Selective Concolic Testing for Hardware Trojan
Detection 1in Behavioral SystemC Designs

Bin Lin
Department of Computer Science
Portland State University
Portland, OR 97207, USA
linbin@cs.pdx.edu

Abstract—With the growing complexities of modern SoC
designs and increasingly shortened time-to-market requirements,
new design paradigms such as outsourced design services have
emerged. Design abstraction level has also been raised from
RTL to ESL. Modern SoC designs in ESL often integrate a
variety of third-party behavioral intellectual properties, as well
as intensively utilizing EDA tools to improve design productivity.
However, this new design trend makes modern SoCs more vul-
nerable to hardware Trojan attacks. Although hardware Trojan
detection has been studied for more than a decade in RTL and
lower levels, it has only recently gained attention in ESL designs.
In this paper, we present a novel approach for generating test
cases by selective concolic testing to detect hardware Trojans
in ESL. We have evaluated our approach on an open source
benchmark that includes various types of hardware Trojans. The
experimental results demonstrate that our approach is able to
detect hardware Trojans effectively and efficiently.

I. INTRODUCTION

Modern system designs involve integration of all compo-
nents of a system on a single chip, namely System-on-a-
Chip (SoC). Due to the growing complexities of SoCs and
increasingly shortened time-to-market requirements, design
abstraction level has rised from register transfer level (RTL)
to electronic system level (ESL), e.g., in C/C++ or SystemC.
Modern SoC designs in ESL often include a large variety
of behavioral intellectual properties (IPs), such as microcon-
trollers, network processors, and digital signal processors. De-
veloping and verifying all these IPs in-house is intimidating, if
not impossible, due to time-to-market and budget constraints.
New design paradigms such as outsourced design services and
widely adoption of electronic design automation (EDA) tools,
have emerged. Although this new design trend tremendously
improves modern SoC design productivity, it results in partial
relinquishment of the control over the SoC design process,
which raises new hardware security issues such as hardware
Trojan attacks in early design steps [1].

SystemC [2] is a widely adopted ESL modelling language
in the semiconductor industry. It has been increasingly used
for architectural exploration, functional verification, and high-
level synthesis. Thus, it is critical to assure the trustworthiness
of those ESL SystemC designs. If hardware Trojans are not
discovered in behavioral SystemC designs, they may be trans-
lated together with normal functionalities down to RTL and
lower level implementations, which makes them much more

978-3-9819263-4-7/DATE20/©)2020 EDAA

Jinchao Chen
School of Computer Science
Northwestern Polytechnical University
Xi’an 710072, China
cjc@nwpu.edu.cn

Fei Xie
Department of Computer Science
Portland State University
Portland, OR 97207, USA
xie@cs.pdx.edu

costly to fix. Existing hardware Trojan detection approaches,
most of which are focused on RTL and lower levels, may
be able to detect those hardware Trojans. However, detecting
and fixing Trojans in RTL or lower levels is much more
expensive than fixing them in ESL. Unfortunately, those low-
level hardware Trojan detection approaches are not applicable
to behavioral SystemC designs since they have different char-
acteristics from RTL and lower level implementations.

Until recently, there has only been a limited amount of
research on hardware Trojan detection for behavioral SystemC
designs. The pioneering work [3] discusses hardware Trojan
problem in behavioral designs and proposes to detect those
Trojans using property checking. The subsequent work [4]
uses coverage-guided fuzz testing to detect hardware Trojans
in behavioral SystemC designs. Both approaches are focused
on behavioral synthesizable SystemC designs, which is a
subset of SystemC designs. Our approach presented in this
paper does not have such a restriction so that it is applicable
to any SystemC design.

In this paper, we present a novel approach to generating
test cases detecting hardware Trojans in behavioral SystemC
designs with selective concolic testing. Hardware Trojans are
stealthy in nature and thus they can only be triggered under
very rare conditions. This makes them very hard to detect
during SoC validation. Concolic (a portmanteau of concrete
and symbolic) testing [S5] is able to generate test cases that
exercise corner cases effectively. It has achieved considerable
success for the software validation [6], [7] and has been used
for test generation in the hardware domain recently [8]-[10]. A
recent work [11] adopts concolic testing for hardware Trojan
detection in RTL, which inspires us to utilize concolic testing
to detect hardware Trojans in behavioral SystemC designs.
Key contributions of our work are as follows.

o To the best of our knowledge, we first bring the concolic
testing techniques into hardware Trojan detection for
behavioral SystemC designs.

