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ABSTRACT

Recently, traffic engineering mechanisms have been developed that
guarantee that a network (cloud provider WAN, or ISP) does not
experience congestion under failures. In this paper, we show that
existing congestion-free mechanisms, notably FFC, achieve perfor-
mance far short of the network’s intrinsic capability. We propose
PCF, a set of novel congestion-free mechanisms to bridge this gap.
PCF achieves these goals by better modeling network structure, and
by carefully enhancing the flexibility of network response while en-
suring that the performance under failures can be tractably modeled.
All of PCF’s schemes involve relatively light-weight operations on
failures, and many of them can be realized using a local propor-
tional routing scheme similar to FFC. We show PCF’s effectiveness
through formal theoretical results, and empirical experiments over
21 Internet topologies. PCF’s schemes provably out-perform FFC,
and in practice, can sustain higher throughput than FFC by a factor
of 1.11X to 1.5X on average across the topologies, while providing
a benefit of 2.6X in some cases.
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1 INTRODUCTION

Failures are the norm in both ISP networks [27, 35], and cloud
provider WANSs [12, 14, 30]. Yet networks must ensure that the
increasingly stringent performance requirements of business criti-
cal applications are met [18]. Many recent works [17, 20, 23] have
developed flexible ways of routing traffic motivated by the goal of
efficiently utilizing network capacity. However, with these schemes,
the network could experience congestion on failure [26].
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Motivated by these challenges, the research community has re-
cently designed traffic engineering mechanisms that proactively
ensure that the network is congestion-free (i.e., ensure that no
link carries more traffic than its capacity) under typical failure
scenarios [26, 32, 37]. For instance, FFC [26], a representative and
state-of-the-art approach, allocates bandwidth to flows so that no
congestion occurs when f or fewer links fail. To do so, FFC splits
traffic from each ingress to egress along a set of pre-specified tun-
nels.

In this paper, we explore the performance of such congestion-
free mechanisms relative to the performance that a network could
achieve by responding optimally to each failure. We refer to the
performance achieved when the network responds optimally as the
intrinsic network capability. We make two contributions.

First, we show that congestion-free schemes perform much
worse than optimal, and present deeper insights into the underlying
reasons. In particular, we show that (i) FFC is not only conservative,
but also its performance can degrade with an increase in the number
of tunnels; and (ii) the performance of FFC can be arbitrarily worse
than optimal, even when exponentially many tunnels are used. We
show that these results arise because (i) FFC models network struc-
ture in a coarse fashion; and (ii) reservations are tightly coupled to
paths, and the failure of a link leads to unutilized capacity on other
links in the tunnel that contain the failed link.

Second, we propose PCF (Provably Congestion-free and resilient
Flexible routing), a set of novel mechanisms that ensure the net-
work is provably congestion-free under failures, while performing
closer to the network’s intrinsic capability. PCF achieves these goals
by better modeling network structure, and through more flexible
response strategies. The key challenge that PCF addresses is how
to enhance the flexibility of network response while ensuring that
the performance under failures can be tractably modeled.

We develop multiple mechanisms as part of PCF that allow the
architect to trade-off the achievable performance guarantee with
deployment complexity. First, we present an alternate approach
for bandwidth allocation with the FFC response mechanism which
(i) results in a better performance guarantee; and (ii) ensures the
allocation does not degrade with additional tunnels. Second, we
explore more flexible network response based on an abstraction that
we term logical sequence (LS). A LS from a source to a destination
traverses a series of logical segments (formally defined in §3.3). The
reservation on any LS for a targeted failure set is guaranteed by
the logical segments constituting the sequence. Each segment may
recursively route traffic over other LSs or physical tunnels servicing
that segment. This allows for significant flexibility in how traffic
is routed over various segments, and which nodes respond to a
given failure. LSs are loosely inspired by ideas such as segment
routing [16, 34] though with significant differences (§6). We show
that when LSs are used, the performance can be arbitrarily better
than FFC. We develop several mechanisms based on LSs, including
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those that provably out-perform R3 [37], another congestion-free
mechanism.

We show how PCF’s mechanisms can be implemented in practice.
For example, we show that when LSs are chosen with some restric-
tions, they can be realized by a simple generalization of the local
proportional routing scheme used by FFC. When LSs are arbitrar-
ily chosen (which allows for even better performance guarantees),
our approach discovers a viable routing using techniques that are
lighter weight than the the optimal network response strategy.

Empirical evaluations of PCF over 21 topologies from the Internet
Topology Zoo show that PCF significantly out-performs FFC. PCF’s
schemes can sustain higher throughput than FFC by a factor of
1.11X to 1.5X on average across the topologies, while providing a
benefit of 2.6X in some cases.

2 MOTIVATION

A critical task for network architects is to ensure that their network
designs can sustain desired traffic over a target set of failures [26,
32, 37]. This in turn depends on the mechanisms that the network
uses to respond to failures.

To illustrate these issues, consider tunnel-based forwarding [23,
26, 33], where traffic from each ingress to egress is carried over a set
of pre-selected tunnels. When a tunnel is no longer available (e.g.,
due to the failure of an underlying link), then, traffic is redistributed
across the surviving tunnels. Redistributing traffic can potentially
overload some links. A congestion-free routing mechanism guar-
antees that the network has been proactively designed so no link
would be over-loaded over a desired set of failures [26, 32, 37].

FFC [26] is a recent and representative approach set in the con-
text of tunnel-based forwarding. Consider a network where each
pair of nodes (s,t) is associated with a traffic demand ds;, and
a set of tunnels T(s, t) to route the traffic. FFC seeks to assign a
bandwidth bws; to each node pair such that this bandwidth can
be guaranteed under all possible f simultaneous link failures. To
achieve this, FFC reserves bandwidth on each tunnel, and ensures
that the total reservation on all tunnels in T(s, t) exceeds bwg;
under every failure scenario of interest. We present examples to
illustrate why FFC is conservative.

Coarse modeling of network structure. Consider Fig. 1 where
the goal is to carry the maximum amount of traffic possible from s
to t, while tolerating any possible single link failure. If the network
could respond optimally for each failure scenario (by running an
optimal multi-commodity flow for that scenario), it is easy to ver-
ify that the network is intrinsically capable of carrying 2 units of
flow from s to t under all possible single link failures. When FFC
is used, the results depend on the set of tunnels considered. We
consider two schemes: (i) FFC-4 (all 4 tunnels [1 to /4 are used);
and (ii) FFC-3 (only 3 tunnels /1 to I3 are used). Fig. 2 shows that
both schemes perform worse than optimal, and surprisingly, FFC-4
performs worse.

We now explain why FFC is conservative, and why its perfor-
mance may degrade with more tunnels. FFC uses a parameter ps;
which denotes the maximum number of tunnels between s and ¢
that share a common link. When designing to tolerate f link fail-
ures, FFC conservatively assumes that upto fps; tunnels may fail,
and plans a reservation that can tolerate all possible failures of
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fpsr tunnels. In Fig. 1, when FFC uses all 4 tunnels, ps; is 2. Hence,
when designing for single link failures, FFC-4 plans for all possible
combinations of two tunnel failures. This is conservative because
tunnels /1 and 2 do not fail together under single link failures.
With FFC-3, all tunnels are disjoint, and ps; = 1. Hence, FFC-3 only
needs to be consider single tunnel failures. However, FFC-3 still
cannot match the optimal since it cannot tap into the capacity of
links s —4 and 4 — 3.

Fig. 2 also shows that if all two link failures must be tolerated,
the throughput with the optimal, FFC-3, and FFC-4 are 1, 0.5, and
0 respectively. The reasons are similar — FFC-4 can only service
traffic that can survive ps; f = 2 X 2 = 4 tunnel failures, and hence
cannot carry any traffic, while FFC-3 only needs to consider all 2
tunnel failure scenarios.

Limitations of tunnel reservations. A second issue with FFC
is that it is inherently limited by the fact that reservations are made
at the granularity of entire tunnels. To illustrate this, consider Fig. 3.
It is easy to verify that if the network responds optimally, it can
carry 2/3 units of traffic from s to ¢ under any single link failure.
Unfortunately, FFC can only achieve an optimal of 1/2. In §3.3,
we will further generalize this example to show that FFC can see
arbitrarily poor performance relative to optimal.

Tunnel-based allocation does not perform as well as optimal
because reservations are made on all links of a tunnel, and when a
link fails, the reservations on other links of that tunnel go unutilized.
For example, consider a tunnel [ that traverses links e; and e4. When
e4 (and hence the tunnel [) fails, FFC only uses the reservations
on the remaining tunnels, and the reservation on e; for the failed
tunnel / goes unutilized. In contrast, the optimal approach is able
to use all capacity on all the non-failed links.

