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Despite being a quantum two-fluid system, superfluid helium-4 (He II) is observed to behave sim-
ilarly to classical fluids when a flow is generated by mechanical forcing. This similarity has brought
up the feasibility of utilizing He II for high Reynolds number classical turbulence research, consid-
ering the small kinematic viscosity of He II. However, it has been suggested that the non-classical
dissipation mechanism in He II at small scales may alter its turbulent statistics and intermittency.
In this work, we report our study of a nearly homogeneous and isotropic turbulence (HIT) generated
by a towed grid in He II. We measure the velocity field using particle tracking velocimetry with so-
lidified deuterium particles as the tracers. By correlating the velocities measured simultaneously on
different particle trajectories or at different times along the same particle trajectory, we are able to
conduct both Eulerian and Lagrangian flow analyses. Spatial velocity structure functions obtained
through the Eulerian analysis show scaling behaviors in the inertial subrange similar to that for
classical HIT but with enhanced intermittency. The Lagrangian analysis allows us to examine the
flow statistics down to below the dissipation length scale. Interestingly, abnormal deviations from
the classical scaling behaviors are observed in this regime. We discuss how these deviations may
relate to the motion of quantized vortices in the superfluid component in He II.

I. INTRODUCTION

Below about 2.17 K, liquid *He undergoes a second-order phase transition to the superfluid phase (He II). Phe-
nomenologically, He IT can be described by Landau’s two-fluid model [1]. This mesoscopic model treats the system
as consisting of two fully miscible fluid components: an inviscid superfluid component (i.e., the condensate) and a
viscous normal-fluid component (i.e., the thermal excitations) [2]. The rotational motion in the superfluid can occur
only with the formation of topological defects in the form of quantized vortex lines [3]. These vortex lines all have
identical cores (thickness y ~ 1 A) and they each carry a single quantum of circulation x ~ 10~3 cm?/s. Turbulence
in the superfluid takes the form of an irregular tangle of vortex lines (quantum turbulence) [4]. The normal fluid
behaves more like a classical fluid. But a force of mutual friction between the two fluids [5], arising from the scattering
of thermal excitations by the vortex lines, can affect the flows in both fluids.

Despite being a quantum two-fluid system, He II has been observed to exhibit flow characteristics similar to that in
classical fluids when the flows are generated by mechanical forcing [6, 7]. This similarity has brought up the feasibility
of utilizing the small kinematic viscosity of He II (i.e., about three orders of magnitudes smaller than that of ambient
air [8]) to generate turbulent flows with extremely high Reynolds numbers for classical turbulence research and model
testing [9, 10]. The quasiclassical behavior of He II in mechanically driven flows is believed to be the result of a
strong coupling of the two fluids at large scales by mutual friction [11]. The turbulent eddies in the normal fluid
are matched by eddies in the superfluid induced by local polarization of the vortex tangle [12]. However, at small
scales, especially below the mean inter-vortex distance ¢, this coupling must break down because the superfluid flow
is then controlled by the circulation around individual vortex lines and cannot match the classical normal-fluid flow.
Therefore, a mutual friction dissipation sets in at these small scales, in addition to the viscous dissipation in the
normal fluid [4]. The extend of the coupling at large scales and the unique small-scale dissipation mechanism all
depend on the density ratio of the two fluids (and hence the temperature), which can give rise to subtle differences
between He II quasiclassical flows and flows in classical fluids. For instance, a past theoretical work suggested a
temperature-dependent enhancement of turbulence intermittency in He IT quasiclassical flows [13]. In order to explore
these interesting similarities and differences, quantitative velocity-field measurements in a simple and well-controlled
He II quasiclassical flow are needed.

