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CrossMark
Abstract
The need for analytic continuation arises frequently in the context of inverse
problems. Notwithstanding the uniqueness theorems, such problems are
notoriously ill-posed without additional regularizing constraints. We consider
several analytic continuation problems with typical global boundedness
constraints that restore well-posedness. We show that all such problems exhibit
a power law precision deterioration as one moves away from the source of data.
In this paper we demonstrate the effectiveness of our general Hilbert space-
based approach for determining these exponents. The method identifies the
‘worst case’ function as a solution of a linear integral equation of Fredholm
type. In special geometries, such as the circular annulus or upper half-plane this
equation can be solved explicitly. The obtained solution in the annulus is then
used to determine the exact power law exponent for the analytic continuation
from an interval between the foci of an ellipse to an arbitrary point inside the
ellipse. Our formulas are consistent with results obtained in prior work in those
special cases when such exponents have been determined.

Keywords: analytic continuation, power law, reproducing kernel Hilbert
space, optimal error

1. Introduction

Many inverse problems reduce to analytic continuation questions when solutions of direct
problems are known to possess analyticity in a domain in the complex plane but can be mea-
sured only on a subset (often a part of the boundary) of this domain. For example, if one wants
to recover a signal corrupted by a low-pass convolution filter, then one needs to recover an
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entire function from its measured values on an interval [2, 11]. Another large class of inverse
problems can be termed ‘Dehomogenization’ [7, 26], where one wants to reconstruct some
details of microgeometry from measurements of effective properties of the composite. The
idea of reconstruction is based on the analytic properties of effective moduli [3, 17, 24] of
composites. See e.g. [25] for an extensive bibliography in this area.

The method of recovery via analytic continuation is a tempting proposition in view of
the uniqueness properties of analytic functions. Unfortunately, analyticity is a local property
‘stored’ at an infinite depth within the continuum of function values and can be represented by
delicate cancellation properties responsible for the validity of Carleman and Carleman type
extrapolation formulas [1, 6, 18]. Adding small errors to the exact values of analytic functions
destroys these local properties. Instead we want to accumulate the remnants of analyticity and
use global properties of analytic functions to achieve analytic continuation. This is only possible
under some additional regularizing constraints, such as global boundedness [5, 12, 16, 33, 35].
Taking this idea to the extreme, any bounded entire function is a constant by Liouville’s
theorem, so that the effect of boundedness depends strongly on the geometry of the domain
of analyticity.

In order to quantify the degree to which analytic continuation is possible, consider an ana-
lytic function F in a domain 2. Assume that F is measured on a curve I' € 2 with a relative
error €, with respect to some norm || F||r. Can one perform an analytic continuation of F from
T" to Q in the presence of measurement errors? Without discussing specific analytic continu-
ation algorithms we would like to examine theoretical feasibility of such a procedure. For
example, if two different algorithms are deployed matching F on I' with relative precision €
how far their outputs could possibly differ at a given point z € Q \ I'? To answer this question
we consider the difference f of the two purported analytic continuations. Such a difference
will be small on I', and we want to quantify how large such a function can possibly be at some
point z € Q relative to its global size on 2.

Based on established upper and lower bounds, exact and numerical results [5, 8—10],[14,
15, 23, 30, 35, 36] a general power law principle emerges, whereby the relative precision of
analytic continuation decays as power law €7, where the exponent (z) € (0, 1) decreases to
0, as we move further away from the source of data. How fast (z) decays depends strongly
on the geometry of the domain and the data source [20, 35]. In [20] we considered an exam-
ple, where 2 is the complex upper half-plane and I is the interval [—1, 1] on the real axis. We
have proved that for z in the upper half-plane v(z) is the angular size of the interval [—1, 1]
as viewed from z, measured in units of . Conformal mappings can also be used to relate the
exponents for one geometry to the exponents for the conformally equivalent ones. We believe
that such power law transition from well-posedness to practical ill-posedness is a general
property of analytic continuation, quantifying the tug-of-war between their rigidity (unique
continuation property) and flexibility (as in the Riesz density theorem [29]).

The lower bounds on ~y(z) can be obtained by exhibiting bounded analytic functions that
are small on a curve I, but not quite as small at a particular extrapolation point. The upper
bounds are harder to prove but there is ample literature where such results are achieved
[5, 8-10, 14, 15, 23, 30, 35, 36]. In fact, it was observed in [35] that upper and lower bounds
of the form €7 on the extrapolation error do hold for all geometries. However, with few
exceptions the upper and lower bounds do not match. In those examples where they do match
[10, 35] the optimality of the bounds are concluded a posteriori.

In our recent work [20] we have developed a new method for characterizing analytic func-
tions in the upper half-plane H attaining the optimal upper bound in terms of a solution
of an integral equation of the second kind with compact, positive, self-adjoint operator on
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L?(T). In section 3.1, we extend this result to reproducing kernel Hilbert spaces H = H ()
of analytic functions in a domain 2 C C. The error maximization problem is reformulated as
a maximization of a linear objective functional subject to quadratic constraints, permitting us
to use convex duality methods. The optimality conditions take the form of a linear integral
equation of Fredholm type, where the positive, compact self-adjoint operator K is expressed
in terms of the reproducing kernel of #(€2). The integral operator K occurs frequently in the
context of reproducing kernel Hilbert spaces (e.g. [9]) and is related to the restriction opera-
tor R : H — L*(T). Namely, K = R*R. The exponent «(z) in the power law asymptotics
can then be expressed in terms of the rates of exponential decay of eigenvalues of the int-
egral operator KC and its eigenfunctions at the extrapolation point z € €. For certain classes
of restriction operators the exponential decay of the eigenvalues of K has been known for a
long time, and their exact asymptotics has been established in [28] (see also [21, 27, 31, 37]).
Alternatively, the exponent (z) can be read off the explicit solution of the integral equa-
tion in cases where such an explicit solution is available [20]. This allows us to compute ~y(z)
explicitly in a number of special cases. For example, when I is a circle in the upper half-plane
(section 2.2) or a circle in an annulus (section 2.1).

