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We investigate the longitudinal conductance of a disordered three-dimensional (3D) quantum Hall system
within a tight-binding lattice model using numerical Thouless conductance calculations. For the bulk, we confirm
that the mobility edges are independent of the propagating directions in this anisotropic system. As disorder
increases, the conductance peak of the lowest subband in the horizontal direction floats to the central subband as
in the two-dimensional (2D) case, while there is no clear evidence of floating in the vertical direction. We thus
conclude that for extended states, the longitudinal conductance in the vertical direction behaves like a quasi-
one-dimensional (1D) normal metal, while the longitudinal conductance in the horizontal direction is controlled
by layered conducting states stacked coherently. Inside the quantum Hall gap, we study the novel 2D chiral
surface states at the sidewalls of the sample. We demonstrate the crossover of the surface states between the
quasi-1D metal and insulator regimes, which can be achieved by modifying the interlayer hopping strength and
the disorder strength in the model. The typical behaviors of the Thouless conductance and the wave functions
of the surface states in these two regimes are investigated. Finally, in order to predict the regime of the surface
states for arbitrary parameters, we determine an explicit relationship between the localization length of surface
states and the microscopic parameters of the model.
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I. INTRODUCTION

The quantum Hall effect (QHE) in two-dimensional (2D)
electron systems originates from discrete Landau levels form-
ing under a strong perpendicular magnetic field [1,2]. While
the physical picture underlying QHE seems specific to 2D,
the generalizations of the QHE to 3D systems have also been
considered [3–6]. The most straightforward way to construct
a 3D QHE is to stack 2D QHE layers along the magnetic field
(z axis). As long as the coupling strength is small compared to
the 2D quantum Hall gap, we expect the QHE still exists [4,5].
There are also other schemes to realize a 3D QHE, such as
by virtue of formation of spontaneous charge (spin) density
wave [3] or applying strong magnetic field to topological
semimetals [7–11]. In the present work we focus on the first.
The distinct feature of a 2D quantum Hall system is its chiral
edge states, which are immune to disorder. In the 3D case, the
chiral edge state of each layer is coupled to neighboring edge
states, forming a 2D chiral surface state [6].

Experimentally, the 3D QHE was first realized by Störmer
et al. [4] in an engineered multilayer quantum well system.
The existence of the 2D chiral surface state in this system was
further confirmed in Ref. [12]. For real materials, anisotropic
layered 3D materials are the most promising candidates to
host the 3D QHE. Signatures of 3D QHE have been found
in Bechgaard salts [13,14], η-Mo4O11 [15], graphite [16,17],
n-doped Bi2Se3 [18], EuMnBi2 [19], and most recently,
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ZrTe5 [20] and BaMnSb2 [21]. Remarkably, the last one
provides the first observation of the 2D chiral surface states
in a real material. These materials offer us great opportunities
to study the 3D QHE and its novel surface states.

Up to now, the theoretical understanding of 3D quantum
Hall systems mainly comes from a Chalker-Coddington net-
work model [5,22–27] and a continuum model [6,28–33].
Chalker et al. [5] investigated the bulk of a 3D quantum
Hall system using a generalized 3D network model. They
found that different from the 2D case, the 3D quantum Hall
system supports a finite energy range of extended states. They
also introduced a 2D directed network model to describe the
chiral surface states. This model has been extensively studied
both analytically [24,25] and numerically later [26,27]. Inter-
estingly, it turns out that parallel to the magnetic field in a
mesoscopic sample, there exist three distinct regimes of trans-
port, namely, 2D chiral metal, quasi-1D metal, and quasi-1D
insulator [24–29]. Gruzberg, Read, and Sachdev analytically
obtained the universal crossover functions of the conductance
and its variance between different regimes [24,25]. Some of
their results are verified numerically in Refs. [26,27].

