
Selective Concolic Testing for Hardware Trojan
Detection in Behavioral SystemC Designs

Bin Lin
Department of Computer Science

Portland State University

Portland, OR 97207, USA

linbin@cs.pdx.edu

Jinchao Chen
School of Computer Science

Northwestern Polytechnical University

Xi’an 710072, China

cjc@nwpu.edu.cn

Fei Xie
Department of Computer Science

Portland State University

Portland, OR 97207, USA

xie@cs.pdx.edu

Abstract—With the growing complexities of modern SoC
designs and increasingly shortened time-to-market requirements,
new design paradigms such as outsourced design services have
emerged. Design abstraction level has also been raised from
RTL to ESL. Modern SoC designs in ESL often integrate a
variety of third-party behavioral intellectual properties, as well
as intensively utilizing EDA tools to improve design productivity.
However, this new design trend makes modern SoCs more vul-
nerable to hardware Trojan attacks. Although hardware Trojan
detection has been studied for more than a decade in RTL and
lower levels, it has only recently gained attention in ESL designs.
In this paper, we present a novel approach for generating test
cases by selective concolic testing to detect hardware Trojans
in ESL. We have evaluated our approach on an open source
benchmark that includes various types of hardware Trojans. The
experimental results demonstrate that our approach is able to
detect hardware Trojans effectively and efficiently.

I. INTRODUCTION

Modern system designs involve integration of all compo-

nents of a system on a single chip, namely System-on-a-

Chip (SoC). Due to the growing complexities of SoCs and

increasingly shortened time-to-market requirements, design

abstraction level has rised from register transfer level (RTL)

to electronic system level (ESL), e.g., in C/C++ or SystemC.

Modern SoC designs in ESL often include a large variety

of behavioral intellectual properties (IPs), such as microcon-

trollers, network processors, and digital signal processors. De-

veloping and verifying all these IPs in-house is intimidating, if

not impossible, due to time-to-market and budget constraints.

New design paradigms such as outsourced design services and

widely adoption of electronic design automation (EDA) tools,

have emerged. Although this new design trend tremendously

improves modern SoC design productivity, it results in partial

relinquishment of the control over the SoC design process,

which raises new hardware security issues such as hardware

Trojan attacks in early design steps [1].
SystemC [2] is a widely adopted ESL modelling language

in the semiconductor industry. It has been increasingly used

for architectural exploration, functional verification, and high-

level synthesis. Thus, it is critical to assure the trustworthiness

of those ESL SystemC designs. If hardware Trojans are not

discovered in behavioral SystemC designs, they may be trans-

lated together with normal functionalities down to RTL and

lower level implementations, which makes them much more

costly to fix. Existing hardware Trojan detection approaches,

most of which are focused on RTL and lower levels, may

be able to detect those hardware Trojans. However, detecting

and fixing Trojans in RTL or lower levels is much more

expensive than fixing them in ESL. Unfortunately, those low-

level hardware Trojan detection approaches are not applicable

to behavioral SystemC designs since they have different char-

acteristics from RTL and lower level implementations.
Until recently, there has only been a limited amount of

research on hardware Trojan detection for behavioral SystemC

designs. The pioneering work [3] discusses hardware Trojan

problem in behavioral designs and proposes to detect those

Trojans using property checking. The subsequent work [4]

uses coverage-guided fuzz testing to detect hardware Trojans

in behavioral SystemC designs. Both approaches are focused

on behavioral synthesizable SystemC designs, which is a

subset of SystemC designs. Our approach presented in this

paper does not have such a restriction so that it is applicable

to any SystemC design.
In this paper, we present a novel approach to generating

test cases detecting hardware Trojans in behavioral SystemC

designs with selective concolic testing. Hardware Trojans are

stealthy in nature and thus they can only be triggered under

very rare conditions. This makes them very hard to detect

during SoC validation. Concolic (a portmanteau of concrete

and symbolic) testing [5] is able to generate test cases that

exercise corner cases effectively. It has achieved considerable

success for the software validation [6], [7] and has been used

for test generation in the hardware domain recently [8]–[10]. A

recent work [11] adopts concolic testing for hardware Trojan

detection in RTL, which inspires us to utilize concolic testing

to detect hardware Trojans in behavioral SystemC designs.

