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Abstract

The need for analytic continuation arises frequently in the context of inverse 

problems. Notwithstanding the uniqueness theorems, such problems are 

notoriously ill-posed without additional regularizing constraints. We consider 

several analytic continuation problems with typical global boundedness 

constraints that restore well-posedness. We show that all such problems exhibit 

a power law precision deterioration as one moves away from the source of data. 

In this paper we demonstrate the effectiveness of our general Hilbert space-

based approach for determining these exponents. The method identifies the 

‘worst case’ function as a solution of a linear integral equation of Fredholm 

type. In special geometries, such as the circular annulus or upper half-plane this 

equation can be solved explicitly. The obtained solution in the annulus is then 

used to determine the exact power law exponent for the analytic continuation 

from an interval between the foci of an ellipse to an arbitrary point inside the 

ellipse. Our formulas are consistent with results obtained in prior work in those 

special cases when such exponents have been determined.

Keywords: analytic continuation, power law, reproducing kernel Hilbert 

space, optimal error

1. Introduction

Many inverse problems reduce to analytic continuation questions when solutions of direct 

problems are known to possess analyticity in a domain in the complex plane but can be mea-

sured only on a subset (often a part of the boundary) of this domain. For example, if one wants 

to recover a signal corrupted by a low-pass convolution filter, then one needs to recover an 
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entire function from its measured values on an interval [2, 11]. Another large class of inverse 

problems can be termed ‘Dehomogenization’ [7, 26], where one wants to reconstruct some 

details of microgeometry from measurements of effective properties of the composite. The 

idea of reconstruction is based on the analytic properties of effective moduli [3, 17, 24] of 

composites. See e.g. [25] for an extensive bibliography in this area.

The method of recovery via analytic continuation is a tempting proposition in view of 

the uniqueness properties of analytic functions. Unfortunately, analyticity is a local property 

‘stored’ at an infinite depth within the continuum of function values and can be represented by 

delicate cancellation properties responsible for the validity of Carleman and Carleman type 

extrapolation formulas [1, 6, 18]. Adding small errors to the exact values of analytic functions 

destroys these local properties. Instead we want to accumulate the remnants of analyticity and 

use global properties of analytic functions to achieve analytic continuation. This is only possible 

under some additional regularizing constraints, such as global boundedness [5, 12, 16, 33, 35].  

Taking this idea to the extreme, any bounded entire function is a constant by Liouville’s 

theorem, so that the effect of boundedness depends strongly on the geometry of the domain 

of analyticity.

In order to quantify the degree to which analytic continuation is possible, consider an ana-

lytic function F in a domain Ω. Assume that F is measured on a curve Γ ⋐ Ω with a relative 

error ǫ, with respect to some norm ‖F‖Γ. Can one perform an analytic continuation of F from 

Γ to Ω in the presence of measurement errors? Without discussing specific analytic continu-

ation algorithms we would like to examine theoretical feasibility of such a procedure. For 

example, if two different algorithms are deployed matching F on Γ with relative precision ǫ 

how far their outputs could possibly differ at a given point z ∈ Ω \ Γ? To answer this question 

we consider the difference f  of the two purported analytic continuations. Such a difference 

will be small on Γ, and we want to quantify how large such a function can possibly be at some 

point z ∈ Ω relative to its global size on Ω.

Based on established upper and lower bounds, exact and numerical results [5, 8–10],[14, 

15, 23, 30, 35, 36] a general power law principle emerges, whereby the relative precision of 

analytic continuation decays as power law ǫγ(z), where the exponent γ(z) ∈ (0, 1) decreases to 

0, as we move further away from the source of data. How fast γ(z) decays depends strongly 

on the geometry of the domain and the data source [20, 35]. In [20] we considered an exam-

ple, where Ω is the complex upper half-plane and Γ is the interval [−1, 1] on the real axis. We 

have proved that for z in the upper half-plane γ(z) is the angular size of the interval [−1, 1] 
as viewed from z, measured in units of π. Conformal mappings can also be used to relate the 

exponents for one geometry to the exponents for the conformally equivalent ones. We believe 

that such power law transition from well-posedness to practical ill-posedness is a general 

property of analytic continuation, quantifying the tug-of-war between their rigidity (unique 

continuation property) and flexibility (as in the Riesz density theorem [29]).

The lower bounds on γ(z) can be obtained by exhibiting bounded analytic functions that 

are small on a curve Γ, but not quite as small at a particular extrapolation point. The upper 

bounds are harder to prove but there is ample literature where such results are achieved  

[5, 8–10, 14, 15, 23, 30, 35, 36]. In fact, it was observed in [35] that upper and lower bounds 

of the form ǫγ(z) on the extrapolation error do hold for all geometries. However, with few  

exceptions the upper and lower bounds do not match. In those examples where they do match 

[10, 35] the optimality of the bounds are concluded a posteriori.

In our recent work [20] we have developed a new method for characterizing analytic func-

tions in the upper half-plane H+ attaining the optimal upper bound in terms of a solution 

of an integral equation of the second kind with compact, positive, self-adjoint operator on 
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L2(Γ). In section 3.1, we extend this result to reproducing kernel Hilbert spaces H = H(Ω) 
of analytic functions in a domain Ω ⊂ C. The error maximization problem is reformulated as 

a maximization of a linear objective functional subject to quadratic constraints, permitting us 

to use convex duality methods. The optimality conditions take the form of a linear integral 

equation of Fredholm type, where the positive, compact self-adjoint operator K is expressed 

in terms of the reproducing kernel of H(Ω). The integral operator K occurs frequently in the 

context of reproducing kernel Hilbert spaces (e.g. [9]) and is related to the restriction opera-

tor R : H → L2(Γ). Namely, K = R∗R. The exponent γ(z) in the power law asymptotics 

can then be expressed in terms of the rates of exponential decay of eigenvalues of the int-

egral operator K and its eigenfunctions at the extrapolation point z ∈ Ω. For certain classes 

of restriction operators the exponential decay of the eigenvalues of K has been known for a 

long time, and their exact asymptotics has been established in [28] (see also [21, 27, 31, 37]). 

Alternatively, the exponent γ(z) can be read off the explicit solution of the integral equa-

tion in cases where such an explicit solution is available [20]. This allows us to compute γ(z) 
explicitly in a number of special cases. For example, when Γ is a circle in the upper half-plane 

(section 2.2) or a circle in an annulus (section 2.1).