The network model is based on the semiclassical picture
of electrons in a strong magnetic field and smooth disorder
potential [34,35]. It is, however, only valid when the disorder
strength is much smaller than the Landau level spacing [5].
An alternative way to describe the 3D quantum Hall system
is using a tight-binding lattice model. So far, however, there
have been very few investigations of such a model in the
literature [36]. Wang et al. [36] studied a tight-binding model
by stacking the 2D Hofstadter model along the z direction
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FIG. 1. Density of states of a 24×24×24 cubic lattice with
φ = φ0/3 and tz = 0.1 for (a) W = 2, (b) W = 3, (c) W = 4, and
(d)W = 5.

while keeping interlayer hoppings small. A phase diagram
of the bulk was obtained using the scaling of the Lyapunov
exponents in the horizontal direction. However, we mention
that the 3D quantum Hall system is highly anisotropic. Even
without a magnetic field, it has been controversial whether the
metal-insulator transition depends on the propagating direc-
tions [37–39]. It remains unclear whether the mobility edges
are the same along the horizontal and vertical directions when
a magnetic field is turned on. Thus, investigations of the model
along both directions are indeed necessary. Most importantly,
the chiral surface state has not been studied in Ref. [36].

Motivated by recent experimental developments in this
direction, in this work, we investigate the longitudinal con-
ductance of a disordered 3D quantum Hall system within a
tight-binding model using numerical Thouless conductance
calculations. For the bulk, we emphasize the different behav-
iors of conductance in the horizontal and vertical directions
for this anisotropic system, which is largely ignored in the
previous studies [5,36]. The calculated mobility edges along
the two directions turn out to be the same under various
disorder strengths. Their positions are consistent with the
results in Ref. [36]. As disorder increases, the conductance
peak of the lowest subband in the horizontal direction floats to
the central subband as in the 2D case, while there is no clear
evidence of floating in the vertical direction. We thus conclude
that for extended states, the longitudinal conductance in the
vertical direction behaves like a quasi-1D normal metal, while
the longitudinal conductance in the horizontal direction is
controlled by layered conducting states stacked coherently.

The 2D chiral surface state has not been studied in the
tight-binding model before. Compared with the 2D directed
network model [26,27], studying the surface states within a
3D lattice model is more computationally expensive. How-
ever, the tight-binding model has the advantages that it deals
with wave functions directly and its parameters are more
experimentally meaningful [26]. In the network model, all the
information is contained in a single parameter, the transmis-
sion coefficient at the saddle point [35]. This is an effective
but less direct way to describe the system. We thus believe our

study of the tight-binding model should be useful in guiding
experimental efforts of detecting and controlling the chiral
surface states. We demonstrate the crossover of the surface
states between the quasi-1D metal and insulator regimes,
which can be achieved by modifying the interlayer hopping
strength and the disorder strength in the model. The typical
behaviors of the Thouless conductance and the wave functions
of the surface states in these two regimes are investigated.
Finally, in order to predict the regime of the surface states
for arbitrary parameters, we determine an explicit relationship
between the localization length of surface states and the
microscopic parameters of the model.

The rest of the paper is organized as follows. In Sec. II we
describe the tight-binding Hamiltonian for 3D quantum Hall
system and introduce the numerical Thouless conductance
method. In Sec. III we present our numerical results. The
paper is summarized in Sec. IV.

II. MODEL AND METHODS

A. 3D lattice model

We consider an electron on an Lx×Ly×Lz cubic lattice
in the presence of a magnetic field Bẑ with tight-binding
Hamiltonian

H = −
∑
〈i, j〉

(ti je
iθi j c†i c j + H.c.) +

∑
i

εic
†
i ci, (1)

where we have anisotropic nearest-neighboring hopping

ti j =

⎧⎪⎨
⎪⎩
1 i and j are horizontal nearest neighbors,

tz i and j are vertical nearest neighbors,

0 i and j are not nearest neighbors.

We choose Landau gauge �A = (0,Bx, 0) and define θi j =
e
h̄

∫ j
i

�A · d�l . The magnetic flux φ per unit cell in a horizontal
plane is

φ

φ0
= Ba2

hc/e
= 1

2π

∑
�

θi j, (2)

where φ0 = hc/e is the flux quantum, and the disorder po-
tential εi are independent variables with identical uniform
distribution on [−W/2,W/2].

In the 2D limit with Lz = 1, the clean model has a but-
terflylike self-similar energy spectrum, as the flux φ per unit
cell varies [40]. When the flux φ per unit cell is chosen
as φ0/N for integer N , there are exactly N subbands in the
spectrum. The side subbands have Chern number +1 each
and can be regarded as broadened Landau levels. The lowest
subband, whose localization length is moderate, is suitable for
studying the universal behavior of quantum Hall transitions in
the presence of disorder. For small tz, the subband gaps may
not close by the dispersion in z axis, so the Hall conductance
in the horizontal direction remains quantized.