« We have improved the efficiency of existing concolic
testing techniques with selective concolic testing and
coverage-guided state search strategy.

o« We have implemented the proposed approach as an ef-
fective and efficient prototype, namely SCT-HTD, which
is able to detect hardware Trojans inserted by adversaries

19

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on September 10,2020 at 05:26:57 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Concolic test generation

in behavioral SystemC designs automatically.

o We have evaluated the performance of our approach on
a benchmark suite, S3CBench [12], which includes be-
havioral SystemC designs with various hardware Trojans.
The experimental results show that our approach is able
to detect hardware Trojans effectively and efficiently.

The rest of this paper is organized as follows. Section
2 introduces background on hardware Trojan and concolic
testing. Section 3 discusses the threat model to which our
approach applies and overview of the proposed approach.
Section 4 presents our approach in details. Section 5 elaborates
on the experiments that we have conducted and the evaluation
results. Section 6 reviews closely related work. Finally, we
conclude this research and discuss future work in Section 7.

II. BACKGROUND
A. Hardware Trojan

Hardware Trojans can be defined as any addition or mod-
ification to an electronic circuit or design with malicious
intent, including functionality modification, sensitive informa-
tion leakage, or denial of services. Hardware Trojans may
be classified into several categories based on various char-
acteristics such as abstraction level, insertion phase, activation
mechanism, and so on. A detailed taxonomy of hardware
Trojans can be found in the survey paper [13]. In general, a
hardware Trojan includes two parts, the trigger (the activation
mechanism) and the payload (the functional part affected
by the activation mechanism). Hardware Trojans are usually
stealthy and are triggered under very rare conditions so that
they are hard to detect during functional validation.

B. Concolic Testing

Concolic testing [5] is a hybrid verification technique that
combines concrete execution and symbolic execution [14]. It
partly addresses the limitations of random testing and symbolic
execution based testing [15], [16]. With concolic testing, both
concrete values and symbolic values are used as inputs for a
design under validation (DUV), in which case it is executed
both concretely and symbolically. Figure 1 shows the idea of
concolic test generation. Solid red arrows denote a concrete
execution path with the concrete input values, while dashed

black arrows represent possible alternative paths where new
test cases may be generated. Circles denote branch points.
During concolic execution, symbolic constraints are collected
along the execution path guided by the concrete inputs. At each
branch point, the constraints are negated and then solved, if
possible, to generate a new test case which would explore an
alternative path for the DUV.

III. OVERVIEW OF PROPOSED APPROACH

This section presents the adversarial threat model, as well
as the high level overview of our proposed approach.

A. Threat Model

With the globalization of the semiconductor industry, mod-
ern SoC designers have been driven to outsource their IPs to
reduce cost. In addition, the growing complexities of modern
SoCs has raised the design abstraction level from RTL to ESL.
As a result, modern SoC design methodologies at ESL often
involve integration of behavioral IPs supplied by third-party
vendors, as well as intensive usage of EDA tools, to improve
the design productivity. However, as shown in Figure 2, the
trustworthiness of SoCs in ESL may be comprised. First,
third-party IPs may contain malicious implants. Although a
testbench with test cases is likely provided with the IPs by
third-party vendors, these test cases are not able to trigger
the embedded Trojans. Second, untrusted EDA tools may
also insert hardware Trojans into these behavioral designs.
Last but not least, in-house designers may leave back-doors
when integrating SoCs, which makes the situation worse. Our
approach mainly intends to detect hardware Trojans injected
into behavioral SystemC designs.