In section 4.3 we present a somewhat unexpected application of the annulus result to the
problem of analytic continuation in a Bernstein ellipse [4], studied in [10]. Since the annulus
is not conformally equivalent to the ellipse one would not expect a direct relation. The trick we
use, inspired by [10], is to map the Bernstein ellipse cut along [—1, 1] onto the annulus using
the inverse of the Joukowski function. Then, functions analytic in the ellipse are distinguished
from functions analytic in the cut ellipse by their continuity across the cut. After the conformal
transformation the image of functions analytic in the entire ellipse would consist of functions
analytic in the annulus with a reflection symmetry on the unit circle. Our Hilbert space-based
approach can easily incorporate linear constraints by making an appropriate choice of the
underlying Hilbert space. However, the question is about the relation between the problems
with and without such constraints. In the case of the Bernstein ellipse and the annulus, we
discover that the subspace of functions analytic in the annulus corresponding to functions
analytic in the Bernstein ellipse is invariant with respect to the integral operator K. It is this
invariance that permits us to solve the problem with additional linear constraints using the
known solution of the original problem. This is discussed in section 3.4. When the extrapola-
tion point z lies on the real line inside the Bernstein ellipse we recover the optimal exponent
~v(z) obtained in [10]. However, our approach also gives the formula for the exponent y(z) for
arbitrary points z inside the ellipse.

2. Main results

Notation. We will write A < B, if there exists a constant ¢ such that A < ¢B and likewise
the notation A 2 B will be used. If both A < B and A 2 B are satisfied, then we will write
A ~ B. Throughout the paper all the implicit constants will be independent of the parameter e.

2.1. The annulus
ForO<p<1,r>0let
APZ{CGC:P<|C|<1}’ I,={CeC:|(|=r} 2.1
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Consider the Hardy space (e.g. [13])
H*(A,) = {fis analyticin A, : ||[f||;2(,) = sup Ifllz2(r,) < oo}, 2.2)
where for a curve I' C C the space L?(I") denotes the space of square-integrable functions on

T with respect to the arc length measure |[d7|on T'.

Theorem 2.1 (Annulus). LetT' =T, with r € (p, 1) fixed and z € A,\I'. Then there ex-
ists C > 0, such that for any € > 0 and any f € H*(Ap) with |[f||s2(a,) < Land |f]| 2y < €
we have

()| < €O, (2.3)
where
WEL i <y <1
7(z) = (2.4)
In(|z|/p)

W, if 14 < ‘Z| <r.
Moreover, (2.3) is asymptotically optimal in € and the function attaining the bound is
— 2@ )
=e T Zr2n+62 +pzn)» (€A (2.5)
In addition M is analytic in the closure of A, and ||M || ;e (&) is bounded uniformly in €.

Remark 2.2. The statement that M attains the bound in (2.3) means that ||M||2(4
[M||;2ry S € and [M(z)| ~ €7®), with all implicit constants independent of e.

<1,

p) ~

It is somewhat surprising that the worst case function, which was required to be analytic
only in A, is in fact analytic in a larger annulus {|zj| < [(| < |z{|}, where z} = 1/Z is the
point symmetric to z w.r.t the circle I'; and z; = p?/7 is the point symmetric to z w.r.t the
circle I',,. In particular, M € H>(A,). Hence, M(() also maximizes |M(z)|, asymptotically,
as € — 0, if the constraints were given in H*°(A,) and L>(I"), instead of H*(A,) and L*(T"),
respectively.

Remark 2.3. The limiting case as p — 0 corresponds to the analytic continuation from the
circle I, into the unit disk D. The limiting value of the exponent is v(z) = lil for|z| > r,

and y(z) = 1, for |z| < r. The numerical stability of extrapolation inside I', can be seen di-
rectly from Cauchy’s integral formula. The same formula for v(z) has been obtained in [35]
for H>* (D).

2.2. The upper half-plane

Let Hy = {z € C: 3(z) > 0} denote the complex upper half-plane and consider the Hardy
space

H*(H, ) := {f is analytic in H, : sup If (- +iy) |2 ) < 00}

It is well known [22] that these functions have L2-boundary data, and that [[f|| = ||f]|;2(r)
defines a norm in H?(H, ). Assume that the data curve I' € H is a circle. By considering
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affine automorphisms z — az + b, a > 0, b € R, of H we may ‘translate’ T to be centered
at i.

Theorem 2.4. Let T be a circle centered at i of radius r < 1. Let 2 € Hy be a point outside
of T. Then there exists C > 0, such that for any € > 0 and any f € H*(H.) with ||f | g2,y < 1
and f || 2(ry < € we have

()] < €O, (2.6)
where

v(z) = lnLT;Z)', p= ﬂ (2.7)
and

me) =" /iR

T+

is the Mobius map transforming the upper half-plane into the unit disc and the circle T" into
a concentric circle, whose radius has to be p. Moreover, (2.6) is asymptotically optimal in €
and the function attaining the bound can be written as a convergent in the upper half-plane
‘power’ series

2@ =2 (WM(C)) '

M(C) = C+Z0 62 +p2n

., CeH,. 2.8)

n=1

Remark 2.5. When zis inside I' we have complete stability, indeed Cauchy’s integral form-
ula implies that

f(2)] < ce

for a constant ¢ independent on e.

2.3. The Bernstein ellipse

Let Eg be the open ellipse with foci at =1 and the sum of semi-minor and semi-major axes
equal to R > 1. The axes lengths of such an ellipse are therefore (R + R~!)/2. Eg s called the
Bernstein ellipse [4, 34]. Its boundary is an image of a circle of radius R centered at the origin
under the Joukowski map J(z) = (z + z~')/2. Let H*(Eg) be the space of bounded analytic
functions in Eg, with the usual supremum norm.