In Fig. 3, let Ty and T respectively denote the set of tunnels from
s to t that use e4 and e5. Let r4 and r5 denote FFC’s reservations
on each of these sets of tunnels. FFC can carry at most r5 units of
traffic when ey fails, and at most r4 units when ejs fails. Thus, FFC
can guarantee at most min(ry, r5) traffic from s to ¢ over all single
link failures. However, min{rs, 75} X 2 < r4 + r5 < 1, where the
second inequality is because tunnels in T4 and T5 must reserve
capacity in one of the links el, e2, or e3, whose combined capacity
is 1 unit. Hence, FFC can carry at most 0.5 units of traffic from s to
t.

3 PCF OVERVIEW

PCF’s primary goal is to bridge the gap between existing congestion-
free routing mechanisms, and intrinsic network capability. PCF
tackles the issues raised in §2 by better modeling, and adopting
more flexible response strategies.

Unfortunately, not all routing strategies are amenable to formal
guarantees on worst-case performance under failures. For instance,
when the network responds with an optimal multi-commodity flow
(the most flexible response), the problem of determining the worst-
case performance under failures is intractable [10]. Thus, a central
challenge that PCF tackles is one of carefully crafting response
strategies that are (i) amenable to formal worst-case guarantees;
and yet (ii) perform closer to the network’s intrinsic capability.

PCF achieves the above by (i) developing tractable optimization
formulations that are inspired by practical response mechanisms
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Figure 1: Example to illustrate FFC’s coarse Figure 2: Throughput guarantee Figure 3: Example to illustrate how

modeling of network structure.

with FFC for

different tunnel tunnel-based reservations can be ineffi-

choices compared to the optimal. cient

in networking and conservatively estimate network capability; and
(ii) providing explicit response mechanisms that achieve the esti-
mated capability. Moreover, PCF allows the network architect to
incrementally dial-in additional flexibility in response as desired.

Roadmap. We introduce notation (§3.1), and present PCF-TF
(§3.2), which uses FFC’s response mechanism but better models
network structure. We show that PCF-TF out-performs FFC, and
achieves better performance with more tunnels. Despite these ben-
efits, we show that PCF-TF (like FFC) can perform arbitrarily worse
than optimal. We introduce a more flexible approach based on the
logical sequence abstraction, and formally show the performance
benefits over PCF-TF (§3.3). We present further generalizations in
§3.4, and show how to practically realize the schemes (§4).

3.1 Notation and preliminaries

Consider a network topology, represented as a graph G = (V,E).
Each link e € E is associated with a link capacity c,. For each node
pair (s,t) on the graph, we are given a traffic demand dy;, and a
set of tunnels T (s, t) to route the traffic. Each tunnel [ consists of a
set of links 7; C E. Below, we present a formulation for bandwidth
allocation with tunnels,

(P1) max 0(z)

sit. Z ai(1-y) > zgdsy Vs,teV,¥yeY (1)

1€T (s,t)
ap>0 Vs,teV,1eT(st) (2)
Z ajd(ee€ 1) <c. Vee€ckE. (3)

Vs,teV,Ie€T (s,t)

Here, §(e € 77) = 1if e € 77 and 0 otherwise. The formulation deter-
mines a; and z;, where a; represents the amount of reservation on
tunnel [, and variable zg; represents the fraction of traffic from s to
t that can be satisfied. Note that we use slightly different notation
than FFC (see Table 2 in appendix). Y stands for the set of tunnel
failure scenarios of interest, and y; indicates whether tunnel [ fails
or not in a failure scenario (y; = 1 indicates tunnel [ fails and y; = 0
otherwise.) We later discuss how Y is modeled). ©(z) is the metric
function we want to optimize. For tractability, we assume ©(z)
is a concave function, and note that this model covers common
metrics such as overall throughput and maximum link utilization.
For example, ©(z) = 3. ; min{1, zs; }ds; models overall throughput.

Alternately, when O(z) = mitn{zst}, and the optimal value is ©%,
s,

the model guarantees that ©* fraction of each flow can be sent in
every failure scenario. This also means that using 1/0* of each
link’s capacity is sufficient to send all the flows. Hence, the inverse
of this ®" is the utilization of the most congested link, also known
as the Maximum Link Utilization (MLU). Thus, ©(z) = nslitn{zs;}

minimizes the MLU.

3.2 Modeling network structure

We now discuss how to model the set of failure scenarios Y. If at
most ps; tunnels between s and ¢ share a common link, FFC assumes
that upto fps; tunnels can fail under f link failures, and plans for
all possible combinations of fps; tunnel failures. As discussed in
§2, this is conservative - e.g., for the network shown in Fig. 1, FFC
considers the simultaneous failure of /1 and I2 even though this
is impossible under single link failure. To address this, PCF more
accurately models Y by better relating link and tunnel failures. Let
xe indicate if link e fails (xe = 1 indicates link e fails and x, = 0
otherwise). Then, PCF models Y as:

ersf

e€E

Xe—y; <0 Vleer

y,—erso vl (4)
eET;

0<x.<1 Ve€kE
0<y <1 VL

The first constraint bounds the maximum number of simultaneous
link failures. The second ensures that the failure of an underlying
link will cause the tunnel to fail. The third ensures that a tunnel
only fails when at least one underlying link fails. We denote (P1)
with Y modeled by (4) as PCF-TF. Observe that we do not explicitly
impose that x, € {0, 1} because, just as for FFC, the failure set Y
may contain too many scenarios to enumerate. Instead, we con-
servatively relax this requirement to x, € [0, 1]. Then, the model
PCF-TF (and all other models presented in this paper) can be solved
using dualization to ensure the number of constraints is polynomial
in the size of the network, a technique that has been widely used
in prior networking papers [9, 26, 37]. Details are presented in the
Appendix. Yet, we prove that (i) PCF-TF performs at least as well
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as FFC; and (ii) unlike FFC, the performance of PCF-TF does not
degrade as more tunnels are added.

PROPOSITION 1. The feasible region (the set of all possible values
of the variables that satisfy the constraints) of FFC is contained in the
feasible region of PCF-TF, so PCF-TF performs at least as well as FFC
(i.e., achieves the same objective or higher) for any metric.

Proof. FFC models Y as

Z Yy < fpst Vs,teV
1eT(s,t) (5

0<y <1 VL

Let Yp be the set of tunnel failure scenarios considered by FFC
(constrained by (5)) and let Y; be the set of tunnel failure scenarios
considered by PCF-TF (constrained by (4)). We show that proj nige
Yo, where proj,, denotes projection of the set to y variables. For any
s,t € V, we sum the third constraint in (4) over all ] € T(s, t) to get
ZleT(s,t) (yr - Zeerl xe) < 0. Then,

Z yr = Z er: Z er5(een)

1T (s,t) leT (s,t) €€Ty LT (s,t) ecE

= er Z d(e € 17),

ecE €T (s,t)

YlecE Xe is the total number of link failures, which is no more
than f. And 3je7(s,s) 6(e € 77) is the number of tunnels from s
to t traversing link e, which is no more than ps;. Hence, we have
2ieT(s,) YI < fpst, which shows that any scenario in Y; also
satisfies (5). Since FFC imposes (1) for each y € Yy while PCF-TF
imposes (1) for each (x,y) € Y1, PCF-TF is less constrained than
FFC. O

The above proof does not depend on the objective function in the
optimization problem, which means that the proposition holds for
any metric. We next show that unlike FFC, PCF-TF’s performance
does not degrade with more tunnels. The intuition behind this is that
when more tunnels are added to PCF-TF, the set of constraints that
need to be satisfied does not increase. Hence, any solution feasible
when fewer tunnels are employed remains feasible when tunnels
are added (though new and better solutions may be possible). Thus
the performance cannot get worse.

PROPOSITION 2. As we provide more tunnels, PCF-TF’s perfor-
mance cannot decrease.

Proof. Let {To(s,t) | Vs,t € V}and {T1(s,t) | Vs,t € V} be two
sets of tunnels, and Ty (s, t) C Ty (s, t) for all s,t € V. Then, we show
that the optimal value for (P1) with T = T; will not be worse than
the optimal solution to (P1) with T = Ty. Let (a*, z*) be the optimal
solution to (P1) with T = Ty. We construct (a’, z’) in the following
way,

afza’; Vs,t € V,1 € Ty(s, t)
a; =0 Vs,teV,leTi(st)—To(s,t) (6)
z;t = z:t Vs, t € V.

Let Yy denote (4) with T = Ty and Y; denote (4) with T = T;. It is

easy to see that projection of Y onto the space of variables {x¢ }ecE
and {y; };e7, is contained in Yy, since all the constraints in Yj are

Chuan Jiang, Sanjay Rao, and Mohit Tawarmalani

Link capacity: 1
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Figure 4: A topology with m nodes generalized from the pre-
vious example.

present in Y;. Now for each y € Y3,

Z aZ(l -y = Z a;‘(l —y)) < Z5,dst = zstdss,
1€T; (s,t) 1eTy(s,t)

where the first equality is because a; =0for ! ¢ Ty(s,t), the first
inequality is because (a*, z*) is feasible for T = Tp and the projection
of Y1 is contained in Yj and the last equality is by construction. Since
z is not altered, the objective value remains the same. O

We later show in §5 that PCF-TF performs much better than FFC
for real networks.