Key contributions of our work are as follows.

• To the best of our knowledge, we first bring the concolic

testing techniques into hardware Trojan detection for

behavioral SystemC designs.

• We have improved the efficiency of existing concolic

testing techniques with selective concolic testing and

coverage-guided state search strategy.

• We have implemented the proposed approach as an ef-

fective and efficient prototype, namely SCT-HTD, which

is able to detect hardware Trojans inserted by adversaries

19978-3-9819263-4-7/DATE20/ c©2020 EDAA

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on September 10,2020 at 05:26:57 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Concolic test generation

in behavioral SystemC designs automatically.

• We have evaluated the performance of our approach on

a benchmark suite, S3CBench [12], which includes be-

havioral SystemC designs with various hardware Trojans.

The experimental results show that our approach is able

to detect hardware Trojans effectively and efficiently.

The rest of this paper is organized as follows. Section

2 introduces background on hardware Trojan and concolic

testing. Section 3 discusses the threat model to which our

approach applies and overview of the proposed approach.

Section 4 presents our approach in details. Section 5 elaborates

on the experiments that we have conducted and the evaluation

results. Section 6 reviews closely related work. Finally, we

conclude this research and discuss future work in Section 7.

II. BACKGROUND

A. Hardware Trojan

Hardware Trojans can be defined as any addition or mod-

ification to an electronic circuit or design with malicious

intent, including functionality modification, sensitive informa-

tion leakage, or denial of services. Hardware Trojans may

be classified into several categories based on various char-

acteristics such as abstraction level, insertion phase, activation

mechanism, and so on. A detailed taxonomy of hardware

Trojans can be found in the survey paper [13]. In general, a

hardware Trojan includes two parts, the trigger (the activation

mechanism) and the payload (the functional part affected

by the activation mechanism). Hardware Trojans are usually

stealthy and are triggered under very rare conditions so that

they are hard to detect during functional validation.

B. Concolic Testing

Concolic testing [5] is a hybrid verification technique that

combines concrete execution and symbolic execution [14]. It

partly addresses the limitations of random testing and symbolic

execution based testing [15], [16]. With concolic testing, both

concrete values and symbolic values are used as inputs for a

design under validation (DUV), in which case it is executed

both concretely and symbolically. Figure 1 shows the idea of

concolic test generation. Solid red arrows denote a concrete

execution path with the concrete input values, while dashed

black arrows represent possible alternative paths where new

test cases may be generated. Circles denote branch points.

During concolic execution, symbolic constraints are collected

along the execution path guided by the concrete inputs. At each

branch point, the constraints are negated and then solved, if

possible, to generate a new test case which would explore an

alternative path for the DUV.

III. OVERVIEW OF PROPOSED APPROACH

This section presents the adversarial threat model, as well

as the high level overview of our proposed approach.

A. Threat Model

With the globalization of the semiconductor industry, mod-

ern SoC designers have been driven to outsource their IPs to

reduce cost. In addition, the growing complexities of modern

SoCs has raised the design abstraction level from RTL to ESL.

As a result, modern SoC design methodologies at ESL often

involve integration of behavioral IPs supplied by third-party

vendors, as well as intensive usage of EDA tools, to improve

the design productivity. However, as shown in Figure 2, the

trustworthiness of SoCs in ESL may be comprised. First,

third-party IPs may contain malicious implants. Although a

testbench with test cases is likely provided with the IPs by

third-party vendors, these test cases are not able to trigger

the embedded Trojans. Second, untrusted EDA tools may

also insert hardware Trojans into these behavioral designs.

Last but not least, in-house designers may leave back-doors

when integrating SoCs, which makes the situation worse. Our

approach mainly intends to detect hardware Trojans injected

into behavioral SystemC designs.

