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Abstract: Recent studies in adult humans have reported correlations between individual 

differences in people’s Social Network Index (SNI) and gray matter volume (GMV) across 

multiple regions of the brain. However, the cortical and subcortical loci identified are 

inconsistent across studies. These discrepancies might arise because different regions of interest 

were hypothesized and tested in different studies without controlling for multiple comparisons, 

and/or from insufficiently large sample sizes to fully protect against statistically unreliable 

findings. Here we took a data-driven approach in a pre-registered study to comprehensively 

investigate the relationship between SNI and GMV in every cortical and subcortical region, 

using three predictive modeling frameworks. We also included psychological predictors such as 

cognitive and emotional intelligence, personality, and mood. In a sample of healthy adults (n = 

92), neither multivariate frameworks (e.g., ridge regression with cross-validation) nor univariate 

frameworks (e.g., univariate linear regression with cross-validation) showed a significant 

association between SNI and any GMV or psychological feature after multiple comparison 

corrections (all R-squared values ≤ 0.1). These results emphasize the importance of large sample 

sizes and hypothesis-driven studies to derive statistically reliable conclusions, and suggest that 

future meta-analyses will be needed to more accurately estimate the true effect sizes in this field.  
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1. Introduction 1 

It has been well-documented that neocortex volume is positively correlated with social group 2 

size across multiple primate species (Dunbar, 1998; Dunbar & Shultz, 2007), an intriguing 3 

finding that has motivated a number of subsequent studies in humans (see below). It is important 4 

to keep in mind that social group size is of course not the only factor in the evolution of large 5 

brains: it is merely one variable amongst many interacting variables that determines fitness. For 6 

instance, diet and other ecological variables are also associated with brain size (Barton, 1999). 7 

Nonetheless, across the many variables that contribute to brain size (or to gray matter volume of 8 

specific structures), social group size remains as one of the most robust when studies examine 9 

this question across species (Dunbar & Shultz, 2017).  10 

While the correlation between brain volume and social group size is robust across species, it has 11 

also been suggested that a similar association might obtain across individuals within a species: 12 

some individuals are embedded in larger or smaller social groups, and one might expect this 13 

variation in social behavior to be related to the brain. In particular, one might expect the variation 14 

to be related to brain structures implicated in social cognition. A number of studies have 15 

examined this within-species hypothesis in humans (Table 1) by correlating GMV of structures 16 

such as amygdala with various social network metrics, in particular self-reports of the number of 17 

people one has contacted within a given period, such as the social network index or SNI, a metric 18 

we also used in the present study. 19 

A study in macaques even suggests the causal hypothesis that social group size could cause 20 

changes in brain size (Sallet et al., 2011): macaques randomly assigned to live in larger groups 21 

showed increased GMV in certain brain structures thought to underlie social cognition. Whether 22 

on the timescale of evolution or of the life of an individual, the above varied findings raise the 23 
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hypothesis that social network metrics in humans might be correlated with GMV in specific 1 

brain structures.  2 

However, characterizing social networks in humans is fundamentally different from quantifying 3 

social group size in other primates due to the greater complexity and variability of human social 4 

relationships (Dunbar, 1998). Previous studies attempting to test the within-species hypothesis in 5 

humans (Table 1) have employed various metrics of social networks, such as the number of 6 

people one had seen or talked to at least once every two weeks (Bickart, Hollenbeck, Barrett, & 7 

Dickerson, 2012; Bickart, Wright, Dautoff, Dickerson, & Barrett, 2011; Bickart et al., 2011), the 8 

number of people one had contacted over the last 12 months, 30 days, or 7 days (Kwak, Joo, 9 

Youm, & Chey, 2018; Lewis, Rezaie, Brown, Roberts, & Dunbar, 2011; Noonan, Mars, Sallet, 10 

Dunbar, & Fellows, 2018; Powell Joanne, Lewis Penelope A., Roberts Neil, García-Fiñana 11 

Marta, & Dunbar R. I. M., 2012), or the number of friends one had on social media (Kanai, 12 

Bahrami, Roylance, & Rees, 2012). While all those metrics can fluctuate over months, weeks, 13 

and even days for an individual, GMV of brain structures are relatively stable over time in 14 

healthy adults. This makes at least some metrics of social networks in humans, such as the SNI, 15 

prima facie implausible candidates for being correlated with variability in structural brain 16 

measures, raising some caution about how to interpret any putative findings. 17 

Indeed, previous studies in humans investigating the relationship between social network metrics 18 

and GMV have produced inconsistent results (Table 1). For instance, while some studies showed 19 

that bilateral amygdala volume was positively correlated with SNI (Bickart et al., 2011), others 20 

failed to replicate these relationships (Spagna et al., 2018). In addition, the different regions of 21 

interest hypothesized, and different methods for correcting for multiple comparisons used in past 22 
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research might also contribute to the discrepant findings (Kanai et al., 2012; Lewis et al., 2011; 1 

Noonan et al., 2018).  2 

Here, we took a purely data-driven approach to examine the relationship between SNI and GMV, 3 

with the aim of uncovering any relationships with specific brain regions. We did not hypothesize 4 

SNI to correlate with GMV of any specific brain region, and instead comprehensively tested the 5 

effect of every cortical and subcortical volume to see if an agnostic approach would discover (or 6 

reproduce) any candidates. We examined these relationships using three different predictive 7 

modeling frameworks, which capitalized on the strengths of both multivariate analyses and 8 

univariate analyses, explored the prediction performance with or without feature selection, and 9 

implemented cross-validation to increase the generalizability of our results. To handle multiple 10 

comparisons, all effects within a framework was corrected for false discovery rate (FDR). Since 11 

previous studies have also reported that various psychological measures such as personality and 12 

perceived stress were linked to individual differences in social networks (Asendorpf & Wilpers, 13 

1998; Nabi, Prestin, & So, 2013), we also included a list of psychological measures in our 14 

frameworks. All hypotheses and measures were preregistered and can be accessed at 15 

https://osf.io/mpjkz/?view_only=7fd32ce53d434f4b8dbd0339579a8efa.  16 

Table 1 17 

Summary of previous studies in humans on the correlations between social network metrics and 18 

GMV of cortical and subcortical structures of the brain. Abbreviations: L left, R right, ITS 19 

inferior temporal sulcus, SFG superior frontal gyrus, ACC anterior cingulate cortex, mPFC 20 

medial prefrontal cortex, TPJ temporoparietal junction, STS superior temporal sulcus, OFC 21 

orbitofrontal cortex, AIC anterior insular cortex. 22 
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Literature Hypothesized 
Regions (ROIs) 

Social 
Network 
Metrics 

Sample 
Size 

Age 
Range 

Correction for Multiple 
Comparisons Significant Regions 

Bickart et 
al., 2011 

1) amygdala 
2) hippocampus 
3) exploratory 
analysis of all 
other subcortical 
regions 
4) exploratory 
analysis of all 
cortical thickness 

2 subscales 
of SNI: the 
number of 
people in 
social 
network,  
the number 
of embedded 
networks 

N = 58 19 - 83 

For 1) and 2): linear 
regressions, uncorrected  
For 3): linear regressions, 
Bonferroni correction for 
testing multiple regions, 
but not for multiple SNIs  
For 4): general linear 
regressions, uncorrected 

L amygdala 
R amygdala 
If uncorrected for 
multiple comparison 
(p<0.01), also: 
R subgenual ACC 
L caudal SFG 
L caudal ITS 
 

Lewis et 
al., 2011 

1) mPFC 
2) TPJ 
3) STS 
4) frontal pole 

Dunbar’s 
number: the 
number of  
people 
contacted in 
previous 30 
days 

N = 45 18 - 50 

p < 0.001 uncorrected 
with an extent threshold 
of >5 voxels within ROIs 
*survived small volume 
correction at p = 0.05 
with 8mm radius spheres 

*Ventromedial 
frontal gyrus 
Medial orbitofrontal 
gyrus 

Kanai et 
al., 2012 

1) amygdala 
2) posterior STS 
3) TPJ 
4) mPFC 
5) precuneus 
6) medial 
temporal lobe 

Online 
social 
network 
size: the 
number of 
Facebook 
friends 

Sample 1 
N = 125 
Sample 2 
N = 40 

Sample 1 
23 ± 4 
Sample 2 
22 ± 3 

Sample 1 
p < 0.05 family-wise 
error corrected for the 
whole-brain volume 
*only survived correction 
for small volumes of 10 
mm spheres around ROIs 
Sample 2 
p < 0.05 uncorrected for 
testing multiple loci 
identified in Sample 1 

R posterior STS 
R entorhinal 
L middle temporal 
gyrus 
*L amygdala 
*R amygdala 

Bickart et 
al., 2012 

1) amygdala, 
controlling for 
network 
connectivity 

All three 
subscales of 
SNI 

N = 29 19 - 32 Linear regressions, 
uncorrected Amygdala 

Powell, et 
al., 2012 

1) orbital PFC 
2) dorsal PFC 

The number 
of people 
contacted in 
previous 7 
days 

N = 40 18 - 47 Path analysis, uncorrected Orbital PFC 

Von Der 
Heide et 
al., 2014 

1) amygdala 
2) R subgenual 
ACC 
3) L posterior 
ITS 
4) L posterior 
SFG 
5) posterior STS 
6) middle 
temporal gyrus 
7) entorhinal 
8) OFC 