Figure 1 shows the evolution of density of states, at W =
2–5, for a system with L = 24, φ = φ0/3, and tz = 0.1. The
gaps between the subbands close at about W = 3. For the
small tz, we find the density of states is very similar to that
of the corresponding 2D lattice as expected.
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B. Thouless conductance

The longitudinal conductance of a finite system can be
related to the sensitivity of eigenenergies to changes in the
boundary conditions. The idea came from Thouless, who
argued that the shift in energies of eigenstates due to boundary
condition change should be of the order of δE ∼ h̄/τ , where
τ ∼ L2/D is the time that takes for an electron to diffuse to
the boundary [41]. The diffusion constant D can be related to
the longitudinal conductance by the Einstein relation

σxx = e2Dρ, (3)

where ρ is the density-of-states at the Fermi energy EF .
Therefore, the sensitivity can be quantified in a dimensionless
way [42]

gxx = 〈δE〉
〈�E〉 ∼ h

e2
σxx, (4)

where 〈δE〉 is the average shift in the energy level due to a
change of boundary conditions along x direction, and 〈�E〉 =
1/Ldρ is the mean energy level separation. Ando showed that
the Thouless number can be applied to 2D systems in a strong
magnetic field, and obtained

σxx = A
e2

h
gxx, A = π

2
(5)

for peak conductivity for spin-polarized electrons [43]. In
numerical calculation, the value of gxx depends on the detailed
method to evaluate the energy shift. In general, the proportion-
ality constant A is expected to be of order unity.

As system size increases, the Thouless conductance of a
localized state decreases to zero exponentially, while that of a
metallic state does not. Therefore, the Thouless number can be
used to distinguish metallic states from localized states. Since
quantum Hall transition is a special kind of metal-insulator
transition, the peak Thouless conductance of a single Landau
level is expected to be a universal constant, related to the
longitudinal conductivity [44–47].

In this study we define 〈δE〉 as the arithmetic average of the
energy curvature in the boundary-condition space. Because
the time-reversal symmetry is broken in the model, we cal-
culate the curvature in the vicinity of the periodic boundary
conductions. For small systems, the calculation of curvature
for random boundary conditions helps suppress the artifacts
due to van Hove singularities.

III. RESULTS

A. Evolution of the lowest subband from 2D to 3D

We start by stacking 24×24 square lattices along the
magnetic field �B to a 3D lattice. In the absence of verti-
cal hopping, the longitudinal conductance perpendicular to
�B scales with the number of layers, while the longitudinal
conductance parallel to �B is zero. We turn on the vertical
hopping to tz = 0.1, still small compared to the horizontal
hopping t = 1. To study the crossover from 2D to 3D, we
compare the conductance for Lz = 1, 2, 3, 4, 6, 8, 12, and 24.
For the 3D system we calculate Thouless conductance gxx
along the x axis by changing the boundary conditions along
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FIG. 2. Thouless conductance gxx , perpendicular to the magnetic
field, of the lowest subband in a 24×24×Lz cubic lattice with φ =
φ0/3,W = 2, and tz = 0.1. The vertical line at E = −2.25 indicates
the location of the peak of gxx . Inset shows the peak conductance g0xx
as a function of Lz, which can be fit by g0xx (Lz ) = 0.020 + 0.188Lz −
0.00143L2

z up to the cubic case Lz = 24.

the x direction and, similarly, gzz by changing the boundary
conditions along the z direction.

Figure 2 plots Thouless conductance along the x direction
for the same lowest subband with φ = φ0/3 and W = 2, for
the transverse system size Lx = Ly = 24. The number of states
in the lowest subband increases with the number of layers,
but the subband width barely changes with the small hopping
amplitude in the z direction. While the shape of gxx is not
changed by increasing Lz, the peak conductance g0xx changes.
We find the g0xx(Lz ) can roughly be fit by

g0xx(Lz ) = 0.020 + 0.188Lz − 0.00143L2
z , (6)

for Lz up to 24. The fit suggests that the contribution from
each layer is roughly the same, g0xx = 0.188 ± 0.001, with
negligible corrections in Lz, even for Lz ∼ Lx. In addition, g0xx
is also expected to have a weak Lx dependence, which is not
important to the present study.