ESL N RTL N Gate

(SystemC) o (Verilog/VHDL)

\ _—
\ Malicious IPs |

Untrusted EDA tools
In-house rogue designers

Fig. 2: Adversarial threat model targeted by SCT-HTD

B. Overview

In this work, we assume that there is a golden model for a
behavioral SystemC DUV. A golden model is an executable
behavioral model that is functionally correct and Trojan-free.
Although it is very expensive, if not impossible, to develop
an entire SoC in-house by designers, we argue that it should
not be very time-consuming to develop a functionally correct
golden model, which is not necessarily cycle accurate. As
shown in Figure 3, our approach consists of two key compo-
nents, selective concolic executor (SCE) and hardware Trojan
detector (HTD). SCE generates test cases by selective concolic
execution with coverage-guided state search strategy, while

20 Design, Automation And Test in Europe (DATE 2020)

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on September 10,2020 at 05:26:57 UTC from IEEE Xplore. Restrictions apply.

DUV +
Testbench

Fig. 3: Selective concolic testing for hardware Trojan detection

HTD detects hardware Trojans by simulating the generated test
cases on both the DUV and its golden model. The execution
of SCE includes a stack, a heap, concrete values of the
inputs, path conditions (represented as symbolic expressions),
a register file, and a program counter, which we define as an
execution state or state.

Algorithm 1 illustrates high level steps of our proposed
hardware Trojan detection approach. The algorithm takes five
parameters as inputs: a design under validation duv, an initial
test case 7 (called seed), a testbench b, a golden model
golden, and a configuration file config. The set T'C', which
contains the seed initially (line 1), saves all generated test
cases. The state sq is the initial execution state of the DUV
with the seed, and assigned to s,, which is the next state to be
explored by concolic execution (line 2). The queues F'P.S and
SPS save execution states during the process (line 3). F'PS,
which includes the initial state at the beginning, saves first
priority states that explore new code of interest, while SPS
saves second priority states that do not explore new code of
interest. The variable IN'T'S stores code ranges that users are
interested in for hardware Trojan detection (line 4). Those code
ranges are specified in the configuration file. A time bound /3
is also given in the configuration file (line 5), which guarantees
the termination of the Trojan detection process in case no
Trojans are detected. At the beginning, since s,, is not NULL
and time bound has not been reached, SEL-CON-TEST-GEN is
executed to explore the initial state (line 7). Upon completion,
it returns a set of new states S’ and a test case 7 for s,,. If
71s NULL, no test case is generated for the explored state
(line 8). Thus, another state is selected and explored (line 9—
10). If 7 is not NULL, HT-DETECTOR is invoked to detect
hardware Trojans with the newly generated test case 7 (line
11). If Trojans are detected, the algorithm returns all generated
test cases and the test case that triggers the Trojans (line 12—
13). Then, SCT-HTD terminates. Otherwise, the new test case
7 is added to T'C, followed by invoking STATE-SELECTOR,
which selects another state s,, for concolic execution (line 14—
15). The variable time (line 6) denotes the total time elapsed
since SCT-HTD starts. If there are no more states left or the
time bound has been reached, SCT-HTD returns all generated
test cases and terminates (line 16). We will discuss the details
of each component in the following section.

IV. HARDWARE TROJAN DETECTION VIA SELECTIVE
CoNcoLIC TESTING

This section presents selective concolic testing for hardware
Trojan detection in behavioral SystemC designs in details.
We will first describe the core of our proposed approach,
SCE, which includes our two primary optimizations, selective

Algorithm 1: SCT-HTD(duv, 7, tb, golden, config)

TC + {7}

So — INITIALIZE(duv, 7, tb), Sn < So

FPS «+ {so}, SPS « 0 > FPS and SPS are queues

INTS < GET-INTERESTED-CODE-RANGE(con fig)

5 < GET-TIME-BOUND(con fig)

while (s, = NULL) A (time < j3) do

{S’,7} < SEL-CON-TEST-GEN(s,, INT'S)

if 7 == NULL then
Sp, ¢ STATE-SELECTOR(duw, tb, FPS, SPS,S’)
continue

NI B 7 I N I S

—
=5

11 ret <— HT-DETECTOR(duv, golden, tb, T)

12 if (ret) then
13 | return TC, 7

14 TC + TCU{r}
15 Sn 4 STATE-SELECTOR(duwv,tb, FPS,SPS,S")

6 return 7TC

—-

DUV

1

3 1
1

1 1
1

3 1
[}

5 1
1

. 1
1

.) 1
1 libsystemc, -
: libc++, etc. |
. 1
1

: 1
1

] 1
1

1 1
1

1 1
1

Fig. 4: Selective concolic test generation

concolic test generation and coverage-guided state search
strategy. Then, we will present HTD that detects hardware
Trojans with the generated test cases by SCE.