3 measures: 
the number 
of Facebook 
friends,  
Dunbar’s 
number, 
Norbeck 
Social 
Support 
 

N = 40 
females 12 - 30 

p < 0.05 family-wise 
error corrected for small 
volumes of 10 mm radius 
spheres around the ROIs; 
uncorrected for testing 
multiple measures 

L amygdala, 
R amygdala, 
L posterior ITS 
L posterior SFG 
L entorhinal 
R entorhinal 
L OFC 
R OFC 

Noonan et 
al., 2018 1) ACC 

2 measures: 
the number 
of people 
contacted in 

N = 18 52 ± 15 

Whole brain approach 
only reporting regions 
that bilaterally survive 
(p < 0.0001) with an 

Subcallosal parts of 
vmPFC 
Anterior temporal 
cortex 
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 1 

2. Material and methods 2 

2.1 Participants 3 

Ninety-two healthy participants (41 females, Age (M = 29.64, SD = 6.30, ranged from 18 to 47)) 4 

were recruited from the Los Angeles metropolitan area by the Caltech Conte Center for Social 5 

Decision-Making (P50 MH094258). All participants were fluent in English, had normal or 6 

corrected-to-normal vision and hearing, had Full Scale Intelligence Quotient greater than or 7 

equal to 90, had no first degree relative with schizophrenia or autism spectrum disorder, and had 8 

no history of developmental, psychiatric, or neurological disease. All participants provided 9 

written informed consent approved by the Institutional Review Board of the California Institute 10 

of Technology.  11 

2.2 Magnetic Resonance Imaging 12 

All MRI data was acquired using a 3T whole-body system (Magnetom TIM Trio, Siemens 13 

Medical Solutions, Malvern, PA) with a 32 channel receive head array at the Caltech Brain 14 

Imaging Center. Structural imaging data was acquired by the Imaging Core of the Caltech Conte 15 

previous 7 
days, 
the number 
of people 
contacted in 
previous 30 
days 

extent threshold of >40 
voxels 
ROI approach 
p < 0.05 family-wise 
error corrected for small 
volumes of all voxels in 
the ROI 

The border of 
posterior cingulate 
cortex and precuneus 

Spagna et 
al., 
2018 

1) AIC 
2) amygdala 
3) exploratory 
analysis of all 
other cortical 
thickness 

A composite 
measure of 
all three 
subscales of 
SNI 

Sample 1 
N = 50 
Sample 2 
N = 100 

Sample 1 
19 - 37 
Sample 2  
18 - 29 

For 1) and 2): p < 0.05 
with contiguous-voxel 
extent thresholds 
estimated using 
AlphaSim 
For 3):  p < 0.05 family-
wise error corrected for 
the whole-brain volume 

L AIC in Sample 1 
R AIC in Sample 2 
and when both 
samples were 
combined 

Kwak et 
al., 2018 

1) amygdala 
2) OFC 
3) dorsal mPFC 
4) TPJ 
5) precuneus 

The number 
of people 
discussed 
things with 
in the last 12 
months 

N = 68 59 - 84 

p < 0.05 family-wise 
error corrected with a 
cluster defining threshold 
of p < 0.001 estimated by 
the Gaussian random 
field 

R OFC 
dorsal mPFC 
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Center for Social and Decision Neuroscience as part of a larger, multi-group consortium and 1 

analyzed retrospectively for this project. Structural images were acquired with one of two 2 

imaging protocols, corresponding to the first and second phases of the Caltech Conte Center (61 3 

participants from Phase 1 and 31 participants from Phase 2). The Phase 1 protocol included two 4 

independent MP-RAGE acquisitions with TR/TE/TI = 1500/2.9/800 ms, flip angle = 10°, 1 mm 5 

isotropic voxels, 176 slab partitions, no in-plane GRAPPA, for a total imaging time of 12 6 

minutes 52 seconds. The Phase 2 protocol included a single multi-echo MP-RAGE (MEMP-7 

RAGE) acquisition with TR/TE/TI = 2530/1.6 to 7.2/1100 ms, flip angle = 7°, 0.9 mm isotropic 8 

voxels, 208 slab partitions, in-plane GRAPPA R = 2, for a total imaging time of 6 minutes 3 9 

seconds. Both protocols generated T1-weighted structural images with comparable tissue contrast, 10 

SNR (following image or echo averaging) and voxel dimensions.  11 

2.3 Estimation of cortical and subcortical volumes 12 

Individual structural images were segmented and the cortical gray matter ribbon parcellated 13 

using the recon-all pipeline from Freesurfer v6.0.0 (Fischl, 2012). The pipeline initially 14 

registered and averaged the two separate T1-weighted images from the Phase 1 protocol prior to 15 

subsequent processing. Images from Phase 1 and Phase 2 protocols were processed 16 

independently and all images were resampled isotropically to 1 mm voxels prior to RF bias field 17 

correction and tissue segmentation. One hundred and forty-eight cortical gray matter parcel 18 

volumes (74 parcellations per hemisphere) corresponding to the Destrieux 2009 atlas (Destrieux, 19 

Fischl, Dale, & Halgren, 2010), seventeen subcortical region volumes, and estimated total 20 

intracranial volumes were compiled from the Freesurfer output for subsequent analysis in R. All 21 

cortical and subcortical volumes were normalized with respect to estimated total intracranial 22 

volume. 23 
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2.4 Social network index 1 

The social network metric used in the present study is a subscale of the social network index, or 2 

SNI (Cohen, Doyle, Skoner, Rabin, & Gwaltney, 1997). This metric is a self-report questionnaire 3 

that quantifies the number of people participants saw or talked to at least once every two weeks 4 

in 12 different social relationships (e.g., spouse, children, relative, friend, neighbor, workmate). 5 

Participants from Phase 1 and Phase 2 did not differ in mean SNI (t = 0.93, p = 0.355; two-6 

sample two-sided t-test). In addition to the SNI, we also asked participants to provide the modes 7 

of communication (e.g., face-to-face conversation, text, voice/video chat, social media) and types 8 

of support (e.g., emotional support, physical assistance, advice/information, companionship) 9 

used in those social relationships. Those variables were measured for the purpose of exploring 10 

whether SNI might be also associated with individual differences in modes of communication 11 

and types of support, as preregistered (see Appendix A). 12 

2.5 Psychological measures 13 

The cognitive ability of participants was measured with the Wechsler Abbreviated Scales of 14 

Intelligence-II (Wechsler, 2011), deriving two scores, verbal comprehension (M = 109.20, SD = 15 

10.02) and perceptual reasoning (M = 104.80, SD = 10.86). The emotional intelligence (EI) of 16 

participants was measured with the Mayer-Salovey-Caruso Emotional Intelligence Test (Mayer, 17 

Salovey, & Caruso, 2002), deriving two sub-scores, experiential EI (M = 103.60, SD = 14.48) 18 

and strategic EI (M = 99.49, SD = 10.54). The empathy level of participants was measured with 19 

the Empathy Quotient (Baron-Cohen & Wheelwright, 2004) [M = 50.84, SD = 12.05]. The 20 

personality of participants was measured with the Sixteen Personality Factor Questionnaire 21 

(Cattell, Eber, & Tatsuoka, 1970; Russell, Karol, & Institute for Personality and Ability Testing, 22 

2002), deriving five global scores, extraversion (M = 5.62, SD = 1.85), independence (M = 6.14, 23 
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SD = 1.67), tough-mindedness (M = 4.35, SD = 1.60), self-control (M = 4.35, SD = 1.38), and 1 

anxiety (M = 5.65, SD = 1.85). The affect of participants was measured with the Positive and 2 

Negative Affect Schedule (Watson, Clark, & Carey, 1988), deriving two scores, positive affect 3 

(M = 31.68, SD = 8.43) and negative affect (M = 12.53, SD = 4.03). The stress level of 4 

participants was measured with the Perceived Stress Scale (Cohen, Kamarck, & Mermelstein, 5 

1983) [M = 12.36, SD = 6.52]. The depression severity of participants was measured with the 6 

Beck Depression Inventory-II (Beck, Steer, & Brown, 1996) [M = 5.08, SD = 5.60]. The trait 7 

anxiety of participants was measured with the State-Trait Anxiety Inventory (Speilberger, 8 

Gorusch, Lushene, Vagg, & Jacobs, 1983) [M = 34.96, SD = 9.31].  9 

2.6 Predictive modeling framework 10 

To comprehensively understand the relationship between SNI and GMV, we carried out three 11 

independent analyses using three different predictive modeling frameworks (Figure 1). 12 

Framework 1 follows our pre-registered analysis plan and performed multivariate analysis (ridge 13 

regression) with cross-validation and feature selection. As recommended by recent research 14 

(Finn et al., 2015), we used univariate Pearson’s correlation between each feature and SNI as a 15 

criterion for feature selection. Specifically, we had an outer cross-validation loop that randomly 16 

split the data into training (80%) and test (20%) sets for 2000 iterations; in each outer loop 17 

iteration, the univariate Pearson’s correlation between each feature and SNI was assessed using 18 

the training data, and features that showed significant correlations with SNI (p < 0.05) were 19 

selected to construct a ridge regression model to predict SNI; the prediction accuracy of the 20 

model was then assessed using the test data. The hyperparameter (regularization penalty) of ridge 21 

regression was tuned using a nested cross-validation loop: the training data from the outer cross-22 

validation loop were further randomly split into inner-training (80%) and inner-test (20%) for 20 23 
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iterations, and the optimal hyperparameter value was selected among 20 values in the interval of 1 