A simple form of turbulence that has received extensive attention in classical fluids research is the so-called homo-
geneous isotropic turbulence (HIT) [14-16], which can also be achieved in He II in the wake of a towed grid [6]. In a
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recent work, we reported the study of grid turbulence in a He II filled channel using a molecular tagging velocimetry
(MTV) technique [17]. This technique is based on the creation and tracking of thin lines of Hej molecular tracers
[18]. These tracers are completely entrained by the viscous normal fluid above 1 K and therefore their motion pro-
vides unambiguous information about the normal-fluid flow [19-25]. A striking nonmonotonic temperature-dependent
intermittency enhancement was observed for the first time [17]. Nevertheless, there are two major limitations in the
MTYV experiment: 1) the MTV method only allows the measurement of the velocity component perpendicular to the
tracer lines [26], and hence there lacks information about the isotropicity of the flow; and 2) the spatial resolution is
limited by the displacement of the tracer lines (i.e., 100-200 pum), which is greater than the typical dissipation length
scale (i.e., a few tens of microns).

To overcome these issues, we report in the present work the application of a particle tracking velocimetry (PTV)
technique for velocity-field measurements in a recently built He IT grid turbulence facility [27]. Micron-sized solidified
deuterium particles are used as the tracers, whose motion can be tracked with a spatial resolution of a few microns
to render both the horizontal and the vertical velocities within the imaging plane. These particles experience the
drag force from the viscous normal fluid. As we will discuss later, the corresponding Stokes number is about 0.16 in
our experiment, which means they do faithfully follow the normal fluid motion. These tracers have no appreciable
interaction with the superfluid, but they can get trapped on the vortices due to the superfluid Bernoulli pressure
[3]. This trapping may render their motion hard to interpret in He I flows where the two fluids have different mean
velocities (e.g., heat-induced thermal counterflow [1]) [28-31]. However, this issue is not a concern in grid turbulence.
At large scales where the two fluids are nearly coupled, the motion of the particles can provide us quantitative
information about the coupled velocity field. At small scales, deviations from the classical turbulence statistics may
be unveiled due to the motion of the trapped particles.

In Sec. I, we briefly describe the experimental setup and the measurement methods. In Sec. III, we first present
evidences to show that a nearly HIT can emerge in the decay of the towed-grid generated turbulence in He II. Then,
by correlating the velocities measured simultaneously on different particle trajectories or at different times along the
same particle trajectory, we manage to conduct both Eulerian and Lagrangian velocity statistical analyses. We show
that the spatial velocity structure functions obtained through the Eulerian analysis exhibit scaling behaviors in the
inertial subrange similar to that for classical HIT but with enhanced intermittency. The Lagrangian analysis, on
the other hand, allows us to examine the flow statistics down to below the dissipation length scale. In this regime,
abnormal deviations from the classical scaling behaviors are observed. We discuss how these deviations may relate to
the motion of the quantized vortices. A brief summary is provided in Sec. IV.

II. EXPERIMENTAL METHOD

The experimental apparatus used in the current work was designed and built specifically for PTV-based He II
grid-turbulence research [27]. As shown schematically in Fig. 1, a transparent cast acrylic flow channel with a square
cross section (D?=1.6x1.6 cm?, length: 33 cm) is immersed vertically in a He II bath, where the helium temperature
can be controlled by regulating the vapor pressure in the bath. A brass mesh grid is suspended by four stainless-steel
thin wires at the four corners inside the flow channel. These wires are connected to the drive shaft of a linear motor
system. A LabVIEW computer program is developed to control the motor system such that the grid can be pulled
at a constant speed between 0.1 and 60 cm/s. In this specific work, we use a fixed grid speed at 30 cm/s. In order to
minimize possible large-scale secondary flows around the moving grid, we followed the guidelines from classical grid
turbulence research [32, 33] and designed our grid to have a mesh spacing of 3 mm and an open area of 40% and with
special treatments of its boundary and the four corners [27].

To probe the flow, solidified deuterium particles are used as the tracers. These particles are produced by slowly
injecting a room-temperature mixture of 5% deuterium gas and 95% helium gas through a leak valve into the flow
channel [34]. The gas mass flow rate is restricted such that the injection does not affect the bath temperature.
Typically, the resulting particles have diameters in the range 3 to 6 pum with a mean d, ~ 5 pm, as determined
from their settling velocity in quiescent He IT [27]. A continuous-wave laser sheet (thickness: 200 pm, height: 9 mm)
passes through the geometric center of the channel to illuminate the particles. We then pull the grid at the controlled
speed and use a high-speed camera (120 frame per second) to record the motion of the particles. Due to the camera’s
limited internal memory, we record the particle motion for a period of 0.28 s (i.e., 34 frames) for every 2 s following
the passage of the grid. Particle trajectories can be extracted from the sequence of images based on the feature-point
tracking routine developed by Sbalzarini and Koumoutsakos [35].