We now turn to Thouless conductance along the z direction,
along which the magnetic field aligns and the hopping is
weak. The results are shown in Fig. 3. Like gxx, the vertical
Thouless conductance develops a hump, whose shape remains
unchanged as Lz increases. But unlike gxx, the peak conduc-
tance g0zz decreases with Lz, and our power-law fit to

g0zz(Lz ) = g0L
−α
z (7)

gives α = 0.983 ± 0.015, which suggests that g0zz is inversely
proportional to Lz within error bars.

We note that the peak of the lowest band in the density
of states is located around Ep = −2.66, which coincides with
the peak of gzz, but not gxx, which peaks around E (x)

p = −2.25.
There is no shift of peak in either gzz or gxx, as Lz increases
from 1 to 24. At Ep = −2.66, the peak gzz is inversely
proportional to Lz, indicating the system is in a metallic phase.
The shift, or floating, of the gxx peak is expected to originate
from the floating of extended states in the 2D limit [48–50], as
we will discuss more in the following subsection as disorder
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FIG. 3. Thouless conductance gzz, parallel to the magnetic field,
of the lowest subband in a 24×24×Lz cubic lattice with φ = φ0/3,
W = 2, and tz = 0.1. The vertical line at E = −2.66 indicates the
location of the peak of gzz. Inset shows the peak conductance g0zz as a
function of Lz, which can be fit by g0zz(Lz ) = 10.6L−0.983

z .

increases. It also suggests that the gxx in the multilayer cases is
dominated by conducting states in each 2D layer. The devia-
tion of g0xx from linear behavior suggests that the coherence of
extended states along the z axis plays a role in the longitudinal
conductance in the x-y plane.

In the 2D case, there is only one critical energy in the
lowest subband, at which we find extended states even in
the thermodynamic limit. When Fermi energy moves across
the critical energy, an integer quantum Hall plateau transition
occurs. This, however, is quite different from the 3D case,
where a range of metallic states exist [5,36]; in fact, we
already see that the peaks of gxx and gzz differ. To estimate the
energy range for the metallic phase at W = 2.0, we explore
the finite-size effect of the conductance for the cubic lattice
with Lx = Ly = Lz = L. Figure 4 plots both gxx and gzz as
a function of energy for the lower half of the spectrum. We
choose, here, φ = φ0/3, tz = 0.1, and W = 2.0 as before.
The size dependence of the Thouless conductance along two
perpendicular directions remains to be the same, indicating
the mobility edges are the same in the two directions. We
can clearly identify two insulating regimes and two metallic
regimes, separated by E = −3.20, −1.62, and −1.05, as
indicated by dot-dashed lines in Fig. 4. The mobility edges
found here are consistent with the results in Ref. [36]. The
phase at −1.62 < E < −1.05, which includes the band gap,
is accompanied by the quantization of Hall conductance and
is, therefore, a quantized Hall insulator. We will explore the
phase in greater detail in the following subsections.

B. Disorder effects in the bulk

So far, we find that for a relatively small disorderW = 2.0,
energy states in most of the lowest subband are in a metallic
phase. But the phase differs from a normal metallic one. Based
on the bulk Thouless conductance, we can argue that the
longitudinal conductance along the magnetic field �B behaves
like that of a quasi-1D normal metal. The longitudinal conduc-
tance perpendicular to �B is controlled by layered conducting
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FIG. 4. Thouless conductance (a) gxx , perpendicular to the mag-
netic field, and (b) gzz, parallel to the magnetic field, of the lowest
subband and a half of the central band in an L×L×L cubic lattice
with φ = φ0/3, tz = 0.1, and W = 2.0 for L = 12, 18, 24. The
vertical lines at E = −3.20, −1.62, and −1.05 indicate the locations
of mobility edges, as the size dependence of both gxx and gzz differs
on the two sides of the energies. The lines define four different phases
along the horizontal axis. The phases from left to right are insulator,
metal, quantized Hall insulator, and metal, respectively.

states stacked coherently. We now focus on L×L×L cubic
samples and study the Thouless conductance along x and z
directions. In particular, we are interested in the manifestation
of the quantized Hall phase as disorder varies.

Figure 5(a) shows gxx for the lowest subband and part of
the central subband in the case of φ = φ0/3 and L = 24 for
W = 2–5. As disorder increases, the conductance peak of the
lowest subband floats to the central subband, as found in the
2D case [50]. No peak can be identified for the lowest subband
atW = 5, as it merges with the central subband. In the 3D case
we find that, before the merge, the peak value g0xx increases
linearly as L increases from 12 to 24, which is consistent with
metallic behavior.