[1, 10000] across the 20 iterations.  2 

To address the concern that the feature selection procedure might have omitted some features 3 

that did have associations with SNI, Framework 2 performed ridge regression with cross-4 

validation without feature selection: the same procedures as in Framework 1 were used to 5 

construct the outer cross-validation loop and to tune the hyperparameter of ridge regression, 6 

except that the ridge regression model was fitted with all features in each iteration instead of 7 

selected features. To address the concern that the weights produced by multivariate models such 8 

as ridge regression could be misleading in the presence of correlated noise (Haufe et al., 2014; 9 

Kriegeskorte & Douglas, 2019), Framework 3 performed univariate linear regressions between 10 

every feature and SNI with cross-validation; cross-validation was constructed following the same 11 

procedures as in the first two frameworks for the outer cross-validation loop. 12 

 13 

Fig. 1. Illustration of three predictive modeling frameworks.  14 
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(A) Framework 1 performed ridge regression with cross-validation using selected features. 1 

Features were selected within the cross-validation loop based on univariate correlations. The 2 

hyperparameter of ridge regression was tuned using a nested cross-validation loop. (B) 3 

Framework 2 performed ridge regression with cross-validation using all features. (C) Framework 4 

3 performed univariate ordinary least-squares linear regression between each feature and SNI 5 

within the cross-validation loop.  6 

The prediction accuracy of each framework was assessed with two measures, Pearson’s r and 7 

prediction 𝑅2. Pearson’s r assessed the correlation between observed and predicted values of SNI 8 

in the test data. Prediction 𝑅2 measured the improvement of predicting SNI with our frameworks 9 

over the observed mean of SNI in the test data. The final reported prediction accuracy for each 10 

framework was averaged over the 2000 (outer loop) cross-validation splits. The p-values of 11 

prediction accuracies and model coefficients were calculated from permutations, where the null 12 

distributions were generated by randomly permuting the SNI labels across the sample for 10,000 13 

iterations and in each iteration repeating all the analysis steps of a predictive framework. We 14 

handled multiple comparisons by correcting for false discovery rate (q < 0.05), which was 15 

applied when multiple features were tested for associations with SNI independently (i.e., 16 

univariate correlations in Framework 3) as well as when they were tested jointly (i.e., model 17 

coefficients in Frameworks 1 and 2). We handled the only binary feature, gender, by both 18 

removing the feature (which generated the results we reported here) and stratification (i.e., the 19 

training and test sets in cross-validation had approximately equal number of males and females); 20 

results from stratification corroborated those reported in the present paper. All analysis codes can 21 

be accessed at the Open Science Framework 22 

https://osf.io/zumwt/?view_only=4f11ca10ed5947c1be1ecdea57cfdff3. 23 
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3. Results 1 

As preregistered, we first analyzed whether individual differences in SNI could be predicted by 2 

demographic characteristics and psychological measures alone. An exploratory factor analysis 3 

showed that a six-dimensional structure underlies the common variance of these eighteen 4 

psychological/demographic features (negative affect, cognitive control, extraversion, emotional 5 

intelligence, education, age and gender, see Appendix B). Analyses across all three frameworks 6 

consistently indicated that these eighteen psychological/demographic features alone did not 7 

predict SNI (see Appendix C). 8 

Next, we inspected whether cortical and subcortical GMV together with psychological/ 9 

demographic features could predict individual differences in SNI. Analyses from Framework 3 10 

showed that the effect size of every feature was weak, and none of the features alone predicted 11 

SNI after correcting for multiple comparisons (Table 2; see Appendix D for results of every 12 

feature). While univariate analyses generated model coefficients that were straightforward to 13 

interpret, they left open the question of whether multiple features combined might predict SNI. 14 

Analyses from Framework 1 and 2 showed that features in their entirety did not predict SNI 15 

either (Fig. 2).  16 

Table 2 17 

Results from univariate analyses of Framework 3. Model coefficients and prediction accuracies 18 

(with SDs, and p-values corrected for FDR) of the top ten features with the largest positive and 19 

negative effect sizes. Abbreviations: L left, R right, G gyrus/gyri, S sulcus/sulci, coeff coefficient. 20 

Features coeff 
coeff-

SD 
coeff-

p 
r r-SD r-p R2 

R2-
SD 

R2-
p 

16PF_Extraversion 0.36 0.04 0.13 0.35 0.18 0.78 0.10 0.13 0.77 

16PF_Independence 0.31 0.05 0.44 0.29 0.23 0.78 0.06 0.16 0.77 

L-Accumbens-area 0.23 0.05 0.89 0.23 0.20 0.78 0.03 0.09 0.77 
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Empathy Quotient 0.22 0.05 0.89 0.20 0.22 0.78 0.02 0.10 0.77 

PANAS-Positive 0.20 0.04 0.89 0.19 0.18 0.78 0.02 0.08 0.77 

L-Middle-temporal-G 0.19 0.05 0.89 0.17 0.19 0.78 0.01 0.08 0.77 

L-Planum-temporale-superior-temporal-G 0.18 0.06 0.89 0.17 0.25 0.78 0.00 0.10 0.77 

R-Caudate 0.17 0.06 0.89 0.17 0.23 0.78 0.00 0.09 0.77 

L-Anterior-circular-S-insula 0.17 0.06 0.89 0.12 0.25 0.78 -0.02 0.09 0.77 

L-Caudate 0.15 0.06 0.89 0.15 0.23 0.78 -0.01 0.08 0.77 

L-Calcarine-S -0.18 0.05 0.89 0.18 0.20 0.78 0.01 0.08 0.77 

L-Inferior-circular-S-insula -0.18 0.04 0.89 0.18 0.17 0.78 0.02 0.06 0.77 

R-Cuneus -0.19 0.05 0.89 0.19 0.19 0.78 0.02 0.08 0.77 

L-Anterior-transverse-collateral-S -0.21 0.06 0.89 0.20 0.23 0.78 0.01 0.11 0.77 

Perceived Stress -0.22 0.04 0.89 0.22 0.18 0.78 0.03 0.08 0.77 

L-Temporal-pole -0.24 0.05 0.89 0.24 0.19 0.78 0.04 0.10 0.77 

STAI-Trait -0.26 0.04 0.79 0.25 0.18 0.78 0.05 0.10 0.77 

L-Paracentral-lobule&S -0.29 0.05 0.44 0.29 0.19 0.78 0.07 0.12 0.77 

R-Lingual-medial-occipitotemporal-G -0.30 0.04 0.44 0.31 0.17 0.78 0.08 0.10 0.77 

L-Inferior-occipital-G&S -0.35 0.04 0.13 0.34 0.18 0.78 0.10 0.13 0.77 

 1 

2 

 3 

Fig. 2. Predicting SNI with all GMV and psychological/demographic features.  4 
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(A) Results from analyses of Framework 1. The selection frequency (blue bars) of the top (most 1 

frequently selected) eighteen features over the 2000 iterations of the outer cross-validation loop 2 

(left) and the mean prediction accuracy (red vertical line, assessed with Pearson’s r) averaged 3 

over the 2000 outer cross-validation iterations compared to the null distribution generated with 4 

permutation (right). The mean prediction accuracy assessed with prediction 𝑅2 = 0.060, p = 5 

0.136. (B) Results from analyses of Framework 2. Model coefficients (blue dots) and standard 6 

deviations (black bars) of the top eighteen features (left) and the mean prediction accuracy (red 7 

vertical line, assessed with Pearson’s r) averaged over the 2000 outer cross-validation iterations 8 

compared to the null distribution generated with permutation (right). The mean prediction 9 

accuracy assessed with prediction 𝑅2 = -0.023, p = 0.404. 10 

While our study used a predictive framework (using cross-validation), we also recognize the 11 

value of descriptive effect sizes in providing results that could be used to formulate hypotheses 12 

to be tested in future studies. To that end, we also show, for every cortical and subcortical region 13 

over the brain, the univariate effect size of the correlation between SNI and GMV estimated 14 

using all data (Figure 3, Appendix E). 15 
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 1 

Fig. 3. Descriptive effect sizes between SNI and every cortical GMV.  2 

The descriptive effect size of the univariate associations between all cortical regions and SNI are 3 

shown to provide background for future studies that could test hypotheses based on these results. 4 

Four renderings of the univariate Pearson correlations (uncorrected) between individual cortical 5 

regions and SNI are projected on the pial surface for (A) the lateral view of the left hemisphere, 6 

(B) the superior view of both hemispheres, (C) the lateral view of the right hemisphere, (D) the 7 

medial view of the left hemisphere, (E) the inferior view of both hemispheres, and (F) the medial 8 

view of the right hemisphere. These effect sizes provide recommendations for the sample sizes 9 

required to test associations between specific cortical regions and SNI, shown in Appendix E. 10 