Besides the PTV measurement, a standard second-sound attenuation method is also used to measure the temporal
evolution of the spatial-averaged vortex-line density L(t) (i.e., total length of the vortices per unit volume, L~/2 = ¢)
[27]. The turbulence generated by the towed grid decays with time. We take the instant when the grid passes through
the center of the view port as the time origin for both the visualization and the second-sound measurements. These
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FIG. 1: Schematic diagram of the experimental apparatus.

measurements are made in the temperature range of 1.65 to 2.12 K. At each temperature, we normally repeat the
experiment 10 times so that an ensemble statistical analysis of the particle trajectories can be performed at different
decay times.

IIT. EXPERIMENTAL RESULTS AND DISCUSSIONS
A. Temporal evolution of the grid turbulence

It is generally believed that a moving grid in He II first produces turbulent eddies with sizes comparable to the mesh
grid spacing. Then, after a short transient period, the energy-containing eddies saturate at sizes comparable to the
width of the channel, which leads to a nearly HIT that decays with time [6]. However, the observation of large-scale
flows right after the passage of the grid in our previous MTV experiment casts doubt on this simple physical picture
[17]. These large-scale flows are likely due to the secondary flows caused by the imperfection of the grid geometry,
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FIG. 2: (a) Ensemble-averaged vertical velocity (v,) profile following the passage of the grid. (b) The corresponding
vertical velocity variance o,,. The data were taken at 1.95 K with a grid velocity of 30 cm/s.



which is hard to completely avoid. To examine the evolution of the velocity profile in our current experiment, we
analyze the particle trajectories and calculate the vertical velocity v, as a function of the horizontal position = across
the width of the flow channel. Representative velocity profiles (v, (x)) obtained at 1.95 K through an assemble average
over many trajectories and over 10 experimental trials are shown in Fig. 2 (a). It is obvious that large-scale nonuniform
flows exist at short decay times, despite the careful design of the grid. Nevertheless, these nonuniform flows have
evolved to a more uniform turbulence by ¢t = 4 s such that (v,(z)) becomes nearly zero across the channel width.

Fig. 2 (b) shows the profile of the corresponding vertical-velocity variance oy, defined as o, = ([vy(z) — Fy]2>1/ ‘It

appears that o, is more spatially homogeneous and remains at a relatively high level at t = 4 s.

In Fig. 3, we show the calculated probability density functions (PDFs) of the particle horizontal velocity v, and
the vertical velocity v, obtained at 1.95 K. At small decay times, the vertical velocity PDFs exhibit double-peak
structures, which reflect the nonuniform large-scale eddies as revealed in Fig. 2 (a). After these large-scale eddies
decay, the velocity PDF's can be fitted reasonably well by Gaussian functions. Through such fits, the evolution of the

velocity variances in both the horizontal direction o, (¢) and the vertical direction o, (¢) can be obtained, which provides

us information about the decay of the turbulence kinetic energy density K, (t) = %O’z(t)Q and K, (t) = 30, ()%
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FIG. 3: Horizontal (a) and Vertical (b) particle velocity PDFs at different decay times as indicated. The data were
taken at 1.95 K with a grid velocity of 30 cm/s.
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FIG. 4: (a) Time evolution of the turbulence kinetic energy K (t) contribution from the horizontal and the vertical
velocity components. (b) Decay of the quantized vortex-line density L(¢). The solid black curve represents the
scaling L(t) o (t +to)~%/%, where to = 0.27 s is the virtual time origin [36]. The data were taken at 1.95 K.