Similarly, we compare gzz for various W with L = 24 in
Fig. 5(b). Due to the small hopping strength in the z direction,
gzz is much smaller than gxx. The distinct feature of gzz
is that the deep dip separating the lowest subband and the
central subband persists to W = 5, when the two subbands
are not resolvable in gxx. This raises the question whether
the system is metallic in the x direction while insulating
in the z direction near the original band gap when W = 5.
Therefore, we carry out the finite-size study of gxx and gzz
at W = 5 in Figs. 5(c) and 5(d). Near the original band gap
at E = −1.4, although gzz is small, both gxx and gzz grow
when the system size increases. Thus the system is metallic
along both directions. At W = 5, the disorder couples the
three subbands together to form a large energy band [36].
There is only one metal-insulator transition at E = −3.7, this
value agrees well with the results in Ref. [36]. The mobility
edge is the same along the two perpendicular directions, as
shown in the insets of Figs. 5(c) and 5(d). Combining with
Fig. 4, our results suggest that the mobility edges are the same
along the horizontal and vertical directions in this anisotropic
system, which is unsettled in the literature [5,36]. We note that
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FIG. 5. Thouless conductance in an L×L×L cubic lattice with
φ = φ0/3, tz = 0.1. (a) Thouless conductance gxx and (b) gzz of the
lowest subband and a half of the central band with L = 24 forW =
2–5. The dot-dashed line indicates the peak of g0zz as mentioned in
Fig. 3. (c) and (d) Finite-size scaling of gxx and gzz atW = 5, for L =
12, 18, 24. The insets show enlarged views around the mobility edge
E = −3.7, the size dependence of both gxx and gzz differs on the two
sides of the mobility edge. (e) Peak conductance g0zz as a function of
1/W for various L. We fit the data by quadratic curves with horizontal
intercepts 1/W0(L). (f) The dependence of 1/W0 as a function of 1/L,
which can be extrapolated to L → ∞ at 1/W0 = 0.123 ± 0.003.

it is also interesting to investigate the localization length and
the critical exponents along the two perpendicular directions
in this system. This is beyond the scope of present work, and
we leave it for future study.

Another feature of gzz is that there is no clear evidence
of the floating of the gzz peak of the lowest subband, in
contrast to that of g0xx, as we have commented in the previous
subsection. The peak value g0zz also scales linearly with L,
showing metallic behavior for the range of disorder strength
we consider. Figure 5(e) plots g0zz as a function of 1/W for
various L. The curves can be fit by quadratic functions, which
have size-dependent horizontal intercepts 1/W0(L). This is an
indication of a metal-insulator transition at the band center at
sufficiently small 1/W , or sufficiently large W . We plot the
intercept 1/W0 against 1/L and fit the data by a straight line,
which has a vertical intercept 1/W0 = 0.123 ± 0.003. In other
words, when disorder strength is greater thanWc = 8.1 ± 0.2,
we expect that the system shows insulating behavior at the
peak location of gzz, or E = −2.66 as we have obtained
earlier.

Note that we have discussed two methods to detect the
boundaries of the metallic phase of the lattice model. In Fig. 4,
Figs. 5(c) and 5(d), we have analyzed the dependence of gxx
and gzz on system size, from which we can extract the mobility

edges. This approach is expected to be more effective at small
disorder, where the phase boundaries in the phase diagram in
the W -E plane depend weakly on the disorder [36]. On the
other hand, in Figs. 5(e) and 5(f) we have first studied the
dependence of gzz on disorder strength for a given system size
and extrapolate the characteristic disorder that suppresses gzz
to zero. We have then carried out the finite-size scaling of
the characteristic disorder to extract the critical disorder in
the thermodynamic limit. This method is expected to work
more effectively at large disorder, where the phase boundary
in the phase diagram in theW -E plane is almost flat as energy
changes [36].

C. Chiral surface states

Our main interest so far has been focused on the metallic
behavior and the metal-insulator transition of the 3D system.
Another interesting transport property is, however, associated
with the surface of a 3D quantum Hall system. This phase
is located at the gap region between the lowest subband and
the central subband, characterized by a Chern number 1 for
each layer perpendicular to the magnetic field. With open
boundary conditions as in real experimental situations, the
chiral edge state of each layer is coupled to neighboring edge
states, forming a chiral surface state.