A. Selective Concolic Test Generation

Traditional concolic test generation approaches generate test
cases along an entire concrete execution path, as shown in
Figure 1. However, often only a small portion of the path is
from the DUV code. Most code composed of the path is from
libraries, which is of no interest to users generally. It may not
be beneficial to generate test cases in these libraries code for
verifying the DUV. Figure 4 demonstrates the case. The circles
denote branch points, while the arrows indicate the execution
sequence. As the figure shown, although there are three paths
indicated with red, blue, and magenta in the libraries, it
is only one path from the DUV perspective. To improve
the verification efficiency, concolic test generation approaches
should be restricted to generate test cases for the DUV only,
by which the number of generated test cases can be reduced
and hence test generation time is reduced. Furthermore, the
subsequent simulation time can also be reduced with fewer
test cases. Unfortunately, traditional concolic test generation
approaches are not able to distinguish DUV code from libraries
code. Therefore, they usually generate many redundant test
cases in terms of the DUYV, since these test cases follow the
same path from the DUV point of view.

Design, Automation And Test in Europe (DATE 2020) 21

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on September 10,2020 at 05:26:57 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: SEL-CON-TEST-GEN(s,,, INT'S)

Algorithm 3: STATE-SELECTOR(duv, tb, FPS, SPS, S")

S« 0,7+ NULL
while HAS-NEXT-INSTRUCTION(S,,) do
I < GET-NEXT-INSTRUCTION(S,,)
EXECUTE-INSTRUCTION(/)
if I is branch then
bp < GET-SYMBOLIC-BRANCH-PREDICATE(/)
if FIND(I, INTS) then
L s}, < FORK(sy,, —bp)

R e N N S

S+ SuUs),
10 ADD-CONSTAINTS(Sp, bp)

11 SET-NEXT-INSTRUCTION(S,,)

12 7 < CONSTRAINT-SOLVER(GET-CONSTRAINTS(Sy))
13 return S, T

Our proposed selective concolic test generation approach
is able to generate test cases for a specific part of code. In
this case, it is the DUV. However, our approach can also
be used to generate test cases for a specific library, or a
combination of multiple code segments, depending on users’
interests. Algorithm 2 describes our selective concolic test
generation process. The procedure SEL-CON-TEST-GEN takes
two parameters, s, and INTS, as inputs. The input s, is
the current execution state with the concrete values for the
symbolic variables that are obtained in Algorithm 3. The input
INTS includes all code ranges of interest to users. The set S
saves newly forked states from s,, and the test case 7 will be
the generated test case for s,, (line 1). If there is an instruction
for execution (line 2), the instruction [is fetched (line 3) and
executed (line 4). If it is a branch instruction (line 5), the
symbolic predicate bp of I is computed (line 6). If 7 is in the
ranges INT'S, then a new state is forked with negation of bp
and the state is added to the set S (line 7-9). Otherwise, no
new state is forked. Afterwards, bp is added to the constraints
of s,, (line 10). Then, line 11 sets the next instruction to be
executed. If every instruction of s, has been executed, a test
case is generated if possible and saved to 7 (line 12). Finally,
the newly forked states .S and the test case 7 are returned.