Fig. 2: Adversarial threat model targeted by SCT-HTD

B. Overview

In this work, we assume that there is a golden model for a

behavioral SystemC DUV. A golden model is an executable

behavioral model that is functionally correct and Trojan-free.

Although it is very expensive, if not impossible, to develop

an entire SoC in-house by designers, we argue that it should

not be very time-consuming to develop a functionally correct

golden model, which is not necessarily cycle accurate. As

shown in Figure 3, our approach consists of two key compo-

nents, selective concolic executor (SCE) and hardware Trojan

detector (HTD). SCE generates test cases by selective concolic

execution with coverage-guided state search strategy, while

20 Design, Automation And Test in Europe (DATE 2020)

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on September 10,2020 at 05:26:57 UTC from IEEE Xplore. Restrictions apply.

Fig. 3: Selective concolic testing for hardware Trojan detection

HTD detects hardware Trojans by simulating the generated test

cases on both the DUV and its golden model. The execution

of SCE includes a stack, a heap, concrete values of the

inputs, path conditions (represented as symbolic expressions),

a register file, and a program counter, which we define as an

execution state or state.

Algorithm 1 illustrates high level steps of our proposed

hardware Trojan detection approach. The algorithm takes five

parameters as inputs: a design under validation duv, an initial

test case π (called seed), a testbench tb, a golden model

golden, and a configuration file config. The set TC, which

contains the seed initially (line 1), saves all generated test

cases. The state s0 is the initial execution state of the DUV

with the seed, and assigned to sn which is the next state to be

explored by concolic execution (line 2). The queues FPS and

SPS save execution states during the process (line 3). FPS,

which includes the initial state at the beginning, saves first

priority states that explore new code of interest, while SPS
saves second priority states that do not explore new code of

interest. The variable INTS stores code ranges that users are

interested in for hardware Trojan detection (line 4). Those code

ranges are specified in the configuration file. A time bound β
is also given in the configuration file (line 5), which guarantees

the termination of the Trojan detection process in case no

Trojans are detected. At the beginning, since sn is not NULL
and time bound has not been reached, SEL-CON-TEST-GEN is

executed to explore the initial state (line 7). Upon completion,

it returns a set of new states S′ and a test case τ for sn. If

τ is NULL, no test case is generated for the explored state

(line 8). Thus, another state is selected and explored (line 9–

10). If τ is not NULL, HT-DETECTOR is invoked to detect

hardware Trojans with the newly generated test case τ (line

11). If Trojans are detected, the algorithm returns all generated

test cases and the test case that triggers the Trojans (line 12–

13). Then, SCT-HTD terminates. Otherwise, the new test case

τ is added to TC, followed by invoking STATE-SELECTOR,

which selects another state sn for concolic execution (line 14–

15). The variable time (line 6) denotes the total time elapsed

since SCT-HTD starts. If there are no more states left or the

time bound has been reached, SCT-HTD returns all generated

test cases and terminates (line 16). We will discuss the details

of each component in the following section.

IV. HARDWARE TROJAN DETECTION VIA SELECTIVE

CONCOLIC TESTING

This section presents selective concolic testing for hardware

Trojan detection in behavioral SystemC designs in details.

We will first describe the core of our proposed approach,

SCE, which includes our two primary optimizations, selective

Algorithm 1: SCT-HTD(duv, π, tb, golden, config)

1 TC ← {π}
2 s0 ← INITIALIZE(duv, π, tb), sn ← s0
3 FPS ← {s0}, SPS ← ∅ � FPS and SPS are queues
4 INTS ← GET-INTERESTED-CODE-RANGE(config)
5 β ← GET-TIME-BOUND(config)
6 while (sn �= NULL) ∧ (time < β) do
7 {S′, τ} ← SEL-CON-TEST-GEN(sn, INTS)
8 if τ == NULL then
9 sn ← STATE-SELECTOR(duv, tb, FPS, SPS, S′)
10 continue
11 ret← HT-DETECTOR(duv, golden, tb, τ)

12 if (ret) then
13 return TC, τ
14 TC ← TC ∪ {τ}
15 sn ← STATE-SELECTOR(duv, tb, FPS, SPS, S′)

16 return TC

Fig. 4: Selective concolic test generation

concolic test generation and coverage-guided state search

strategy. Then, we will present HTD that detects hardware

Trojans with the generated test cases by SCE.