3.3 Modeling more flexible response

While PCF-TF is guaranteed to out-perform FFC, we begin by pre-
senting a theoretical result that shows the performance of PCF-TF
can still be arbitrarily worse than optimal because of the inflexi-
bility of tunnel-based reservations. We then discuss PCF’s more
flexible approach.

ProPOSITION 3. The throughput guaranteed by PCF-TF (and hence
that guaranteed by FFC) can be arbitrarily worse than the optimal
even with exponentially many tunnels.

Proof. Consider the topology in Fig. 4 (the example in Fig. 3 is
a special case where p = 3, n = 2 and m = 2). Under any failure
involving n — 1 links, the network can carry 1 — 2= units of traffic
if it responded optimally. This is because under any such failure,
the network can carry (i) at least 1 unit of traffic between s; and
si+1,i > 0; and (ii) at least 1 — =1 units of traffic between sg and
s1. Moreover, if n — 1 of the links between between sy and s; fail
simultaneously, the traffic is no more than 1 — 21,

Next, consider PCF-TF, and assume that all possible tunnels
between s and ¢t are used. There are pn™~! possible tunnels. We
will show that PCF-TF can only guarantee traffic of 1/n units from
so to s;, under n — 1 simultaneous link failures. To see this, observe
that the reservation across all tunnels between s and t is at most 1
(constrained by the capacity of all links between sy and s1). Let r;
denote the reservation on all tunnels that use the i’ link between
s1 and sp. Then, Z?Zl ri < 1, and there must exist at least one link
Jj between s; and s such that r; < 1/n. Consider a failure scenario
where all links between s; and sy except j fail. Under this scenario,
PCF-TF can guarantee at most 1/n units of traffic from sy to sp,.

Notethatl—"T_l—%:(p_rz#

Consider the case where p = n?. Then, as n gets larger, the amount
of traffic carried in the optimal solution converges to 1, while PCF-
TF converges to 0. O

As discussed in §2, these issues with FFC and PCF-TF stem from
the fact that reservations are made over entire tunnels, are tightly

> 0 whenever p > n > 1.
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coupled to a particular network path, and are pre-allocated inde-
pendent of any specific failure scenario. When a link in the tunnel
fails, the corresponding capacity is unavailable in other links along
the tunnel.

Logical sequences. PCF is motivated by the fact that more
flexible methods of responding to failures can potentially address
the limitations of FFC and PCF-TF highlighted by Proposition 3.
However, even with more flexible response, PCF must proactively
decide prior to any failure scenario how much traffic to admit so
the network does not experience congestion over a given set of
failure scenarios. Not all ways of making routing more flexible are
amenable to provable congestion-free guarantees.

Instead, PCF considers a more carefully crafted flexible network
response strategy, which we show is amenable to provable guaran-
tees. Specifically, PCF introduces the notion of a logical sequence
(LS). A LS q from s to ¢ consists of a series of routers s, v1, ..., O, ¢
that we refer to as logical hops. Consecutive logical hops in a LS
need not have a direct link between them, and in fact any pair of
routers in the network could be consecutive logical hops. Traffic
from s to t is required to traverse the logical hops vy, vz, ...,0m,t,
with significant flexibility in terms of how traffic is carried between
two consecutive logical hops. In particular, traffic may be carried
over physical tunnels (like FFC), or other LSs. We refer to each of
sv1, U102, ..., Uyt as a logical segment of q. Each LS q is associated
with a reservation bg, which indicates that every segment of q is
guaranteed to carry bq traffic under all failure scenarios that PCF
is designed for.

We next illustrate the potential benefits of LSs using Fig. 4. Con-
sider the LS g which traverses the logical hops sg, s1, ..., . Let each
link be a tunnel. Traffic between consecutive logical hops is carried
by the tunnels (links) connecting those hops. For example, traffic
between s; and sy is carried on the n tunnels (links) connecting the
nodes. When any link fails, only the reservation in the relevant
segment of q is impacted — e.g., if a link between s; and s fails,
there is no impact on the reservation on the segment between s
and s1. This is unlike FFC and PCF-TF where such a failure would
cause part of the capacity on other links to be unavailable. The
corollary to Proposition 3 below captures the resulting benefits.

COROLLARY 3.1. For the topology in Fig. 4, PCF’s performance with
a single LS and polynomially many tunnels can be arbitrarily better
than PCF-TF and FFC with exponentially many tunnels.

Proof. We have already shown that FFC and PCF-TF can be ar-
bitrarily worse than optimal. Consider PCF where LS g correspond-
ing to so, S1, ..., Sm is used, with each link being a tunnel. There are
p +n(m — 1) tunnels in total. Under any scenario involving n — 1
simultaneous link failures, the first segment (sos1) has a capacity of
at least 1 — %=1 available. All other segments have at least capacity
1 available on any n — 1 failure scenario. Thus, g can carry at least
1- "le traffic, which meets the optimal throughput. O

We note that using the LS has at least two sources of flexibility
beyond classic tunneling. First, in classic tunneling, traffic on each
tunnel only carries traffic corresponding to the end points of the
tunnel. Second, when there is a failure, only the source node of
a tunnel may respond. In contrast, with a LS, each segment may
carry traffic corresponding to different sources and destinations
- for instance, in Fig. 4, the segment (and hence tunnel) between
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Link capacity: 1

--------- Link capacity: 1/2

Figure 5: Illustrating conditional logical sequences

[ Optimal FFC PCF-TF PCF-LS PCF-CLS R3 ||

[ 1 0 2/3 4/5 1 0 ]
Table 1: Throughput of different schemes for the topology
in Fig 5 under 2 simultaneous link failures.

s1 and sy may carry traffic between sy and s,,. Further, if the link
between s; and s; fails, s; may redistribute the traffic that arrives
at s; onto the tunnels between s; and ss.

Bandwidth allocation with LSs. We next show that bandwidth
allocation with LSs can be tractably formulated. For each pair with
source s and destination d, let L(s, t) denote the set of LSs from s
to t (with T (s, t) denoting the set of tunnels as before). Note that
each source destination pair is associated with zero or more LSs,
and zero or more tunnels. Then, the model seeks to reserve bq on
each LS, and reserve a; on each tunnel / as discussed below:

(P2) max ©O(z)
z,ab

s.t. Z a(1—-yp) + Z bgq

LeT (s,t) qeL(s,t)
> Z by +zstdst Vst €V,VyeY )
q€Q(s;t)

bg 20 Vs,teV,q € L(s,t)
Constraints (2), (3).

The most significant change relative to (4) pertains to the capacity
constraint (first constraint). The LHS of this constraint captures
that traffic from s to ¢ could use both the reservations (a;) on the
physical tunnels between s and ¢, and the reservations (bg) on the
LSs between s and ¢. While the capacity on tunnel [ is only available
when all links on the tunnel are alive (y; = 0), the reservation on the
LS q is always available (though we relax this requirement in §3.4).
The RHS of this constraint corresponds to the total traffic that must
be carried from s to ¢t. With FFC, this corresponds entirely to the
bandwidth allocated to traffic that originates at s, and terminates
at t. However, in PCF, it is possible that st is a segment of a LS
q’ (between a source s’ and destination t’). Let Q(s, t) denote the
set of all such LSs. Then, the RHS also accounts for reservations
on all such ¢ € Q(s,t). We refer to (P2) as the PCF-LS model.
Note that the reservation on a LS is supported by the reservations
on physical tunnels and other LSs. The reservations on physical
tunnels themselves are supported by the capacity of underlying
physical links.



SIGCOMM 20, August 10-14, 2020, Virtual Event, NY, USA

3.4 Conditional Logical Sequences

As described in §3.3, each segment in a LS must guarantee the
reservation associated with the LS over the entire set of failures. We
next consider a generalization, that we call conditional LSs which
only guarantee the reservation over a subset of failure scenarios. A
conditional LS g is associated with a condition hg, and a reservation
bg. The reservation by must be guaranteed over each segment
of g for all scenarios where the condition kg is met. An example
condition is a given set of links being alive or dead.

Illustrating benefits of conditional LSs. We illustrate by con-
sidering Fig. 5. Table 1 shows the traffic guaranteed by different
schemes for traffic from source s to destination ¢ under single and
two link failures. The table shows both FFC and PCF-TF (both
schemes use all 6 tunnels from s to t) are sub-optimal (for the same
reasons as (§3.2, §3.3)).