Theorem 2.6. Ler z € Eg\[—1, 1]. Then there exists C > 0, such that for every e > 0 and
F € H*(Eg) with||F||pgo (g,) < 1 and ||F||pse(—1,1y < €, we have

|F(z)| < Ce*@, (2.9)
where

_Me(o,l), J ' ) =z+(z—-1) ﬂ‘ (2.10)

=1
a(2) InR z—1
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Moreover, (2.9) is asymptotically optimal in € and function attaining the bound is

. (I ()T,
M(() =" V)Ta(C) . f)e)sz,,(O» @.11)
n=1

where T, is the Chebyshev polynomial of degree n: T,(x) = cos(ncos™! x) for x € [—1,1].
Several remarks are now in order.

(i) J71(¢) is the branch of an inverse of the Joukowski map J, that is analytic in the slit
ellipse Eg\[—1, 1] and satisfies the inequalities 1 < |[J=(¢)| < R.
(i1) Chebyshev polynomials 7, play the same role in the ellipse as monomials " play in the
annulus, i.e. they are the building blocks of analytic functions. In fact J~! o T,, o J = (".
(iii) The same bound (2.9) was obtained in [10] when z € Ex N R, where it was shown that the
bound (up to logarithmic factors) could be attained by a polynomial

8(¢) = €Tg()(¢),  K=K(e) = [In(1/e)/InR]. (2.12)

We observe that the terms in (2.11) increase exponentially fast from n =1 to n = K(¢)
and then decrease exponentially fast for n > K(¢). Hence, asymptotically (up to loga-
rithmic factors) we can say that

K(e)
@] 1Tk ()]
1+€2R2K(E)

o J1
IM(Q)| ~ € @ ~ €| Tk(e)(€)],

in agreement with (2.12).

3. Quantifying stability of analytic continuation

3.1. Reproducing kernel Hilbert spaces

Our goal is to characterize how large a function f analytic in a domain €2 can be at a point
z € €, provided that it is small on a curve I' € €2, relative to its global size in Q. If some
norms ||f || and ||f || are used to measure the magnitude of f on I" and on €2, respectively, then
we are looking at the problem

If(z)] = max
Ifll <1 (3.1)
Ifllr <e.

Assume that the global norm is induced by an inner product (-, -) and that the point evalua-
tion functional f > f(z) is continuous (for any point z € (2), then by the Riesz representation
theorem, there exists an element p, € H such that f(z) = (f, p,). Now inner products with
the function p(¢,z) := p,(¢) reproduce values of a function in H. In this case H is called a a
reproducing kernel Hilbert space (RKHS) with kernel p. Examples of such spaces include the
Hardy spaces H? over unit disk, annulus or upper half-plane. From now on we will drop the
subscript H for the Hilbert space norm in H.

Lemma 3.1. Suppose that H is a RKHS whose elements are continuous functions on a met-
ric space . Then the function Q > T — ||p. || is bounded on compact subsets of Q).
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Proof. Assume the contrary. Suppose S C €2 is compact, but there exists a sequence
{m}2, C S, such that ||p,|| — oo as k — oco. Since § is compact we can extract a
convergent subsequence (without relabeling it) 7, — 7., then for any f & H we have
f() = (f,pr) = f(1) = (f,p-.), by continuity of f. Thus, p,, — p., in H, but this im-

. X . O

Corollary 3.2. Under the assumption of lemma 3.1 the function p(C, ) is bounded on com-
pact subsets of @ x Q, since |p(¢, 7)| = [(pr.pc)| < llp-lllpell

Assume that the smallness on T" is measured in L2 := LZ(I‘,
arc length measure). Then, there is a constant ¢ > 0 such that

Iflle < cllf]l, vf € H. (3.2)

Indeed, for all 7 € I' we have [f(7)| = |(f,p+)| < [[p-|lllf|l. Since T" lies in a compact subset
of £ and has finite length we conclude by lemma 3.1 that (3.2) holds.
In order to analyze problem (3.1) we consider a Hermitian symmetric form

B:HxH—C, B(f.g)=(fgr.

By (3.2) B(f, g)is continuous, and thus there exists a positive, self-adjoint and bounded oper-
ator K : H — H with B(f, g) = (Kf, g). Moreover we can write an explicit formula for K in
terms of the kernel p:

)-norm (where |d7|is the

05.6) = (og)e = [ £ prg)lir] = </f ) prldrl. g) (33)

Thus, for every f € H

(KP)(Q) = / (¢ f()

This formula permits to define a new operator K : L?>(I') — H. However, in doing so we may
lose injectivity, which underlies uniqueness of analytic continuation'. Therefore, we restrict
the domain of K to a closed subspace of L?(T")

W = clp» (H|r) € L*(I). (3.5)

In fact, in many cases YW = L?(T"). The density in the context of Hardy spaces is known as the
Riesz theorem (see e.g. [29]). If 2 is bounded it is usually proved using density of polynomials
in L*(T"), which always holds if all polynomials are in H (and I is not a closed curve).

We note that the operator K : YW — H is bounded. Indeed, by corollary 3.2 the function
' > 7+ p(¢,7)is bounded for each ¢ € € and by (3.3) we have

KA1 = (KF.KF) = (. Kf)r < |IKFlIellflie <

where we have used (3.2) in the last inequality. It follows that || Cf]| < c|[f||p
The outcome of our constructions is the ability to write the two inequalities in (3.1) as
quadratic constraints for f € H:

(f.H<L  (Kf.f)<é. (3.7)

ceq. (3.4)

(3.6)

Ut is this property that forces us to restrict attention to reproducing kernel Hilbert spaces of analytic functions.