A. Selective Concolic Test Generation

Traditional concolic test generation approaches generate test

cases along an entire concrete execution path, as shown in

Figure 1. However, often only a small portion of the path is

from the DUV code. Most code composed of the path is from

libraries, which is of no interest to users generally. It may not

be beneficial to generate test cases in these libraries code for

verifying the DUV. Figure 4 demonstrates the case. The circles

denote branch points, while the arrows indicate the execution

sequence. As the figure shown, although there are three paths

indicated with red, blue, and magenta in the libraries, it

is only one path from the DUV perspective. To improve

the verification efficiency, concolic test generation approaches

should be restricted to generate test cases for the DUV only,

by which the number of generated test cases can be reduced

and hence test generation time is reduced. Furthermore, the

subsequent simulation time can also be reduced with fewer

test cases. Unfortunately, traditional concolic test generation

approaches are not able to distinguish DUV code from libraries

code. Therefore, they usually generate many redundant test

cases in terms of the DUV, since these test cases follow the

same path from the DUV point of view.

Design, Automation And Test in Europe (DATE 2020) 21

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on September 10,2020 at 05:26:57 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2: SEL-CON-TEST-GEN(sn, INTS)

1 S ← ∅, τ ← NULL
2 while HAS-NEXT-INSTRUCTION(sn) do
3 I ← GET-NEXT-INSTRUCTION(sn)
4 EXECUTE-INSTRUCTION(I)
5 if I is branch then
6 bp← GET-SYMBOLIC-BRANCH-PREDICATE(I)
7 if FIND(I , INTS) then
8 s′n ← FORK(sn,¬bp)
9 S ← S ∪ s′n
10 ADD-CONSTAINTS(sn, bp)

11 SET-NEXT-INSTRUCTION(sn)

12 τ ← CONSTRAINT-SOLVER(GET-CONSTRAINTS(sn))
13 return S, τ

Our proposed selective concolic test generation approach

is able to generate test cases for a specific part of code. In

this case, it is the DUV. However, our approach can also

be used to generate test cases for a specific library, or a

combination of multiple code segments, depending on users’

interests. Algorithm 2 describes our selective concolic test

generation process. The procedure SEL-CON-TEST-GEN takes

two parameters, sn and INTS, as inputs. The input sn is

the current execution state with the concrete values for the

symbolic variables that are obtained in Algorithm 3. The input

INTS includes all code ranges of interest to users. The set S
saves newly forked states from sn and the test case τ will be

the generated test case for sn (line 1). If there is an instruction

for execution (line 2), the instruction I is fetched (line 3) and

executed (line 4). If it is a branch instruction (line 5), the

symbolic predicate bp of I is computed (line 6). If I is in the

ranges INTS, then a new state is forked with negation of bp
and the state is added to the set S (line 7–9). Otherwise, no

new state is forked. Afterwards, bp is added to the constraints

of sn (line 10). Then, line 11 sets the next instruction to be

executed. If every instruction of sn has been executed, a test

case is generated if possible and saved to τ (line 12). Finally,

the newly forked states S and the test case τ are returned.