Consider now that a LS (s, 4, t) is added with logical segments
s4 (with the tunnel s — 4), and 4t (with multiple tunnels from 4 to ¢
including4—-1-5—-t,4—2-6—t,and 4—3 —7 —t). Further, the LS
is associated with a condition that the reservation is only needed
when the link s — 4 is alive. Table 1 shows the optimal is achieved
with this conditional LS (PCF-CLS). Consider two link failure case.
When s —4 is dead, at most one of the tunnels s—1—-5—t,s—2—6—t,
s —3 — 7 — t are dead and the remaining can carry 1 unit of flow.
When s — 4 is alive, at most 2 of these tunnels are dead. Therefore,
they can cary 0.5 units of flow. Finally, LS (s, 4, t) can carry 0.5 units
of flow since s4 is alive and at most 2 of the tunnels 4 —1-5—1¢,
4-2-6—-tand4—3—7—tare dead.

Note that when the same LS is added but without the attached
condition, the objective is not optimal. This is because, the logi-
cal segment s4 cannot guarantee any reservation over single link
failures when only the tunnel s — 4 is used. It is possible to add
more tunnels between s and 4 (e.g.,s —1—-4,s—2—-4,s —3—4),
which allows the LS (s, 4, t) to be more resilient to failures (PCF-LS).
However, this is at the cost of reservations on the tunnels from s
to t, and consequently the objective is increased but still does not
achieve the optimal.

Modeling conditional LSs. We next discuss how conditional
LSs are modeled. Under any given failure scenario, let hg indicate
whether LS q is active or not. Like before, let y; indicate whether
tunnel [ fails or not. Let (y, k) denote all y; and hq variables, and let
YH denote all possible combinations of (y, ) under all scenarios
involving the simultaneous failure of f links. To incorporate these
conditions, we replace constraint (7) in (P2) with the constraint
below, and refer to the resulting model as PCF-CLS.

D oa-y)+ ) bghg

LeT (s,t) qeL(s,t)
> Z bghg +zedsy Vst € V,¥(y,h) € YH.
q€Q(s,t)

In §5, we show that LSs activated under a simple condition (a single
link being dead) is sufficient to get good performance. To handle
this, we model YH by adding constraints hq = x, for each LS
q to (4), where ¢4 is the link whose failure activates LS g. In the
Appendix, we model a more general condition, where all links in
a set g are alive and all links in a set &; are dead, which helps
generalize PCF to richer failures (e.g., node failures) (§3.5).
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3.5 PCF generalizations

In this section, we discuss generalizations of PCF, and its relation-
ship with R3 [37], another congestion-free mechanism.

Heuristics for selecting LSs. We present a heuristic for select-
ing LSs that works well empirically (§5). Our approach involves
considering a more general model based on flows and decomposing
the results of that model into LSs.

We begin by introducing logical flows, which are a generalization
of LSs in that traffic is no longer constrained to visiting a sequence
of hops. A logical flow w from s to ¢ is captured by the flow balance
constraints below:

bw >0 Vs, teV,YweW(s,t)

byw Vs, t,i=s,weW(s,t)
D ipwli) = D pw(i) =10 Vsti#si#twe W)
J J —byy Vs,ti=t,we W(s,t)

(®)
Here, b,, is the reservation associated with the logical flow, and
pw(ij) is the amount of this reservation that must be supported
on logical segment ij. Each logical flow w may itself be associated
with a condition h,,, which indicates the reservation associated
with w is only guaranteed when h,, is satisfied. Let W (s, t) be the
set of all logical flows for traffic from s to t. Then, relative to (P2),
the logical flow model involves adding (8), and changing (7) to

Doa-y)+ DL buhy

1€T (s,t) weW (s,t)

2 Z Pw (S hay + zspdsy
s VeV, weW(s',t')
Vs,t € V,VY(y,h) € YH.

The first term on the RHS captures the reservation that must be
supported on (s, t) for any logical flow w’ from s’ to t’.

To obtain LSs, we decompose the flow into sequences [9, 23].
For each flow w € W (s, t), this approach generates a derived graph
with the same nodes as the original topology. For each node pair
(i, ), if pw(ij) > 0, we add an edge from i to j with the weight
being p,,(ij). Then, we search for the widest path from s to t on
this graph, and use the sequence of hops in this widest path as a LS
with condition h.,.

Relationship to link bypass. While we have focused on tunnel
based mechanisms so far [26], we next discuss the relationship
of our work to R3 [37], another congestion-free routing scheme.
Instead of tunnels, R3 [37] focuses on a link bypass mechanism,
where traffic on a link e = (i, j) is re-routed upon its failure, along
a pre-computed flow from i to j and this flow does not use e.

We first illustrate using Fig. 5 that our models can out-perform
R3. As Table 1 shows, when R3 is applied to Fig. 5, no traffic can
be carried from s to t if two link failures must be tolerated. To
understand why, consider a scenario where links 1 — 5, and 5 — ¢
fail. Since a link bypass for 1 — 5 must start at 1 and end at 5, and a
link bypass for 5 — t must start at 5 and end at ¢, no viable bypass
paths exist for either link. Instead, an obvious feasible strategy is
to route the traffic along the path s — 2 — 6 — t, an option that is not
considered by R3 because s is not an end point of either 1 — 5 or
5—1.

We now state a more formal result:
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PROPOSITION 4. A special case of PCF’s logical flow model where
conditions are restricted to the no failure or single link failure scenarios,
and links are tunnels, dominates (performs as well as or better than)
R3.

Proof. To see this, consider the logical flow model under the
conditions above. More specifically, for each node pair (s, t), we
have a flow w with the condition being no failure and we constrain
the flow to exactly serve the demand, i.e., b,, = zs;ds;. For node pair
(i, j) which has an edge, we have a flow w with the condition being
the link (i, j) being dead. This model is exactly the Generalized-R3
model presented in [10] which has been shown to dominate R3. O

Shared risk links groups (SRLGs) and node failures While
we have focused on link failures, a few modifications allow for the
treatment of shared risk link groups (SRLGs), and node failures. An
SRLG captures that a group of links may fail together (e.g., owing
to failure of an underlying optical element) [27]. Each SRLG is
modeled by a condition hg which indicates all links in that SRLG
fail. Observe that the first constraint in (4) is imposed on x variables
that capture link failures. Instead, the constraint can be imposed on
conditions dependent on the x variables. For example, a requirement
that at most f' SRLGs fail is modeled by requiring that 3};c0 hq < f,
where Q is the set of SRLGs. Similarly, the failure of each node is
modeled by a condition that all links incident on that router fail. Our
discussion and results in §3.2 holds for node failures as well - i.e.,
relative to FFC, PCF-TF performs better, and PCF-TF’s performance
does not degrade with tunnels. Further, our models do not suffer
from the weaknesses of link bypass mechanisms including R3 [37],
that cannot deal with node failures (since no viable bypass paths
for link (i, j) from i to j exist when node j itself fails).

4 REALIZING PCF'S MECHANISMS

In this section, we discuss how to realize PCF’s network response
mechanisms associated with the models in §3.

First, PCF-TF employs the same response mechanism as FFC,
which we describe in the rest of this paragraph. Under any failure
scenario, traffic across tunnels between a source s and destination ¢
is carried on all live tunnels, and in proportion to the reservations
on the tunnels. Consider three tunnels from s to t with reservations
of (2,3,5). When all the tunnels are alive, the (s, ¢) traffic is split
across the tunnels in the ratio (0.2, 0.3,0.5). If the first tunnels fails,
the traffic is sent across the tunnels in the ratio (0, %, %).

We next discuss the response mechanisms associated with our
models based on LSs. First, we discuss a mechanism that works
for arbitrary LSs (§4.1). We then show that when LSs are topologi-
cally sorted (more formally explained later), a response mechanism
similar to FFC may be used (§4.2).

4.1 Realizing general logical sequences

Consider Fig. 6(a) which shows the physical tunnels and the LSs
used with our offline PCF-LS, and PCF-CLS models for an example
setting (e.g., 1 is a physical tunnel between A and C, while ¢1 is
a LS between A and D) where traffic is carried from A to B. These
models determine the reservations associated with each tunnel, and
each LS (e.g., aj; and by are respectively the reservation on /1 and

q1).
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We discuss an approach to realize this abstract model only using
tunnels (in §4.2, we discuss an alternate implementation). While in
FFC, a tunnel / from i to j may carry traffic only from i to j, PCF
permits some flexibility — e.g., | may carry traffic from s to ¢t if in
the abstract model, (i, j) is a segment in a LS from s to ¢.

Like FFC, our models are run at the granularity of several minutes
to periodically recompute reservations (e.g., to handle significant
shifts in traffic demands). Once computed for a given traffic matrix,
we show that the traffic carried on tunnel / to destination ¢ for any
failure scenario may be computed online by solving a system of
linear equations, which is much faster than solving linear programs
(LPs) such as the multi-commodity flow problem (e.g., a popular
approach to solving LPs involves solving many linear systems).

