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ABSTRACT
Recently, traffic engineering mechanisms have been developed that

guarantee that a network (cloud provider WAN, or ISP) does not

experience congestion under failures. In this paper, we show that

existing congestion-free mechanisms, notably FFC, achieve perfor-

mance far short of the network’s intrinsic capability. We propose

PCF, a set of novel congestion-free mechanisms to bridge this gap.

PCF achieves these goals by better modeling network structure, and

by carefully enhancing the flexibility of network response while en-

suring that the performance under failures can be tractablymodeled.

All of PCF’s schemes involve relatively light-weight operations on

failures, and many of them can be realized using a local propor-

tional routing scheme similar to FFC. We show PCF’s effectiveness

through formal theoretical results, and empirical experiments over

21 Internet topologies. PCF’s schemes provably out-perform FFC,

and in practice, can sustain higher throughput than FFC by a factor

of 1.11X to 1.5X on average across the topologies, while providing

a benefit of 2.6X in some cases.
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1 INTRODUCTION
Failures are the norm in both ISP networks [27, 35], and cloud

provider WANs [12, 14, 30]. Yet networks must ensure that the

increasingly stringent performance requirements of business criti-

cal applications are met [18]. Many recent works [17, 20, 23] have

developed flexible ways of routing traffic motivated by the goal of

efficiently utilizing network capacity. However, with these schemes,

the network could experience congestion on failure [26].
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Motivated by these challenges, the research community has re-

cently designed traffic engineering mechanisms that proactively

ensure that the network is congestion-free (i.e., ensure that no

link carries more traffic than its capacity) under typical failure

scenarios [26, 32, 37]. For instance, FFC [26], a representative and

state-of-the-art approach, allocates bandwidth to flows so that no

congestion occurs when 𝑓 or fewer links fail. To do so, FFC splits

traffic from each ingress to egress along a set of pre-specified tun-

nels.

In this paper, we explore the performance of such congestion-

free mechanisms relative to the performance that a network could

achieve by responding optimally to each failure. We refer to the

performance achieved when the network responds optimally as the

intrinsic network capability. We make two contributions.
First, we show that congestion-free schemes perform much

worse than optimal, and present deeper insights into the underlying

reasons. In particular, we show that (i) FFC is not only conservative,

but also its performance can degradewith an increase in the number

of tunnels; and (ii) the performance of FFC can be arbitrarily worse
than optimal, even when exponentially many tunnels are used. We

show that these results arise because (i) FFC models network struc-

ture in a coarse fashion; and (ii) reservations are tightly coupled to

paths, and the failure of a link leads to unutilized capacity on other

links in the tunnel that contain the failed link.

Second, we propose PCF (Provably Congestion-free and resilient
Flexible routing), a set of novel mechanisms that ensure the net-

work is provably congestion-free under failures, while performing

closer to the network’s intrinsic capability. PCF achieves these goals

by better modeling network structure, and through more flexible

response strategies. The key challenge that PCF addresses is how

to enhance the flexibility of network response while ensuring that

the performance under failures can be tractably modeled.

We develop multiple mechanisms as part of PCF that allow the

architect to trade-off the achievable performance guarantee with

deployment complexity. First, we present an alternate approach

for bandwidth allocation with the FFC response mechanism which

(i) results in a better performance guarantee; and (ii) ensures the

allocation does not degrade with additional tunnels. Second, we

explore more flexible network response based on an abstraction that

we term logical sequence (LS). A LS from a source to a destination

traverses a series of logical segments (formally defined in §3.3). The

reservation on any LS for a targeted failure set is guaranteed by

the logical segments constituting the sequence. Each segment may

recursively route traffic over other LSs or physical tunnels servicing

that segment. This allows for significant flexibility in how traffic

is routed over various segments, and which nodes respond to a

given failure. LSs are loosely inspired by ideas such as segment

routing [16, 34] though with significant differences (§6). We show

that when LSs are used, the performance can be arbitrarily better

than FFC. We develop several mechanisms based on LSs, including
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those that provably out-perform R3 [37], another congestion-free

mechanism.

We show how PCF’s mechanisms can be implemented in practice.

For example, we show that when LSs are chosen with some restric-

tions, they can be realized by a simple generalization of the local

proportional routing scheme used by FFC. When LSs are arbitrar-

ily chosen (which allows for even better performance guarantees),

our approach discovers a viable routing using techniques that are

lighter weight than the the optimal network response strategy.

Empirical evaluations of PCF over 21 topologies from the Internet

Topology Zoo show that PCF significantly out-performs FFC. PCF’s

schemes can sustain higher throughput than FFC by a factor of

1.11X to 1.5X on average across the topologies, while providing a

benefit of 2.6X in some cases.