In Fig. 4, we show the time-evolution of the obtained turbulence kinetic energy K(t) together with the measured
vortex-line density L(t). It turns out that K (t) decays more or less accordingly to K (t) oc =2, especially for ¢ > 4 s.



The contributions to K (¢) from the two velocity components appear to have similar magnitudes, which suggests that
the turbulence is relatively isotropic. The decay of the vortex-line density exhibits a scaling behavior of L(t) oc t—3/2
after the first a few seconds. According to refs. [6, 11, 37], both these scalings are considered as the characteristics
of decaying HIT in He II after the sizes of the energy-containing eddies are saturated by the channel width. Based
on these analyses, the turbulence at 4 s decay time appears to be reasonably homogeneous and isotropic, and its
turbulence kinetic energy density is relatively high such that an inertial subrange may exist. In what follows, we shall
focus on the data set taken at ¢ = 4 s for detailed statistical analysis.

To aid the discussion of the statistical analysis, we would like to provide information about the characteristic time
and length scales of the turbulence. For this purpose, the energy dissipation rate e=-d(K, + K, + K)/dt needs to be
evaluated. In principle, one may determine e through Fig. 4 (a). However, due to the limited data points and their
large scattering, only a rough order of magnitude estimation of € ~10 mm? /s can be made. We therefore adopt the
method introduced in ref. [38] to calculate e based on velocity spatial derivatives. In this calculation, we select all
the velocity pairs measured simultaneously at two particles that are separated by less than 0.1 mm to evaluate the
ensemble averaged velocity spatial derivatives. e=43.7 mm?/s3 is obtained for the data at 4 s decay time at 1.95 K.
Using this value, we are able to calculate the Taylor microscale A, Taylor Reynolds number Rey, Kolmogorov length
scale n7 and time scale 7;,. The expressions of these parameters and their values are listed in Table I.

TABLE I: Characteristic parameters of the He II grid turbulence at 4 s decay time at 1.95 K.

Parameter Expression # Value
e = v(a(3=)? + 45E)? + 3(5=)? +

Energy dissipation rate ¢ (mm?/s®) [38] 3(66%)2 + 4( G BaLyy) + 6(8;; %vj ) 43.7
Taylor microscale A (mm) AR \/15Z(0)rms, (V)rms = VI2(02)2 + (04)2]/3 0.14
Kolmogorov microscale 7 (pm) n= (”—:')1/4 11.9
Taylor Reynolds number Rex Rey = <1’>’“+SA 34.5
Large scale Reynolds number Rep Rep = <”ZD, (W) = (2(v2)? + (vy)?)*/? 6.7x10°
Kolmogorov time scale 7, (ms) Ty = (%)1/2 14.8
Stokes time 7, (ms) Ts = plpgi’z) 0.20

& v and p denote the kinematic viscosity and the dynamics viscosity of He II [8], respectively.

We have also calculated the Stokes time of the tracers 7, and included it in Table I. The small Stokes time gives
a Stokes number (i.e., St=74(v)/d,) of about 0.16, suggesting excellent tracing accuracy [39]. It is worthwhile noting
that our sampling time (i.e., inverse of the camera frame rate) is 8.3 ms, which is smaller than the Kolmogorov time
and greater than the Stokes time. This is desired for high fidelity PTV measurements.

B. Eulerian structure functions and intermittency

In the Eulerian description of fluid flow, spatial structure functions are known to be very useful tools for charac-
terizing the statistical properties of the turbulence [40]. For fully developed HIT, the relevant forms of the structure
functions are the n-th order longitudinal and transverse structure functions, defined as [41, 42]:

Sp(r) = {6V (r) - #|") and S (r) = (|§V(r) x #") (1)

where §V(r) = V(ry) — V(r2) denotes the difference of the velocities measured simultaneously at two locations that
are separated by r = ry; — ro, and the angle brackets represent the ensemble average. For fully-developed ideal HIT
in an incompressible fluid, these structure functions exhibit the well-known Kolmogorov-Obukhov scaling behaviors
(43, 44]. Specifically, the third-order structure function should scale as |S3(r)| = 2er. The range of 7 over which this
scaling holds defines the inertial subrange of the turbulence energy cascade. In this inertial subrange, the second-order
structure function is expected to scale as So(r) oc 72/3.