In describing our approach, it is helpful to consider a matrix M
that summarizes the reservations. For instance, for the topology
in Fig. 6, the reservation matrix M is summarized in Fig. 7. Each
row and column corresponds to a node pair. The diagonal entries
indicate the total reservation across all live tunnels and active logical
sequences associated with that node pair. A non-diagonal entry
in column i and row j indicates that the node pair j must carry
traffic corresponding to column i. For instance, in the third row
corresponding to the node pair (A, D), the diagonal entry aj3+bg; is
the total reservation associated with that node pair (over tunnel 3
and LS q1). Further, the entry —bgp reflects that (A, D) is a segment
of the LS g2 from A to B and must be able to carry the reservation
bgz associated with g2.

A node pair (s,t) is considered to be of interest if it carries
positive demand, or if it carries traffic for another node pair of
interest. Let P be the set of node pairs of interest (more formally
defined in the Appendix). Constraint (7) in our LS model can be
equivalently expressed in matrix notation as M X 1>, D. Here, 1
and D are P X 1 column vectors. All entries of 1 are 1, while the pth
row of D has an entry zpd) indicating the total traffic associated

with pair p that can be carried. Let U be a P x 1 column vector.
Then, we have:

PROPOSITION 5. M is an invertible M-matrix', and there is a
unique solution U* to the linear system M XU = D, whereV (i, j) € P,
U*(i, j) € [0,1].

We defer a proof to the appendix but discuss the implications
here. While PCF’s models determine the reservations, realizing
them in practice requires determining the fraction of the reserva-
tion that is actually used in any given failure scenario. The above
result indicates that such a fraction exists and may be obtained as
a solution to a linear system of equations. While linear systems are
already much faster to solve than LPs, the result also indicates that
the matrix M is of a type for which simple and memory-efficient
iterative algorithms for solving linear systems can be used [4].

Fort € V, let D; be a P x 1 column vector where the pth row
of Dy has an entry zpdp if t is an end point of p, and 0 otherwise.
Using the same argument as for Proposition 5, there is a unique
solution lft* to the linear system M X Ijt = 5;. Then, the following
holds:

A matrix T is an invertible M-matrix if T;; < 0 when i # j and Tx > 0 implies that
x 2 0.
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Figure 6: Realizing PCF in practice. (a) Example abstract model; (b) a practical realization using only tunnels applicable
for arbitrary LSs (§4.1); (c) an alternate realization when LSs can be topologically sorted (§4.2).
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Figure 7: Reservation matrix associated with Fig. 6.

PROPOSITION 6. For any live tunnel | from i to j and any destina-
tiont, letr; = U;*(i, Jj)ay be the total traffic carried to destination t
on tunnel l. Then ry; represents a valid routing which carries all the
traffic with the destination of t.

We compute U} for every node ¢ by solving the linear system

M x [U_;"1 U_;*; ,.,Uﬁv‘] = [D_;l,D_;Z, ~-~D:|w] , which in turn allows
r;; to be computed. As computed, rj; may have cycles that can be
eliminated by subtracting flow associated with the cycle. Fig. 6(b)
shows a concrete realization of PCF’s routing on tunnels for the
abstract model shown in Fig. 6(a). Each tunnel is annotated with
the fraction of the traffic to destination B carried on that tunnel -

e.g., rj5 g = 1/4 indicates that [5 carries 1/4 of the traffic to B.

4.2 Topologically sorted logical sequences

While the approach in §4.1 works for arbitrary LSs, we next describe
an alternate approach that works when LSs are chosen with some
restrictions. Given two node pairs (i, j), and (i’, j’), we say that
(i, j) > (i, j) if (i’, j’) is a segment of any active LS q in L(i, j) .
Our approach below is applicable if all the node pairs under every
failure scenario can be topologically sorted with respect to relation
’>’. For example, in Fig. 6, the LSs satisfy a topological ordering
with (A, B) > (A, D) since q2 € L(A, B) uses the segment (A, D)
(but not vice versa). Note that, essentially, we only require a strict
partial order over the node pairs. The topological sort refers to any
total order that extends this strict partial order and, it is well-known
that such a total order exists and can be derived easily from the
partial order[21].

When a topological ordering is possible, PCF implements LSs
more directly (Fig. 6(c)). When A sends packets to B, traffic is split
across the tunnel /5 and LS ¢2. Traffic to q2 involves pushing a label,

and looking up the table entry for host D. This entry indicates traffic
is split across tunnel I3 and LS q1. Traffic to g1 involves pushing
another label and looking up the entry for host C, which indicates
the traffic is to be forwarded on tunnel /1. When a router receives
a packet, it pops labels as needed, and if it is an intermediate point
of a LS takes the appropriate action. For example, when D receives
a packet on tunnel I3 it pops the outer label /3, and based on the
inner label g2, looks up the entry for B, and forwards to B along
tunnel /4.

A key question is to decide how to split the traffic at each hop -
e.g., for traffic from A to B, what fraction is sent on each of tunnels
I5, and LS q2. We define local proportional routing as a scheme
where the traffic associated with each node pair (i, j) is split across
all tunnels and LSs from i to j in proportion to the reservations
associated with these tunnels and LSs. This is a generalization of
FFC which uses a locally proportional scheme but in a context
where there are only tunnels. Then, the following holds:

PROPOSITION 7. The LS models can be realized by local propor-
tional routing when the topological sort property is met.

Proof. For a particular failure scenario x, let Ty (s, t) denote the
set of live tunnels from s to ¢, Ly (s, t) denote the set of active LSs
from s to t and Qx (s, t) denote the active LSs which go through
segment (s, t). We show by induction along the topological sort
order that locally proportional routing services the demand. Our
induction hypothesis is that the pair (i, j) needs to route D; j Where,

DNlj = B(i’ D+ uman> 9)
(m,n) €P,q€Qx (i,j)NLyx (m,n)
if every router distribute D; 7 among the tunnels (I € Ty (i, j)) and
LSs (q € Lx (i, j)) in the proportion of their reservations, i.e., there
is a constant u;; such that traffic along [ is u;ja; and that along LS
q is ujjbg where
ujj = DNij

Y Yleni (i) @+ DqeL i) bg

For the base case, observe that for the topologically largest pair
p1 = (i1, j1), the demand received is D(iy, j1). And the hypothesis
is trivially true because Q(i1, j1) = 0. For the induction step, we
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assume that the hypothesis is true for pairs p1, pa, ..., pn in topo-
logical sort order and show it holds for pu41 = (i, j). Observe that
for any q € Qx (i, j) N Lx(m, n), the traffic sent to by is, by the in-
duction hypothesis, umnbg because Qx (i, j) N Ly (m, n) = @ implies
(m,n) > (i, j). Then, (9) holds for (i, j), and it follows easily that
if (i, j) routes u;jbg along each g € Ly (i, j) and u;;a; along each
I € TIc(i, j) that Xjer, ;5 uijar + quLx(i,j) ujjbg = Djj. Since it
follows easily from above that

ul-j( Z aj + Z bq)z

1€T, (i,)) qELx(isj)
B(is D+ uman,
(m,n) €P,q€Qx (i,j)NLy (m,n)

it follows that (u;j)(; j)ep solves M x U = D. Therefore, by propo-
sition 5, 0 < u;; < 1. This implies that the routing is feasible since
none of the reservations are exceeded. O

4.3 Implementation and deployment pathways

Now, we discuss how our scheme can be implemented and practi-
cally deployed. We start with the case when the logical sequences
are topologically sorted. The offline computation phase determines
the reservation for each tunnel and LS, similar to how FFC deter-
mines tunnel reservations. The regular forwarding operation and
the failure recovery is completely distributed. Traffic associated
with each node pair (i, j) is split across all physical tunnels and LSs
in proportion to the reservations associated with them. When a tun-
nel fails or an LS is inactive, the weights are rescaled in proportion
to the reservations on live tunnels and active LSs. This is similar
to the existing approach of rescaling on live tunnels. Recall that
LSs may have conditions attached to them and may only be active
when the condition is true. Thus, for any conditional LS q from i
to j, we need a mechanism to propagate the condition (e.g., link
failure event) to i. For concreteness, we focus our discussion on two
cases (the only cases considered in our evaluations). The first case
involves LSs that do not have any conditions attached. This case
is trivial to implement - such LSs are always active, and no hint
propagation is needed. The second case involves LSs q between
i and j which are only active when the link i — j fails. This can
be implemented by having i locally detect the failure of the i — j
link, which then results in i activating g and following the standard
proportional scheme.

More generally, when logical sequences cannot be sorted in
topological order, one simple implementation approach is to use
a centralized controller. On each failure, the centralized controller
solves a linear system which determines the new routing as dis-
cussed in §4.1. Solving a linear system is much easier than solving
a linear program, as discussed earlier. While we do not explore
further, we believe that it is possible to perform the operations
on failure in a completely distributed fashion because the linear
system we solve is of a special type (see Proposition 5) for which
iterative algorithms exist. We defer further investigation to future
work.