B. Coverage-guided State Search Strategy

Algorithm 3 presents our coverage-guided state search
strategy. If HT-DETECTOR does not detect hardware Trojan,
then, STATE-SELECTOR is invoked to select another state for
concolic execution. The state s will be the returned state,
which is NULL initially (line 1). For each state s; from
S’ that is forked from previous concolic execution, its path
constraints are sent to a solver (line 3). If it returns NULL,
the current state is not reachable so that we do not save it (line
4-5). This prevents the state from being explored later, which
reduces the overall execution time. If the solver succeeds, the
concrete values cv are saved to the state for later execution
(line 6). Then, coverage is analyzed with cv (line 7). If new
code is covered, then s; is added to the first priority state queue
FPS (line 9). Otherwise, it is added to the second priority
state queue SPS (line 11). After each state is evaluated, the
first state in F'PS is assigned to s (line 13) and is removed

1 s« NULL

2 foreach s, € S’ do

3 cv < CONSTRAINT-SOLVER(GET-CONSTRAINTS(S¢))
4 if co == NULL then

5 | continue

6 SET-VALUE (s¢, cv)

7 newly_covered <— COVERAGE-ANALYZER(duv, tb, cv)
8 if (newly_covered) then

9 L FPS + FPSU {s:}

10 else
i | SPS <« SPSU{s:}

12 if FPS # 0 then
13 s < FPS.front()
14 | FPS.pop()

15 else if SPS # () then
16 s < SPS.front()
17| SPS.pop()

return s

> get the first state from F'PS
> remove the first state from F'PS

> get the first state from SPS
> remove the first state from SPS

—
]

(line 14) if FPS is not empty. Otherwise, the first state in
SPS is retrieved and removed (line 16-17). If both F'PS and
SPS are empty, then s remains NU L L, which means no more
state to be explored. Finally, the selected state s is returned.

C. Hardware Trojan Detection

Algorithm 4 demonstrates our hardware Trojan detection
procedure. After a state is explored and the test case is
generated, HT-DETECTOR is called with four arguments, a
duv and its golden model golden, a testbench tb, as well as
the newly generated test case 7. The test case 7 is simulated
on both duv and golden (line 1 and line 2 respectively).
If the results are not the same from both simulation, then
this indicates that a Trojan is detected (line 4); otherwise,
HT-DETECTOR returns false to indicate that no Trojan is
discovered.

Algorithm 4: HT-DETECTOR(duw, golden, tb, T)

1 resl < SIMULATOR(duw, tb, T)

2 res2 <— SIMULATOR(golden, tb, T)
3 if resl # res2 then
4 | return true

> indicates that Trojan is detected

5 else
6 | return false

V. EXPERIMENTAL RESULTS

We have implemented the proposed approach as an au-
tomated prototype, namely SCT-HTD, based on S2E [17],
which is a generic platform for analyzing software systems.
S2E incorporates a virtual machine and a symbolic execution
engine, by which it is able to switch back and forth between
concrete execution and symbolic execution. S2E consists of
a path explorer that drives a target program down possible
execution paths of interest and a path analyzer that checks
properties of explored paths. We adapted S2E as our selective

22 Design, Automation And Test in Europe (DATE 2020)

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on September 10,2020 at 05:26:57 UTC from IEEE Xplore. Restrictions apply.

TABLE I: SCT-HTD experimental results and comparison with the state-of-the-art approaches

Designs # Test case Time (s) Memory (MB)
SCT-HTD" | CT¢ AFL" | AFL-SHT?| SCT-HTD CT AFL AFL-SHT | SCT-HTD CT AFL | AFL-SHT

adpcm—-swm 27 525 451563 423 157 T.O. T.O. 1.71 3546 14337 | N/A N/A
adpcm-swom 7 503 450839 414 31 T.O. T.O. 1.67 1341 14442 | N/A N/A
fir-cwom 26 76 207 41 13 26 8.51 0.07 1621 2305 N/A N/A
bSort-cwom 2 2 118 39 8 10 4.82 0.05 1074 2668 N/A N/A
bSort-swm 4 975 19826 108 10 T.O. | 337.36 0.11 1106 10768 | N/A N/A
uart-swml 3 1023 N/A N/A 9 T.O. N/A N/A 1071 13011 | N/A N/A
uart-swm2 3 1016 172 51 9 T.O. 8.82 0.18 1070 12972 | N/A N/A
aes—-cwom 11 11 50544 22 23 32 888.29 0.04 1386 1396 N/A N/A

* Our approach ¢ Concolic testing (CT) without our optimizations " Fuzzing with software-oriented mutation ¢ Coverage-guided fuzzing