The transport properties of the chiral surface states are
highly anisotropic in the presence of disorder [6]. Perpen-
dicular to the magnetic field, due to the chiral nature of the
edge states, the transport is ballistic with a velocity v. Parallel
to the magnetic field, the localization effect is suppressed
by the unidirectional transport in the x direction. In order
to make quantum interference happen, an electron has to
circumnavigate the sample and return to its starting point.
This can never happen in an infinite sample. Therefore, it has
been argued that for an infinite sample, the transport along
the z direction is always diffusive, regardless of the disorder
strength [6,22]. Using the Einstein relation, we can obtain the
conductivity of the 2D sheet in the z direction [6]

σzz = e2ρD = D

v

e2

h
= σ

e2

h
, (8)

where D is the diffusion constant, ρ = 1/hv is the density of
states, and σ = D/v is the dimensionless conductivity.

Interestingly, for a mesoscopic sample, depending on its
vertical sheet conductivity σzz, the circumference C, and the
height Lz, there are three distinct regimes of transport in the
z direction connected by universal crossovers, namely, 2D
chiral metal, quasi-1D metal, and quasi-1D insulator [24–29].
The time needed for an electron to circle the sample is
τ =C/v. Within this time, the electron will diffuse a distance

L0 = √
Dτ =

√
DC/v (9)

in the z direction. If Lz 	 L0, then the system is a 2D chiral
metal. In this circumstance, the electron diffuses out of the
sample without a complete round trip of the circumference.
For finite C with very long Lz, the system is of quasi-1D
nature, we expect the surface state is localized along the z
direction. Typically, the localization length ξ of such quasi-1D
system is proportional to its 1D conductivity, which can be
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written as

ξ = 2Cσ = 2DC/v. (10)

For L0 	 Lz 	 ξ , the system is a quasi-1D conductor. In
such condition, the electron circles around the sample many
times before diffusing out. For Lz 
 ξ , the interference effect
becomes dominant, finally turns the system into a quasi-1D
insulator.

Numerically, the chiral surface state in a mesoscopic sys-
tem was previously studied by the 2D directed network model
in Refs. [26,27]. It has not been studied in the tight-binding
model before. Compared with the network model, the tight-
binding model has the advantages that it deals with the wave
functions directly and its parameters are more experimentally
meaningful [26,35]. For our lattice model, the diffusion con-
stant D of the surface state in the z direction depends on the
interlayer hopping strength tz, the disorder strengthW , and the
ballistic velocity v of the edge states. By adopting the result
derived in a 2D continuum model [6,32], we have

D ∝
t2z
W 2

v. (11)

Substituting Eq. (11) into Eqs. (9) and (10) we obtain

L0 ∝
√

t2z
W 2

C (12)

and

ξ ∝
t2z
W 2

C. (13)

Thus both L0 and ξ only depend on tz, W , and C, they are
independent of v.

In the following, we demonstrate the metal-insulator
crossover between the quasi-1D metal and insulator regimes
of the surface states, by fixing the dimensions of the system,
only changing tz and W . We note that to enter into the 2D
chiral metal regime, one requires Lz 	 L0. To increase L0, we
can simply increase tz and decrease W . But this also tends
to drive the system into the ballistic regime, whereas the
2D chiral metal regime is of diffusive nature. Another way
to increase L0 is to increase C. However, due to the square
root in Eq. (12), the system size needed is numerically quite
challenging for the Thouless conductance calculation [26,27].
Therefore, we focus on the quasi-1D metal and insulator
regimes in the following sections.

1. Quasi-1D metal

We first present the results in the quasi-1D metal regime.
To study the surface states, we apply open boundary condi-
tions to the x and y directions and calculate Thouless conduc-
tance gzz in the z direction. Figure 6(a) shows gzz of the lowest
subband and a half of the central band in a 21×21×Lz cubic
lattice with φ = φ0/3, tz = 0.2, and W = 1.3. gzz develops
plateaus inside the spectral gaps of the system, which are the
contributions from the surface states. We show an enlarged
view of this region in the inset of Fig. 6(a). Figure 6(b) plots
the plateau value gszz at E = −1.36 as a function of system
height Lz. The log-log plot suggests a power-law decrease of