7
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The final observation is that the objective functional |f(z)| in (3.1) can be replaced by a (real)
linear functional R(f, p;). Indeed,
[f ()| = sup R(Af(z)) = sup R(M,p:).
[Al=1 [Al=1
It remains to notice that if f satisfies (3.7) then so does Af for every A € C,|\| = 1. Thus we
arrive at the problem

R(f,p;) — max
(f.f) <1 (3.8)
(Kf.f)<é

Lemma 3.3. The operator K : H — H is compact, positive definite and self-adjoint.

Proof. Self-adjointness and positivity of K on H are immediate consequences of
(3.3). To prove compactness, let {fi}52, C H be a bounded sequence. Extract a weak-
ly convergent subsequence (without relabeling it) fp — f. Then for every 7€ Q
we have fi(T) = (fr.pr) = (f,p-) =f(7). In addition, for every 7 &I we have
i ()| = |(fis =) < IIfillllp- |- The sequence ||fi|| is bounded, since f; is weakly convergent,
while ||p-|| is bounded on I' by lemma 3.1. Thus, fi(7) is uniformly bounded on I". Then
filr = fIr in the L? norm. But then by the estimate || C(fi — f)|| < c|lfc — fllr (see (3.6)) we
conclude that Kfy — Kf in H. O

Theorem 3.4. Let H = H(Y) be a RKHS of functions analytic in domain ), with kernel p

andnorm|| - || LetT' @ Q be arectifiable curve offinite lengthand|| - ||rbe the L* := L*(T, |d7|)
norm. Fix a point z € Q\cl(T") and assume f € H with||f|| < 1 and||f||r < € then
3 1 €
f(2)] < Sue.(z) min { : } 3.9)
27 ”uez” ”ue,z”F
where u.; € H is the unique solution of
Ku + é*u = p.. (3.10)
Moreover, (3.9) is optimal since it is attained (up to the factor 3/2) by
M.(C) (¢) mi { ! ‘ } (3.11)
. = U (()min —, ——— 7. .
) ’ ||“ez|| ||“e.z||F

Before we prove this theorem several remarks need to be made.

1. An obvious thing to do is to set e = 0 in (3.10). If p, € K(W), where W is given by (3.5),
then u., — up = K~'p,, as e — 0. In which case the upper bound (3.9) is simply
~ 3uo(2)
2[jupllr

If ()| < Ce, (3.12)

In other words we have numerically stable analytic continuation. Examples where this
happens are mentioned in remarks 2.3 and 2.5. This case will be referred to as the trivial
case.
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2. The function on the right-hand side of (3.11) is obviously in H and obviously satisfies the
constraints in (3.1). Hence, the attainability of the bound (3.9) is trivial. Only the bound
itself requires a proof.

3. The upper bound (3.9) is not an explicit function of € and z. Its asymptotics as € — 0
depends on fine properties of the operator K. This will be discussed in section 3.3. In
specific examples in section 4 equation (3.10) is solved explicitly and the power law
behavior M, .(z) ~ €7 is exhibited.

4. The precise asymptotics of the exponential decay of eigenvalues of K is known for certain
classes of spaces. For example, assume H coincides with the Smirnov class E2(Q) [13].
If the domain €2 is bounded and simply connected and I' € €2 is a closed Jordan rectifi-
able curve of class C!*€ for € > 0, with denoting the domain bounded by it, then the
eigenvalues of /C satisfy the asymptotic relation [28]

M () ~ p? L, as n — 400, (3.13)

where p < 1 is the Riemann invariant, whereby the domain Q\c/(Q') is conformally
equivalent to the annulus {w € C: p < |w| < 1}.

The proof of theorem 3.4 in the more general context of RKHS follows without much change
from the proof of the same theorem for the Hardy space H” of analytic functions in the upper
half-plane given in [20]. For the sake of completeness we give a short recap of the argument.

3.2. Proof of theorem 3.4
We start by analyzing the trivial case.
Lemma 3.5. Assume the setting of theorem 3.4, let p, € K(W), then

If(2)] < ce.

Proof. Letv € W C L?satisfy Kv = p., (note that v does not depend on ¢), then using (3.3)
we have

f(@) = (f.p) = (f, ko) = (f,0)r.
It remains to use the Cauchy—Schwartz inequality to conclude the desired inequality with
¢ = [[ollr. O

Let us now turn to the case p, ¢ K(WW). For every f, satisfying (3.7) and for every nonnegative
numbers £ and v (u? + v* # 0) we have the inequality

(+vK)ff) < ptve. (3.14)
Applying convex duality to the quadratic functional on the left-hand side of (3.7) we get

1 1 1
R(Fip) = 5 (0 +vK)'pep) <5 (04 vK)Ff) < 5 (4 ve), B15)
so that
1 1
R(fp2) <5 ((+vK) " peps) + 5 (tve), (3.16)
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which is valid for every f, satisfying (3.7) and all ;x > 0, v > 0. In order for the bound to be
optimal we must have equality in (3.15), which holds if and only if

p: = (p+vK)f,
giving the formula for optimal vector f:
f=w+vK) 'p. (3.17)

The goal is to choose the Lagrange multipliers x and v so that the constraints in (3.8) are satis-
fied by f, given by (3.17).
eif v =0, then f = % and optimality implies that the first inequality constraint of (3.8) must
be attained, i.e. ||f|| = 1. Thus, f = Hﬁ—” does not depend on the small parameter €, which leads
to a contradiction, because the second constraint (Kf,f) < € is violated if € is small enough.
o if u =0, then Kf = ﬁpz. But this equation has no solutions in H according to the assump-
tion p, & KL(W).

Thus we are looking for u > 0, v > 0, so that equalities in (3.8) hold. (These are the com-
plementary slackness relations in Karush—Kuhn—Tucker conditions.), i.e.