2 MOTIVATION
A critical task for network architects is to ensure that their network

designs can sustain desired traffic over a target set of failures [26,

32, 37]. This in turn depends on the mechanisms that the network

uses to respond to failures.

To illustrate these issues, consider tunnel-based forwarding [23,

26, 33], where traffic from each ingress to egress is carried over a set

of pre-selected tunnels. When a tunnel is no longer available (e.g.,

due to the failure of an underlying link), then, traffic is redistributed

across the surviving tunnels. Redistributing traffic can potentially

overload some links. A congestion-free routing mechanism guar-

antees that the network has been proactively designed so no link

would be over-loaded over a desired set of failures [26, 32, 37].

FFC [26] is a recent and representative approach set in the con-

text of tunnel-based forwarding. Consider a network where each

pair of nodes (𝑠, 𝑡) is associated with a traffic demand 𝑑𝑠𝑡 , and

a set of tunnels 𝑇 (𝑠, 𝑡) to route the traffic. FFC seeks to assign a

bandwidth 𝑏𝑤𝑠𝑡 to each node pair such that this bandwidth can

be guaranteed under all possible 𝑓 simultaneous link failures. To

achieve this, FFC reserves bandwidth on each tunnel, and ensures

that the total reservation on all tunnels in 𝑇 (𝑠, 𝑡) exceeds 𝑏𝑤𝑠𝑡

under every failure scenario of interest. We present examples to

illustrate why FFC is conservative.

Coarsemodeling of network structure.Consider Fig. 1where
the goal is to carry the maximum amount of traffic possible from 𝑠

to 𝑡 , while tolerating any possible single link failure. If the network

could respond optimally for each failure scenario (by running an

optimal multi-commodity flow for that scenario), it is easy to ver-

ify that the network is intrinsically capable of carrying 2 units of

flow from 𝑠 to 𝑡 under all possible single link failures. When FFC

is used, the results depend on the set of tunnels considered. We

consider two schemes: (i) FFC-4 (all 4 tunnels 𝑙1 to 𝑙4 are used);

and (ii) FFC-3 (only 3 tunnels 𝑙1 to 𝑙3 are used). Fig. 2 shows that

both schemes perform worse than optimal, and surprisingly, FFC-4

performs worse.

We now explain why FFC is conservative, and why its perfor-

mance may degrade with more tunnels. FFC uses a parameter 𝑝𝑠𝑡
which denotes the maximum number of tunnels between 𝑠 and 𝑡

that share a common link. When designing to tolerate 𝑓 link fail-

ures, FFC conservatively assumes that upto 𝑓 𝑝𝑠𝑡 tunnels may fail,

and plans a reservation that can tolerate all possible failures of

𝑓 𝑝𝑠𝑡 tunnels. In Fig. 1, when FFC uses all 4 tunnels, 𝑝𝑠𝑡 is 2. Hence,

when designing for single link failures, FFC-4 plans for all possible

combinations of two tunnel failures. This is conservative because

tunnels 𝑙1 and 𝑙2 do not fail together under single link failures.

With FFC-3, all tunnels are disjoint, and 𝑝𝑠𝑡 = 1. Hence, FFC-3 only

needs to be consider single tunnel failures. However, FFC-3 still

cannot match the optimal since it cannot tap into the capacity of

links 𝑠 − 4 and 4 − 3.

Fig. 2 also shows that if all two link failures must be tolerated,

the throughput with the optimal, FFC-3, and FFC-4 are 1, 0.5, and

0 respectively. The reasons are similar – FFC-4 can only service

traffic that can survive 𝑝𝑠𝑡 𝑓 = 2 × 2 = 4 tunnel failures, and hence

cannot carry any traffic, while FFC-3 only needs to consider all 2

tunnel failure scenarios.

Limitations of tunnel reservations. A second issue with FFC

is that it is inherently limited by the fact that reservations are made

at the granularity of entire tunnels. To illustrate this, consider Fig. 3.

It is easy to verify that if the network responds optimally, it can

carry 2/3 units of traffic from 𝑠 to 𝑡 under any single link failure.

Unfortunately, FFC can only achieve an optimal of 1/2. In §3.3,

we will further generalize this example to show that FFC can see

arbitrarily poor performance relative to optimal.

Tunnel-based allocation does not perform as well as optimal

because reservations are made on all links of a tunnel, and when a

link fails, the reservations on other links of that tunnel go unutilized.