FIG. 6. Thouless conductance gzz and wave function of the sur-
face state in the quasi-1D metallic regime with φ = φ0/3, tz = 0.2,
and W = 1.3. (a) Thouless conductance gzz of the lowest subband
and a half of the central band in a 21×21×Lz cubic lattice with
open boundary conditions along x and y directions. Inset shows
a zoom-in view around the plateau region inside the spectral gap.
(b) Log-log plot of the plateau value gszz at E = −1.36 [indicated as
the vertical dot-dashed line in (a)] as a function of Lz, which can be
fit by gszz(Lz ) = 7.97L−0.926

z . (c) The probability density |ψ |2 for a
particular disorder realization in a 21×21×21 cubic lattice at E =
−1.36. The result is obtained by exact diagonalization under open
boundary conditions in the x and y directions and periodic boundary
condition in the z direction. Each lattice point is represented by a
small cube, whose color and opacity depends on the value of |ψi|2.
The color and opacity bar is given on the left of the plot. (d) The
probability density |ψ |2 along the dashed vertical line in (c).

gszz with respect to Lz, which can be fit to

gszz(Lz ) = g0L
−α
z , (14)

with α = 0.926 ± 0.031. This “ohmic” dependence of con-
ductance suggests that the system is a conductor in the z
direction.

The transport behavior is determined by the localization
properties of the wave function. In Figs. 6(c) and 6(d), we
plot the wave function in a 21×21×21 cubic lattice at E =
−1.36 for a specific disorder configuration. One can find that
the wave function is extended over the whole sheath of the
sample, indicating its conducting nature.

2. Quasi-1D insulator

Next, we present the results in the quasi-1D insulator
regime. The quasi-1D insulator regime can be achieved by
decreasing the interlayer hopping strength tz and increasing
the disorder strength W . This is demonstrated in Fig. 7, in
which φ = φ0/3, tz = 0.04, andW = 2. Figure 7(a) illustrates
the height dependence of gzz in a 21×21×Lz cubic lattice,
note that we use semi-log coordinate in the plot. Since a
quasi-1D system approximately favors a log-normal curvature
distribution in the localization regime, here we use geometric
averages for 〈δE〉 [51]. The plateau value gszz at E = −1.36
as a function of Lz is shown in Fig. 7(b). The semi-log plot
clearly shows an exponential decay of gszz with Lz, indicating
it is an insulator in the z direction. An explicit exponential
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FIG. 7. Thouless conductance gzz and wave function of the sur-
face state in the quasi-1D localized regime with φ = φ0/3, tz = 0.04,
and W = 2. (a) Semi-log plot of Thouless conductance gzz in a
21×21×Lz cubic lattice with open boundary conditions along x and
y directions. (b) Semi-log plot of the plateau value gszz at E = −1.36
[indicated as the vertical dot-dashed line in (a)] as a function of
Lz, which can be fit by gszz(Lz ) = 0.320e−Lz/2.24. (c) The probability
density |ψ |2 for a particular disorder realization in a 21×21×21
cubic lattice at E = −1.36, plotted in the same way as Fig. 6(c).
(d) The semi-log plot of probability density |ψ |2 along the dashed
vertical line in (c). The fit to the wings with an exponential decay
e−2z/ξ yields ξ = 1.77 ± 0.13 for the left wing and ξ = 2.13 ± 0.26
for the right wing.

fit to

gszz(Lz ) = g0e
−Lz/ξ (15)

gives a localization length ξ = 2.24 ± 0.07. We notice that ξ

is about 1/10 of Lz, thus the system is deep in the localization
regime in the present case.

In Fig. 7(c) we show a 3D plot of the wave function at E =
−1.36 in a 21×21×21 cubic lattice for a particular disorder
realization. In this case, the surface state is concentrated to a
few layers in the z direction. Figure 7(d) plots the probability
density along the dashed vertical line in Fig. 7(c). One can
also obtain the localization length from the wave function by
using an exponential fit

|ψ (z)|2 = |ψ0|2e−2|z−z0|/ξ, (16)

where z0 is the maximum position of |ψ |2. The fit yields ξ =
1.77 ± 0.13 for the left wing and ξ = 2.13 ± 0.26 for the right
wing of the wave function, which is roughly consistent with
the result from the Thouless conductance.