{((u+viC)‘1pz, (n+vK)~'p) =1, (3.18)
(K(p+vK)'pe, (p+vK)"'p,) = €. '
Letn = %, we can solve either the first or the second equation in (3.18) for v

v = [[(K+n)""p:l%. (3.19)
or

V= e (K(n+K)"'pe (0 +K) 7 'p2) - (3.20)

The two analysis paths stemming from using one or the other representation for v lead to
two versions of the upper bound on |[f(z)|, optimality of neither we can prove. However, the
minimum of the two upper bounds is still an upper bound and its optimality is then apparent.
At first glance both expressions for v should be equivalent and not lead to different bounds.
Indeed, their equivalence can be stated as an equation

@(ﬂ) — (]C(IC+77)_1PZ’ (’C+Tl)_lpz) — (3.21)

1(KC +m)~'peI?
for 7. Equation (3.21) has a unique solution 7, = 7.(¢) > 0, because ®(7) is monotone
increasing (since its derivative can be shown to be positive), ®(+o0) = (Kp,,p.)/||p.||* and
®(0) = 0. (See [20] for technical details.)

In the examples in this paper the eigenvalues and eigenfunctions of K exhibit exponential
decay. We have shown in [20] that such behavior implies that 7, (¢) ~ €2, as € — 0. However,
any choice of 7 gives two valid upper bounds: one via (3.19), the other, via (3.20). In the
anticipation that the exponential decay of eigenvalues and eigenfunctions holds we simply set
n = €% and obtain, setting u = (K + €2)"!p,,

(.p:) . €(u. p:)
R(f.p:) < + € Jul), R(f,p.) < + €|lul|r-

Definition of u implies u(z) = (u,p;) = (u, Ku + 2u) = (u, Ku) + €*(u, u), i.e.
u(z) = [lullf + € lull, (3.22)

10
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which implies the inequalities

u(z u(z
Eal < 49l < 42
| [Jul|
Therefore, we have both
3u(z) 3e u(z)
If(2)| = R(f.p:) < 57 If(d)l < = :
L2 2 lullr

Inequality (3.9) is now proved. We remark that a possibly suboptimal choice 1 = €2 still deliv-
ers asymptotically optimal upper bound (3.9), since it is attained by the function (3.11).

3.3. Solving the integral equation

We begin by making several observations about a priori properties of the solution u, of (3.10)
in the non-trivial case p, & K(W). The most immediate consequence of the non-triviality
is that ||ue||r blows up as € — 0. If it did not, we would be able to extract a weakly conv-
ergent subsequence u., — up € ¥V and passing to the weak limits in (3.10) obtained that
(Kuo)(¢) = p;(¢), for ¢ € I'. However, since (W) C H we get a contradiction with the
non-triviality.

Next let us show that equation (3.22) implies that M .(z) > €. On the one hand, dividing
equation (3.22) by ||uc||r we obtain

Ue (Z)

[luellr

2 [|uc[lp.

On the other, we have |Juc | + €2||uc||* > 2¢||uc]|r||uc|| and therefore

Ue (Z)

€Jue|

> 2||uellr

proving that e 'M, (z) > |luc|lr — +oo. This means that one cannot expect full numerical
stability of analytic continuation.

Finally, we prove the ‘mathematical well-posedness’ of analytic continuation: M, ,(z) — 0
as € — 0. This is a consequence of the weak convergence of u./|u|| to 0. If we divide (3.10)
by ||luc|| and pass to weak limits, using the fact that [|uc|| = ¢~ !|luc|r — 400 we obtain that
the weak limit @ of u./||uc|| satisfies Ku = 0. But if Ku = 0, then |[u]|2 = (Ku,u4) = 0. It
follows that the analytic function # = 0 on I" and hence must vanish everywhere in Q. This
shows that the operator C has a trivial null-space and that M. ,(z) = (uc/||ucl,p;) — 0, as
e — 0.

A consequence of the just established strict positivity of K is separability of the Hilbert
space H. This should not be surprising, since H consists of analytic functions each of which
can be completely described by a countable set of numbers.

Lemma 3.6. The Hilbert space H is always separable.
Proof. We saw that K : H — H given by (3.4) is a self-adjoint, compact operator. We have
just seen that K has a trivial null-space. In this case the Hilbert space H is the orthogonal sum

of countable number of finite dimensional eigenspaces of IC with positive eigenvalues. Thus,
‘H has a countable complete orthonormal set and is therefore separable. O

1
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In applications of our theory in section 4 we solve equation (3.10) exactly by finding all
eigenvalues and eigenfunctions of K. Let {e,}>°, be an orthonormal eigenbasis of H with
Ke, = A\ye,. In this basis the equation (3.10) diagonalizes:

Mty e,) + E(u,e,) = (peren),

therefore we find

@ =Y 2 (323

n

Using this expansion, formula ||u|* = (Ku, u), and (3.22) we find that

o |en(z)|2 2 |en(z)|2 2 )‘n|en(z)|2
ue(Z) = - N, + €2’ ||MeH = zn: (/\n _'_62)2’ ||M5Hr = zﬂ: (/\n +€2)2.

(3.24)

It follows that

2
> L’iz)' = 0, (3.25)

n

since if the series had a finite sum then formula (3.24) for ||uc||r would imply

syl
el < 325

contradicting the blow up of ||u.||r.

In our examples where the eigenvalues ), and eigenfunctions e, ({) can be found explicitly
they are seen to decay exponentially fast to O (see also (3.13)). As we have shown in [20] this
implies the power law principle

M. (2) =@, as €0, (3.26)

where v(z) € (0,1) can be expressed in terms of the rates of exponential decay of spectral
data for K.

Theorem 3.7. Let {e,}52, be orthonormal eigenbasis of H with Ke, = \ye,. Let u = uc,
and M. ; be given by (3.10) and (3.11) respectively. Assume

Ap = e” Y, lea(z))? ~ e P, 0<p<a, 3.27)

with implicit constants independent of n (so that (3.25) holds). Then,

B4

B B _
ftte ]| = elfute]] = €= and  u(z) = e,

with implicit constants independent of €. In particular, this implies the power law principle
(3.26) with exact exponent:

Qw

M. ,(z) ~€a.

The proof of theorem 3.7 immediately follows from (3.24) and lemma A.1.