B. Coverage-guided State Search Strategy

Algorithm 3 presents our coverage-guided state search

strategy. If HT-DETECTOR does not detect hardware Trojan,

then, STATE-SELECTOR is invoked to select another state for

concolic execution. The state s will be the returned state,

which is NULL initially (line 1). For each state st from

S′ that is forked from previous concolic execution, its path

constraints are sent to a solver (line 3). If it returns NULL,

the current state is not reachable so that we do not save it (line

4–5). This prevents the state from being explored later, which

reduces the overall execution time. If the solver succeeds, the

concrete values cv are saved to the state for later execution

(line 6). Then, coverage is analyzed with cv (line 7). If new

code is covered, then st is added to the first priority state queue

FPS (line 9). Otherwise, it is added to the second priority

state queue SPS (line 11). After each state is evaluated, the

first state in FPS is assigned to s (line 13) and is removed

Algorithm 3: STATE-SELECTOR(duv, tb, FPS, SPS, S′)
1 s← NULL
2 foreach st ∈ S′ do
3 cv ← CONSTRAINT-SOLVER(GET-CONSTRAINTS(st))
4 if cv == NULL then
5 continue
6 SET-VALUE (st, cv)
7 newly covered← COVERAGE-ANALYZER(duv, tb, cv)
8 if (newly covered) then
9 FPS ← FPS ∪ {st}
10 else
11 SPS ← SPS ∪ {st}
12 if FPS �= ∅ then
13 s← FPS.front() � get the first state from FPS
14 FPS.pop() � remove the first state from FPS

15 else if SPS �= ∅ then
16 s← SPS.front() � get the first state from SPS
17 SPS.pop() � remove the first state from SPS

18 return s

(line 14) if FPS is not empty. Otherwise, the first state in

SPS is retrieved and removed (line 16–17). If both FPS and

SPS are empty, then s remains NULL, which means no more

state to be explored. Finally, the selected state s is returned.

C. Hardware Trojan Detection

Algorithm 4 demonstrates our hardware Trojan detection

procedure. After a state is explored and the test case is

generated, HT-DETECTOR is called with four arguments, a

duv and its golden model golden, a testbench tb, as well as

the newly generated test case τ . The test case τ is simulated

on both duv and golden (line 1 and line 2 respectively).

If the results are not the same from both simulation, then

this indicates that a Trojan is detected (line 4); otherwise,

HT-DETECTOR returns false to indicate that no Trojan is

discovered.

Algorithm 4: HT-DETECTOR(duv, golden, tb, τ)

1 res1← SIMULATOR(duv, tb, τ)
2 res2← SIMULATOR(golden, tb, τ)
3 if res1 �= res2 then
4 return true � indicates that Trojan is detected

5 else
6 return false

V. EXPERIMENTAL RESULTS

We have implemented the proposed approach as an au-

tomated prototype, namely SCT-HTD, based on S2E [17],

which is a generic platform for analyzing software systems.

S2E incorporates a virtual machine and a symbolic execution

engine, by which it is able to switch back and forth between

concrete execution and symbolic execution. S2E consists of

a path explorer that drives a target program down possible

execution paths of interest and a path analyzer that checks

properties of explored paths. We adapted S2E as our selective

22 Design, Automation And Test in Europe (DATE 2020)

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on September 10,2020 at 05:26:57 UTC from IEEE Xplore. Restrictions apply.

TABLE I: SCT-HTD experimental results and comparison with the state-of-the-art approaches

Designs
Test case Time (s) Memory (MB)

SCT-HTD* CTζ AFLη AFL-SHTδ SCT-HTD CT AFL AFL-SHT SCT-HTD CT AFL AFL-SHT

adpcm-swm 27 525 451563 423 157 T.O. T.O. 1.71 3546 14337 N/A N/A

adpcm-swom 7 503 450839 414 31 T.O. T.O. 1.67 1341 14442 N/A N/A

fir-cwom 26 76 207 41 13 26 8.51 0.07 1621 2305 N/A N/A

bSort-cwom 2 2 118 39 8 10 4.82 0.05 1074 2668 N/A N/A

bSort-swm 4 975 19826 108 10 T.O. 337.36 0.11 1106 10768 N/A N/A

uart-swm1 3 1023 N/A N/A 9 T.O. N/A N/A 1071 13011 N/A N/A

uart-swm2 3 1016 172 51 9 T.O. 8.82 0.18 1070 12972 N/A N/A

aes-cwom 11 11 50544 22 23 32 888.29 0.04 1386 1396 N/A N/A

* Our approach ζ Concolic testing (CT) without our optimizations η Fuzzing with software-oriented mutation δ Coverage-guided fuzzing