1200

1000

800

600

400

uSCT-HTD
uCT

8000

7000

6000

5000

14000

3000

= SCT-HTD
uCT

16000
14000
12000
10000

8000

6000

" SCT-HTD
uCT

2000

200 1000

0 0

4000
2000

N Q Q&
S
S

Fig. 5: Number of generated test cases

concolic executor to generate test cases for SystemC designs,
which are used to detect hardware Trojans in those designs.
We have evaluated our approach on the open-source bench-
mark suite, S3CBench [12]. Although S3CBench only consists
of behavioral synthesizable SystemC designs, our approach
also works for non-synthesizable SystemC designs. S3CBench
contains 10 SystemC designs that includes multiple types of
hardware Trojans based on trigger mechanism, either sequen-
tial or combinational. Half of the designs are computation
intensive designs, such as image processing algorithms. Each
design has fixed computation procedures for any inputs. As
we all know, concolic test generation is based on branch
conditions, which makes it very powerful to explore deep
path with complex conditions and corner cases. However,
it is not good at generating test cases for a design that
has fixed execution steps, since an execution path of such
a design does not depend on input values. This is a known
limitation of concolic testing. Thus, we conducted experiments
on non-computationally intensive designs. The experiments
were conducted on a laptop with a 4-core Intel(R) Core(TM)
i7-4700MQ CPU, 16 GB of RAM, and running the Ubuntu
Linux OS with 64-bit kernel version 4.15. Table I presents our
experimental results, as well as comparison with the state-of-
the-art approaches. We will discuss the table in the following.

A. Effectiveness and Efficiency of Hardware Trojan Detection

We developed a golden model for each design on which
we experimented. The first column of Table I gives the name
(before the hyphen part) of each design. The part after the
hyphen denotes the type of inserted Trojan. Details about the
benchmark and the Trojans can be found in S3CBench [12].
We have evaluated the performance of SCT-HTD from three
perspectives, namely the number of generated test cases to
trigger the Trojan (column 2), time usage (column 6) and

Design, Automation And Test in Europe (DATE 2020)

Fig. 6: Time usage

Fig. 7: Maximum memory usage

maximum memory usage (column 10). To pursue a fair com-
parison, we also set a two-hour time bound during experiments
as AFL-SHT [4] did. T.O. indicates that the two-hour time
bound is reached and thus the hardware Trojans are not
detected. The designs that we evaluated on includes the three
typical hardware Trojan types in terms of payload, namely
functionality modification (adpcm, fir, and bSort), denial
of service (uart), and sensitive information leakage (aes).
As demonstrated, our approach is able to detect all three
types of hardware Trojans with a few test cases, short time
usage and reasonable memory usage, which demonstrates the
effectiveness and efficiency.

B. Evaluation of Two Optimization Strategies

To illustrate the advantages of our selective concolic testing
and coverage-guided state search strategy, we have conducted
experiments with traditional concolic testing approach (with-
out the two optimization), denoted as CT. Column 3, column 7
and column 11 show the number of generated test cases, time
usage and maximum memory usage with CT, respectively.
Five out of eight Trojans are not detected within the two-
hour time bound, although many test cases are generated.
Figure 5, Figure 6, and Figure 7 demonstrate the advantage
of SCT-HTD in the three aspects graphically, compared with
traditional concolic testing approach. As shown in figures, our
optimization strategies reduce the number of generated test
cases, time usage, and memory usage tremendously for more
than half of the designs. For other designs, our approach is also
able to detect hardware Trojans with fewer or equal number
of generated test cases, less time and memory usage.