12
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3.4. Linear constraints

In one of our examples we encounter a situation where additional linear constraints are
imposed on a previously solved problem. In general all linear constraints on analytic functions
will simply be incorporated into the definition of the RKHS H. The question is whether we
can use the already found solution of a problem if additional linear constraints are imposed.
Let L C H be a closed, C-linear subspace. Then L with the inner product from H is still a
RKHS with the reproducing kernel P, p,, where P, denotes the orthogonal projection onto L.
If we restrict f and g in (3.3) to elements from L, then the operator K can be written as PPy
Then equation (3.10) can be written (in the language of the original RKHS H) as

PLKPru+ €u = Prp., uecHt, (3.28)

whose unique solution u necessarily belongs to L. In general, one’s ability to solve the original
problem (3.10) would be of little help for solving (3.28), except in the special case when L is
an invariant subspace of K. In this case P, commutes with K and if u solves (3.10), then Pu
solves (3.28).

The requirement that L be a C-linear subspace is important, because the linearization argu-
ment taking the objective functional |[f(z)| in (3.1) to the one in (3.8) requires all the constraints
to be invariant under multiplication by a phase factor A € C, |A\| = 1. In some applications,
like the analytic continuation of the complex electromagnetic permittivity the constraints may
be just R-linear, in which case other techniques have to be applied [19].

4. Applications

4.1. The annulus

Here we prove theorem 2.1, so assume the setting of section 2.1. Note that if we replace H>-
norm in theorem 2.1 by another equivalent norm, this will only change the constant C in the
inequality (2.3). In order to apply our theory we need a norm, induced by an inner product,
with respect to which the reproducing kernel of the space H? is as simple as possible. To define
such an inner product we use the Laurent expansion

FO =D 0"+ Y 1" = f4(Q) +1-(0), @1
n>0 n<0

then f € H*(A,) if and only if fy € H*({|¢| < 1}) and f- € H*({|¢| > p}) (see [32]). So
we define

1 1
(f.8) = E(f+,g+)m(rl) + %(f—’g—)m(rp)- 4.2)

The norm in H?*(A p) induced by (4.2) is equivalent to the norm (2.2) (e.g. [22, 32]). Now the
functions {¢"},cz form a basis in H*(A,), let us normalize them:

B ¢, n=>0
en(() - {(C/P)”, n< 0, (43)

then {e,},cz is orthonormal basis of H?(A ). Definition of the reproducing kernel implies
that p(¢,7) =, ea(7)en(¢). Computing this sum, or by adding kernels of the spaces
H*({|¢| < 1}) and H?*({|¢| > p}), we find the reproducing kernel of H?*(A,):

13
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1 p*
p(C’T) - 1— CF + CF_pZ‘
Note that p, ¢ K(W). Indeed, the function p, has simple poles at z~!, p>z~!. At the same
time, for any f € W C L*(') the function Xf may have singularities only in the set
S=Urer{7 Lp7 1} If 77 €S, then z€ TUp 2T If p>z7! € S, then z € I' U p°T". But
since 2 ¢ I" and curves p*2T" are outside of the annulus A,, the equation Kf (¢) = p(¢, z) for
¢ € A, cannot have any solutions in W.
We observe that for any orthonormal basis {e, : n € Z} of H we have, using (3.3),

le = Z(Kf, en)en = Z(f, en)LZ(F) ey. “5)

n€”Z neZ

(4.4)

It is easy to verify that when T" is a circle centered at the origin, the functions {e,}, given
by (4.3) are also orthogonal in L*(T") and hence, taking f = e,, in (4.5) we conclude that

Ke, = Hem||iz(r)em. So we have proved

Lemma 4.1. Let {e,}ncz be given by (4.3) and K given by (4.5), then

Ken, = Men, nez,
where
P n=0
— 2 > =
A r {(r/p)z’l, n<0 (4.6)

We see that A, and le,(z)| approach to zero along two different sequences and have two
different asymptotic behaviors, which are distinguished by the location of z relative to I
Therefore, to apply theorem 3.7 we need to consider two cases. Assume that z lies outside of
T, i.e.|z] € (r,1). The function « from (3.10) is given by

w)=> 76”;2’)35 3 4.7
n€”Z n

Note that, for any n € Z

len@P 1 (=N
M 2nr \ r '

By assumption the above quantity is summable over n < 0, this implies that in analyzing u(z)
the sum over negative indices is O(1), as ¢ — 0, and hence can be ignored. The dominant part
is the sum over n > 0. Analogously, in quantities ||u||z2(4 ). [|u]|r2(ry as well, the sum can be
restricted to n > 0. This determines the behaviors \, ~ r*" and |e,(z)| =~ |z|", therefore theo-

. The case |z| € (p, r) is done analogously and

In [¢|

rem 3.7 implies that the exponent is v(z) = 4.

(2.4) now follows.
Next, we can rewrite (4.7) as

B zncn zncn
u(¢) = ; 27rr?n + €2 + ; 2mrr? + e2pn’ (4.8)

14
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Let us consider the function

~ zn Cn

a(¢) = n% 221+ ) (4.9)
clearly for negative indices p** < 1 and hence can be ignored, and for positive indices 1 can
be ignored from the denominator in the definition of &. Therefore, values of #, u at z and their
H? and L2-norms have the same behavior in €. Thus, we may consider # instead, which then
gives rise to the maximizer function M in (2.5). Finally, the fact that | M| ;e (&) is bounded
uniformly in € follows from the application of lemma A.1.

4.2. The upper half-plane

Notation. Let D(c,r) and C(c, r) denote respectively the closed disk and the circle centered
at ¢ and of radius r in the complex plane.