Fig. 5: Number of generated test cases Fig. 6: Time usage Fig. 7: Maximum memory usage

concolic executor to generate test cases for SystemC designs,

which are used to detect hardware Trojans in those designs.
We have evaluated our approach on the open-source bench-

mark suite, S3CBench [12]. Although S3CBench only consists

of behavioral synthesizable SystemC designs, our approach

also works for non-synthesizable SystemC designs. S3CBench

contains 10 SystemC designs that includes multiple types of

hardware Trojans based on trigger mechanism, either sequen-

tial or combinational. Half of the designs are computation

intensive designs, such as image processing algorithms. Each

design has fixed computation procedures for any inputs. As

we all know, concolic test generation is based on branch

conditions, which makes it very powerful to explore deep

path with complex conditions and corner cases. However,

it is not good at generating test cases for a design that

has fixed execution steps, since an execution path of such

a design does not depend on input values. This is a known

limitation of concolic testing. Thus, we conducted experiments

on non-computationally intensive designs. The experiments

were conducted on a laptop with a 4-core Intel(R) Core(TM)

i7-4700MQ CPU, 16 GB of RAM, and running the Ubuntu

Linux OS with 64-bit kernel version 4.15. Table I presents our

experimental results, as well as comparison with the state-of-

the-art approaches. We will discuss the table in the following.

A. Effectiveness and Efficiency of Hardware Trojan Detection

We developed a golden model for each design on which

we experimented. The first column of Table I gives the name

(before the hyphen part) of each design. The part after the

hyphen denotes the type of inserted Trojan. Details about the

benchmark and the Trojans can be found in S3CBench [12].

We have evaluated the performance of SCT-HTD from three

perspectives, namely the number of generated test cases to

trigger the Trojan (column 2), time usage (column 6) and

maximum memory usage (column 10). To pursue a fair com-

parison, we also set a two-hour time bound during experiments

as AFL-SHT [4] did. T.O. indicates that the two-hour time

bound is reached and thus the hardware Trojans are not

detected. The designs that we evaluated on includes the three

typical hardware Trojan types in terms of payload, namely

functionality modification (adpcm, fir, and bSort), denial

of service (uart), and sensitive information leakage (aes).

As demonstrated, our approach is able to detect all three

types of hardware Trojans with a few test cases, short time

usage and reasonable memory usage, which demonstrates the

effectiveness and efficiency.

B. Evaluation of Two Optimization Strategies

To illustrate the advantages of our selective concolic testing

and coverage-guided state search strategy, we have conducted

experiments with traditional concolic testing approach (with-

out the two optimization), denoted as CT. Column 3, column 7

and column 11 show the number of generated test cases, time

usage and maximum memory usage with CT, respectively.

Five out of eight Trojans are not detected within the two-

hour time bound, although many test cases are generated.

Figure 5, Figure 6, and Figure 7 demonstrate the advantage

of SCT-HTD in the three aspects graphically, compared with

traditional concolic testing approach. As shown in figures, our

optimization strategies reduce the number of generated test

cases, time usage, and memory usage tremendously for more

than half of the designs. For other designs, our approach is also

able to detect hardware Trojans with fewer or equal number

of generated test cases, less time and memory usage.

C. Comparison with State-of-the-Art Approaches

Two existing approaches target hardware Trojan detection

for behavioral SystemC designs. One [3] uses property check-

Design, Automation And Test in Europe (DATE 2020) 23

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on September 10,2020 at 05:26:57 UTC from IEEE Xplore. Restrictions apply.

ing and the other, AFL-SHT [4], adopts coverage-guided

fuzzing. Although we do not have access to the commercial

formal tools to conduct experiments, formal approaches on

Trojan detection for behavioral SystemC designs are not as

promising as AFL-SHT. Since the source code of AFL-SHT

is not available, we take the results obtained by both AFL-

SHT and AFL [18] from its paper for comparison. Some data

are not presented in the paper, such as memory usage, which

are denoted as N/A. As illustrated, our approach is able to

detect the Trojans with far fewer test cases than AFL and

AFL-SHT. Time usage of SCT-HTD is much less than AFL for

half of the designs. For other designs, SCT-HTD uses a little

longer time than AFL and AFL-SHT. There are two possible

reasons. First, power of machines running experiments are

different. We conducted experiments on a laptop which might

be less powerful. Second, concolic testing involves constraint

solver to generate test cases, which is a known time-consuming

operation. However, the increase of time usage is moderate.