5 EVALUATIONS

We compare the performance guarantees provided by PCF’s congestion-

free mechanisms with FFC, the state-of-the-art congestion-free
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mechanism. When possible, we compare PCF with the performance
achieved by the optimal network response which involves comput-
ing the optimal multi-commodity flow for each failure scenario. We
implement all our optimization models in Python, and use Gurobi
8.0 [19] to solve them. We consider the following PCF schemes:

e PCF-TF. This uses FFC’s mechanism to respond to failures, but
models network structure more explicitly (§3.2).

e PCF-LS. Here, LSs are used but not associated with any con-
dition (§3.3). For each node pair (s, t), we provide a single LS that
includes the set of nodes in the shortest path from s to ¢. This guar-
antees that the topological sort assumption is met, which ensures
the scheme can be implemented as a locally proportional routing
scheme similar to FFC (§4.2).

e PCF-CLS. Here, the failure of each link (i, j) results in the
activation of a LS from i to j. Further, each node pair is associated
with a LS that is always active. We get these LSs by decomposing a
restricted form of the logical flow model, where the only conditions
are no link failures, or single link failures, with failure of link (i, j)
resulting in the activation of a flow from i to j (§3.4). The LSs
may not be topologically sorted. The scheme can be realized using
relatively light-weight operations on each failure compared to the
optimal network response (§4.1). In §5.2 we evaluate a heuristic
that derives topologically sorted LSs from the above LSs, which
allows for a proportional routing scheme similar to FFC.

Topologies. We evaluate our models on 21 topologies obtained
from [22] and [23] (see Table 3 in the Appendix). Our two largest
networks were Deltacom and Ion that contained 151 and 135 edges
respectively and over a hundred nodes each. We remove one-degree
nodes in the topologies recursively so that the networks are not dis-
connected with any single link failure. We use the gravity model [40]
to generate traffic matrices with the utilization of the most con-
gested link (MLU) in the range [0.6, 0.63] across the topologies.

5.1 Results

We start by reporting the demand scale (z) achieved by each scheme,
which is the factor by which the traffic demand of all pairs can be
scaled and yet supported by a given scheme. For example, z = 0.5
indicates that for all source destination pairs, half the demand can
be served, while z = 2 indicates twice the demand can be handled.
The MLU, or the utilization of the most congested link is the inverse
of z. Later in this section, we report results with the throughput
metric.

Benefits of modeling network structure. Fig. 8 shows the
demand scale guaranteed by FFC when used to design for all single
link failures for Deltacom (the topology with the most edges) for
twelve different demands. Each curve corresponds to the number
of tunnels used per node pair. We select physical tunnels so that
they are as disjoint as possible, preferring shorter ones when there
are multiple choices. With all our topologies, any node pair has
at least two disjoint physical tunnels. When three or four tunnels
are selected, it is not possible to guarantee that they are disjoint.
Our strategy ensures that the failure of any link causes at most two
tunnels to fail for all node pairs in the three tunnel case, and for
most node pairs in the four tunnels case. The optimal is obtained
by exhaustively enumerating all failure scenarios, and can take
over 2 days in some settings. FFC performs significantly worse
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FFC’s performance

than optimal, and consistently better with two tunnels (additional
tunnels hurt).

Fig. 9 shows the demand scale guaranteed by PCF-TF when
designing for single link failures for Deltacom, and an example
traffic matrix. Results for FFC are included for comparison. PCF-TF
matches FFC’s performance when 2 tunnels are used, and performs
better as tunnels are added given that it better models network struc-
ture. We observed similar trends with all topologies, and across
demands. Henceforth, in our experiments, all our schemes use three
tunnels (this is conservative as adding more tunnels improves per-
formance), while FFC uses two tunnels (this represents the best
setting for FFC and choosing more tunnels leads to poorer perfor-
mance).

Benefits of more flexible response. We next evaluate the per-
formance of our various PCF schemes relative to FFC, and report
the ratio of the demand scale for a given scheme to the demand
scale with FFC. We generate 12 different demands for Deltacom
to model a traffic matrix every 2 hours. Fig. 10 shows a CDF of
the ratios across these demands. In the median case, PCF-TF and
PCF-LS achieve an improvement of 1.25X over FFC, while PCF-CLS
achieves a 1.37X improvement. Further, for 25% of the traffic matri-
ces, PCF-TF, PCF-LS and PCF-CLS achieve improvements of more
than 1.3X, 1.4X and 1.66X over FFC respectively. Finally, PCF-CLS
matches the optimal for most cases. While PCF-TF’s improvements
arise due to better modeling of network structure, the further bene-
fits achieved by PCF-LS and PCF-CLS are due to additional flexibility
provided by logical sequences.

Analysis across topologies. Fig. 11 presents a CDF of the ra-
tios of the demand scale for each scheme relative to FFC across
topologies when designing for single link failures. All our schemes
provide significant benefits, with PCF-CLS matching the optimal for
most topologies. On average, PCF-TF, PCF-LS and PCF-CLS achieve
improvements of more than 1.11X, 1.22X and 1.44X over FFC re-
spectively. For GEANT (rightmost point), PCF-LS and PCF-CLS
perform 2.6X better.

Multiple simultaneous failures. We next consider simultane-
ous link failures. To avoid disconnecting the topologies, we split the
capacity of each link evenly across two sub-links that fail indepen-
dently. We report the performance of all schemes when designing
for all possible scenarios involving the simultaneous failure of three
sub-links. For all PCF schemes we pick 6 tunnels, choosing them to
be as disjoint as possible. For similar reasons as above, we found
FFC achieved significantly better performance with 4 tunnels (FFC

FFC when more tunnels are added

ple demands for Deltacom

resulted in a demand scale factor of 0 with 6 tunnels).? Fig. 12 shows
a CDF of the demand scale ratios for each scheme relative to FFC.
On average, PCF-TF, PCF-LS and PCF-CLS achieve improvements of
more than 1.11X, 1.25X and 1.50X over FFC respectively. Note that
while the trends are similar to single failures, the absolute values of
demand scales are lower for all schemes - e.g., the optimal under 3
failures is 0.42 for Deltacom, while 0.85 under single failures).

Throughput metric. Instead of demand scale, we next consider
performance when the schemes optimize the throughput metric
(sum of bandwidth allocated to each pair). Given a demand ds;
for source s and destination ¢, and an allocated bandwidth bwg;
(bwsy < dgt), we compute the throughput overhead 1 — Zzb;}j’ .
Fig.13 shows the % reduction in throughput overhead of eac
scheme relative to FFC when designing for three failures. PCF pro-
vides significant benefits. In the median case, PCF-TF and PCF-LS
reduce the throughput overhead of FFC by more than 16%, and the
reduction with PCF-CLS is 46%. For 25% of the topologies, PCF-TF,
PCF-LS and PCF-CLS reduce the throughput overhead by 27%, 41%
and 55% respectively. We do not report the optimal for this metric
since it requires a prohibitively large optimization formulation that
simultaneously models combinatorially many routing problems,
one for each failure state.

5.2 Feasibility of local yet optimal routing

As discussed earlier, PCF-TF uses a routing mechanism identical to
FFC, while PCF-LS uses topologically sorted logical sequences and
can be realized using a locally proportional routing (§4.2) similar
to FFC. However, the LSs chosen in PCF-CLS are not guaranteed to
be topologically sorted.

Interestingly, under single link failures, the LSs generated by
PCF-CLS are already topologically sorted by default for 16 of our
21 topologies. For the remaining ones, we consider a new scheme,
which we refer to as PCF-CLS-TopSort, that starts with the LSs
initially generated by PCF-CLS, and picks a subset which are topo-
logically sorted. To achieve this, we use a greedy algorithm that
adds LSs one by one from the original set, omitting any LS that
violates the topological sort property. In all cases, less than 0.59%
of the LSs were pruned. Further, for 4 of the 5 topologies, PCF-CLS-
TopSort performs identically with PCF-CLS for the demand scale
metric. For Ion alone there was some performance degradation,

21t was only feasible to select 6 tunnels, with 2 sharing a common link. Under three
failures, FFC must provision for the case all tunnels failed.
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from a demand scale of 1.11 with PCF-CLS to 0.82 with PCF-CLS-
TopSort, but still much better than FFC which achieved a demand
scale of 0.48. Overall, the results indicate that for single failure
scenarios, a local proportional routing mechanism is sufficient to
ensure near optimal performance.

For multiple simultaneous failures, PCF-CLS-TopSort does not
match the performance of PCF-CLS. We note however that (i) PCF-
CLS-TopSort and PCF-LS still significantly out-perform FFC and
are realizable as local algorithms; and (ii) while PCF-CLS nearly
matches optimal, it only requires a linear system of equations to be
solved on each failure as opposed to a more expensive optimization
problem.