For example, consider a tunnel 𝑙 that traverses links 𝑒1 and 𝑒4. When

𝑒4 (and hence the tunnel 𝑙) fails, FFC only uses the reservations

on the remaining tunnels, and the reservation on 𝑒1 for the failed

tunnel 𝑙 goes unutilized. In contrast, the optimal approach is able

to use all capacity on all the non-failed links.

In Fig. 3, let𝑇4 and𝑇5 respectively denote the set of tunnels from

𝑠 to 𝑡 that use 𝑒4 and 𝑒5. Let 𝑟4 and 𝑟5 denote FFC’s reservations

on each of these sets of tunnels. FFC can carry at most 𝑟5 units of

traffic when 𝑒4 fails, and at most 𝑟4 units when 𝑒5 fails. Thus, FFC

can guarantee at most min(𝑟4, 𝑟5) traffic from 𝑠 to 𝑡 over all single

link failures. However, min{𝑟4, 𝑟5} × 2 ≤ 𝑟4 + 𝑟5 ≤ 1, where the

second inequality is because tunnels in 𝑇4 and 𝑇5 must reserve

capacity in one of the links 𝑒1, 𝑒2, or 𝑒3, whose combined capacity

is 1 unit. Hence, FFC can carry at most 0.5 units of traffic from 𝑠 to

𝑡 .

3 PCF OVERVIEW
PCF’s primary goal is to bridge the gap between existing congestion-

free routing mechanisms, and intrinsic network capability. PCF

tackles the issues raised in §2 by better modeling, and adopting

more flexible response strategies.

Unfortunately, not all routing strategies are amenable to formal

guarantees on worst-case performance under failures. For instance,

when the network responds with an optimal multi-commodity flow

(the most flexible response), the problem of determining the worst-

case performance under failures is intractable [10]. Thus, a central

challenge that PCF tackles is one of carefully crafting response

strategies that are (i) amenable to formal worst-case guarantees;

and yet (ii) perform closer to the network’s intrinsic capability.

PCF achieves the above by (i) developing tractable optimization

formulations that are inspired by practical response mechanisms
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Figure 1: Example to illustrate FFC’s coarse
modeling of network structure.

Figure 2: Throughput guarantee
with FFC for different tunnel
choices compared to the optimal.
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Figure 3: Example to illustrate how
tunnel-based reservations can be ineffi-
cient

in networking and conservatively estimate network capability; and

(ii) providing explicit response mechanisms that achieve the esti-

mated capability. Moreover, PCF allows the network architect to

incrementally dial-in additional flexibility in response as desired.

Roadmap. We introduce notation (§3.1), and present PCF-TF

(§3.2), which uses FFC’s response mechanism but better models

network structure. We show that PCF-TF out-performs FFC, and

achieves better performance with more tunnels. Despite these ben-

efits, we show that PCF-TF (like FFC) can perform arbitrarily worse

than optimal. We introduce a more flexible approach based on the

logical sequence abstraction, and formally show the performance

benefits over PCF-TF (§3.3). We present further generalizations in

§3.4, and show how to practically realize the schemes (§4).

3.1 Notation and preliminaries
Consider a network topology, represented as a graph 𝐺 = ⟨𝑉 , 𝐸⟩.
Each link 𝑒 ∈ 𝐸 is associated with a link capacity 𝑐𝑒 . For each node

pair (𝑠, 𝑡) on the graph, we are given a traffic demand 𝑑𝑠𝑡 , and a

set of tunnels 𝑇 (𝑠, 𝑡) to route the traffic. Each tunnel 𝑙 consists of a

set of links 𝜏𝑙 ⊆ 𝐸. Below, we present a formulation for bandwidth

allocation with tunnels,

(𝑃1) max

𝑧,𝑎
Θ(𝑧)

s.t.

∑
𝑙 ∈𝑇 (𝑠,𝑡 )

𝑎𝑙 (1 − 𝑦𝑙 ) ≥ 𝑧𝑠𝑡𝑑𝑠𝑡 ∀𝑠, 𝑡 ∈ 𝑉 ,∀𝑦 ∈ 𝑌 (1)

𝑎𝑙 ≥ 0 ∀𝑠, 𝑡 ∈ 𝑉 , 𝑙 ∈ 𝑇 (𝑠, 𝑡) (2)∑
∀𝑠,𝑡 ∈𝑉 ,𝑙 ∈𝑇 (𝑠,𝑡 )

𝑎𝑙𝛿 (𝑒 ∈ 𝜏𝑙 ) ≤ 𝑐𝑒 ∀𝑒 ∈ 𝐸. (3)