VI. RELATED WORK

Until recently, most of computer security research was

devoted to software security. The underlying hardware was

expected to be secure. However, this is no longer the case with

the globalization of modern SoC design and manufacturing

processes, and the emergence of new design paradigms such as

outsourced design services and intensive usage of EDA tools.

Thus, hardware vulnerabilities such as hardware Trojan attacks

have raised serious concerns. As a result, a variety of hardware

Trojan detection approaches have been developed.

So far, most hardware Trojan detection approaches are

focused on RTL or lower level designs. There are a handful

of Trojan detection approaches in RTL [11], [19] . There are

also various Trojan detection approaches that are focused on

the gate level [20]–[25]. Post-silicon Trojan detection has also

been studied [26]–[28]. There has only been limited research

on hardware Trojan detection for behavioral designs. The

pioneering work [3] detects hardware Trojans in behavioral

SystemC designs using C++ control flow constructs and the

property checker provided by a commercial behavioral syn-

thesis tool. The subsequent work [4] uses coverage-guided

fuzz testing to detect hardware Trojans in behavioral SystemC

designs. Both approaches are focused on behavioral synthe-

sizable SystemC designs which is a subset of SystemC, while

our approach presented in this paper is not restricted to the

behavioral synthesizable SystemC designs.

VII. CONCLUSION

In this paper, we have presented a novel approach for de-

tecting hardware Trojans in behavioral SystemC designs with

selective concolic testing. We have also proposed an algorithm

to improve efficiency of the approach with coverage-guided

state search strategy. We have implemented the proposed

approach as a prototype, SCT-HTD. To show the effectiveness

and efficiency of the proposed approach, we have conducted

experiments on an open source benchmark. The results demon-

strate that our approach is very promising on hardware Trojan

detection for behavioral SystemC designs. In the future, we

will extend the S3CBench with non-synthesizable SystemC

designs and conduct experiments on them using SCT-HTD.

Moreover, we will combine other techniques, such as mutation

testing and fuzzing testing, with SCT-HTD to overcome the

limitations of concolic testing, which is not suitable for

computationally intensive designs.

ACKNOWLEDGEMENT

This research received financial support in part from Na-

tional Science Foundation (Grant #: 1908571).

REFERENCES

[1] I. Polian, G. T. Becker, and F. Regazzoni, “Trojans in Early Design Steps—An
Emerging Threat,” in Proc. of TRUDEVICE, 2016.

[2] IEEE Standards Association, Standard SystemC Language Reference Manual.
IEEE Std. 1666-2011, 2011.

[3] N. Veeranna and B. C. Schafer, “Hardware Trojan Detection in Behavioral Intel-
lectual Properties (IP’s) Using Property Checking Techniques,” IEEE Transactions
on Emerging Topics in Computing, 2017.

[4] H. M. Le, D. Große, N. Bruns, and R. Drechsler, “Detection of Hardware Trojans
in SystemC HLS Designs via Coverage-guided Fuzzing,” in Proc. of DATE, 2019.

[5] K. Sen, “Concolic Testing,” in Proc. of ASE, 2007.
[6] P. Godefroid, N. Klarlund, and K. Sen, “DART: Directed Automated Random

Testing,” SIGPLAN Not., 2005.
[7] K. Sen, D. Marinov, and G. Agha, “CUTE: A Concolic Unit Testing Engine for C,”

in Proc. of ESEC, 2005.
[8] L. Liu and S. Vasudevan, “Efficient Validation Input Generation in RTL by

Hybridized Source Code Analysis,” in Proc. of DATE, 2011.
[9] Y. Zhou, T. Wang, H. Li, T. Lv, and X. Li, “Functional Test Generation for Hard-

to-Reach States Using Path Constraint Solving,” IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 2016.