5.3 Tractability of formulations

Fig. 14 presents the solving time (Y-Axis) against topology size
(X-Axis) when PCF-TF, and PCF-CLS (the most complex scheme)
are used to design for all simultaneous three link failure scenarios.
Each point corresponds to a topology. PCF-LS takes less time than
PCF-CLS and is not shown. For most topologies, the solving times
is under 10 seconds. For the two largest networks (Deltacom and
Ion) with 302 and 270 sub-links (each original link comprises 2
sub-links), the solving time for PCF-TF is under 50 seconds and
for PCF-CLS under 100 seconds. This is reasonable because PCF’s

overhead compared to FFC

models only need to be run at the granularity of several minutes
(on failure, lighter-weight online operations are used (§4.3)).

The figure also shows the solving time for the optimal scheme
(truncating the Y-Axis at 1 hour). The solving time is much larger
even for the smaller topologies and did not complete within an
hour for most topologies. For one of the larger topologies, it did
not complete even after two days.

6 RELATED WORK

Reactive vs. congestion-free routing schemes. Many recent
traffic engineering (TE) schemes [17, 20] have developed flexible
ways of routing traffic motivated by the goal of efficiently utiliz-
ing network capacity. Typically, these schemes involve deciding
how to optimally route traffic at a centralized controller leverag-
ing network-wide views [17, 20, 23]. Failures are handled reactively
by recomputing routes at the centralized controller, and updating
rules at switches, a process that can take a long time, and that
could congestion links in the interim [26]. A more recent work [23]
derives tunnels from an oblivious routing strategy, and determines
how to split traffic across tunnels so link utilizations are minimized.
The scheme does not guarantee that the network would remain
congestion-free on failure.

A second class of schemes [26, 32, 37] proactively guarantee the
network remains congestion-free over a large set of failure scenar-
ios (e.g., all scenarios with f simultaneous link failures), while only
allowing for the network to respond to failures using fast and light-
weight response mechanisms. For instance, FFC [26] conservatively
admits traffic so the network does not experience congestion when
local proportional routing is used. With such schemes, an optimiza-
tion problem is only solved offline (i.e., prior to any failure scenario).
The optimization models guarantee the congestion-free property,
and are tractable in that they do not require an explicit enumeration
of the large space of failure scenarios.

PCF addresses both objectives at the same time, by developing
provably congestion-free light-weight mechanisms that achieve
close to the optimal performance sought by reactive TE mechanisms.
PCF not only out-performs existing congestion-free mechanisms,
but performs close to optimal (the best possible performance that
can be achieved by a reactive centralized TE scheme). Further, like
other congestion-free schemes, PCF does not solve an LP on failure
but only involves light-weight operations. Finally, with topologi-
cally sorted LSs, PCF uses local proportional routing, similar to FFC.
Finally, while we do not explore in this paper, the tractable failure
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models associated with congestion-free schemes in general and PCF
in particular can aid in network design tasks such as provisioning
networks with sufficient capacity to protect against failures.

Other congestion-free routing schemes. Among congestion-
free schemes, we have extensively discussed FFC [26]. R3, another
congestion-free mechanisms based on link bypass [37], is based
on flows, and cannot handle node failures (§3.5). PCF uses tunnels
which are easier to deploy [23], and can tackle node failures. When
flows are allowed, PCF provably out-performs R3 even for link
failures (§3.5). Another work [32] addresses link failures by adding
edges to the network. The original excess capacity of the network
is not used, and the number of edges added may be substantial.

Rather than tackle all f failures, recent works Teavar [6], and
Lancet [10] design for scenarios that occur with sufficient prob-
ability so a desired availability target is met. The techniques in
Teavar [6] and Lancet [10] are respectively demonstrated with FFC
and a generalization of R3. Techniques for probabilistic design are
orthogonal to the design of congestion-free routing schemes. In
particular, the ideas in both Teavar and Lancet are complementary
to PCF, and may be potentially combined with PCF in the future to
achieve better performance bounds when designing for scenarios
with given probability.

A framework for analyzing the worst-case performance of cen-
tralized TE approaches was presented in [9]. The framework pro-
vides conservative performance bounds when network response
can be modeled as an optimization problem. The conservative
bounds may be viewed loosely equivalent to the performance
of a more restricted network routing scheme that does not re-
optimize on each failure. However, the bounds are obtained us-
ing optimization-theoretic relaxation methods, and it is an open
question whether these abstract relaxations relate to practically
realizable network response mechanisms. In contrast, all of PCF’s
models are associated with realizable network response mecha-
nisms as we have discussed. Interestingly, while we do not explore
in this paper, PCF’s models may provide alternate and better ways
to bounds the performance of centralized TE schemes - e.g., the
performance of PCF-CLS under failures matched the optimal for
most topologies (§5). These benefits arise because using LSs can im-
prove the bounds for the relaxations proposed in [9]. Finally, PCF’s
formulations can be naturally used to augment capacities so as to
meet a desired performance metric by simply making capacities
variable.

Segment and pathlet routing. Logical sequences are similar
to segment routing [16, 34] in that traffic is steered through a given
series of hops. DEFO considers ISP carrier network settings where
the traffic in each segment is carried using a (possibly legacy) mech-
anism such as shortest-path forwarding, and the segments may
be chosen so as to optimize a traffic engineering goal [16]. In con-
trast, LSs are an abstraction to increase the flexibility of provably
congestion-free resilient routing mechanisms. Each LS is associated
with a reservation, and may only be active when some conditions
are met. Our actual implementation (§4.1) may be entirely tunnel-
ing based, or use both LSs and tunnels with a local proportional
routing scheme (§4.2).

In pathlet routing [13], sources concatenate fragments of paths
(pathlets) into end-to-end routes in a bottom-up fashion. In contrast,
with PCF, logical sequences and physical tunnels are predefined
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in a top-down manner. Moreover, pathlet routing is motivated by
the challenges of multipath routing, while it does not provide any
performance guarantee upon failures.

Other related work. While several works explore quick re-
routing of traffic to restore connectivity on failures [24, 25, 28, 31,
38], PCF guarantees the network is congestion-free (not merely
restore connectivity). Oblivious routing provides bounds on net-
work performance over multiple demands, and when networks do
not adapt [2, 3, 36, 39]. PCF carefully adds flexibility to network
response to allow for tractable analysis of performance under fail-
ures. Robust network design under single link or node failures
has received attention [3, 5, 11, 15, 29, 33, 41]. PCF scales to the
large number of failure states arising from concurrent failures, and
shows how networks with carefully chosen response can achieve
near optimal performance.

7 CONCLUSIONS

In this paper, we have made two contributions. First, we have shown
that existing mechanisms which ensure the network is congestion-
free on failures achieve performance far short of the network’s
intrinsic capability, and shed light on the underlying reasons. Sec-
ond, we have proposed PCF, a set of novel congestion-free mecha-
nisms that bridges this gap by better modeling network structure,
and by carefully enhancing the flexibility of network response to
ensure that the performance under failures can be tractably mod-
eled. Through formal theoretical results, we show PCF’s schemes
provably out-perform FFC. Empirical experiments over 21 Internet
topologies show that PCF’s schemes can sustain higher through-
put than FFC by a factor of 1.11X to 1.5X on average across the
topologies, providing a benefit as high as 2.6X in some cases. PCF’s
schemes are practically realizable, and some of them can yet achieve
near optimal performance. This work does not raise any ethical
issues.
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APPENDIX

Appendices are supporting material that has not been peer-reviewed.

Notation in PCF and FFC. In this paper, we use slightly differ-
ent notation than FFC. For example, FFC uses f to denote a flow
aggregated by a pair of ingress-egress switches, while we use (s, t)
to directly denote a flow by its ingress and egress switches. In Ta-
ble 2, we list key notation in PCF and the corresponding notation
in FFC.

Efficiently solving PCF’s models leveraging LP duality. As
presented, converting PCF’s models into LPs would create one
constraint per failure scenario which is not scalable since the failure
scenarios in Y may be large. Instead, we leverage a dualization
technique, which has been extensively used in prior work [26, 37].
We illustrate with PCF-TF, but note that the same approach may be
used for all of PCF’s schemes. We rewrite (1) as

min

min Z aj(1—yp) > zgpdsy Vs, t € V.