In section 4.3 we present a somewhat unexpected application of the annulus result to the 

problem of analytic continuation in a Bernstein ellipse [4], studied in [10]. Since the annulus 

is not conformally equivalent to the ellipse one would not expect a direct relation. The trick we 

use, inspired by [10], is to map the Bernstein ellipse cut along [−1, 1] onto the annulus using 

the inverse of the Joukowski function. Then, functions analytic in the ellipse are distinguished 

from functions analytic in the cut ellipse by their continuity across the cut. After the conformal 

transformation the image of functions analytic in the entire ellipse would consist of functions 

analytic in the annulus with a reflection symmetry on the unit circle. Our Hilbert space-based 

approach can easily incorporate linear constraints by making an appropriate choice of the 

underlying Hilbert space. However, the question is about the relation between the problems 

with and without such constraints. In the case of the Bernstein ellipse and the annulus, we 

discover that the subspace of functions analytic in the annulus corresponding to functions 

analytic in the Bernstein ellipse is invariant with respect to the integral operator K. It is this 

invariance that permits us to solve the problem with additional linear constraints using the 

known solution of the original problem. This is discussed in section 3.4. When the extrapola-

tion point z lies on the real line inside the Bernstein ellipse we recover the optimal exponent 

γ(z) obtained in [10]. However, our approach also gives the formula for the exponent γ(z) for 

arbitrary points z inside the ellipse.

2. Main results

 Notation. We will write A � B, if there exists a constant c such that A � cB and likewise 

the notation A � B will be used. If both A � B and A � B are satisfied, then we will write 

A ≃ B. Throughout the paper all the implicit constants will be independent of the parameter ǫ.

2.1. The annulus

For 0 < ρ < 1, r  >  0 let

Aρ = {ζ ∈ C : ρ < |ζ| < 1}, Γr = {ζ ∈ C : |ζ| = r}. (2.1)
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Consider the Hardy space (e.g. [13])

H2(Aρ) = { f is analytic in Aρ : ‖f‖H2(Aρ) = sup
ρ<r<1

‖f‖L2(Γr) < ∞}, (2.2)

where for a curve Γ ⊂ C the space L2(Γ) denotes the space of square-integrable functions on 

Γ with respect to the arc length measure |dτ | on Γ.

Theorem 2.1 (Annulus). Let Γ = Γr with r ∈ (ρ, 1) fixed and z ∈ Aρ\Γ. Then there ex-

ists C  >  0, such that for any ǫ > 0 and any f ∈ H2(Aρ) with ‖f‖H2(Aρ) � 1 and ‖f‖L2(Γ) � ǫ, 

we have

|f (z)| � Cǫ
γ(z), (2.3)

where

γ(z) =











ln |z|
ln r

, if r < |z| < 1

ln(|z|/ρ)
ln(r/ρ) , if ρ < |z| < r.

 (2.4)

Moreover, (2.3) is asymptotically optimal in ǫ and the function attaining the bound is

M(ζ) = ǫ
2−γ(z)

∑

n∈Z

(zζ)n

r2n + ǫ2(1 + ρ2n)
, ζ ∈ Aρ. (2.5)

In addition M is analytic in the closure of Aρ  and ‖M‖H∞(Aρ)
 is bounded uniformly in ǫ.

Remark 2.2. The statement that M attains the bound in (2.3) means that ‖M‖H2(Aρ) � 1, 

‖M‖L2(Γ) � ǫ and |M(z)| ≃ ǫ
γ(z), with all implicit constants independent of ǫ.

It is somewhat surprising that the worst case function, which was required to be analytic 

only in Aρ  is in fact analytic in a larger annulus {|z∗ρ| < |ζ| < |z∗1 |}, where z∗1 = 1/z is the 

point symmetric to z w.r.t the circle Γ1 and z∗ρ = ρ
2/z is the point symmetric to z w.r.t the 

circle Γρ. In particular, M ∈ H∞(Aρ). Hence, M(ζ) also maximizes |M(z)|, asymptotically, 

as ǫ → 0, if the constraints were given in H∞(Aρ) and L∞(Γ), instead of H2(Aρ) and L2(Γ), 
respectively.

Remark 2.3. The limiting case as ρ → 0 corresponds to the analytic continuation from the 

circle Γr  into the unit disk D. The limiting value of the exponent is γ(z) = ln |z|
ln r

 for |z| > r, 

and γ(z) = 1, for |z| < r. The numerical stability of extrapolation inside Γr  can be seen di-

rectly from Cauchy’s integral formula. The same formula for γ(z) has been obtained in [35] 

for H∞(D).

2.2. The upper half-plane

Let H+ = {z ∈ C : ℑ(z) > 0} denote the complex upper half-plane and consider the Hardy 

space

H2(H+) := { f is analytic in H+ : sup
y>0

‖f (·+ iy)‖L2(R) < ∞}.

It is well known [22] that these functions have L2-boundary data, and that ‖f‖ = ‖f‖L2(R) 

defines a norm in H2(H+). Assume that the data curve Γ ⋐ H+ is a circle. By considering 
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affine automorphisms z �→ az + b, a > 0, b ∈ R, of H+ we may ‘translate’ Γ to be centered 

at i.

Theorem 2.4. Let Γ be a circle centered at i of radius r  <  1. Let z ∈ H+ be a point outside 

of Γ. Then there exists C  >  0, such that for any ǫ > 0 and any f ∈ H2(H+) with ‖f‖H2(H+) � 1 

and ‖f‖L2(Γ) � ǫ, we have

|f (z)| � Cǫ
γ(z), (2.6)

where

γ(z) =
ln |m(z)|

ln ρ
, ρ =

1 −
√

1 − r2

r
, (2.7)

and

m(ζ) =
ζ − z0

ζ + z0

, z0 = i
√

1 − r2

is the Möbius map transforming the upper half-plane into the unit disc and the circle Γ into 

a concentric circle, whose radius has to be ρ . Moreover, (2.6) is asymptotically optimal in ǫ 

and the function attaining the bound can be written as a convergent in the upper half-plane 

‘power’ series

M(ζ) =
ǫ

2−γ(z)

ζ + z0

∞
∑

n=1

(

m(z)m(ζ)
)n

ǫ2 + ρ2n
, ζ ∈ H+. (2.8)

Remark 2.5. When z is inside Γ we have complete stability, indeed Cauchy’s integral form-

ula implies that

|f (z)| � cǫ

for a constant c independent on ǫ.

2.3. The Bernstein ellipse

Let ER be the open ellipse with foci at ±1 and the sum of semi-minor and semi-major axes 

equal to R  >  1. The axes lengths of such an ellipse are therefore (R ± R−1)/2. ER is called the 

Bernstein ellipse [4, 34]. Its boundary is an image of a circle of radius R centered at the origin 

under the Joukowski map J(z)  =  (z  +  z−1)/2. Let H∞(ER) be the space of bounded analytic 

functions in ER, with the usual supremum norm.

Theorem 2.6. Let z ∈ ER\[−1, 1]. Then there exists C  >  0, such that for every ǫ > 0 and 

F ∈ H∞(ER) with ‖F‖H∞(ER) � 1 and ‖F‖L∞(−1,1) � ǫ, we have

|F(z)| � Cǫ
α(z), (2.9)

where

α(z) = 1 −
ln
∣

∣J−1(z)
∣

∣

lnR
∈ (0, 1), J−1(z) = z + (z − 1)

√

z + 1

z − 1
. (2.10)
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Moreover, (2.9) is asymptotically optimal in ǫ and function attaining the bound is

M(ζ) = ǫ
2−α(z)

∞∑

n=1

(J−1(z))nTn(ζ)

1 + ǫ2R2n
, (2.11)

where Tn is the Chebyshev polynomial of degree n: Tn(x) = cos(n cos−1 x) for x ∈ [−1, 1].