4. Discussion 11 

Following our preregistration, we applied a data-driven approach to comprehensively examine 12 

the relationship between SNI and demographic, psychological, cortical and subcortical GMV 13 
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features, using three different predictive modeling frameworks (Fig. 1). In our sample of healthy 1 

adult humans, no evidence was found that any feature was significantly associated with SNI after 2 

multiple comparison corrections (Fig. 2 and Table 2). It is important to note that whether a given 3 

effect will be detected as significant or not is of course highly dependent on the sample size (i.e., 4 

the larger the sample size, the easier it is to detect a given effect size); similarly, estimated effect 5 

sizes and their statistical significance will vary depending on the analysis frameworks (e.g., 6 

methods for model construction and multiple comparison corrections). Our study used a 7 

comparatively large sample, tested three different predictive modeling frameworks, and included 8 

pre-registration to verify the degrees of freedom in our analyses and to facilitate sharing of data 9 

and codes. Regardless of statistical significance, we note that the estimated effect size of most 10 

features, in particular 159 of the 165 cortical and subcortical GMV features, were very weak, 11 

even when assessed with the simplest univariate correlation method (absolute values less than 12 

0.20; see Fig. 3 and Appendix E). These findings do not demonstrate that there is no association 13 

between GMV and SNI, but they do urge caution in interpreting prior reports of such 14 

associations. We suggest that additional studies are needed on this topic, and that a future meta-15 

analysis based on all studies will be required to obtain a more accurate estimate of the true effect 16 

sizes on this topic. 17 

Three features reported in previous studies (Table 1; Asendorpf & Wilpers, 1998) to have a 18 

significant positive association with social network metrics—extraversion, left middle temporal 19 

gyrus GMV, and left anterior insula GMV—and one feature reported in previous studies (Nabi, 20 

Prestin, & So, 2013) to have a significant negative association with social network metrics—21 

perceived stress—indeed showed relatively larger effect sizes in expected directions among the 22 

features in our sample (Table 2). However, those effect sizes were still very weak and were not 23 
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significant in our study after multiple comparison corrections. The left temporal pole GMV has 1 

also been reported to positively correlate with social network metrics (Table 1); though this 2 

region showed a relatively larger effect size among our features (Table 2), it was in the opposite 3 

direction from what has been reported previously (negative). Previously unreported regions in 4 

the left occipital cortex also showed a relatively larger negative effect among the features. We do 5 

not have an explanation for these negative effects and suggest that they may well be statistically 6 

unreliable effects that turned up by chance given that we sampled all brain regions—indeed, 7 

these negative effects were not significant after multiple comparison corrections. Nonetheless, 8 

the specific GMV regions discussed in this section should serve as predictors in future 9 

hypothesis-driven studies that could focus on one or several of these features. 10 

We previously noted the reliable positive correlation between neocortex volume and social group 11 

size found across species (Dunbar, 1998; Dunbar & Shultz, 2007), and that this finding might 12 

suggest the possibility that such a relationship would also exist across individuals within a single 13 

species such as humans. However, any reliable relationship between social network metrics for a 14 

specific individual and GMV is less plausible once we consider that social network metrics such 15 

as SNI in individual humans is quite changeable, fluctuating as people move to new locations, 16 

get a new job, or encounter other common transitions in their lives. Our failure to replicate 17 

previously reported effects of GMV fit with this picture, and raise the possibility that many prior 18 

findings might be false positives. Measures other than the SNI that could obtain more temporally 19 

stable metrics related to social network size would seem better suited for investigating 20 

associations with GMV. Alternatively, more dynamic measures of brain function, rather than 21 

structure, would seem better suited for exploring associations with SNI. We would expect that 22 

functional measures (or possibly others, such as from diffusion MRI) might well yield 23 
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associations with SNI (Bickart, Hollenbeck, Barrett, & Dickerson, 2012; Dziura & Thompson, 1 

2014; Hampton, Unger, Von Der Heide, & Olson, 2016; Pillemer, Holtzer, & Blumen, 2017). 2 

The non-significant effects of many previously reported regions that we found in the present 3 

study might be related to several limitations of our study, and of course do not demonstrate that 4 

there is no effect. First, compared to the seminal study that reported a correlation between 5 

amygdala volume and SNI (Bickart et al., 2011), our sample has a narrower age range, which 6 

might result in less variability in amygdala volume and therefore lower power to detect an 7 

association between amygdala volume and SNI. Second, all cortical and subcortical GMV used 8 

in the present study were measured based on automated segmentations from FreeSurfer without 9 

any manual correction (although we did carry out manual checks on a subset of the segmentation 10 

results to verify their quality). This procedure has been shown to be no less accurate than manual 11 

labeling (Bickart et al., 2011; Fischl et al., 2002), yet potential errors in segmentation might have 12 

also reduced power to find a relationship between SNI and GMV.  13 

We conclude with three recommendations for future research. First, studies attempting to test the 14 

relationship between social network metrics and structural brain measures in humans should first 15 

ensure that their respective sets of measures are approximately matched in terms of temporal 16 

stability (e.g., using structural MRI predictors for temporally stable network measures, but 17 

functional MRI predictors for metrics such as the SNI). Second, given concerns about false 18 

positives when testing for associations between multiple regions and social network metrics, 19 

future studies should try to preregister their hypotheses—and in particular, methods of correcting 20 

for multiple comparisons—before conducting the analyses (Nosek, Ebersole, DeHaven, & 21 

Mellor, 2018). Such preregistered studies, if focused on specific neuroanatomical regions, should 22 

include sample sizes sufficiently large to detect the hypothesized associations (Appendix E). As 23 
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well, it is essential for studies to share all data and codes (e.g., through OSF) so that future meta-1 

analyses can capitalize on all accumulated findings. Third, future studies should focus on 2 

understanding the mechanisms that might explain any association between social network 3 

metrics and GMV of some regions in the brain. For example, some studies have suggested that 4 

mentalizing might mediate such associations (Powell, Lewis, Roberts, García-Fiñana, & Dunbar, 5 

2012). This hypothesis could be tested with a more formal structural equation model, namely, 6 

that GMV in brain regions thought to subserve mentalizing causes individual differences in 7 

actual mentalizing ability in real life, which in turn has a causal effect on how many people an 8 

individual associates with in social networks. Future studies employing longitudinal designs (e.g., 9 

repeatedly measuring social network metrics and GMV over years), mediation analyses, and 10 

meta-analyses would shed new light on the mechanisms underlying the relationship between 11 

social network metrics and structural brain measures.   12 
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Appendices 1 

 2 

Appendix A. Correlations between SNI, modes of communication, and types of support.  3 

As preregistered, we explored the relationship between SNI and modes of communication and 4 

types of support in the 12 social relationships. We collected these measures in two independent 5 

samples of participants (an in-lab sample with 57 participants and an online-sample with 101 6 

participants), reporting findings in both samples as replications. Besides the Social Network 7 

Index (from which we derived all three scores: the number of people in network, network 8 

diversity, and the number of embedded networks), participants were asked whether they used 9 

any of the seven modes of communication (face-to-face conversation, text, voice/video chat, 10 

email, social media, gaming, touch) in each social relationship, and furthermore whether they 11 

received or provided any of the five types of support (emotional support, physical/material 12 

assistance, advice/information, appraisal, companionship) in each social relationship. A 13 

summary score for each mode and each type of support was derived by averaging the responses 14 

across all social relationships. Numbers indicate the average correlation across the two samples. 15 

Numbers were colored only if the correlations were significant in both samples.  16 

 17 
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Appendix B. Exploratory factor analysis on demographic characteristics and psychological 1 

measures.  2 

Cattell’s scree test and Kaiser’s rule both indicated that a six-factor structure underlies the 3 

common variance in the data. Therefore, we applied exploratory factor analysis to extract six 4 

factors using the minimal residual method. The solutions were rotated with oblimin for 5 

interpretability. Each column plotted the strength of the factor loadings (x-axis, absolute value) 6 

across all demographic characteristics and psychological measures. The color of the bar 7 

indicated the sign of the loading (red for positive and blue for negative; more saturated for higher 8 

absolute values). 9 

 10 

 11 

  12 
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Appendix C. Predicting SNI with demographic and psychological features alone.  1 

(A) The selection frequency of each feature (left) and the model prediction accuracy compared 2 

with the null distribution (right) obtained from Framework 1. The model accuracy assessed with 3 

prediction 𝑅2 = 0.085, p = 0.072. (B) The model coefficients and standard deviations (left) and 4 

the model prediction accuracy compared with the null distribution (right) obtained from 5 

Framework 2. The model accuracy assessed with prediction 𝑅2 = 0.054, p = 0.185. (C) The 6 

model coefficients and accuracies (assessed with both Pearson’s r and prediction 𝑅2) with SDs 7 

and p-values corrected for FDR obtained from Framework 3.  8 

 9 

 10 

 11 

 12 
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C 1 

Features Coeff Coeff-
SD 

Coeff-
p-

correct 

Accuracy-
r r-SD r-p-

correct 
Accuracy-

R2 
R2-
SD 

R2-p-
correct 

16PF: Extraversion 0.36 0.04 0.03 0.35 0.18 0.60 0.10 0.13 0.28 

16PF: Independence 0.31 0.05 0.06 0.29 0.22 0.60 0.06 0.15 0.49 

Empathy Quotient 0.22 0.05 0.22 0.22 0.22 0.60 0.02 0.10 0.57 

PANAS-Positive 0.20 0.04 0.27 0.18 0.18 0.60 0.02 0.08 0.59 

MSCEIT: Strategic 0.09 0.05 0.67 0.09 0.22 0.60 -0.01 0.05 0.76 

Education 0.08 0.04 0.67 0.05 0.19 0.60 -0.01 0.04 0.76 
Perceptual 
Reasoning 0.06 0.05 0.72 -0.01 0.21 0.64 -0.02 0.04 0.76 