C. Comparison with State-of-the-Art Approaches

Two existing approaches target hardware Trojan detection
for behavioral SystemC designs. One [3] uses property check-

23

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on September 10,2020 at 05:26:57 UTC from IEEE Xplore. Restrictions apply.

ing and the other, AFL-SHT [4], adopts coverage-guided
fuzzing. Although we do not have access to the commercial
formal tools to conduct experiments, formal approaches on
Trojan detection for behavioral SystemC designs are not as
promising as AFL-SHT. Since the source code of AFL-SHT
is not available, we take the results obtained by both AFL-
SHT and AFL [18] from its paper for comparison. Some data
are not presented in the paper, such as memory usage, which
are denoted as N/A. As illustrated, our approach is able to
detect the Trojans with far fewer test cases than AFL and
AFL-SHT. Time usage of SCT-HTD is much less than AFL for
half of the designs. For other designs, SCT-HTD uses a little
longer time than AFL and AFL-SHT. There are two possible
reasons. First, power of machines running experiments are
different. We conducted experiments on a laptop which might
be less powerful. Second, concolic testing involves constraint
solver to generate test cases, which is a known time-consuming
operation. However, the increase of time usage is moderate.

VI. RELATED WORK

Until recently, most of computer security research was
devoted to software security. The underlying hardware was
expected to be secure. However, this is no longer the case with
the globalization of modern SoC design and manufacturing
processes, and the emergence of new design paradigms such as
outsourced design services and intensive usage of EDA tools.
Thus, hardware vulnerabilities such as hardware Trojan attacks
have raised serious concerns. As a result, a variety of hardware
Trojan detection approaches have been developed.

So far, most hardware Trojan detection approaches are
focused on RTL or lower level designs. There are a handful
of Trojan detection approaches in RTL [11], [19] . There are
also various Trojan detection approaches that are focused on
the gate level [20]—[25]. Post-silicon Trojan detection has also
been studied [26]-[28]. There has only been limited research
on hardware Trojan detection for behavioral designs. The
pioneering work [3] detects hardware Trojans in behavioral
SystemC designs using C++ control flow constructs and the
property checker provided by a commercial behavioral syn-
thesis tool. The subsequent work [4] uses coverage-guided
fuzz testing to detect hardware Trojans in behavioral SystemC
designs. Both approaches are focused on behavioral synthe-
sizable SystemC designs which is a subset of SystemC, while
our approach presented in this paper is not restricted to the
behavioral synthesizable SystemC designs.

VII. CONCLUSION

In this paper, we have presented a novel approach for de-
tecting hardware Trojans in behavioral SystemC designs with
selective concolic testing. We have also proposed an algorithm
to improve efficiency of the approach with coverage-guided
state search strategy. We have implemented the proposed
approach as a prototype, SCT-HTD. To show the effectiveness
and efficiency of the proposed approach, we have conducted
experiments on an open source benchmark. The results demon-
strate that our approach is very promising on hardware Trojan

detection for behavioral SystemC designs. In the future, we
will extend the S3CBench with non-synthesizable SystemC
designs and conduct experiments on them using SCT-HTD.
Moreover, we will combine other techniques, such as mutation
testing and fuzzing testing, with SCT-HTD to overcome the
limitations of concolic testing, which is not suitable for
computationally intensive designs.

ACKNOWLEDGEMENT

This research received financial support in part from Na-
tional Science Foundation (Grant #: 1908571).

REFERENCES

[1] I Polian, G. T. Becker, and F. Regazzoni, “Trojans in Early Design Steps—An
Emerging Threat,” in Proc. of TRUDEVICE, 2016.

[2] IEEE Standards Association, Standard SystemC Language Reference Manual.
IEEE Std. 1666-2011, 2011.

[3] N. Veeranna and B. C. Schafer, “Hardware Trojan Detection in Behavioral Intel-
lectual Properties (IP’s) Using Property Checking Techniques,” IEEE Transactions
on Emerging Topics in Computing, 2017.

[4] H. M. Le, D. GroBe, N. Bruns, and R. Drechsler, “Detection of Hardware Trojans
in SystemC HLS Designs via Coverage-guided Fuzzing,” in Proc. of DATE, 2019.

[5] K. Sen, “Concolic Testing,” in Proc. of ASE, 2007.

[6] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed Automated Random

Testing,” SIGPLAN Not., 2005.

K. Sen, D. Marinov, and G. Agha, “CUTE: A Concolic Unit Testing Engine for C,”

in Proc. of ESEC, 2005.

[8] L. Liu and S. Vasudevan, “Efficient Validation Input Generation in RTL by

Hybridized Source Code Analysis,” in Proc. of DATE, 2011.