To check whether an inertial subrange develops in our grid turbulence, we have performed Eulerian analysis of the
velocity field by correlating the velocities measured simultaneously on different particle trajectories (see Appendix A



for more details). The range of r in this analysis is set by our requirement that the sample number at a given particle
separation r must be greater than 102. To our knowledge, no prior PTV experiments with He II have ever reported
the implementation of the Eulerian analysis [45, 46]. In Fig. 5 (al) and (a2), we show the calculated Sg (r) and S5 (r)
compensated by (er)~! for the data set obtained at t = 4 s. Over the range 0.12 mm< r <2 mm as highlighted by

the shaded region, both Sg (r)/er and S3 (r)/er appear to be more or less flat and their values are indeed close to 4/5,
indicating the existence of a cascade inertial subrange. The lower end of this subrange agrees well with the calculated
Taylor microscale A=0.14 mm. We also plot the second-order structure functions in Fig. 5 (b1) and (b2). It is clear

that in the inertial subrange, both Sg (r) and S3-(r) can be well fitted by power-law scalings that are close to r2/3,
The Kolmogorov-Obukhov scalings of the higher-order structure functions in the inertial subrange in an ideal HIT
are S, (r) oc 75 [47]. However, intermittency can occur spontaneously in real turbulent flows, which manifests itself
as extreme velocity excursions that appear more frequently than one would expect on the basis of Gaussian statistics.
Corrections to the scaling exponents of the velocity structure functions are therefore expected, especially for higher-
order structure functions that are more sensitive to the occurrence of rare events. She and Leveque proposed a
universal scaling S, (r) oc 7% for HIT in classical fluids [48], where ¢, = 2 + 2 [1 — (2)"/3]. These predicted scalings
were confirmed experimentally by Benzi et al. [49]. To examine the scaling behaviors of the structure functions and
the intermittency in He IT grid turbulence, we adopt the extended self-similarity (ESS) method by plotting S,,(r)
versus S3(r) (instead of r) in the inertial subrange [49, 50]. It is known that the ESS analysis can reveal scaling laws
even for turbulent flows with moderate Reynolds numbers [51], thereby allowing for more accurate determination

of the scaling exponents [52]. In Fig. 6, we show the calculated S,HL(T) and S (r) versus S3(r). Clear power-law

dependance of S| (r) and S;-(r) on Ss(r) that extends beyond the inertial subrange is observed. We must emphasize
that a reliable determination of the higher order statistics requires more samples. Unfortunately, our current data
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FIG. 5: (al) and (a2) show the compensated third-order transverse and longitudinal structure functions. The
dashed horizontal lines mark the constant value of 4/5. The shaded region indicates the inertial subrange. (bl) and
(b2) show the second-order structure functions. The solid lines are power-law fits to the data in the shaded region.



sets are relatively limited due to various constrains such as the helium boil off, the long waiting time between runs,
and the high cost of liquid helium for repeating the experiments.
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FIG. 6: Extended self-similarity plots of (a) transverse and (b) longitudinal velocity structure functions forn =1~ 5
versus the third-order structure functions. The solid lines are power-law fits to the data in the inertial subrange.

In Fig. 7, we show the scaling exponents (,, extracted through the power-law fits in the ESS analysis. The large
error bars are due to the relatively strong scattering of the data points in the fits. Besides the data obtained at 1.95
K (48.2% normal fluid), the results of similar measurements conducted at 1.65 K (19.3% normal fluid) and 2.12 K
(78.8% mnormal fluid), together with the (,, values that She and Leveque proposed for classical fluids [48], are also
collected in Fig. 7. The differences between (,, and the Kolmogorov-Obukhov scalings of n/3 are clearly seen in our
data, which confirms the existence of intermittency in He II grid turbulence. The observation that ¢, is universally
smaller than % for n > 3 agrees well with the (, behavior in classical fluids [53]. Furthermore, it is clear that the
intermittency in He II grid turbulence for n > 3 is enhanced compared to that in classical fluids, which agrees with
theoretical predictions [13]. However, due to the large error bars associated with the extracted (,, we cannot draw
any definite conclusion regarding the temperature dependance of the intermittency in He IT [17, 50, 54].
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FIG. 7: Intermittency corrections to the scaling exponents of the transverse (a) and longitudinal (b) structure
functions for He II grid turbulence. The corrections for classical fluids are also included for comparison [48].