Several remarks are now in order.

 (i)  J−1(ζ) is the branch of an inverse of the Joukowski map J, that is analytic in the slit 

ellipse ER\[−1, 1] and satisfies the inequalities 1 < |J−1(ζ)| < R.

 (ii)  Chebyshev polynomials Tn play the same role in the ellipse as monomials ζn play in the 

annulus, i.e. they are the building blocks of analytic functions. In fact J−1 ◦ Tn ◦ J = ζn .

 (iii)  The same bound (2.9) was obtained in [10] when z ∈ ER ∩ R, where it was shown that the 

bound (up to logarithmic factors) could be attained by a polynomial

g(ζ) = ǫTK(ǫ)(ζ), K = K(ǫ) = ⌊ln(1/ǫ)/ lnR⌋. (2.12)

  We observe that the terms in (2.11) increase exponentially fast from n  =  1 to n = K(ǫ) 
and then decrease exponentially fast for n > K(ǫ). Hence, asymptotically (up to loga-

rithmic factors) we can say that

|M(ζ)| ≈ ǫ
2−α(z)

∣

∣J−1(z)
∣

∣

K(ǫ)
|TK(ǫ)(ζ)|

1 + ǫ2R2K(ǫ)
≈ ǫ|TK(ǫ)(ζ)|,

  in agreement with (2.12).

3. Quantifying stability of analytic continuation

3.1. Reproducing kernel Hilbert spaces

Our goal is to characterize how large a function f  analytic in a domain Ω can be at a point 

z ∈ Ω, provided that it is small on a curve Γ ⋐ Ω, relative to its global size in Ω. If some 

norms ‖f‖Γ and ‖f‖H are used to measure the magnitude of f  on Γ and on Ω, respectively, then 

we are looking at the problem






|f (z)| → max

‖f‖H � 1

‖f‖Γ � ǫ.

 (3.1)

Assume that the global norm is induced by an inner product (·, ·) and that the point evalua-

tion functional f �→ f (z) is continuous (for any point z ∈ Ω), then by the Riesz representation 

theorem, there exists an element pz ∈ H such that f (z)  =  (f , p z). Now inner products with 

the function p(ζ, z) := pz(ζ) reproduce values of a function in H. In this case H is called a a 

reproducing kernel Hilbert space (RKHS) with kernel p . Examples of such spaces include the 

Hardy spaces H2 over unit disk, annulus or upper half-plane. From now on we will drop the 

subscript H for the Hilbert space norm in H.

Lemma 3.1. Suppose that H is a RKHS whose elements are continuous functions on a met-

ric space Ω. Then the function Ω ∋ τ �→ ‖pτ‖ is bounded on compact subsets of Ω.
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Proof. Assume the contrary. Suppose S ⊂ Ω is compact, but there exists a sequence 

{τk}
∞

k=1 ⊂ S, such that ‖pτk
‖ → ∞ as k → ∞. Since S is compact we can extract a 

conv ergent subsequence (without relabeling it) τk → τ∗, then for any f ∈ H we have 

f (τk) = ( f , pτk
) → f (τ∗) = ( f , pτ∗), by continuity of f . Thus, pτk

⇀ pτ∗ in H, but this im-

plies boundedness of ‖pτk
‖, leading to a contradiction. □ 

Corollary 3.2. Under the assumption of lemma 3.1 the function p(ζ, τ) is bounded on com-

pact subsets of Ω× Ω, since |p(ζ, τ)| = |( pτ , pζ)| � ‖pτ‖‖pζ‖.
Assume that the smallness on Γ is measured in L2 := L2(Γ, |dτ |)-norm (where |dτ | is the 

arc length measure). Then, there is a constant c  >  0 such that

‖f‖Γ � c‖f‖, ∀f ∈ H. (3.2)

Indeed, for all τ ∈ Γ we have |f (τ)| = |( f , pτ )| � ‖pτ‖‖f‖. Since Γ lies in a compact subset 

of Ω and has finite length we conclude by lemma 3.1 that (3.2) holds.

In order to analyze problem (3.1) we consider a Hermitian symmetric form

B : H ×H → C, B( f , g) = ( f , g)Γ.

By (3.2) B( f , g) is continuous, and thus there exists a positive, self-adjoint and bounded oper-

ator K : H → H with B( f , g) = (Kf , g). Moreover we can write an explicit formula for K in 

terms of the kernel p :

(Kf , g) = ( f , g)Γ =

∫

Γ

f (τ)( pτ , g)|dτ | =
(
∫

Γ

f (τ) pτ |dτ |, g

)

. (3.3)

Thus, for every f ∈ H

(Kf )(ζ) =

∫

Γ

p(ζ, τ) f (τ)|dτ |, ζ ∈ Ω. (3.4)

This formula permits to define a new operator K : L2(Γ) → H. However, in doing so we may 

lose injectivity, which underlies uniqueness of analytic continuation1. Therefore, we restrict 

the domain of K to a closed subspace of L2(Γ)

W = clL2 (H|Γ) ⊂ L2(Γ). (3.5)

In fact, in many cases W = L2(Γ). The density in the context of Hardy spaces is known as the 

Riesz theorem (see e.g. [29]). If Ω is bounded it is usually proved using density of polynomials 

in L2(Γ), which always holds if all polynomials are in H (and Γ is not a closed curve).

We note that the operator K : W → H is bounded. Indeed, by corollary 3.2 the function 

Γ ∋ τ �→ p(ζ, τ) is bounded for each ζ ∈ Ω and by (3.3) we have

‖Kf‖2 = (Kf ,Kf ) = ( f ,Kf )Γ � ‖Kf‖Γ‖f‖Γ � c‖Kf‖‖f‖Γ, (3.6)

where we have used (3.2) in the last inequality. It follows that ‖Kf‖ � c‖f‖Γ.

The outcome of our constructions is the ability to write the two inequalities in (3.1) as 

quadratic constraints for f ∈ H:

( f , f ) � 1, (Kf , f ) � ǫ
2. (3.7)

1 It is this property that forces us to restrict attention to reproducing kernel Hilbert spaces of analytic functions.

Y Grabovsky and N Hovsepyan Inverse Problems 36 (2020) 035001



8

The final observation is that the objective functional |f (z)| in (3.1) can be replaced by a (real) 

linear functional ℜ( f , pz). Indeed,

|f (z)| = sup
|λ|=1

ℜ(λf (z)) = sup
|λ|=1

ℜ(λf , pz).

It remains to notice that if f  satisfies (3.7) then so does λf  for every λ ∈ C, |λ| = 1. Thus we 

arrive at the problem






ℜ( f , pz) → max

( f , f ) � 1

(Kf , f ) � ǫ
2

 (3.8)

Lemma 3.3. The operator K : H → H is compact, positive definite and self-adjoint.