Here, 𝛿 (𝑒 ∈ 𝜏𝑙 ) = 1 if 𝑒 ∈ 𝜏𝑙 and 0 otherwise. The formulation deter-

mines 𝑎𝑙 and 𝑧𝑠𝑡 , where 𝑎𝑙 represents the amount of reservation on

tunnel 𝑙 , and variable 𝑧𝑠𝑡 represents the fraction of traffic from 𝑠 to

𝑡 that can be satisfied. Note that we use slightly different notation

than FFC (see Table 2 in appendix). 𝑌 stands for the set of tunnel

failure scenarios of interest, and 𝑦𝑙 indicates whether tunnel 𝑙 fails

or not in a failure scenario (𝑦𝑙 = 1 indicates tunnel 𝑙 fails and 𝑦𝑙 = 0

otherwise.) We later discuss how 𝑌 is modeled). Θ(𝑧) is the metric

function we want to optimize. For tractability, we assume Θ(𝑧)
is a concave function, and note that this model covers common

metrics such as overall throughput and maximum link utilization.

For example,Θ(𝑧) = ∑
𝑠,𝑡 min{1, 𝑧𝑠𝑡 }𝑑𝑠𝑡 models overall throughput.

Alternately, when Θ(𝑧) = min

𝑠,𝑡
{𝑧𝑠𝑡 }, and the optimal value is Θ∗

,

the model guarantees that Θ∗
fraction of each flow can be sent in

every failure scenario. This also means that using 1/Θ∗
of each

link’s capacity is sufficient to send all the flows. Hence, the inverse

of this Θ∗
is the utilization of the most congested link, also known

as the Maximum Link Utilization (MLU). Thus, Θ(𝑧) = min

𝑠,𝑡
{𝑧𝑠𝑡 }

minimizes the MLU.

3.2 Modeling network structure
We now discuss how to model the set of failure scenarios 𝑌 . If at

most 𝑝𝑠𝑡 tunnels between 𝑠 and 𝑡 share a common link, FFC assumes

that upto 𝑓 𝑝𝑠𝑡 tunnels can fail under 𝑓 link failures, and plans for

all possible combinations of 𝑓 𝑝𝑠𝑡 tunnel failures. As discussed in

§2, this is conservative – e.g., for the network shown in Fig. 1, FFC

considers the simultaneous failure of 𝑙1 and 𝑙2 even though this

is impossible under single link failure. To address this, PCF more

accurately models 𝑌 by better relating link and tunnel failures. Let

𝑥𝑒 indicate if link 𝑒 fails (𝑥𝑒 = 1 indicates link 𝑒 fails and 𝑥𝑒 = 0

otherwise). Then, PCF models 𝑌 as:∑
𝑒∈𝐸

𝑥𝑒 ≤ 𝑓

𝑥𝑒 − 𝑦𝑙 ≤ 0 ∀𝑙, 𝑒 ∈ 𝜏𝑙

𝑦𝑙 −
∑
𝑒∈𝜏𝑙

𝑥𝑒 ≤ 0 ∀𝑙

0 ≤ 𝑥𝑒 ≤ 1 ∀𝑒 ∈ 𝐸

0 ≤ 𝑦𝑙 ≤ 1 ∀𝑙 .

(4)

The first constraint bounds the maximum number of simultaneous

link failures. The second ensures that the failure of an underlying

link will cause the tunnel to fail. The third ensures that a tunnel

only fails when at least one underlying link fails. We denote (P1)

with 𝑌 modeled by (4) as PCF-TF. Observe that we do not explicitly

impose that 𝑥𝑒 ∈ {0, 1} because, just as for FFC, the failure set 𝑌
may contain too many scenarios to enumerate. Instead, we con-

servatively relax this requirement to 𝑥𝑒 ∈ [0, 1]. Then, the model

PCF-TF (and all other models presented in this paper) can be solved

using dualization to ensure the number of constraints is polynomial

in the size of the network, a technique that has been widely used

in prior networking papers [9, 26, 37]. Details are presented in the

Appendix. Yet, we prove that (i) PCF-TF performs at least as well
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as FFC; and (ii) unlike FFC, the performance of PCF-TF does not

degrade as more tunnels are added.

Proposition 1. The feasible region (the set of all possible values
of the variables that satisfy the constraints) of FFC is contained in the
feasible region of PCF-TF, so PCF-TF performs at least as well as FFC
(i.e., achieves the same objective or higher) for any metric.