3. Determining the relationship between the localization length
and the microscopic parameters of the model

So far we explored the surface states using two specific
sets of parameters which belong to quasi-1D metal and
insulator regimes, respectively. For arbitrary parameters, in
order to determine the regime of the system, we need to
compare the system height Lz with the localization length ξ .
As mentioned above, the localization length depends on the
interlayer hopping strength tz, the disorder strengthW , and the

FIG. 8. Relationship between the localization length ξ of the
surface states and the microscopic parameters of the model. We
determine the localization length from the height dependence of
Thouless conductance gzz in an L×L×Lz cubic lattice, in the same
way as Fig. 7. Here C is the circumference of the sample, which
equals 4L in the present case. The localization length ξ has a linear
dependence on (t2z /W

2)C.

circumferenceC of the system [see Eq. (13)]. We are now in a
position to verify Eq. (13) numerically. In the end we are able
to predict the regime of the system for arbitrary parameters.

To do this, we repeat the procedure in Sec. III C 2, and
determine the localization length from the height dependence
of Thouless conductance in an L×L×Lz cubic lattice. The sets
of parameters we choose and the final result are presented in
Fig. 8. The localization length ξ indeed has a linear depen-
dence on (t2z /W

2)C, which can be fit by

ξ = 53.2
t2z
W 2

C + 0.363. (17)

The above equation enables us to estimate the localization
length under various parameters. For example, using the pa-
rameters for the quasi-1D metal in Sec. III C 1, the calculated
localization length is ξ = 106. The localization length is about
five times the size of Lz, indicating the system is indeed in the
metallic regime. We note that special care is required when
applying Eq. (17) to systems with large tz orW . In these cases,
the (mobility) gaps may already close, thus a well-defined
surface state does not exist.

IV. SUMMARY AND DISCUSSION

In summary, we have systematically investigated the longi-
tudinal conductance of a disordered 3D quantum Hall system
within a tight-binding lattice model using numerical Thouless
number calculations. In particular, we find by stacking the
2D QHE layers along the z direction, for small interlayer
hoppings, the peak conductance of lowest subband in the x
direction scales linearly with the number of layers, while in
the z direction, it is inversely proportional to the number of
layers. We confirm that the mobility edges of the bulk are
the same along the x and z directions for this anisotropic sys-
tem. For extended states, the longitudinal conductance along
the magnetic field behaves like a quasi-1D normal metal;

064208-7



CHAO ZHENG, KUN YANG, AND XIN WAN PHYSICAL REVIEW B 102, 064208 (2020)

perpendicular to the magnetic field, the longitudinal con-
ductance is controlled by layered conducting states stacked
coherently. Inside the quantum Hall gap, we demonstrate the
crossover of the 2D chiral surface states between the quasi-
1D metal and insulator regimes by modifying the interlayer
hopping strength tz and the disorder strengthW . In real exper-
iments, these can be achieved by uniaxial stress and disorder
doping, respectively. The typical behaviors of the Thouless
conductance and the wave functions of the surface states in
these two regimes are presented. In order to predict the regime
of the surface states for arbitrary parameters, we determine an
explicit relationship between the localization length of surface
states and the microscopic parameters of the model, which
should be useful in detecting and controlling the chiral surface
states in the experiments.

Besides the very recent work of Ref. [21], the only ex-
perimental realization of the 2D chiral surface states is the
engineered multilayer quantum well system [12]. However,
since the sample sizes are much larger than the phase coher-
ence lengths in the experiment, only an incoherent 2D chiral
metal has been studied [12,26,52]. So far, the three regimes
of phase-coherent transport have not been investigated in

the experiments. Recently discovered anisotropic layered 3D
materials thus offer a unique opportunity to study both the
3D QHE and its novel 2D chiral surface states. Samples
with dimensions smaller than the phase coherence lengths are
highly desired in the future. We mention that for such small
samples, in addition to transport measurement, real-space
probe techniques such as scanning tunneling microscopy can
also be a useful tool to detect the metal-insulator crossover of
the surface states [53,54], as demonstrated in Figs. 6 and 7 in
the paper.
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[45] Z.Wang, B. Jovanović, and D.-H. Lee, Phys. Rev. Lett. 77, 4426

(1996).

[46] X. Wang, Q. Li, and C. M. Soukoulis, Phys. Rev. B 58, 3576
(1998).

[47] L. Schweitzer and P. Markoš, Phys. Rev. Lett. 95, 256805
(2005).

[48] D. Khmelnitskii, Phys. Lett. A 106, 182 (1984).
[49] R. B. Laughlin, Phys. Rev. Lett. 52, 2304 (1984).
[50] K. Yang and R. N. Bhatt, Phys. Rev. Lett. 76, 1316 (1996).
[51] G. Casati, I. Guarneri, F. M. Izrailev, L. Molinari, and K.
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