C. Lagrangian analysis at small length scales

We have also conducted Lagrangian analysis of the particle motion by correlating the velocities measured along
individual particle trajectories at different times. Conventionally, temporal structure functions in the Lagrangian
framework can be constructed as:

Sp(r) = (|8V(r) -#|") and S, (7) = (|6V(7) x #") (2)



where 6V (1) = V(t + 1) — V(t) denotes the difference of the velocities measured at ¢ + 7 and ¢ along a single particle
trajectory, and r is the displacement of the particle over the time interval 7. In order to make more direct comparison
with the Eulerian structure functions, in what follows, we will calculate the Lagrangian structure functions and plot
them as a function of the distance r instead of 7. This treatment allows us to examine the flow statistics down to
scales as small as the particle displacement in one frame time (i.e., 8.3 ms).

Fig. 8 shows the calculated second-order Lagrangian structure functions for the representative case of the He II
grid turbulence at 1.95 K and at the decay time ¢ = 4 s. The range of r covered in the Lagrangian analysis overlaps
partly with that in the previous Eulerian analysis, while the lower bound of r now extends down to about 15 pum,
which is much smaller than the mean inter-vortex distance ¢ (i.e., about 54 pm based on Fig. 4 (b)). Interestingly,
in the overlapping region of r, the Lagrangian structure function data appear to agree quite well with that of the
Eulerian analysis. This suggests that despite the different physical bases for the calculations of the Lagrangian and
the Eulerian structure functions, they both exhibit similar scalings and magnitudes in the inertial subrange.
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FIG. 8: Second-order (a) transverse and (b) longitudinal velocity structure functions obtained through both the
Lagrangian and the Eulerian analyses of the particle trajectories for the data set obtained at 1.95 K and ¢t = 4 s.

The more striking feature as revealed in Fig. 8 is the deviation of the Lagrangian structure functions from the
inertial-subrange scaling at length scales below about 50 pum, i.e., comparable to the mean inter-vortex distance
£. Similar deviations are also observed at other temperatures. Indeed, the appearance of the deviation is not too
surprising, because we know the energy dissipation must set in at length scales comparable to ¢ [24], which terminates
the inertial energy cascade. However, in classical turbulence, it has been known that the viscous dissipation leads to
an asymptotic scaling of the second-order structure function as Sa(r) o r? at small scales [47, 53]. This means that
if the grid turbulence in He II truly behaves classically, one would see the Sa(r) value drop rapidly in the dissipation
subrange instead of rising above the inertial-subrange scaling curve. Therefore, an outstanding question is what causes
the observed abnormal behavior of S2(r) at small scales.

To provide our thoughts on this question, let us consider what the tracer particles actually trace in He II grid
turbulence. Note that these micron-sized particles can either get trapped on quantized vortices in the superfluid
or entrained by the viscous normal fluid [31, 55, 56]. At length scales much greater than ¢, the two fluids are
coupled by the mutual friction. Therefore, regardless whether the particles are trapped or not, their motion at large
scales simply provides information about the coupled velocity field. At small scales where the normal-fluid motion
is strongly damped by viscosity and the mutual friction [24], the particles entrained by the normal fluid would make
little contributions to the ensemble-averaging calculation of S(r). On the other hand, for those trapped particles,
their motions at small scales are controlled by the dynamics of individual quantized vortices. Even at scales below £,
the vortices still move randomly with a characteristic mean velocity (v2)'/? given by [4, 24]:

where R is the local curvature radius of the vortices. Therefore, the trapped particles can lead to appreciable values
of Sa(r) at small scales. The exact behavior of Sa(r) in the dissipation subrange will then depend on the fraction
of the particles that are trapped and the temporal velocity correlations of the vortices. We would like to point out
that moving vortices can generate wake structures in the normal fluid due to the mutual friction [31, 57, 58]. If an



untrapped particle moves through such wake structures, it may experience velocity variations which also lead to a
finite contribution to S2(r) in the dissipation subrange. However, due to the small sizes of the wake structures, the
dominant contribution to Sa(r) should still come from the trapped particles. To test this physical picture, numerical
simulations that can track the particles coupled to both the viscous normal fluid and the quantized vortices are needed
[59, 60], which is beyond the scope of this work.

Finally, we perform the ESS analysis of the Lagrangian structure functions with n =1 ~ 5 and plot them together
with the Eulerian structure functions in Fig. 9. The Lagrangian structure functions extend to regions with smaller
values of S3(r). Interestingly, despite the fact that the Lagrangian structure function data largely fall in the dissipation
subrange, they appear to follow nicely the power-law scalings of the Eulerian data in the inertial subrange. This
observation confirms the conclusion from classical turbulence research that the ESS scalings can encompass both the
inertial and the dissipation subranges [49, 61]. But we must note that these scalings in the dissipation range are not
real scalings since the power-law relation between S3(r) and r is lost.
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FIG. 9: Extended self-similarity plots of (a) transverse and (b) longitudinal structure functions based on both
Lagrangian (empty symbols) and Eulerian (solid symbols) analyses of the particle trajectories for the data set
obtained at 1.95 K and ¢t = 4 s. The solid lines represent the power-law fits to the Eulerian data shown in Fig 6.

IV. SUMMARY

We have conducted PTV study of a nearly HIT in He II which emerges in the decay of the turbulent flow produced by
a towed grid in a flow channel. By correlating the velocities measured simultaneously on different particle trajectories
or at different times along the same particle trajectory, we have conducted both Eulerian and Lagrangian analyses
of the turbulent velocity field. We find that the spatial velocity structure functions obtained through the Eulerian
analysis exhibit scaling behaviors in the inertial subrange similar to that for classical HIT but the intermittency
is obviously enhanced. The Lagrangian analysis allows us to obtain information about the velocity field in both
the inertial subrange and the dissipation subrange. In the inertial subrange, the Lagrangian structure functions
show similar magnitudes and scaling behaviors as the Eulerian counterparts. However, they deviate strongly from the
classical scalings in the dissipation subrange. We propose that this abnormal behavior is related to the tracer particles
which are trapped on quantized vortices, the verification of which requires numerical simulations that account for the
coupling of the particles to both the normal fluid and the quantized vortices.

Appendix A: Sample number distribution in the Eulerian and Lagrangian analyses

As shown schematically in Fig. 10, the Eulerian velocity structure function analysis is conducted by correlating
the velocities measured simultaneously on different particle trajectories. The range of r covered in this analysis is
limited by the minimum and the maximum separation distances between the particle pairs. The Lagrangian structure
function analysis is based on correlating the velocities measured along individual particle trajectories at different times.
As discussed in the text, the Lagrangian structure functions are plotted as a function of the particle displacement
r instead of the drift time 7. The corresponding range of 7 is then limited by the minimum and the maximum
displacement of individual particles. In Fig. 11, we show the sample numbers extracted from a representative data
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set (i.e., 10 trials with each having 34 frames lasting for 0.28 s) obtained at 1.95 K and at a decay time ¢t = 4 s as
a function of r. In order for improved accuracy in the ensemble-averaging calculations of the structure functions, we
only analyze the data in the shaded region of » where the sample number is greater than 102.

Image frame
atr+t .-

Image frame

at ¢ Lagrangian analysis

FIG. 10: Schematics showing the concept of the Eulerian and the Lagrangian velocity analyses.
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FIG. 11: Sample number as a function of r for (a) Eulerian and (b) Lagrangian velocity statistical analyses of the
particle trajectories for the data set obtained at 1.95 K and ¢ = 4 s. The analyses are conducted only in the shaded
regions where the sample number is greater than 102
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