Py(g) := Ric(g) — 8*X(g),

(0" — &u =29t dt @5 u— 4t (1ygu)g, YL(g) = g9~ ,G g,

around g = g; concretely, let L := B_ngBOB, where p := t~! is a boundary defining
function of °R% in t > er, € > 0. We have

L=1(30q + (8" = 6;)34Gy)t ™.
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Splitting
T*R* = (dt) ® T*R3, S?°T*R* = (dt?) @ (2dt @, T*R?) @ S*T*R3, (A.9)
and writing e = dz? for the Euclidean metric on R?, we have g = (1,0, —e)7T, trg =
(1,0, —tr.),
_ v 0 % 0 %tre _o —§ 0
S—ar=t""10 vy, Gg=|0 1 0 ,5gz(ot Py _5>.
N ve 0 - te 0 1—letr N ¢ ¢

Moreover, U is diagonal using the standard trivialization of T*R3, and the scalar wave
operator is t*0gt ™" = —(td; — 3)2 —#2A, + 1, hence
L= 40~ 37~ 8.+ )
1t —1) At V(0 — 1) tre

1
2
— | —3vtde (0 —1) (S + 3dutre)
$7(tdy — 1)e ytede 37(t0, — e tr,

APPENDIX B. PROOFS OF LEMMAS 3.7 AND 3.8
We perform the necessary calculations using the results in §A.2.

Proof of Lemma 3.7. We use the invariance properties of the conformal wave operator (i.e.
the conformal Laplacian in Lorentzian signature),

A= P_g(Dg - %Rg)/) = Uy, — %Rgba 9 = r’g.

. _ i14+bo,— 1407, 14+by .
Here, the scalar curvature satisfies p ZRg € Hgo 0 D indeed, in view of (A.8),

and using in addition the memberships (2.28) of the operators dy, 91 (and spherical vector

fields, which lie in V,(M)) as well as the memberships of the metric coefficients of h as

encoded in Definition 3.1, one concludes that p~2Ric(g) € HEO;HbO’_Hb”Hb*; since the

metric coefficients of g~! are bounded and conormal, the rescaled scalar curvature p_QRg =
try(p~?Ric(g)) lies in the same space.

We next write the wave operator as
Ogu = —r_s(“’l’)gﬁl_’au@,,u + T_s(“)gﬂﬂfgl;a,{.

In the first term, when p = 0, the terms with v # 1 contribute H§°;3+b°’370’3+b+ Diff%, while

v =1 gives —40001 + (p® + Hgo§3+bo’2_0’3+b+)Diﬁ%. For 4 =1, v = 1 produces a term in

2 AR ,3+b+M2 due to the decay of hgg at £, while v spherical gives an element of

b
H?;3+b°’2_0’3+b+Diﬁ%. Lastly, 1 and v both spherical give (p2C> +H§O;3+b°’3_0’3+b+)Diﬁ%.

For the second summand, recall (B.12), while for & # 1, g"T%;, € pC> + Hgo§2+b°’170’2+b+
by (B.8). Thus, O, = —40001 — 2r~19; modulo a term lying in p? times the error space in
(3.24). Since Oy, = A — A(1), the claim follows. O

Proof of Lemma 3.8. We consider each of the terms in (3.22) separately. The contribution
from

(P2 Bypu)as = p2(Ry)" 539" sz + 1p 7297 (Ric(g) xuss + Ric(g)yxusp)
I fi
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to terms of size at least pI_1 at #* comes from those components of R, and Ric(g) of size
at least p;. The only such components of 17, are

0 -1 00;34-b0,2—0,3+b a 1 -1 a 00;3+b0,2—0,3+b
RY%5 € —r7 0101hyg + Hy T, R4 € —35T 0101hg" + H, *,

while all other components lie in Hgo ;3_0’1+blf’3+b+; the decay order at I9 is due to the
contributions from the asymptotic Schwarzschild metric, as e.g. in R%yq;. On the other
hand, (A.8) shows that Ric(g) € H]:O;3+bo’1+b“3+b+. Using the form (3.15) of g—!, this gives
0 0 0 000 0
0 0 0 000 0
0 0 0 000 0 )
p 2Ry € 0 0 0 000 3ploroh®
0 0 p~1818:h% 0 0 0 0 (B.1)
0 0 0 000 0
2010101k O 0 000 0
i pCOO i Hoo;1+b0,—1+b’l,1+b+
b :

Next, we have (Zu)r = T(g);\uk;\, with Y(g)* € H?;2+b0’l+b/”2+b+ by (A.4). Now,

equation (3.3) implies
T * 00 . * SCkD4 Q% Q2
6" — o, € pC>(M;Hom(B* *T*R4, 5*57)), (B.2)

so the expression for 6* obtained from (A.1) and the inclusions (2.42) show that

0" € pop+-M g oyt gose + pDIEL(M; 57T °RY, 5757, (B.3)
and therefore
p_sg*%p c Hso;1+bo,71+b},1+b+M +H§O;1+b0’b/”1+b+Diﬂ-‘%). (B.4)

Next, the only parts of ¢, which will contribute leading terms to (3.22) come from those
components Cgl—, which are of size at least p; at .#T; these are, modulo H?;2+b0’2_0’2+b+,

C?l = T_lalhu, 0111 = 27“_181h01, 0161 = —T_lalhlé,

_ 3 _ B (B.5)
Co=—3r7toilyt, C% = —r '01hg,
while all other components of C};‘D lie in ch;o 2400, 1407 240 Therefore, writing sections of