Proof. Self-adjointness and positivity of K on H are immediate consequences of 

(3.3). To prove compactness, let { fk}
∞

k=1 ⊂ H be a bounded sequence. Extract a weak-

ly convergent subsequence (without relabeling it) fk ⇀ f . Then for every τ ∈ Ω 

we have fk(τ) = ( fk, pτ ) → ( f , pτ ) = f (τ). In addition, for every τ ∈ Γ we have 

|fk(τ)| = |( fk, pτ )| � ‖fk‖‖pτ‖. The sequence ‖fk‖ is bounded, since f k is weakly convergent, 

while ‖pτ‖ is bounded on Γ by lemma 3.1. Thus, fk(τ) is uniformly bounded on Γ. Then 

fk|Γ → f |Γ in the L2 norm. But then by the estimate ‖K( fk − f )‖ � c‖fk − f‖Γ (see (3.6)) we 

conclude that Kfk → Kf  in H. □ 

Theorem 3.4. Let H = H(Ω) be a RKHS of functions analytic in domain Ω, with kernel p  

and norm ‖ · ‖. Let Γ ⋐ Ω be a rectifiable curve of finite length and ‖ · ‖Γ be the L2 := L2(Γ, |dτ |) 
norm. Fix a point z ∈ Ω\cl(Γ) and assume f ∈ H with ‖f‖ � 1 and ‖f‖Γ � ǫ, then

|f (z)| �
3

2
uǫ,z(z)min

{

1

‖uǫ,z‖
,

ǫ

‖uǫ,z‖Γ

}

 (3.9)

where uǫ,z ∈ H is the unique solution of

Ku + ǫ
2u = pz. (3.10)

Moreover, (3.9) is optimal since it is attained (up to the factor 3/2) by

Mǫ,z(ζ) = uǫ,z(ζ)min

{

1

‖uǫ,z‖
,

ǫ

‖uǫ,z‖Γ

}

. (3.11)

Before we prove this theorem several remarks need to be made.

 1.  An obvious thing to do is to set ǫ = 0 in (3.10). If pz ∈ K(W), where W is given by (3.5), 

then uǫ,z → u0 = K−1pz, as ǫ → 0. In which case the upper bound (3.9) is simply

|f (z)| � Cǫ, C =
3u0(z)

2‖u0‖Γ
. (3.12)

  In other words we have numerically stable analytic continuation. Examples where this 

happens are mentioned in remarks 2.3 and 2.5. This case will be referred to as the trivial 

case.
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 2.  The function on the right-hand side of (3.11) is obviously in H and obviously satisfies the 

constraints in (3.1). Hence, the attainability of the bound (3.9) is trivial. Only the bound 

itself requires a proof.

 3.  The upper bound (3.9) is not an explicit function of ǫ and z. Its asymptotics as ǫ → 0 

depends on fine properties of the operator K. This will be discussed in section 3.3. In 

specific examples in section  4 equation  (3.10) is solved explicitly and the power law 

behavior Mǫ,z(z) ∼ ǫ
γ(z) is exhibited.

 4.  The precise asymptotics of the exponential decay of eigenvalues of K is known for certain 

classes of spaces. For example, assume H coincides with the Smirnov class E2(Ω) [13]. 

If the domain Ω is bounded and simply connected and Γ ⋐ Ω is a closed Jordan rectifi-

able curve of class C1+ǫ for ǫ > 0, with Ω′ denoting the domain bounded by it, then the 

eigenvalues of K satisfy the asymptotic relation [28]

λn(K) ∼ ρ2n+1, as n → +∞, (3.13)

  where ρ < 1 is the Riemann invariant, whereby the domain Ω\cl(Ω′) is conformally 

equivalent to the annulus {ω ∈ C : ρ < |ω| < 1}.

The proof of theorem 3.4 in the more general context of RKHS follows without much change 

from the proof of the same theorem for the Hardy space H2 of analytic functions in the upper 

half-plane given in [20]. For the sake of completeness we give a short recap of the argument.

3.2. Proof of theorem 3.4

We start by analyzing the trivial case.

Lemma 3.5. Assume the setting of theorem 3.4, let pz ∈ K(W), then

|f (z)| � cǫ.

Proof. Let v ∈ W ⊂ L2 satisfy Kv = pz, (note that v does not depend on ǫ), then using (3.3) 

we have

f (z) = ( f , pz) = ( f ,Kv) = ( f , v)Γ.

It remains to use the Cauchy–Schwartz inequality to conclude the desired inequality with 

c = ‖v‖Γ. □ 

Let us now turn to the case pz /∈ K(W). For every f , satisfying (3.7) and for every nonnegative 

numbers µ and ν  (µ2 + ν
2 �= 0) we have the inequality

((µ+ νK) f , f ) � µ+ νǫ
2. (3.14)

Applying convex duality to the quadratic functional on the left-hand side of (3.7) we get

ℜ( f , pz)−
1

2

(

(µ+ νK)−1pz, pz

)

�
1

2
((µ+ νK) f , f ) �

1

2

(

µ+ νǫ
2
)

, (3.15)

so that

ℜ( f , pz) �
1

2

(

(µ+ νK)−1pz, pz

)

+
1

2

(

µ+ νǫ
2
)

, (3.16)
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which is valid for every f , satisfying (3.7) and all µ > 0, ν � 0. In order for the bound to be 

optimal we must have equality in (3.15), which holds if and only if

pz = (µ+ νK) f ,

giving the formula for optimal vector f :

f = (µ+ νK)−1pz. (3.17)

The goal is to choose the Lagrange multipliers µ and ν  so that the constraints in (3.8) are satis-

fied by f , given by (3.17).

• if ν = 0, then f = pz

µ
 and optimality implies that the first inequality constraint of (3.8) must 

be attained, i.e. ‖f‖ = 1. Thus, f = pz

‖pz‖
 does not depend on the small parameter ǫ, which leads 

to a contradiction, because the second constraint (Kf , f ) � ǫ
2 is violated if ǫ is small enough.

• if µ = 0, then Kf = 1
ν

pz. But this equation has no solutions in H according to the assump-

tion pz /∈ K(W).
Thus we are looking for µ > 0, ν > 0, so that equalities in (3.8) hold. (These are the com-

plementary slackness relations in Karush–Kuhn–Tucker conditions.), i.e.

{
(

(µ+ νK)−1pz, (µ+ νK)−1pz

)

= 1,
(

K(µ+ νK)−1pz, (µ+ νK)−1pz

)

= ǫ
2.

 (3.18)

Let η = µ

ν
, we can solve either the first or the second equation in (3.18) for ν

ν
2 = ‖(K + η)−1pz‖

2, (3.19)

or

ν
2 = ǫ−2

(

K(η +K)−1pz, (η +K)−1pz

)

. (3.20)

The two analysis paths stemming from using one or the other representation for ν  lead to 

two versions of the upper bound on |f (z)|, optimality of neither we can prove. However, the 

minimum of the two upper bounds is still an upper bound and its optimality is then apparent. 

At first glance both expressions for ν  should be equivalent and not lead to different bounds. 