PANAS-Negative 0.00 0.04 1.00 -0.13 0.14 0.76 -0.01 0.02 0.76 

Age 0.00 0.07 1.00 -0.21 0.16 0.81 -0.04 0.05 0.77 
Verbal 
Comprehension -0.05 0.06 0.73 -0.06 0.21 0.68 -0.02 0.04 0.76 

MSCEIT: 
Experiential -0.08 0.06 0.67 -0.02 0.25 0.64 -0.03 0.06 0.76 

16PF: Self-Control -0.08 0.05 0.67 0.05 0.21 0.60 -0.01 0.04 0.76 

Depression -0.12 0.05 0.59 0.10 0.23 0.60 -0.01 0.06 0.76 
16PF: Tough-
Mindedness -0.15 0.05 0.41 0.15 0.19 0.60 0.01 0.06 0.76 

16PF: Anxiety -0.16 0.05 0.41 0.14 0.21 0.60 0.00 0.07 0.76 

Perceived Stress -0.22 0.05 0.22 0.22 0.18 0.60 0.03 0.08 0.57 

STAI-Trait -0.25 0.04 0.13 0.25 0.19 0.60 0.05 0.10 0.49 
 2 

  3 
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Appendix D. Predicting SNI with GMV and all other features using Framework 3.  1 

The model coefficients and accuracies (assessed with both Pearson’s r and prediction 𝑅2) with 2 

SDs and p-values corrected for FDR obtained from Framework 3.  3 

Features coeff 
coeff-

SD 
coeff-p r r-SD r-p R2 

R2-
SD 

R2-p 

16PF_Extraversion 0.36 0.04 0.13 0.35 0.18 0.78 0.10 0.13 0.77 

16PF_Independence 0.31 0.05 0.44 0.29 0.23 0.78 0.06 0.16 0.77 

L-Accumbens-area 0.23 0.05 0.89 0.23 0.20 0.78 0.03 0.09 0.77 

Empathy Quotient 0.22 0.05 0.89 0.20 0.22 0.78 0.02 0.10 0.77 

PANAS-Positive 0.20 0.04 0.89 0.19 0.18 0.78 0.02 0.08 0.77 

L-Middle-temporal-G 0.19 0.05 0.89 0.17 0.19 0.78 0.01 0.08 0.77 

L-Planum-temporale-superior-
temporal-G 

0.18 0.06 0.89 0.17 0.25 0.78 0.00 0.10 0.77 

R-Caudate 0.17 0.06 0.89 0.17 0.23 0.78 0.00 0.09 0.77 

L-Anterior-circular-S-insula 0.17 0.06 0.89 0.12 0.25 0.78 -0.02 0.09 0.77 

L-Caudate 0.15 0.06 0.89 0.15 0.23 0.78 -0.01 0.08 0.77 

L-Posterior-dorsal-cingulate-
G_dPCC 

0.14 0.06 0.89 0.10 0.23 0.78 -0.01 0.07 0.77 

R-Superior-precentral-S 0.13 0.06 0.89 0.07 0.24 0.78 -0.02 0.07 0.77 

L-Amygdala 0.12 0.06 0.89 0.10 0.24 0.78 -0.02 0.07 0.77 

R-Orbital-inferior-frontal-G 0.11 0.05 0.89 0.10 0.20 0.78 -0.01 0.05 0.77 

R-Pallidum 0.11 0.05 0.89 0.10 0.21 0.78 -0.01 0.06 0.77 

MSCEIT_Strategic 0.09 0.05 0.92 0.07 0.23 0.78 -0.01 0.05 0.77 

R-Amygdala 0.09 0.06 0.93 0.03 0.24 0.78 -0.02 0.06 0.77 

R-Suborbital-S 0.08 0.05 0.96 0.02 0.22 0.78 -0.02 0.05 0.77 

Education 0.08 0.04 0.96 0.05 0.19 0.78 -0.01 0.03 0.77 

L-Supramarginal-G 0.07 0.06 0.96 -0.02 0.24 0.78 -0.02 0.05 0.77 

L-Middle-anterior-cingulate-
G&S_aMCC 

0.07 0.04 0.97 0.02 0.20 0.78 -0.01 0.03 0.77 

Perceptual Reasoning 0.06 0.05 0.97 -0.02 0.21 0.78 -0.02 0.04 0.77 

L-Medial-orbital-S 0.06 0.05 0.97 -0.02 0.21 0.78 -0.02 0.04 0.77 

R-Triangular-inferior-frontal-G 0.05 0.05 0.98 -0.03 0.19 0.78 -0.02 0.03 0.77 

R-Lateral-orbital-S 0.05 0.05 0.98 -0.04 0.19 0.78 -0.02 0.03 0.77 

R-Anterior-transverse-temporal-G 0.05 0.05 0.98 -0.06 0.19 0.78 -0.02 0.03 0.77 

L-Pericallosal-S 0.05 0.05 0.98 -0.07 0.20 0.78 -0.02 0.03 0.77 

L-Pallidum 0.04 0.06 0.98 -0.10 0.21 0.78 -0.03 0.04 0.77 

R-Inferior-temporal-G 0.04 0.06 0.98 -0.10 0.19 0.78 -0.03 0.04 0.77 

R-Anterior-circular-S-insula 0.04 0.06 0.98 -0.10 0.21 0.78 -0.02 0.04 0.77 

R-Inferior-temporal-S 0.04 0.05 0.98 -0.07 0.19 0.78 -0.02 0.03 0.77 

R-Hippocampus 0.04 0.05 0.98 -0.10 0.19 0.78 -0.02 0.03 0.77 

R-Posterior-dorsal-cingulate-
G_dPCC 

0.03 0.04 0.98 -0.08 0.16 0.78 -0.02 0.03 0.77 
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L-Inferior-temporal-S 0.03 0.05 0.98 -0.10 0.17 0.78 -0.02 0.03 0.77 

L-Occipital-pole 0.03 0.06 0.98 -0.16 0.19 0.78 -0.03 0.05 0.77 

R-Precuneus 0.03 0.05 0.98 -0.14 0.16 0.78 -0.02 0.03 0.77 

R-Lateral-superior-temporal-G 0.03 0.05 0.98 -0.12 0.17 0.78 -0.02 0.03 0.77 

R-Subparietal-S 0.02 0.05 0.98 -0.13 0.15 0.78 -0.02 0.03 0.77 

L-Middle-posterior-cingulate-
G&S_pMCC 

0.02 0.05 0.98 -0.14 0.15 0.78 -0.02 0.03 0.77 

R-Planum-polare-superior-
temporal-G 

0.02 0.05 0.98 -0.13 0.14 0.78 -0.02 0.02 0.77 

L-Subcallosal-G 0.02 0.05 0.98 -0.13 0.14 0.78 -0.02 0.02 0.77 

L-Lateral-superior-temporal-G 0.02 0.05 0.98 -0.14 0.14 0.78 -0.02 0.03 0.77 

R-Pericallosal-S 0.02 0.05 0.98 -0.15 0.15 0.78 -0.02 0.03 0.77 

L-Subparietal-S 0.01 0.06 0.98 -0.17 0.16 0.78 -0.03 0.04 0.77 

L-Frontomarginal-G&S 0.01 0.06 0.99 -0.19 0.15 0.79 -0.03 0.04 0.77 

R-Middle-temporal-G 0.01 0.04 0.98 -0.12 0.12 0.78 -0.01 0.02 0.77 

R-Inferior-frontal-S 0.01 0.05 0.99 -0.17 0.14 0.78 -0.02 0.03 0.77 

L-Middle-frontal-S 0.01 0.06 0.99 -0.17 0.14 0.78 -0.03 0.03 0.77 

L-S-intermedius-primus 0.00 0.06 1.00 -0.17 0.14 0.78 -0.03 0.03 0.77 

R-Anterior-occipital-S&preoccipital-
notch 

0.00 0.05 1.00 -0.14 0.12 0.78 -0.02 0.03 0.77 

R-Central-S 0.00 0.06 1.00 -0.18 0.14 0.78 -0.03 0.04 0.77 

R-Superior-temporal-S 0.00 0.06 1.00 -0.18 0.14 0.78 -0.03 0.04 0.77 

Age 0.00 0.07 1.00 -0.21 0.16 0.81 -0.04 0.05 0.78 

PANAS-Negative 0.00 0.04 1.00 -0.14 0.13 0.78 -0.01 0.02 0.77 

L-Postcentral-G 0.00 0.06 1.00 -0.17 0.14 0.78 -0.03 0.03 0.77 

L-Middle-occipital-S&lunatus-S -0.01 0.05 1.00 -0.15 0.13 0.78 -0.02 0.03 0.77 

L-Lateral-orbital-S -0.01 0.05 1.00 -0.15 0.14 0.78 -0.02 0.03 0.77 

L-Putamen -0.01 0.06 0.98 -0.17 0.15 0.78 -0.03 0.04 0.77 

R-Medial-orbital-S -0.01 0.05 0.98 -0.15 0.14 0.78 -0.02 0.03 0.77 

R-Lateral-occipitotemporal-G -0.01 0.06 0.98 -0.17 0.15 0.78 -0.03 0.04 0.77 

L-Inferior-temporal-G -0.02 0.05 0.98 -0.15 0.15 0.78 -0.02 0.03 0.77 

L-Long-insular-G&central-insula-S -0.02 0.05 0.98 -0.14 0.14 0.78 -0.02 0.03 0.77 