In this section we prove theorem 2.4. The Hardy space H?(H. ) of functions analytic in
the complex upper half-plane Hy is a RKHS with the inner product (f,g) = (f,&)2(r). By
Cauchy’s integral formula

= o [0

2mi Jgp x—z

Therefore, the reproducing kernel p of H?(H, ) is

i
T -7
In theorem 2.4 the data is measured on I' = C(i, 7) with r € (0, 1). Using the definition of K
(3.4) we have

Ku(C) = %/F iué7)|(71—7'|.

Note that p, ¢ K(W). Indeed, the function p, is analytic everywhere in C, except at z, where
it has a pole. At the same time for any f € W C L*(T') the function Kf is analytic everywhere
in C outside of T'. But Z € I, since z lies outside of I. Therefore, the equation Kf = p, has
no solutions in W.

p-(Q) =p(C7) {¢.7} CHL.

Lemmad4.2. Letrr € (0,1)andl = C(i,r). Let {e, };2 | be an orthonormal eigenbasis of K
in H*(H..), with eigenvalues {\,}° . Then

o T mcy
A= ———, " = s .
- “O = T (410)

where p,zo,m(() are as in theorem 2.4.

Before proving this lemma, let us see that it concludes the proof of theorem 2.4 upon the
application of theorems 3.4 and 3.7. Indeed, A\, ~ p?" and |e,(z)| ~ |m(z)|", then the formula
(2.7) for the exponent (z) follows. The function « from (3.10) is given by

LT T L5

(Z+720)(¢ +20) 7 e

n=1 144/1-12 P
As in the case of annulus, ignoring the constants that do not affect the asymptotics of the func-
tion as € — 0 we obtain the maximizer (2.8).

u(C) =

15
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Proof of lemma 4.2. Let Kw(¢) = Aw(¢), then w must be analytic in the extended com-
plex plane with the closed disk D(—i, r) removed. In particular, it is analytic in D(i, r). Thus,
we can evaluate the operator KC explicitly in terms of values of w.

U P irw(i+ref)dr 1 rw(i+ T)dr

O e A e Tl A rae ot

We note that 72 /|¢ + i| < r precisely when ( is outside of the closed disk D(—i, r). In addition
w(i + 7)is analytic in D(0, r), hence

ir . r?
Kw(() = §+iw<l+C+i>'

Next we note that the Mobius transformation

72

o0 =it

maps D(—i,r) onto the exterior of D(i,r). In particular there is a disk Dy C D(—i, r) such
that o(D;) = D(—i,r). Then Kw is analytic in the exterior of Dy, since w is analytic outside
of D(—i, r). But w is an eigenfunction of I, hence it must also be analytic outside of D;. Re-
peating the argument using the fact that w is analytic in the larger domain C \ D; we conclude
that it must also be analytic outside of D, C Dy, such that o(D,) = D;. We can continue like
this indefinitely, showing that the only possible singularity of w must be at the fixed point
¢o € D(—i,r) of o(¢). We find

o= —iv1—r2.

Since w is analytic at infinity the transformation n = 1/(¢ — (o) will map the extended com-
plex plane with (p removed to the entire complex plane (without the infinity). The eigenfunc-
tion w will then be an entire function in the n-plane. Let v(n) = w(n~' + (o). Then

W) :”(<1<o>'

The relation w = Aw now reads

_ irn v(n(C0+i)+1>
n(¢o+1i) +1 i—¢o '

Ao(n)

1

One corollary of this equation is that v(0) = 0. Hence, ¢(n) = n~"v(n) is also an entire func-

tion, satisfying

Ad(n)

_ v~¢<MQ+n+1)
i—Go i—Co ’

We see that ¢(n) is an entire function with the property that ¢(an + b) is a constant multiple
of ¢(n), with b = i and a = p?, where p is given by (2.7). It remains to observe that such
a property holds for functions ¢,(n) = (n — 19)", provided

16
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Indeed,

—b\"
(an+b—mno)' =d" (77 - 770a) =a"(n—mno)".

In our case we get 19 = —ﬁ and conclude that ¢,(n) = (77 + 2%) " and )\, is given by
(4.10). Converting the formula back to w,({) we obtain (up to a constant multiple)

1 <C+Co>" _ m(Q)"

Wn(C):C—Co (—G) (-G

It remains to normalize the eigenfunctions w,,. For that we compute

dx ™
2 2 —
w = Wyl dx = = .
[wall7e e, /R| nl /Rx—Co|2 V1-1r2 0

4.3. The Bernstein ellipse

4.3.1. From the ellipse to the annulus. The ellipse Eg is conformally equivalent to a disk
or the upper half-plane. The conformal mapping effecting the equivalence can be written
explicitly in terms of the Weierstrass ¢-function, but the image of the interval [—1, 1] will then
be a curve that would not permit any kind of explicit solution of the resulting integral equa-

. . . . —1 .
tion. Instead we use a much simpler Joukowski function J(w) = % that will convert the

problem in the ellipse to the problem in an annulus with I" being a concentric circle inside the
annulus. We observe that J(w) maps the annulus {R™! < |w| < R} onto the Bernstein ellipse
Eg in 2—1 fashion, meaning that each point in Ex has exactly two (if we count the multiplicity)
preimages in the annulus (note that J(w) = J(w™!)). Moreover, the unit circle gets mapped
onto [—1,1] C Eg under J. So given a function F € H>(Eg), the function f({) := F(J(R())
is analytic in A, defined in (2.1), with p = R72, has the same H® norm, and satisfies the
symmetry property

1

fO=1©0  Yi=r=q4 .11

Conversely, any function f € H>*(A,), satisfying (4.11) defines an analytic function in a
Bernstein ellipse (with the same H° norm). This is so because (4.11) can also be written as

1
f7g) =10 v =r @.12)
The Schwarz reflection principle then guarantees that (4.12) holds for all { € A,. This implies
that F(u) = f(R~'J~'(u)) gives the same value for each of the two branches of J~! and hence

defines an analytic function in Eg. Thus, the analytic continuation problem in ellipse reduces
to the one in the annulus, but with an additional symmetry constraint (4.11).