Indeed, their equivalence can be stated as an equation

Φ(η) :=

(

K(K + η)−1pz, (K + η)−1pz

)

‖(K + η)−1pz‖2
= ǫ

2 (3.21)

for η. Equation  (3.21) has a unique solution η∗ = η∗(ǫ) > 0, because Φ(η) is monotone 

increasing (since its derivative can be shown to be positive), Φ(+∞) = (Kpz, pz)/‖pz‖
2 and 

Φ(0+) = 0. (See [20] for technical details.)

In the examples in this paper the eigenvalues and eigenfunctions of K exhibit exponential 

decay. We have shown in [20] that such behavior implies that η∗(ǫ) ≃ ǫ2, as ǫ → 0. However, 

any choice of η gives two valid upper bounds: one via (3.19), the other, via (3.20). In the 

anticipation that the exponential decay of eigenvalues and eigenfunctions holds we simply set 

η = ǫ2 and obtain, setting u = (K + ǫ
2)−1pz,

ℜ( f , pz) �
(u, pz)

2‖u‖ + ǫ
2‖u‖, ℜ( f , pz) �

ǫ(u, pz)

2‖u‖Γ
+ ǫ‖u‖Γ.

Definition of u implies u(z) = (u, pz) = (u,Ku + ǫ
2u) = (u,Ku) + ǫ

2(u, u), i.e.

u(z) = ‖u‖2
Γ + ǫ

2‖u‖2, (3.22)
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which implies the inequalities

ǫ
2‖u‖ �

u(z)

‖u‖ , ‖u‖L2 �
u(z)

‖u‖Γ
.

Therefore, we have both

|f (z)| = ℜ( f , pz) �
3

2

u(z)

‖u‖
, |f (z)| �

3ǫ

2

u(z)

‖u‖Γ
.

Inequality (3.9) is now proved. We remark that a possibly suboptimal choice η = ǫ2 still deliv-

ers asymptotically optimal upper bound (3.9), since it is attained by the function (3.11).

3.3. Solving the integral equation

We begin by making several observations about a priori properties of the solution uǫ of (3.10) 

in the non-trivial case pz �∈ K(W). The most immediate consequence of the non-triviality 

is that ‖uǫ‖Γ blows up as ǫ → 0. If it did not, we would be able to extract a weakly conv-

ergent subsequence uǫk
⇀ u0 ∈ W  and passing to the weak limits in (3.10) obtained that 

(Ku0)(ζ) = pz(ζ), for ζ ∈ Γ. However, since K(W) ⊂ H we get a contradiction with the 

non-triviality.

Next let us show that equation (3.22) implies that Mǫ,z(z) ≫ ǫ. On the one hand, dividing 

equation (3.22) by ‖uǫ‖Γ we obtain

uǫ(z)

‖uǫ‖Γ
� ‖uǫ‖Γ.

On the other, we have ‖uǫ‖
2
Γ + ǫ

2‖uǫ‖
2 � 2ǫ‖uǫ‖Γ‖uǫ‖ and therefore

uǫ(z)

ǫ‖uǫ‖
� 2‖uǫ‖Γ,

proving that ǫ−1Mǫ,z(z) � ‖uǫ‖Γ → +∞. This means that one cannot expect full numerical 

stability of analytic continuation.

Finally, we prove the ‘mathematical well-posedness’ of analytic continuation: Mǫ,z(z) → 0 

as ǫ → 0. This is a consequence of the weak convergence of uǫ/‖uǫ‖ to 0. If we divide (3.10) 

by ‖uǫ‖ and pass to weak limits, using the fact that ‖uǫ‖ � c−1‖uǫ‖Γ → +∞ we obtain that 

the weak limit û  of uǫ/‖uǫ‖ satisfies Kû = 0. But if Kû = 0, then ‖û‖2
Γ = (Kû, û) = 0. It 

follows that the analytic function û = 0 on Γ and hence must vanish everywhere in Ω. This 

shows that the operator K has a trivial null-space and that Mǫ,z(z) = (uǫ/‖uǫ‖, pz) → 0, as 

ǫ → 0.

A consequence of the just established strict positivity of K is separability of the Hilbert 

space H. This should not be surprising, since H consists of analytic functions each of which 

can be completely described by a countable set of numbers.

Lemma 3.6. The Hilbert space H is always separable.

Proof. We saw that K : H → H given by (3.4) is a self-adjoint, compact operator. We have 

just seen that K has a trivial null-space. In this case the Hilbert space H is the orthogonal sum 

of countable number of finite dimensional eigenspaces of K with positive eigenvalues. Thus, 

H has a countable complete orthonormal set and is therefore separable. □ 
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In applications of our theory in section 4 we solve equation (3.10) exactly by finding all 

eigenvalues and eigenfunctions of K. Let {en}
∞

n=1 be an orthonormal eigenbasis of H with 

Ken = λnen. In this basis the equation (3.10) diagonalizes:

λn(u, en) + ǫ2(u, en) = ( pz, en),

therefore we find

uǫ(ζ) =
∑

n

en(z)

λn + ǫ2
en(ζ). (3.23)

Using this expansion, formula ‖u‖2
Γ = (Ku, u), and (3.22) we find that

uǫ(z) =
∑

n

|en(z)|
2

λn + ǫ2
, ‖uǫ‖2 =

∑

n

|en(z)|
2

(λn + ǫ2)2
, ‖uǫ‖2

Γ =
∑

n

λn|en(z)|
2

(λn + ǫ2)2
.

 (3.24)

It follows that

∑

n

|en(z)|
2

λn

= ∞, (3.25)

since if the series had a finite sum then formula (3.24) for ‖uǫ‖Γ would imply

‖uǫ‖
2
Γ �

∑

n

|en(z)|2
λn

,

contradicting the blow up of ‖uǫ‖Γ.

In our examples where the eigenvalues λn and eigenfunctions en(ζ) can be found explicitly 

they are seen to decay exponentially fast to 0 (see also (3.13)). As we have shown in [20] this 

implies the power law principle

Mǫ,z(z) ≃ ǫ
γ(z), as ǫ → 0, (3.26)

where γ(z) ∈ (0, 1) can be expressed in terms of the rates of exponential decay of spectral 

data for K.

Theorem 3.7. Let {en}
∞

n=1 be orthonormal eigenbasis of H with Ken = λnen. Let u = uǫ,z 

and Mǫ,z  be given by (3.10) and (3.11) respectively. Assume

λn ≃ e−αn, |en(z)|2 ≃ e−βn, 0 < β < α, (3.27)

with implicit constants independent of n (so that (3.25) holds). Then,

‖uǫ,z‖Γ ≃ ǫ‖uǫ,z‖ ≃ ǫ

β

α
−1 and uǫ,z(z) ≃ ǫ

2( β

α
−1),

with implicit constants independent of ǫ. In particular, this implies the power law principle 

(3.26) with exact exponent:

Mǫ,z(z) ≃ ǫ

β

α .

The proof of theorem 3.7 immediately follows from (3.24) and lemma A.1.
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3.4. Linear constraints

In one of our examples we encounter a situation where additional linear constraints are 

imposed on a previously solved problem. In general all linear constraints on analytic functions 

will simply be incorporated into the definition of the RKHS H. The question is whether we 

can use the already found solution of a problem if additional linear constraints are imposed. 