[10] B. Lin, K. Cong, Z. Yang, Z. Liao, T. Zhan, C. Havlicek, and F. Xie, “Concolic
Testing of SystemC Designs,” in Proc. of ISQED, 2018.

[11] A. Ahmed, F. Farahmandi, Y. Iskander, and P. Mishra, “Scalable Hardware Trojan
Activation by Interleaving Concrete Simulation and Symbolic Execution,” in Proc.
of ITC, 2018.

[12] N. Veeranna and B. C. Schafer, “S3CBench: Synthesizable Security SystemC
Benchmarks for High-Level Synthesis,” Journal of Hardware and Systems Secu-
rity, 2017.

[13] M. Tehranipoor and F. Koushanfar, “A Survey of Hardware Trojan Taxonomy and
Detection,” IEEE Design Test of Computers, 2010.

[14] J. C. King, “Symbolic Execution and Program Testing,” Communications of the
ACM, 1976.

[15] B. Lin and D. Qian, “Regression Testing of Virtual Prototypes Using Symbolic
Execution,” International Journal of Computer Science and Software Engineering,
2015.

[16] B. Lin, Z. Yang, K. Cong, and F. Xie, “Generating High Coverage Tests for
SystemC Designs Using Symbolic Execution,” in Proc. of ASP-DAC, 2016.

[17] V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: A Platform for In-vivo Multi-
path Analysis of Software Systems,” in Proc. of ASPLOS, 2011.

[18] M. Zalewski, “Technical Whitepaper,” http://lcamtuf.coredump.cx/afl/technical d
etails.txt.

[19] M. Banga and M. S. Hsiao, “Trusted RTL: Trojan Detection Methodology in Pre-
Silicon Designs,” in Proc. of HOST, 2010.

[20] D. Ismari, J. Plusquellic, C. Lamech, S. Bhunia, and F. Saqib, “On Detecting Delay
Anomalies Introduced by Hardware Trojans,” in Proc. of ICCAD, 2016.

[21] F. Koushanfar and A. Mirhoseini, “A Unified Framework for Multimodal Sub-
modular Integrated Circuits Trojan Detection,” IEEE Transaction on Information
Forensics Security, 2011.

[22] M. Oya, Y. Shi, M. Yanagisawa, and N. Togawa, “A Score-based Classification
Method for Identifying Hardware-trojans at Gate-level Netlists,” in Proc. of DATE,
2015.

[23] J. Rajendran, V. Vedula, and R. Karri, “Detecting Malicious Modifications of Data
in Third-party Intellectual Property Cores,” in Proc. of DAC, 2015.

[24] J. Zhang, F. Yuan, L. Wei, Z. Sun, and Q. Xu, “VeriTrust: Verification for Hardware
Trust,” in Proc. of DAC, 2013.

[25] B. Çakir and S. Malik, “Hardware Trojan Detection for Gate-level ICs Using Signal
Correlation Based Clustering,” in Proc. of DATE, 2015.

[26] K. Hu, A. N. Nowroz, S. Reda, and F. Koushanfar, “High-sensitivity Hardware
Trojan Detection Using Multimodal Characterization,” in Proc. of DATE, 2013.

[27] S. Narasimhan, D. Du, R. Chakraborty, S. Paul, F. Wolff, C. Papachristou, K. Roy,
and S. Bhunia, “Hardware Trojan Detection by Multiple-Parameter Side-Channel
Analysis,” IEEE Transactions on Computers, 2013.

[28] E. Love, Y. Jin, and Y. Makris, “Proof-Carrying Hardware Intellectual Property:
A Pathway to Trusted Module Acquisition,” IEEE Transaction on Information
Forensics and Security, 2012.

24 Design, Automation And Test in Europe (DATE 2020)

Authorized licensed use limited to: PORTLAND STATE UNIVERSITY LIBRARY. Downloaded on September 10,2020 at 05:26:57 UTC from IEEE Xplore. Restrictions apply.

		2020-06-12T00:51:24-0400
	Preflight Ticket Signature