Y. Zhou, T. Wang, H. Li, T. Lv, and X. Li, “Functional Test Generation for Hard-

to-Reach States Using Path Constraint Solving,” IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 2016.

[10] B. Lin, K. Cong, Z. Yang, Z. Liao, T. Zhan, C. Havlicek, and F. Xie, “Concolic
Testing of SystemC Designs,” in Proc. of ISQED, 2018.

[11] A. Ahmed, F. Farahmandi, Y. Iskander, and P. Mishra, “‘Scalable Hardware Trojan
Activation by Interleaving Concrete Simulation and Symbolic Execution,” in Proc.
of ITC, 2018.

[12] N. Veeranna and B. C. Schafer, “S3CBench: Synthesizable Security SystemC
Benchmarks for High-Level Synthesis,” Journal of Hardware and Systems Secu-
rity, 2017.

[13] M. Tehranipoor and F. Koushanfar, “A Survey of Hardware Trojan Taxonomy and
Detection,” IEEE Design Test of Computers, 2010.

[14] J. C. King, “Symbolic Execution and Program Testing,” Communications of the
ACM, 1976.

[15] B. Lin and D. Qian, “Regression Testing of Virtual Prototypes Using Symbolic
Execution,” International Journal of Computer Science and Software Engineering,
2015.

[16] B. Lin, Z. Yang, K. Cong, and F. Xie, “Generating High Coverage Tests for
SystemC Designs Using Symbolic Execution,” in Proc. of ASP-DAC, 2016.

[17] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A Platform for In-vivo Multi-
path Analysis of Software Systems,” in Proc. of ASPLOS, 2011.

[18] M. Zalewski, “Technical Whitepaper,” http://Icamtuf.coredump.cx/afl/technical_d
etails.txt.

[19] M. Banga and M. S. Hsiao, “Trusted RTL: Trojan Detection Methodology in Pre-
Silicon Designs,” in Proc. of HOST, 2010.

[20] D. Ismari, J. Plusquellic, C. Lamech, S. Bhunia, and F. Saqib, “On Detecting Delay
Anomalies Introduced by Hardware Trojans,” in Proc. of ICCAD, 2016.

[21] F. Koushanfar and A. Mirhoseini, “A Unified Framework for Multimodal Sub-
modular Integrated Circuits Trojan Detection,” IEEE Transaction on Information
Forensics Security, 2011.

[22] M. Oya, Y. Shi, M. Yanagisawa, and N. Togawa, “A Score-based Classification
Method for Identifying Hardware-trojans at Gate-level Netlists,” in Proc. of DATE,
2015.

[23] J. Rajendran, V. Vedula, and R. Karri, “Detecting Malicious Modifications of Data
in Third-party Intellectual Property Cores,” in Proc. of DAC, 2015.

[24] J.Zhang, F. Yuan, L. Wei, Z. Sun, and Q. Xu, “VeriTrust: Verification for Hardware
Trust,” in Proc. of DAC, 2013.

[25] B. Cakirand S. Malik, “Hardware Trojan Detection for Gate-level ICs Using Signal
Correlation Based Clustering,” in Proc. of DATE, 2015.

[26] K. Hu, A. N. Nowroz, S. Reda, and F. Koushanfar, “High-sensitivity Hardware
Trojan Detection Using Multimodal Characterization,” in Proc. of DATE, 2013.

[27] S. Narasimhan, D. Du, R. Chakraborty, S. Paul, F. Wolff, C. Papachristou, K. Roy,
and S. Bhunia, “Hardware Trojan Detection by Multiple-Parameter Side-Channel
Analysis,” IEEE Transactions on Computers, 2013.

[28] E. Love, Y. Jin, and Y. Makris, “Proof-Carrying Hardware Intellectual Property:
A Pathway to Trusted Module Acquisition,” IEEE Transaction on Information
Forensics and Security, 2012.

[7

[9

24 Design, Automation And Test in Europe (DATE 2020)

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on September 10,2020 at 05:26:57 UTC from IEEE Xplore. Restrictions apply.

		2020-06-12T00:51:24-0400
	Preflight Ticket Signature