L-Precuneus -0.02 0.06 0.98 -0.16 0.16 0.78 -0.03 0.04 0.77 

L-Angular-G -0.02 0.06 0.98 -0.17 0.16 0.78 -0.03 0.04 0.77 

R-Frontomarginal-G&S -0.02 0.06 0.98 -0.17 0.16 0.78 -0.03 0.04 0.77 

R-Supramarginal-G -0.02 0.05 0.98 -0.13 0.15 0.78 -0.02 0.03 0.77 

R-Middle-posterior-cingulate-
G&S_pMCC 

-0.02 0.06 0.98 -0.15 0.17 0.78 -0.03 0.04 0.77 

R-S-intermedius-primus -0.02 0.06 0.98 -0.15 0.16 0.78 -0.03 0.04 0.77 

L-Posterior-lateral-S -0.02 0.07 0.98 -0.18 0.17 0.78 -0.03 0.05 0.77 

L-Superior-precentral-S -0.02 0.04 0.98 -0.10 0.15 0.78 -0.01 0.02 0.77 

R-Superior-occipital-S&transverse-
occipital-S 

-0.02 0.04 0.98 -0.11 0.15 0.78 -0.02 0.03 0.77 

R-Short-insular-G -0.03 0.06 0.98 -0.15 0.17 0.78 -0.03 0.04 0.77 

R-Lateral-occipitotemporal-S -0.03 0.05 0.98 -0.10 0.16 0.78 -0.02 0.03 0.77 
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L-Anterior-occipital-S&preoccipital-
notch 

-0.03 0.04 0.98 -0.09 0.16 0.78 -0.02 0.02 0.77 

L-Superior-temporal-S -0.03 0.06 0.98 -0.13 0.18 0.78 -0.03 0.04 0.77 

L-Planum-polare-superior-
temporal-G 

-0.04 0.05 0.98 -0.10 0.18 0.78 -0.02 0.03 0.77 

R-Postcentral-G -0.04 0.06 0.98 -0.13 0.19 0.78 -0.03 0.04 0.77 

L-Superior-occipital-G -0.04 0.05 0.98 -0.09 0.18 0.78 -0.02 0.03 0.77 

L-Middle-occipital-G -0.04 0.05 0.98 -0.10 0.19 0.78 -0.02 0.04 0.77 

L-Anterior-transverse-temporal-G -0.04 0.05 0.98 -0.09 0.18 0.78 -0.02 0.03 0.77 

R-Anterior-cingulate-G&S_ACC -0.04 0.05 0.98 -0.07 0.19 0.78 -0.02 0.03 0.77 

L-Central-S -0.04 0.04 0.98 -0.04 0.18 0.78 -0.01 0.03 0.77 

R-Middle-occipital-G -0.04 0.04 0.98 -0.04 0.18 0.78 -0.01 0.03 0.77 

R-Transverse-frontopolar-G&S -0.04 0.05 0.98 -0.07 0.18 0.78 -0.02 0.03 0.77 

R-Putamen -0.05 0.05 0.98 -0.07 0.21 0.78 -0.02 0.04 0.77 

L-Subcentral-G&S -0.05 0.06 0.98 -0.08 0.22 0.78 -0.03 0.04 0.77 

Brain-Stem -0.05 0.06 0.98 -0.08 0.20 0.78 -0.03 0.04 0.77 

L-parahippocampal-medial-
occipitotemporal-G 

-0.05 0.05 0.98 -0.04 0.21 0.78 -0.02 0.04 0.77 

Verbal Comprehension -0.05 0.06 0.98 -0.07 0.21 0.78 -0.03 0.04 0.77 

L-Cerebellum-Cortex -0.05 0.06 0.98 -0.09 0.22 0.78 -0.03 0.05 0.77 

L-Marginal-cingulate-S -0.06 0.05 0.98 -0.05 0.23 0.78 -0.02 0.04 0.77 

R-Accumbens-area -0.06 0.05 0.98 -0.07 0.21 0.78 -0.02 0.04 0.77 

R-Planum-temporale-superior-
temporal-G 

-0.06 0.05 0.97 -0.03 0.21 0.78 -0.02 0.04 0.77 

L-Superior-frontal-G -0.06 0.05 0.98 -0.03 0.22 0.78 -0.02 0.04 0.77 

R-Posterior-lateral-S -0.06 0.04 0.97 0.00 0.19 0.78 -0.01 0.03 0.77 

R-Middle-frontal-G -0.07 0.07 0.97 -0.06 0.26 0.78 -0.03 0.06 0.77 

L-Hippocampus -0.07 0.05 0.96 0.00 0.22 0.78 -0.02 0.04 0.77 

L-Posterior-ventral-cingulate-
G_vPCC 

-0.07 0.04 0.96 0.05 0.18 0.78 -0.01 0.03 0.77 

R-Postcentral-S -0.07 0.06 0.96 -0.01 0.23 0.78 -0.02 0.05 0.77 

R-Superior-occipital-G -0.07 0.05 0.96 0.02 0.21 0.78 -0.01 0.04 0.77 

L-Intraparietal-S&transverse-
parietal-S 

-0.07 0.05 0.96 0.00 0.23 0.78 -0.02 0.05 0.77 

L-Middle-frontal-G -0.07 0.07 0.96 -0.04 0.25 0.78 -0.03 0.06 0.77 

L-Opercular-inferior-frontal-G -0.08 0.05 0.96 0.04 0.22 0.78 -0.01 0.04 0.77 

16PF_Self-Control -0.08 0.05 0.96 0.04 0.22 0.78 -0.01 0.04 0.77 

MSCEIT_Experiential -0.08 0.06 0.96 -0.01 0.25 0.78 -0.03 0.06 0.77 

R-Superior-frontal-S -0.08 0.05 0.94 0.03 0.23 0.78 -0.02 0.05 0.77 

R-Inferior-circular-S-insula -0.08 0.06 0.93 0.03 0.24 0.78 -0.02 0.05 0.77 

R-Occipital-pole -0.08 0.06 0.93 0.03 0.22 0.78 -0.02 0.05 0.77 

L-Medial-occipitotemporal-
S&lingual-S 

-0.08 0.05 0.93 0.04 0.20 0.78 -0.01 0.04 0.77 

L-Inferior-frontal-S -0.09 0.04 0.93 0.08 0.18 0.78 -0.01 0.04 0.77 

R-Transverse-temporal-S -0.09 0.12 0.93 -0.07 0.35 0.78 -0.07 0.15 0.89 

R-Parieto-occipital-S -0.09 0.06 0.93 0.04 0.25 0.78 -0.02 0.06 0.77 
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R-Superior-parietal-lobule -0.09 0.06 0.93 0.04 0.23 0.78 -0.02 0.06 0.77 

L-Posterior-transverse-collateral-S -0.09 0.05 0.92 0.06 0.21 0.78 -0.01 0.05 0.77 

R-Precentral-G -0.10 0.05 0.92 0.08 0.20 0.78 -0.01 0.05 0.77 

R-Angular-G -0.10 0.07 0.92 0.00 0.27 0.78 -0.03 0.07 0.77 

R-Orbital-G -0.10 0.05 0.92 0.07 0.22 0.78 -0.01 0.05 0.77 

L-Superior-occipital-S&transverse-
occipital-S 

-0.10 0.05 0.92 0.07 0.20 0.78 -0.01 0.04 0.77 

R-Middle-frontal-S -0.10 0.05 0.92 0.06 0.22 0.78 -0.01 0.05 0.77 

L-Transverse-temporal-S -0.10 0.04 0.92 0.08 0.19 0.78 -0.01 0.04 0.77 

L-Orbital-G -0.10 0.05 0.92 0.08 0.21 0.78 -0.01 0.05 0.77 

R-Cerebellum-Cortex -0.10 0.06 0.92 0.02 0.25 0.78 -0.03 0.07 0.77 

L-Lateral-occipitotemporal-S -0.11 0.05 0.91 0.09 0.21 0.78 -0.01 0.05 0.77 

R-Middle-anterior-cingulate-
G&S_aMCC 

-0.11 0.05 0.89 0.06 0.22 0.78 -0.02 0.06 0.77 

R-Anterior-transverse-collateral-S -0.11 0.07 0.89 0.08 0.27 0.78 -0.02 0.08 0.77 