Let L ⊂ H be a closed, C-linear subspace. Then L with the inner product from H is still a 

RKHS with the reproducing kernel PLpz, where PL denotes the orthogonal projection onto L. 

If we restrict f  and g in (3.3) to elements from L, then the operator K can be written as PLKPL. 

Then equation (3.10) can be written (in the language of the original RKHS H) as

PLKPLu + ǫ
2u = PLpz, u ∈ H, (3.28)

whose unique solution u necessarily belongs to L. In general, one’s ability to solve the original 

problem (3.10) would be of little help for solving (3.28), except in the special case when L is 

an invariant subspace of K. In this case PL commutes with K and if u solves (3.10), then PLu 

solves (3.28).

The requirement that L be a C-linear subspace is important, because the linearization argu-

ment taking the objective functional |f (z)| in (3.1) to the one in (3.8) requires all the constraints 

to be invariant under multiplication by a phase factor λ ∈ C, |λ| = 1. In some applications, 

like the analytic continuation of the complex electromagnetic permittivity the constraints may 

be just R-linear, in which case other techniques have to be applied [19].

4. Applications

4.1. The annulus

Here we prove theorem 2.1, so assume the setting of section 2.1. Note that if we replace H2-

norm in theorem 2.1 by another equivalent norm, this will only change the constant C in the 

inequality (2.3). In order to apply our theory we need a norm, induced by an inner product, 

with respect to which the reproducing kernel of the space H2 is as simple as possible. To define 

such an inner product we use the Laurent expansion

f (ζ) =
∑

n�0

fnζ
n +

∑

n<0

fnζ
n =: f+(ζ) + f−(ζ), (4.1)

then f ∈ H2(Aρ) if and only if f+ ∈ H2({|ζ| < 1}) and f− ∈ H2({|ζ| > ρ}) (see [32]). So 

we define

( f , g) =
1

2π
( f+, g+)L2(Γ1) +

1

2πρ
( f−, g−)L2(Γρ). (4.2)

The norm in H2(Aρ) induced by (4.2) is equivalent to the norm (2.2) (e.g. [22, 32]). Now the 

functions {ζn}n∈Z form a basis in H2(Aρ), let us normalize them:

en(ζ) =

{

ζn, n � 0

(ζ/ρ)n, n < 0,
 (4.3)

then {en}n∈Z is orthonormal basis of H2(Aρ). Definition of the reproducing kernel implies 

that p(ζ, τ) =
∑

n en(τ)en(ζ). Computing this sum, or by adding kernels of the spaces 

H2({|ζ| < 1}) and H2({|ζ| > ρ}), we find the reproducing kernel of H2(Aρ):
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p(ζ, τ) =
1

1 − ζτ
+

ρ2

ζτ − ρ2
. (4.4)

Note that pz /∈ K(W). Indeed, the function p z has simple poles at z−1, ρ2z−1. At the same 

time, for any f ∈ W ⊂ L2(Γ) the function Kf  may have singularities only in the set 

S = ∪τ∈Γ{τ
−1, ρ2τ−1}. If z−1 ∈ S, then z ∈ Γ ∪ ρ−2Γ. If ρ2z−1 ∈ S, then z ∈ Γ ∪ ρ2Γ. But 

since z /∈ Γ and curves ρ±2Γ are outside of the annulus Aρ , the equation Kf (ζ) = p(ζ, z) for 

ζ ∈ Aρ cannot have any solutions in W.

We observe that for any orthonormal basis {en : n ∈ Z} of H we have, using (3.3),

Kf =
∑

n∈Z

(Kf , en)en =
∑

n∈Z

( f , en)L2(Γ) en.
 (4.5)

It is easy to verify that when Γ is a circle centered at the origin, the functions {en}, given 

by (4.3) are also orthogonal in L2(Γ) and hence, taking f   =  em in (4.5) we conclude that 

Kem = ‖em‖2
L2(Γ)em. So we have proved

Lemma 4.1. Let {en}n∈Z be given by (4.3) and K given by (4.5), then

Ken = λnen, n ∈ Z,

where

λn = 2πr

{

r2n, n � 0

(r/ρ)2n, n < 0
 (4.6)

We see that λn and |en(z)| approach to zero along two different sequences and have two 

different asymptotic behaviors, which are distinguished by the location of z relative to Γ. 

Therefore, to apply theorem 3.7 we need to consider two cases. Assume that z lies outside of 

Γ, i.e. |z| ∈ (r, 1). The function u from (3.10) is given by

u(ζ) =
∑

n∈Z

en(z)en(ζ)

λn + ǫ2
. (4.7)

Note that, for any n ∈ Z

|en(z)|
2

λn

=
1

2πr

(

|z|

r

)2n

.

By assumption the above quantity is summable over n  <  0, this implies that in analyzing u(z) 
the sum over negative indices is O(1), as ǫ → 0, and hence can be ignored. The dominant part 

is the sum over n � 0. Analogously, in quantities ‖u‖H2(Aρ), ‖u‖L2(Γ) as well, the sum can be 

restricted to n � 0. This determines the behaviors λn ≃ r2n and |en(z)| ≃ |z|n, therefore theo-

rem 3.7 implies that the exponent is γ(z) = ln |z|
ln r

. The case |z| ∈ (ρ, r) is done analogously and 

(2.4) now follows.

Next, we can rewrite (4.7) as

u(ζ) =
∑

n�0

znζn

2πrr2n + ǫ2
+

∑

n<0

znζn

2πrr2n + ǫ2ρ2n
. (4.8)
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Let us consider the function

ũ(ζ) =
∑

n∈Z

znζn

r2n + ǫ2(1 + ρ2n)
, (4.9)

clearly for negative indices ρ2n ≪ 1 and hence can be ignored, and for positive indices 1 can 

be ignored from the denominator in the definition of ũ. Therefore, values of ũ, u at z and their 

H2 and L2-norms have the same behavior in ǫ. Thus, we may consider ũ instead, which then 

gives rise to the maximizer function M in (2.5). Finally, the fact that ‖M‖H∞(Aρ)
 is bounded 

uniformly in ǫ follows from the application of lemma A.1.

4.2. The upper half-plane

 Notation. Let D(c, r) and C(c, r) denote respectively the closed disk and the circle centered 

at c and of radius r in the complex plane.

In this section we prove theorem 2.4. The Hardy space H2(H+) of functions analytic in 

the complex upper half-plane H+ is a RKHS with the inner product ( f , g) = ( f , g)L2(R). By 

Cauchy’s integral formula

f (z) =
1

2πi

∫

R

f (x)dx

x − z
.

Therefore, the reproducing kernel p  of H2(H+) is

pτ (ζ) = p(ζ, τ) =
i

2π(ζ − τ)
, {ζ, τ} ⊂ H+.

In theorem 2.4 the data is measured on Γ = C(i, r) with r ∈ (0, 1). Using the definition of K 

(3.4) we have

Ku(ζ) =
1

2π

∫

Γ

iu(τ)|dτ |
ζ − τ

.