B*5°T*R4 in terms of the splitting (2.19), we have

4r~101hg1 0 0 000 0 ] s s
ng S 2’!"_181}111 0 0 0 0 O _%T—lalh(zb _|_H§°a +b0,1407,2+ +7
4r=1orhyy 0 —2r~'oilg® 0 0 0 0
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and then (A.1), (B.2), and (B.3) give

0 0 0 000 0
201ho1 0 0 000 0
B 0 0 0 000 0

p 3% Cyp € ptoro | 200hy O 0 000 —35:h% (B.6)
200h; O —81h56 0 0 0 0
0 0 0 000 0
0 0 0 000 0

;14-bo,—14-b7,1+b ;1+b0,—0,1+b .
S+ Hy T M JS T D

the only terms of §* which contribute leading terms to this operator are the 0y derivatives

*
in 59m

For the second summand in (3.22), we note that Gy, € C>°(R%, End(S?*°T*R%)), while
equation (3.16) gives G, € Ggm—1—1‘17130;1“)0’1_0’1+b+ (5*S?). Further, using the notation (2.24)
and setting T, := r*(\)=s(L1)T% we have

(bqu)p = *T_S(“’”’A)gﬂj‘(%\(Ts(”’y)up,j) + gDX(FZ*URD 4 Fi*“[m); (B.7)
now 7 *MNay € pW, (M) unless A = 1, and moreover

00; 1+b0,

for all indices, and ¢°' — 2 € pC°° + Hy - 0’1+b+, hence only the terms with ¢°'9;

survive to leading order:
—20, 0 0 00 0O
0g € 0 —20; 0 00 0O
0 0 —201 0 0 0 O
Now ((d; — 85 )u)as = —C™apug can be calculated using (B.5); hence, we can now use the
expressions (A.1) and (A.2) for G, and 6" —6, = to evaluate §* —d; = (6" —4, )—(6;—6, )
and thus obtain

+ (pC>® + HFPHO 02 gl

2 0 0 00 0 0

0 0 0 00 0 0

N 0 0 v 00 0 0

p_3(5* - (5;)(5gGgp S —,0_181 201h11 O —261h1“7 00 ~v+201ho1 O
0 0~—3ih® 00 0 0 (B.9)

2 0 0 00 5 0

—201hg; 0 0 00 0 0

+(C® + HEPo T D]
Finally, we determine the leading terms of
(Ogu)s = =0 m N G, (105 ) (B.10)
+9" (FZ sz + Dysuzs + D3 Uns) .

Consider wpp.z = r~5WVR 9, (r5WV) ) — I%Ru)\y I‘ﬁy ugy. For k =0, all Christoffel sym-

bols except those with p, A both spherical (second summand) or v, A both spherical (third
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summand) lie in p? C*>® +H§O;2+bo’1+b“2+b+, while FSB € %r‘lég +p2C> + H§°;2+b0’2_0’2+b+;
the contributions of the latter cancel the leading part of the term coming from differenti-
ating the weight 7—5(4) gy (rs(1H)) = 2s(p,v)r~t 4+ r72C%. For k # 0, we use the rough
estimate (B.8), and obtain

00;2+bg,1+b" ,2+b
Upp;0 € 80uﬁp + (/32 C>* + Hb 0 1 +)'LL

;2+bo, 1+, ,2+b .
C (pC®+ H oo 02 DiffLu,

00;2+bo,1—0,2+b (B’H)
pcoo +Hb 3 0, s +>u

Upp;1 € 61uﬁp + (

Upp;e S (p c™ + Hg0;2+b0’1_072+b+)Diﬁ‘11) u.

)

In the second line of (B.10) then, the only relevant terms (namely, with coefficients not
decaying faster than py) are those with u differentiated along 9; and the corresponding
prefactor being of size at least py; using

GOTLs € =20t 4 20 4 TR 2 (B.12)

this leaves us with
9T guam1 + 9" TSt + g™ T suma + (02 €% + HyeP 02030 Dii Ly,
C (s(p,v) = 2)r torugs + H§+b0’1+b}’3+b+/\/lu + (p2C>® + Hﬁo§3+b°’2_0’3+b+)Diff%u.
Turning to the first line of (B.10), for A = 0, indices x # 1 contribute terms of the form

H?;3+b°’3_0’3+b+Diff%u due to (B.11) and the decay of ¢™*, while x = 1 gives a term

— 25V 9o s ) Dy + (p? C + H§°;3+b°’270’3+b+)DiH2bu. For A = 1, the term with
k=0 is equal to —2810ups + (p* C>® + H§°;3+b°’2_0’3+b+)Diﬁ‘%u; k = 1 produces (due to
the decay of the long range component hg)

_ 00;3+bg,1+b,3+b
—r S(M’V)gllal(TS(M’V)U‘H&;I) € Hy 0,140 340+ g2,

and spherical k give H?;3+b°’2_0’3+b+Diff%u. Lastly, if A is a spherical index and x = 0, 1,
we get a term in H§°;3+b°’270’3+b+ Diff2u, while for spherical , we use (3.16) to deduce that
the nontrivial spherical components of g~! give a term in (p2C> +H§°;3+b0’2_0’3+b+)Diﬁ%u.
Putting everything together, and conjugating by weights, we obtain
< _ bo,—1+b" b ; — .
p=30yp € —4p~2000, + Hy 07 I A2 (o0 4 EOTTO O g2 (BL13)

(Note that due to the discussion after (2.42), the first term here is well-defined modulo
Diff{ (M; 8*S?).) Together with the expressions (B.1), (B.4), (B.6), and (B.9), this proves

the lemma. O
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