R-Horizontal-anterior-lateral-S -0.11 0.05 0.89 0.13 0.20 0.78 0.00 0.05 0.77 

L-Anterior-cingulate-G&S_ACC -0.11 0.05 0.89 0.09 0.23 0.78 -0.01 0.06 0.77 

R-Intraparietal-S&transverse-
parietal-S 

-0.11 0.05 0.89 0.10 0.20 0.78 -0.01 0.05 0.77 

R-Long-insular-G&central-insula-S -0.11 0.05 0.89 0.11 0.20 0.78 -0.01 0.05 0.77 

R-Subcentral-G&S -0.11 0.05 0.89 0.11 0.20 0.78 -0.01 0.05 0.77 

R-Marginal-cingulate-S -0.11 0.07 0.89 0.09 0.25 0.78 -0.02 0.07 0.77 

L-Superior-circular-S-insula -0.11 0.05 0.89 0.08 0.23 0.78 -0.01 0.06 0.77 

R-Temporal-pole -0.11 0.05 0.89 0.11 0.22 0.78 -0.01 0.06 0.77 

L-Horizontal-anterior-lateral-S -0.12 0.05 0.89 0.07 0.20 0.78 -0.01 0.05 0.77 

L-Short-insular-G -0.12 0.06 0.89 0.10 0.23 0.78 -0.01 0.06 0.77 

L-Inferior-precentral-S -0.12 0.05 0.89 0.10 0.20 0.78 -0.01 0.05 0.77 

Beck Depression Inventory -0.12 0.06 0.89 0.09 0.24 0.78 -0.01 0.07 0.77 

R-Inferior-occipital-G&S -0.12 0.05 0.89 0.09 0.20 0.78 -0.01 0.06 0.77 

R-Subcallosal-G -0.12 0.06 0.89 0.07 0.23 0.78 -0.02 0.06 0.77 

L-Cuneus -0.12 0.06 0.89 0.07 0.25 0.78 -0.02 0.07 0.77 

L-Orbital-S -0.12 0.05 0.89 0.12 0.19 0.78 0.00 0.05 0.77 

R-Superior-circular-S-insula -0.12 0.06 0.89 0.10 0.23 0.78 -0.01 0.06 0.77 

L-Superior-parietal-lobule -0.12 0.05 0.89 0.09 0.22 0.78 -0.01 0.07 0.77 

R-Inferior-precentral-S -0.12 0.04 0.89 0.13 0.17 0.78 0.00 0.05 0.77 

L-Postcentral-S -0.13 0.07 0.89 0.10 0.26 0.78 -0.02 0.08 0.77 

L-Thalamus-Proper -0.13 0.05 0.89 0.11 0.20 0.78 -0.01 0.06 0.77 

L-Orbital-inferior-frontal-G -0.13 0.06 0.89 0.10 0.25 0.78 -0.01 0.07 0.77 

L-Transverse-frontopolar-G&S -0.13 0.05 0.89 0.13 0.21 0.78 0.00 0.06 0.77 

L-Precentral-G -0.14 0.05 0.89 0.14 0.21 0.78 0.00 0.07 0.77 

R-Posterior-transverse-collateral-S -0.14 0.05 0.89 0.13 0.19 0.78 0.00 0.06 0.77 

R-parahippocampal-medial-
occipitotemporal-G 

-0.14 0.05 0.89 0.14 0.19 0.78 0.00 0.06 0.77 

R-Medial-occipitotemporal-
S&lingual-S 

-0.14 0.06 0.89 0.11 0.23 0.78 -0.01 0.07 0.77 

R-Calcarine-S -0.14 0.05 0.89 0.13 0.20 0.78 0.00 0.06 0.77 

.CC-BY-NC-ND 4.0 International license(which was not certified by peer review) is the author/funder. It is made available under a
The copyright holder for this preprintthis version posted December 27, 2019. . https://doi.org/10.1101/2019.12.19.883173doi: bioRxiv preprint 

https://doi.org/10.1101/2019.12.19.883173
http://creativecommons.org/licenses/by-nc-nd/4.0/


 30 

L-Lateral-occipitotemporal-G -0.14 0.05 0.89 0.13 0.21 0.78 0.00 0.07 0.77 

R-Orbital-S -0.14 0.06 0.89 0.12 0.23 0.78 -0.01 0.08 0.77 

L-Superior-frontal-S -0.15 0.05 0.89 0.14 0.19 0.78 0.00 0.06 0.77 

L-Vertical-anterior-lateral-S -0.15 0.07 0.89 0.10 0.27 0.78 -0.02 0.10 0.77 

L-Suborbital-S -0.15 0.04 0.89 0.14 0.17 0.78 0.01 0.05 0.77 

R-Paracentral-lobule&S -0.15 0.05 0.89 0.15 0.18 0.78 0.01 0.06 0.77 

16PF_Tough-Mindedness -0.15 0.04 0.89 0.16 0.19 0.78 0.01 0.06 0.77 

R-Straight-G -0.15 0.05 0.89 0.15 0.21 0.78 0.00 0.07 0.77 

L-Parieto-occipital-S -0.15 0.05 0.89 0.16 0.20 0.78 0.01 0.07 0.77 

R-Middle-occipital-S&lunatus-S -0.16 0.05 0.89 0.14 0.20 0.78 0.00 0.07 0.77 

L-Ligual-medial-occipitotemporal-G -0.16 0.05 0.89 0.15 0.21 0.78 0.00 0.07 0.77 

R-Opercular-inferior-frontal-G -0.16 0.04 0.89 0.16 0.18 0.78 0.01 0.06 0.77 

R-Thalamus-Proper -0.16 0.06 0.89 0.15 0.23 0.78 0.00 0.08 0.77 

16PF_Anxiety -0.16 0.05 0.89 0.14 0.20 0.78 0.00 0.07 0.77 

R-Superior-frontal-G -0.16 0.05 0.89 0.16 0.20 0.78 0.00 0.07 0.77 

L-Straight-G -0.17 0.05 0.89 0.18 0.19 0.78 0.01 0.07 0.77 

R-Vertical-anterior-lateral-S -0.17 0.04 0.89 0.17 0.18 0.78 0.01 0.07 0.77 

L-Triangular-inferior-frontal-G -0.17 0.05 0.89 0.18 0.21 0.78 0.01 0.08 0.77 

R-Posterior-ventral-cingulate-
G_vPCC 

-0.18 0.04 0.89 0.17 0.18 0.78 0.01 0.07 0.77 

L-Calcarine-S -0.18 0.05 0.89 0.18 0.20 0.78 0.01 0.08 0.77 

L-Inferior-circular-S-insula -0.18 0.04 0.89 0.18 0.17 0.78 0.02 0.06 0.77 

R-Cuneus -0.19 0.05 0.89 0.19 0.19 0.78 0.02 0.08 0.77 

L-Anterior-transverse-collateral-S -0.21 0.06 0.89 0.20 0.23 0.78 0.01 0.11 0.77 

Perceived Stress -0.22 0.04 0.89 0.22 0.18 0.78 0.03 0.08 0.77 

L-Temporal-pole -0.24 0.05 0.89 0.24 0.19 0.78 0.04 0.10 0.77 

STAI-Trait -0.26 0.04 0.79 0.25 0.18 0.78 0.05 0.10 0.77 

L-Paracentral-lobule&S -0.29 0.05 0.44 0.29 0.19 0.78 0.07 0.12 0.77 

R-Ligual-medial-occipitotemporal-G -0.30 0.04 0.44 0.31 0.17 0.78 0.08 0.10 0.77 

L-Inferior-occipital-G&S -0.35 0.04 0.13 0.34 0.18 0.78 0.10 0.13 0.77 

 1 
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Appendix E. Effect size and sample size estimation for every feature. 1 

The Pearson correlation between SNI and every demographic, psychological, and cortical and 2 

subcortical GMV feature was computed to estimate effect size. The sample size for detecting the 3 

effect of every feature was estimated assuming that only one effect is hypothesized and tested. 4 

Abbreviations: L left, R right, G gyrus/gyri, S Sulcus/Sulci.  5 

Variables Correlation with SNI Sample Size Estimation 

             Demographic Characteristics 

Age -0.0028916 938688 

Gender -0.0337893 6869 

Education 0.07748887 1301 

             Psychological measures 

MSCEIT_Experiential -0.0776123 1297 

MSCEIT_Strategic 0.09220126 917 

16PF_Extraversion 0.35402236 57 

16PF_Independence 0.3137471 74 

16PF_Tough.Mindedness -0.1511065 338 

16PF_Self.Control -0.076433 1338 

16PF_Anxiety -0.1600565 300 

Perceived Stress -0.2191902 157 

Beck Depression Inventory -0.117672 561 

PANAS_Positive 0.19642275 198 

PANAS_Negative -0.0035564 620543 

STAI_Trait -0.2567068 113 

Empathy Quotient 0.21784528 160 

Verbal Comprehension -0.0550113 2588 

Perceptual Reasoning 0.06415813 1901 

              Cortical GMV in the Left Hemisphere 

L-Frontomarginal-G&S 0.00918054 93120 

L-Inferior-occipital-G&S -0.3494748 58 

L-Paracentral-lobule&S -0.2907009 87 

L-Subcentral-G&S -0.054361 2650 

L-Transverse-frontopolar-G&S -0.1341769 430 

L-Anterior-cingulate-G&S_ACC -0.1114413 626 

L-Middle-anterior-cingulate-G&S_aMCC 0.06716702 1734 

L-Middle-posterior-cingulate-G&S_pMCC 0.0185314 22850 
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L-Posterior-dorsal-cingulate-G_dPCC 0.14093978 389 