Note that pz /∈ K(W). Indeed, the function p z is analytic everywhere in C, except at z, where 

it has a pole. At the same time for any f ∈ W ⊂ L2(Γ) the function Kf  is analytic everywhere 

in C outside of Γ. But z /∈ Γ, since z lies outside of Γ. Therefore, the equation Kf = pz has 

no solutions in W.

Lemma 4.2. Let r ∈ (0, 1) and Γ = C(i, r). Let {en}
∞

n=1 be an orthonormal eigenbasis of K 

in H2(H+), with eigenvalues {λn}
∞

n=1. Then

λn =
rρ2n

1 +
√

1 − r2
, en(ζ) =

4
√

1 − r2

√

π

m(ζ)n

ζ + z0

, (4.10)

where ρ, z0, m(ζ) are as in theorem 2.4.

Before proving this lemma, let us see that it concludes the proof of theorem 2.4 upon the 

application of theorems 3.4 and 3.7. Indeed, λn ≃ ρ
2n  and |en(z)| ≃ |m(z)|n, then the formula 

(2.7) for the exponent γ(z) follows. The function u from (3.10) is given by

u(ζ) =
π−1

√

1 − r2

(z + z0)(ζ + z0)

∞
∑

n=1

m(z)
n
m(ζ)n

r

1+
√

1−r2
ρ2n + ǫ2

.

As in the case of annulus, ignoring the constants that do not affect the asymptotics of the func-

tion as ǫ → 0 we obtain the maximizer (2.8).
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Proof of lemma 4.2. Let Kw(ζ) = λw(ζ), then w must be analytic in the extended com-

plex plane with the closed disk D(−i, r) removed. In particular, it is analytic in D(i, r). Thus, 

we can evaluate the operator K explicitly in terms of values of w.

Kw(ζ) =
1

2π

∫ 2π

0

irw(i + reit)dt

ζ + i − re−it
=

1

2π

∫

C(0,r)

rw(i + τ)dτ

(ζ + i)τ − r2
.

We note that r2/|ζ + i| < r  precisely when ζ is outside of the closed disk D(−i, r). In addition 

w(i + τ) is analytic in D(0, r), hence

Kw(ζ) =
ir

ζ + i
w

(

i +
r2

ζ + i

)

.

Next we note that the Möbius transformation

σ(ζ) = i +
r2

ζ + i

maps D(−i, r) onto the exterior of D(i, r). In particular there is a disk D1 ⊂ D(−i, r) such 

that σ(D1) = D(−i, r). Then Kw is analytic in the exterior of D1, since w is analytic outside 

of D(−i, r). But w is an eigenfunction of K, hence it must also be analytic outside of D1. Re-

peating the argument using the fact that w is analytic in the larger domain C \ D1 we conclude 

that it must also be analytic outside of D2 ⊂ D1, such that σ(D2) = D1. We can continue like 

this indefinitely, showing that the only possible singularity of w must be at the fixed point 

ζ0 ∈ D(−i, r) of σ(ζ). We find

ζ0 = −i
√

1 − r2.

Since w is analytic at infinity the transformation η = 1/(ζ − ζ0) will map the extended com-

plex plane with ζ0 removed to the entire complex plane (without the infinity). The eigenfunc-

tion w will then be an entire function in the η-plane. Let v(η) = w(η−1 + ζ0). Then

w(ζ) = v

(

1

ζ − ζ0

)

.

The relation Kw = λw now reads

λv(η) =
irη

η(ζ0 + i) + 1
v

(

η(ζ0 + i) + 1

i − ζ0

)

.

One corollary of this equation is that v(0) = 0. Hence, φ(η) = η−1
v(η) is also an entire func-

tion, satisfying

λφ(η) =
ir

i − ζ0

φ

(

η(ζ0 + i) + 1

i − ζ0

)

.

We see that φ(η) is an entire function with the property that φ(aη + b) is a constant multiple 

of φ(η), with b = 1
i−ζ0

 and a = ρ2, where ρ  is given by (2.7). It remains to observe that such 

a property holds for functions φn(η) = (η − η0)
n, provided
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η0 − b

a
= η0 ⇐⇒ η0 =

b

1 − a
.

Indeed,

(aη + b − η0)
n = an

(

η −
η0 − b

a

)n

= an(η − η0)
n.

In our case we get η0 = − 1
2ζ0

 and conclude that φn(η) =
(

η + 1
2ζ0

)

n and λn is given by 

(4.10). Converting the formula back to wn(ζ) we obtain (up to a constant multiple)

wn(ζ) =
1

ζ − ζ0

(

ζ + ζ0

ζ − ζ0

)n

=
m(ζ)n

ζ − ζ0

.

It remains to normalize the eigenfunctions wn. For that we compute

‖wn‖
2
H2(H+) =

∫

R

|wn|2dx =

∫

R

dx

|x − ζ0|2
=

π√
1 − r2

.

 □ 

4.3. The Bernstein ellipse

4.3.1. From the ellipse to the annulus. The ellipse ER is conformally equivalent to a disk 

or the upper half-plane. The conformal mapping effecting the equivalence can be written 

explicitly in terms of the Weierstrass ζ-function, but the image of the interval [−1, 1] will then 

be a curve that would not permit any kind of explicit solution of the resulting integral equa-

tion. Instead we use a much simpler Joukowski function J(ω) = ω+ω
−1

2
 that will convert the 

problem in the ellipse to the problem in an annulus with Γ being a concentric circle inside the 

annulus. We observe that J(ω) maps the annulus {R−1 < |ω| < R} onto the Bernstein ellipse 

ER in 2–1 fashion, meaning that each point in ER has exactly two (if we count the multiplicity) 

preimages in the annulus (note that J(ω) = J(ω−1)). Moreover, the unit circle gets mapped 

onto [−1, 1] ⊂ ER under J. So given a function F ∈ H∞(ER), the function f (ζ) := F(J(Rζ)) 
is analytic in Aρ  defined in (2.1), with ρ = R−2, has the same H∞ norm, and satisfies the 

symmetry property

f (ζ) = f (ζ) ∀|ζ| = r =
1

R
. (4.11)

Conversely, any function f ∈ H∞(Aρ), satisfying (4.11) defines an analytic function in a 

Bernstein ellipse (with the same H∞ norm). This is so because (4.11) can also be written as

f

(

1

R2ζ

)

= f (ζ) ∀|ζ| = r. (4.12)

The Schwarz reflection principle then guarantees that (4.12) holds for all ζ ∈ Aρ. This implies 

that F(u) = f (R−1J−1(u)) gives the same value for each of the two branches of J−1 and hence 

defines an analytic function in ER. Thus, the analytic continuation problem in ellipse reduces 

to the one in the annulus, but with an additional symmetry constraint (4.11).
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4.3.2. The annulus with symmetry. Let us now define

H = { f ∈ H2(Aρ) : f (ζ) = f (ζ) ∀|ζ| = √
ρ}.

 (4.13)

The curve Γ will be a circle Γr  centered at the origin of radius r =
√
ρ.