LeT (s,t)

(10)


http://www.gurobi.com
http://www.gurobi.com

SIGCOMM 20, August 10-14, 2020, Virtual Event, NY, USA

H PCF ‘ FFC H meaning H

(s, 1) f A flow aggregated by ingress-egress switches
dsy dr The bandwidth demand of a flow
T(s,t) T¢ The set of tunnels that are set up for a flow
f ke The number of link failures that PCF (FFC) pro-
tects the network against
eert; | L[t,e] || True (1) if tunnel [ (¢) uses link e and False (0)
otherwise
Zstdst b i The bandwidth granted to a flow
a af.s The bandwidth allocated to a tunnel

Table 2: Different notation used in PCF and FFC

These constraints are reformulated by relaxing the integrality of
y variables, and expressing the LHS as a maximization problem
leveraging LP duality shown below:

(D1) ;rrjll?g),{qs —(fAse + Z Oest + Z é1)

ecE 1eT(s,t)
st. m+¢p=a; VieT(st)
- Z 7y + Ast + Oest 20 Ve

Leer;
>0 VIeT(st)
Ast 20
Oest 20 VYeeE
¢1 =0 VleT(xy).

Now, we put (D1) into (10) and combine it with the rest of con-
straints in (P1) to obtain the final model below.

(D2) max 0(z)

m,A0,9.z,a
s.t. Z a — (fAst + Z Oest + Z d’l) > zgpdst
LT (s,t) ecE L€T(s,t)
Vs,t eV

a; >0 Vs,teV,leT(st)
Z ad(ect)<ce Ve€E
I:Vs,teV,I€T (s,t)
m+@; = a; Vs,t € V,Vl € T(s,t)
- Z 7+ Asp + Oest 20 Ve, Vs, t €V
Leer;
m =0 Vs, teV,VleT(st)
At =0 Vs, teV
Oest 20 Vs,teV,VeeE
¢ =0 Vs, teV,VleT(s,t).

More general conditions (§3.4). Let hy be a condition that
requires all links in 774 to be alive and all links in &; to be dead.
Then we model hq by linearizing the constraint:

hq = 1—[ Xe 1_[(1 — Xe)

ee§q Ng
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as follows:
(hg—1)+x. <0 Veeny
hg—xe <0 Veel,

(l_hq)_zxe_Z(l_xe)SO

€€ng eety

0<hg <1

We model YH by adding the above constraints for each LS g to (4).

Proof of Proposition 5. We will show M € RP* is a weakly-
chained diagonally dominant matrix, where M;; ;, j, < 0 for (i, j) #
(i1, j1). Then, it follows from Theorems 2.1 and 2.2 in [8] that M is
an invertible M-Matrix.

For a particular failure scenario x, let Ty (s, t) denote the set of
alive tunnels from s to ¢, Ly (s, t) denote the set of active LSs from s
to t and Qx (s, ) denote the active LSs which go through segment
(s, t). We first give the formal definition of P, the set of node pairs
of interest. A node pair (i1, j1) € P if and only if there is a sequence
of node pairs (i1, j1), (i2, j2),...,(ik, jk), such that z; j, di, j > 0
andVm:1 <m < k—1,3q € Ly (im+1, jm+1) N Ox(im, jm) such
that bq > 0. There is a chain of LSs, such that a preceding LS serves
a segment in the subsequent LS, where the last LS serves a pair
with non-zero allocation and the first LS contains (i, j). For the
node pairs which are not included in P, we set U(i, j) = 0.

Next, we formally define each entry in M. The diagonal of M is
the sum of available reservations on the pair, i.e. V(i, j) € P, M;j;j =
DleTy (i) A+ geL, (i,j) bg- Other entries of M denote how much a
node pair needs to carry for other node pairs, i.e. for (i, j) # (m,n)
we set Mjjmn = — quQx(i,j)ﬂLx(m,n) bg.

It is easy to see that M is weakly diagonally dominated because
Mx1 > D > 0, where the first inequality is the capacity constraint
and second because z,d, > 0 for all p.

From our definition of P, we know that V(iy, j;) € P, there
is a sequence (i1, j1), (i2, j2),-..,(ik, jx), such that z;_j, di, j. > 0
andVm : 1 < m < k—1,3q € Ly(im+1, jm+1) N Ox(ims jm) :
bg > 0. Thus, for each row (i, j) € P, there is a sequence (i1, j1),
(i2, j2)s- - -»(ig, ji ), such that

Z Mikjk,mn
(m,n)eP
= D a+ Y b Y by
€T (ik, i) q €Ly (ix.jk) q€Qx (ik.jk)
2 Zigje digji > 0,
andVm: 1< m < k=1, Mijics1 jisn * 0. Therefore, M is a weakly-
chained diagonally dominant matrix. Since, for (i,j) # (i1, j1),
Mijij, = _ZqEQx(i,j)ﬂLx(il,jl) bg < 0, it follows that M is an
invertible M-matrix and there is a unique solution U* to the linear
system M X U =D.
Next, we use Brouwer fixed-point theorem [7] to prove that all

entries of the solution are in [0, 1]. Let f (ﬁ) be a function mapping
from [0, 1]¥ to RF. We define f(ﬁ) as

D(i, j) + % (mn) eP.ge0x (i, /)Ly (o) U (m, n)bg

f(@)) = . (1)

2IeTy (i) 4 + ZgeLy (i,)) bq
Observe that the denominator is larger than zero. If not, it follows
from weak diagonal dominance that M;;;j = 0 for all (i’, j’) #
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(i, j), which contradicts (i, j) € P. It is easy to see that Up is a
solution to M x U = D if f(Up) = Up. With U € [0, 1]F, we have

DG J) > 0. (12)
ZIeTy (i) U + ZgeL (i) bq

fU)j =
Moreover,

5(i, ]) + Z(m,n) €P,q€0Qx (i,j)NLx (m,n) bq

<1, (13)

f(O < 2IeT, (i,j) 4 + ZgeL,(i.j) bq
where the first inequality is because ﬁ(m, n) < 1, bg 2 0, and the
denominator is positive. The second inequality is from the capacity
constraint. Since f is a continuous function mapping from [0, 117 to
[0,1]F,and [0,1]F isa compact convex set, it follows from Brouwer
fixed-point theorem [7] that there is at least one point Uy € [0, 1]7
so that f(Up) = Up, which we have already argued is the unique
solution to M x U = D. 0

Proof of Proposition 6. We consider (s,t) column of M1,
which exists by Proposition 5, and denote it as A.

By definition, M = A + B where A is a diagonal matrix with
Astst = ZlGTx(s,t) aj, Bst.st = quLx(s,t) bqs and for (s, t) # (m, n),
Bstmn = — Z(m,n) €P.qeQx (s,6)NLy (m,n) bq. Then it follows that

Z AmnMmn,- = est, (14)
(m,n) eP

where eg; is (s, t) th ynit vector in RP and Minp,. denotes the column
of M corresponding to the pair (m, n). It follows that

Z AmnAmn,mnemn = est — Z AmnBmn,.- (15)
(m,n)eP (m,n)eP

Now, es; can be interpreted as a directed path carrying a unit flow
from s to t. Moreover, we show that By, . is a circulation since
it can be written as an addition of cycles, one for each logical
sequence servicing (m, n). To show this, we only need to show that
for any g € Ly (i, j) with by > 0, if (k,[) is a logical segment in g,
that is if ¢ € Qx(k, 1), then (k,I) € P. Since (i, j) € P, there is a
weak chain from (i, j) to a strictly dominated pair. The existence
of g shows that (k, 1) is connected to (i, j) since My;;; < bg < 0.
Therefore, (k,I) € P. Thus, the RHS of (15) represents a directed
path flow es; and some circulations ¥, n)ep AmnBmn,-- By the
flow decomposition theorem (Theorem 3.5 in [1]), this flow yields
a unique arc flow on the tunnel network shipping the same traffic
as the directed path egs;. The resulting flow is then the LHS of
(15). In other words, each g; tunnel connecting (m, n) can use Ayn
fraction of its capacity to transmit a unit flow from s to ¢. Observe
that the resulting flow may have loops that could be extracted in
post-analysis.

Finally, since we have shown that MDD = U* ¢ [0, l]P L it
follows that

0< Amn,mn Z Mr;ln,stzstdst < Amn,mn, (16)

(s,t)eP
which shows that the accumulated traffic on the tunnels between
(m, n) will not exceed the reservation. Thus the traffic is feasible.
Observe that all (s, t) pairs with zs;ds; > 0 are included in P. There-
fore, D contains all the serviced demands and the proof is complete.
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H Topology #nodes # edges Topology #nodes # edges H
B4 12 19 Janet Backbone 29 45
IBM 17 23 Highwinds 16 29
ATT 25 56 BTNorthAmerica 36 76
Quest 19 30 CRLNetwork 32 37
Tinet 48 84 Darkstrand 28 31
Sprint 10 17 Integra 23 32
GEANT 32 50 Xspedius 33 47
Xeex 22 32 InternetMCI 18 32
CWIX 21 26 Deltacom 103 151
Digex 31 35 ION 114 135
i 27 55

Table 3: Topologies used in evaluation

Topologies summary (§5). Our evaluation is done using 21
topologies obtained from [22] and [23]. The number of nodes and
the number of edges of each topology is shown in Table 3.
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