L-Posterior-ventral-cingulate-G_vPCC -0.0671571 1734 

L-Cuneus -0.1195903 543 

L-Opercular-inferior-frontal-G -0.0770589 1316 

L-Orbital-inferior-frontal-G -0.1346853 427 

L-Triangular-inferior-frontal-G -0.1700251 266 

L-Middle-frontal-G -0.0758849 1357 

L-Superior-frontal-G -0.0597285 2194 

L-Long-insular-G&central-insula-S -0.0173458 26081 

L-Short-insular-G -0.1154706 583 

L-Middle-occipital-G -0.0384255 5310 

L-Superior-occipital-G -0.036754 5804 

L-Lateral-occipitotemporal-G -0.1406978 391 

L-Ligual-medial-occipitotemporal-G -0.1581672 308 

L-parahippocampal-medial-occipitotemporal-G -0.0509749 3015 

L-Orbital-G -0.1029906 734 

L-Angular-G -0.0166132 28432 

L-Supramarginal-G 0.07104795 1549 

L-Superior-parietal-lobule -0.1200344 539 

L-Postcentral-G -0.0024642 1292603 

L-Precentral-G -0.1376735 408 

L-Precuneus -0.0176935 25066 

L-Straight-G -0.1659726 279 

L-Subcallosal-G 0.01509586 34436 

L-Anterior-transverse-temporal-G -0.0394119 5047 

L-Lateral-superior-temporal-G 0.01605985 30426 

L-Planum-polare-superior-temporal-G -0.0360494 6034 

L-Planum-temporale-superior-temporal-G 0.18072367 234 

L-Inferior-temporal-G -0.0155332 32524 

L-Middle-temporal-G 0.18989198 212 

L-Horizontal-anterior-lateral-S -0.1133548 605 

L-Vertical-anterior-lateral-S -0.14504 367 

L-Posterior-lateral-S -0.0224271 15599 

L-Occipital-pole 0.02742809 10427 

L-Temporal-pole -0.2367171 134 

L-Calcarine-S -0.1771533 244 

L-Central-S -0.0401729 4858 

L-Marginal-cingulate-S -0.0568431 2423 

L-Anterior-circular-S-insula 0.17041338 264 
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L-Inferior-circular-S-insula -0.1812133 233 

L-Superior-circular-S-insula -0.1131711 607 

L-Anterior-transverse-collateral-S -0.2075977 176 

L-Posterior-transverse-collateral-S -0.0949917 864 

L-Inferior-frontal-S -0.0847298 1087 

L-Middle-frontal-S 0.00542848 266342 

L-Superior-frontal-S -0.1462755 361 

L-S-intermedius-primus 0.00539593 269566 

L-Intraparietal-S&transverse-parietal-S -0.0729457 1469 

L-Middle-occipital-S&lunatus-S -0.0078422 127618 

L-Superior-occipital-S&transverse-occipital-S -0.097515 820 

L-Anterior-occipital-S&preoccipital-notch -0.0322884 7523 

L-Lateral-occipitotemporal-S -0.1044436 714 

L-Medial-occipitotemporal-S&lingual-S -0.085147 1077 

L-Lateral-orbital-S -0.011093 63778 

L-Medial-orbital-S 0.06266573 1993 

L-Orbital-S -0.1194376 544 

L-Parieto-occipital-S -0.1557196 318 

L-Pericallosal-S 0.04500085 3870 

L-Postcentral-S -0.1276236 476 

L-Inferior-precentral-S -0.1208256 532 

L-Superior-precentral-S -0.0239827 13640 

L-Suborbital-S -0.1456051 364 

L-Subparietal-S 0.0143831 37934 

L-Inferior-temporal-S 0.03142184 7944 

L-Superior-temporal-S -0.0340876 6749 

L-Transverse-temporal-S -0.1001802 776 

             Cortical GMV in the Right Hemisphere 

R-Frontomarginal-G&S -0.0189623 21823 

R-Inferior-occipital-G&S -0.1175469 562 

R-Paracentral-lobule&S -0.1487712 349 

R-Subcentral-G&S -0.109243 652 

R-Transverse-frontopolar-G&S -0.0426377 4311 

R-Anterior-cingulate-G&S_ACC -0.0416376 4521 

R-Middle-anterior-cingulate-G&S_aMCC -0.1071467 678 

R-Middle-posterior-cingulate-G&S_pMCC -0.0207774 18175 

R-Posterior-dorsal-cingulate-G_dPCC 0.03291939 7237 

R-Posterior-ventral-cingulate-G_vPCC -0.1752414 250 

R-Cuneus -0.184783 224 
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R-Opercular-inferior-frontal-G -0.1580088 308 

R-Orbital-inferior-frontal-G 0.11117239 629 

R-Triangular-inferior-frontal-G 0.05084247 3030 

R-Middle-frontal-G -0.0664817 1770 

R-Superior-frontal-G -0.1610238 297 

R-Long-insular-G&central-insula-S -0.1106463 635 

R-Short-insular-G -0.0287966 9459 

R-Middle-occipital-G -0.0465737 3613 

R-Superior-occipital-G -0.0709251 1554 

R-Lateral-occipitotemporal-G -0.0149231 35238 

R-Ligual-medial-occipitotemporal-G -0.3020131 80 

R-parahippocampal-medial-occipitotemporal-G -0.1395864 397 

R-Orbital-G -0.0972696 824 

R-Angular-G -0.0943059 877 

R-Supramarginal-G -0.0194015 20846 

R-Superior-parietal-lobule -0.0922448 917 

R-Postcentral-G -0.0329844 7208 

R-Precentral-G -0.0939214 884 

R-Precuneus 0.02509895 12453 

R-Straight-G -0.1524617 332 

R-Subcallosal-G -0.1208282 532 

R-Anterior-transverse-temporal-G 0.04679593 3578 

R-Lateral-superior-temporal-G 0.02430314 13283 

R-Planum-polare-superior-temporal-G 0.01613924 30127 

R-Planum-temporale-superior-temporal-G -0.0613178 2082 

R-Inferior-temporal-G 0.04527234 3824 

R-Middle-temporal-G 0.00820435 116599 

R-Horizontal-anterior-lateral-S -0.1103838 638 

R-Vertical-anterior-lateral-S -0.1659003 279 

R-Posterior-lateral-S -0.0645492 1878 

R-Occipital-pole -0.0867708 1037 

R-Temporal-pole -0.1154087 583 

R-Calcarine-S -0.1395177 397 

R-Central-S 0.00131523 4537366 

R-Marginal-cingulate-S -0.1111944 629 

R-Anterior-circular-S-insula 0.04419833 4012 

R-Inferior-circular-S-insula -0.0820806 1159 

R-Superior-circular-S-insula -0.1217987 523 

R-Anterior-transverse-collateral-S -0.1085695 660 
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R-Posterior-transverse-collateral-S -0.1379085 407 

R-Inferior-frontal-S 0.00657545 181527 

R-Middle-frontal-S -0.0997017 784 

R-Superior-frontal-S -0.0829986 1133 

R-S-intermedius-primus -0.0242404 13352 

R-Intraparietal-S&transverse-parietal-S -0.1109044 632 

R-Middle-occipital-S&lunatus-S -0.1580173 308 

R-Superior-occipital-S&transverse-occipital-S -0.0236655 14009 

R-Anterior-occipital-S&preoccipital-notch -0.0035028 639706 

R-Lateral-occipitotemporal-S -0.0317386 7786 

R-Medial-occipitotemporal-S&lingual-S -0.1417571 385 

R-Lateral-orbital-S 0.04932258 3220 

R-Medial-orbital-S -0.0138083 41159 

R-Orbital-S -0.1452631 366 

R-Parieto-occipital-S -0.0881139 1005 

R-Pericallosal-S 0.01345474 43351 

R-Postcentral-S -0.0719338 1511 

R-Inferior-precentral-S -0.1217513 524 

R-Superior-precentral-S 0.12734155 478 

R-Suborbital-S 0.08156378 1174 

R-Subparietal-S 0.01929028 21087 

R-Inferior-temporal-S 0.04123692 4610 

R-Superior-temporal-S 4.10E-05 4675478286 

R-Transverse-temporal-S -0.0764489 1337 

                Subcortical GMV 

L-Cerebellum-Cortex -0.0587125 2271 

L-Thalamus-Proper -0.1296967 461 

L-Caudate 0.15014569 342 

L-Putamen -0.0104299 72146 

L-Pallidum 0.04398183 4052 

Brain-Stem -0.0536815 2718 

L-Hippocampus -0.071467 1531 

L-Amygdala 0.12002447 539 

L-Accumbens-area 0.22622697 147 

R-Cerebellum-Cortex -0.1034844 727 

R-Thalamus-Proper -0.1606671 298 

R-Caudate 0.17319617 256 

R-Putamen -0.0491374 3245 

R-Pallidum 0.111796 622 
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R-Hippocampus 0.03552365 6214 

R-Amygdala 0.09236651 914 

R-Accumbens-area -0.0557185 2522 
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