17
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4.3.2. The annulus with symmetry. Let us now define
H={f€ HZ(AP) f(Z) =f(Q) V[CI=Vp} (4.13)
The curve I' will be a circle I, centered at the origin of radius r = /p.

Lemma 4.3 (Annulus with symmetry). Ler 0 < p <1 and let z € C be such that
r < |z| < 1. Then there exists C > O, such that for every € > 0 and every f € Hwith||f ||z < 1
and f||2(r,) < € we have the bound

f(z)| < €@, (4.14)

where the exponent v(z) is the same as in theorem 2.1, i.e.

In |z

v(z) = (4.15)

Inr’

Moreover, (4.14) is asymptotically optimal as € — O and the function attaining the bound is

e V(Z)ZZ :f/f +(p/Q)"). (€A, (4.16)

n=1

Proof. We note that the maximization problem in lemma 4.3 differs from the one in theorem
2.1 by the requirement of symmetry (4.11). Hence, following the theory in section 3.4 we
define the subspace

L={feH4,):f()=fC) YCeT}, r=yp.

Then, the orthogonal projection onto L will be given by

HQO+1p/Q). (.17)

Puf(¢) ==

Lemma 4.4. The integral operator K with kernel (4.4) and I' = I, commutes with Py.

Proof. The commutation P /K = Py is then equivalent to

/F p(¢mu(r? /7)|dr| = / P /¢, mu(r)dr|

r

which, after change of variables on the left-hand side reduces to

p(C.p/T) =p(p/C.7) VCeA, Vrel,.

Substituting the definition of p from (4.4) into this formula we easily verify it. [

According to the theory in section 3.4 the solution of (3.28) is u; = Pru, where u is given
by (4.7). We observe that in the case r* = p we have A, = A_, and e,(p/() = e_,(¢), so that

ur, = Pru(¢) = 1Ji62 +%Z%[en(<)+e-n(o]- (4.18)
n=1 n

18
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Substituting the expressions for A, e, from (4.6) and (4.3), respectively, and ignoring the first
O(1) term and some constants, which affect the asymptotics of u; by constant factors, we
arrive at the function

oo

wl©) =3 B e oy

n=1

‘We note that

=3+ (/). n>0,

is the orthonormal eigenbasis of L with respect to PP, The corresponding eigenvalues are
A = 2m/pp", and for |z| € (r, 1) we have |e}(z)| ~ [Z" + (p/2)"| ~ |z|". Then, theorem 3.7
gives formula (4.15) as well as the maximizer function (4.16). O

4.3.3. From the annulus to the ellipse. In this section we will show that theorem 2.6 follows
from lemma 4.3. Let F € H>(Eg) be such that||F||g~ < 1and |F(x)| < € forall x € [—1,1].
As discussed in section 4.3.1, the function f(¢) := F(J(R()) is analytic in A,, with p = R™2
and has the symmetry f({) =f(¢) V|¢| = r, where r = R™!. It also satisfies

Wl ca,y S NFllmoe ) < 1
as well as

1 [ . 2me?
2 . it 2
HfHLZ(F,) = R/o [F(J(e"))|"dr < R

Let z € Eg\ [-1,1]. Let z, € A, be the unique solution of J(Rz,) = z, satisfying lz,| > r.
Then by lemma 4.3 (with p = R=2 and r = R~!) we have

“ig,
1n 2l n]r =1 @)

IF(2)| = |f(za)| < Ce™ mk = Cel=—mr— = Ce®,

where a(z) is given by (2.10). This proves (2.9).
In order to prove the optimality of the bound (2.9) we use lemma A.1 to show that M(()
given by (4.16) satisfies

{M(C)I Se [Kl=r
MOIS T, r<[ <1
Using the Joukowski function to map this to a function on the Bernstein ellipse we obtain

T,(2) Ty (w)
1+

2R (4.19)

Matipse(w) = M (R7'T 7! (w)) = €7@

n=1

where T, is the Chebyshev polynomial of degree n. Chebyshev polynomials are just monomi-
als ¢" in the annulus after the Joukowski transformation:

J ' oT,0l =¢— (", V¢ #£ 0.

We note that due to the choice of the branch of J~! to correspond to a point in the exterior of
the unit disk we can neglect1/(J~!(z))" in
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Thus, the function in (2.11) is asymptotically equivalent to (4.19). Theorem 2.6 is now proved.
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Appendix

Lemma A.1.  Let {a,,b,}>2 | be nonnegative numbers such that a, ~ e~ *" and b, ~ e hn
with 0 < B < «a, where the implicit constants do not depend on n. Let 1) > 0 be a small param-
eter; then

PSS

= b > b 8

n -1 n B_»o

~ S and — _~npa
>y > A

n=1
where the implicit constants do not depend on .

Proof. Let us prove the first assertion of (A.1), the second one will follow analogously.
Introduce the switchover index J = J(n) € N defined by

a, > Vi<n<J
a, <n Vn>J.

Below all the implicit constants in relations involving ~ or < will be independent on 7. It is
clear that

b b L
Zawn‘ng,aﬁn;”"'

Note that

an 5 Zefﬁn 5 efﬁ(.]“rl)’

n>J n>J

therefore using our assumption on b, we find

an ~byi1 >~ by. (A.2)
n>J
On the other hand
b e b
In < (=B _ Y (o(a=B) _ 1) < ola=B)J 2
Sl gy m ey e

n<d "t oagJ
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Thus we conclude

3 b by

“a, ~a (A3)
Now 7 ~ ay and ay ~ e/, therefore e~/ ~ n=. Using these along with (A.2) and (A.3) we
obtain

(o)

Z bn :&—kﬁzﬁze(a_ﬁwzné_l. L

! a, +n aj n aj
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