Lemma 4.3 (Annulus with symmetry). Let 0 < ρ < 1 and let z ∈ C be such that 

r < |z| < 1. Then there exists C  >  0, such that for every ǫ > 0 and every f ∈ H with ‖f‖H2 � 1 

and ‖f‖L2(Γr) � ǫ we have the bound

|f (z)| � Cǫγ(z), (4.14)

where the exponent γ(z) is the same as in theorem 2.1, i.e.

γ(z) =
ln |z|

ln r
. (4.15)

Moreover, (4.14) is asymptotically optimal as ǫ → 0 and the function attaining the bound is

M(ζ) = ǫ2−γ(z)
∞∑

n=1

zn + (ρ/z)n

ρn + ǫ2
[ζn + (ρ/ζ)n], ζ ∈ Aρ. (4.16)

Proof. We note that the maximization problem in lemma 4.3 differs from the one in theorem 

2.1 by the requirement of symmetry (4.11). Hence, following the theory in section 3.4 we 

define the subspace

L = { f ∈ H2(Aρ) : f (ζ) = f (ζ) ∀ζ ∈ Γr}, r =
√
ρ.

Then, the orthogonal projection onto L will be given by

PLf (ζ) =
f (ζ) + f (ρ/ζ)

2
. (4.17)

Lemma 4.4. The integral operator K with kernel (4.4) and Γ = Γr commutes with PL.

Proof. The commutation PLK = KPL is then equivalent to
∫

Γr

p(ζ, τ)u(r2/τ)|dτ | =

∫

Γr

p(r2/ζ, τ)u(τ)|dτ |

which, after change of variables on the left-hand side reduces to

p(ζ, ρ/τ) = p(ρ/ζ, τ) ∀ζ ∈ Aρ, ∀τ ∈ Γr.

Substituting the definition of p  from (4.4) into this formula we easily verify it. □ 

According to the theory in section 3.4 the solution of (3.28) is uL = PLu, where u is given 

by (4.7). We observe that in the case r2 = ρ we have λn = λ−n and en(ρ/ζ) = e−n(ζ), so that

uL = PLu(ζ) =
1

1 + ǫ2
+

1

2

∞
∑

n=1

en(z) + e−n(z)

λn + ǫ2
[en(ζ) + e−n(ζ)]. (4.18)
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Substituting the expressions for λn, en from (4.6) and (4.3), respectively, and ignoring the first 

O(1) term and some constants, which affect the asymptotics of uL by constant factors, we 

arrive at the function

uL(ζ) =

∞∑

n=1

zn + (ρ/z)n

ρn + ǫ2
[ζn + (ρ/ζ)n].

We note that

eL
n =

1

2
(ζn + (ρ/ζ)n) , n � 0,

is the orthonormal eigenbasis of L with respect to PLKPL. The corresponding eigenvalues are 

λn = 2π
√
ρρ

n , and for |z| ∈ (r, 1) we have |eL
n(z)| ≃ |zn + (ρ/z)n| ≃ |z|n. Then, theorem 3.7 

gives formula (4.15) as well as the maximizer function (4.16). □

4.3.3. From the annulus to the ellipse. In this section we will show that theorem 2.6 follows 

from lemma 4.3. Let F ∈ H∞(ER) be such that ‖F‖H∞ � 1 and |F(x)| � ǫ for all x ∈ [−1, 1]. 
As discussed in section 4.3.1, the function f (ζ) := F(J(Rζ)) is analytic in Aρ , with ρ = R−2 

and has the symmetry f (ζ) = f (ζ) ∀|ζ| = r, where r  =  R−1. It also satisfies

‖f‖H2(Aρ) � ‖F‖H∞(ER) � 1

as well as

‖f‖2
L2(Γr)

=
1

R

∫ 2π

0

|F(J(eit))|2dt �
2πǫ2

R
.

Let z ∈ ER \ [−1, 1]. Let za ∈ Aρ be the unique solution of J(Rza)  =  z, satisfying |za|  >  r. 

Then by lemma 4.3 (with ρ = R−2 and r  =  R−1) we have

|F(z)| = |f (za)| � Cǫ−
ln |za|
ln R = Cǫ1−

ln|J−1(z)|
ln R = Cǫα(z),

where α(z) is given by (2.10). This proves (2.9).

In order to prove the optimality of the bound (2.9) we use lemma A.1 to show that M(ζ) 
given by (4.16) satisfies

{

|M(ζ)| � ǫ, |ζ| = r,

|M(ζ)| � 1, r < |ζ| < 1.

Using the Joukowski function to map this to a function on the Bernstein ellipse we obtain

Mellipse(ω) = M
(

R−1J−1(ω)
)

= ǫ2−α(z)
∞
∑

n=1

Tn(z)Tn(ω)

1 + ǫ2R2n
, (4.19)

where Tn is the Chebyshev polynomial of degree n. Chebyshev polynomials are just monomi-

als ζn in the annulus after the Joukowski transformation:

J−1
◦ Tn ◦ J = ζ �→ ζn, ∀ζ �= 0.

We note that due to the choice of the branch of J−1 to correspond to a point in the exterior of 

the unit disk we can neglect 1/(J−1(z))n in

Tn(z) =
1

2

(

(J−1(z))n +
1

(J−1(z))n

)

.
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Thus, the function in (2.11) is asymptotically equivalent to (4.19). Theorem 2.6 is now proved.
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Appendix

Lemma A.1. Let {an, bn}
∞

n=1 be nonnegative numbers such that an ≃ e−αn and bn ≃ e−βn 

with 0 < β < α, where the implicit constants do not depend on n. Let η > 0 be a small param-

eter, then

∞∑

n=1

bn

an + η
≃ η

β

α
−1, and

∞∑

n=1

bn

(an + η)2
≃ η

β

α
−2

 (A.1)

where the implicit constants do not depend on η.

Proof. Let us prove the first assertion of (A.1), the second one will follow analogously. 

Introduce the switchover index J = J(η) ∈ N defined by
{

an � η ∀ 1 � n � J

an < η ∀ n > J.

Below all the implicit constants in relations involving ≃ or � will be independent on η. It is 

clear that

∞
∑

n=1

bn

an + η
≃

∑

n�J

bn

an

+
1

η

∑

n>J

bn.

Note that
∑

n>J

bn �
∑

n>J

e−βn � e−β(J+1),

therefore using our assumption on bn we find
∑

n>J

bn ≃ bJ+1 ≃ bJ .
 (A.2)

On the other hand

∑

n�J

bn

an

�
∑

n�J

e(α−β)n =
eα

eα − eβ
(e(α−β)J − 1) � e(α−β)J ≃

bJ

aJ

.
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Thus we conclude

∑

n�J

bn

an

≃

bJ

aJ

. (A.3)

Now η ≃ aJ  and aJ ≃ e−αJ , therefore e−J
≃ η

1
α. Using these along with (A.2) and (A.3) we 

obtain

∞
∑

n=1

bn

an + η
≃

bJ

aJ

+
bJ

η
≃

bJ

aJ

≃ e(α−β)J
≃ η

β

α
−1.

 

□ 
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