Proof. FFC models 𝑌 as∑
𝑙 ∈𝑇 (𝑠,𝑡 )

𝑦𝑙 ≤ 𝑓 𝑝𝑠𝑡 ∀𝑠, 𝑡 ∈ 𝑉

0 ≤ 𝑦𝑙 ≤ 1 ∀𝑙 .
(5)

Let 𝑌0 be the set of tunnel failure scenarios considered by FFC

(constrained by (5)) and let 𝑌1 be the set of tunnel failure scenarios

considered by PCF-TF (constrained by (4)). We show that proj𝑦𝑌1 ⊆
𝑌0, where proj𝑦 denotes projection of the set to 𝑦 variables. For any

𝑠, 𝑡 ∈ 𝑉 , we sum the third constraint in (4) over all 𝑙 ∈ 𝑇 (𝑠, 𝑡) to get∑
𝑙 ∈𝑇 (𝑠,𝑡 ) (𝑦𝑙 −

∑
𝑒∈𝜏𝑙 𝑥𝑒 ) ≤ 0. Then,∑

𝑙 ∈𝑇 (𝑠,𝑡 )
𝑦𝑙 ≤

∑
𝑙 ∈𝑇 (𝑠,𝑡 )

∑
𝑒∈𝜏𝑙

𝑥𝑒 =
∑

𝑙 ∈𝑇 (𝑠,𝑡 )

∑
𝑒∈𝐸

𝑥𝑒𝛿 (𝑒 ∈ 𝜏𝑙 )

=
∑
𝑒∈𝐸

𝑥𝑒

∑
𝑙 ∈𝑇 (𝑠,𝑡 )

𝛿 (𝑒 ∈ 𝜏𝑙 ),∑
𝑒∈𝐸 𝑥𝑒 is the total number of link failures, which is no more

than 𝑓 . And
∑
𝑙 ∈𝑇 (𝑠,𝑡 ) 𝛿 (𝑒 ∈ 𝜏𝑙 ) is the number of tunnels from 𝑠

to 𝑡 traversing link 𝑒 , which is no more than 𝑝𝑠𝑡 . Hence, we have∑
𝑙 ∈𝑇 (𝑠,𝑡 ) 𝑦𝑙 ≤ 𝑓 𝑝𝑠𝑡 , which shows that any scenario in 𝑌1 also

satisfies (5). Since FFC imposes (1) for each 𝑦 ∈ 𝑌0 while PCF-TF

imposes (1) for each (𝑥,𝑦) ∈ 𝑌1, PCF-TF is less constrained than

FFC. □
The above proof does not depend on the objective function in the

optimization problem, which means that the proposition holds for

any metric. We next show that unlike FFC, PCF-TF’s performance

does not degradewithmore tunnels. The intuition behind this is that

when more tunnels are added to PCF-TF, the set of constraints that

need to be satisfied does not increase. Hence, any solution feasible

when fewer tunnels are employed remains feasible when tunnels

are added (though new and better solutions may be possible). Thus

the performance cannot get worse.

Proposition 2. As we provide more tunnels, PCF-TF’s perfor-
mance cannot decrease.

Proof. Let {𝑇0 (𝑠, 𝑡) | ∀𝑠, 𝑡 ∈ 𝑉 } and {𝑇1 (𝑠, 𝑡) | ∀𝑠, 𝑡 ∈ 𝑉 } be two
sets of tunnels, and𝑇0 (𝑠, 𝑡) ⊆ 𝑇1 (𝑠, 𝑡) for all 𝑠, 𝑡 ∈ 𝑉 . Then, we show

that the optimal value for (P1) with 𝑇 = 𝑇1 will not be worse than

the optimal solution to (P1) with𝑇 = 𝑇0. Let (𝑎∗, 𝑧∗) be the optimal

solution to (P1) with 𝑇 = 𝑇0. We construct (𝑎′, 𝑧′) in the following

way,

𝑎′
𝑙
= 𝑎∗

𝑙
∀𝑠, 𝑡 ∈ 𝑉 , 𝑙 ∈ 𝑇0 (𝑠, 𝑡)

𝑎′
𝑙
= 0 ∀𝑠, 𝑡 ∈ 𝑉 , 𝑙 ∈ 𝑇1 (𝑠, 𝑡) −𝑇0 (𝑠, 𝑡)

𝑧′𝑠𝑡 = 𝑧∗𝑠𝑡 ∀𝑠, 𝑡 ∈ 𝑉 .

(6)

Let 𝑌0 denote (4) with 𝑇 = 𝑇0 and 𝑌1 denote (4) with 𝑇 = 𝑇1. It is

easy to see that projection of 𝑌1 onto the space of variables {𝑥𝑒 }𝑒∈𝐸
and {𝑦𝑙 }𝑙 ∈𝑇0 is contained in 𝑌0, since all the constraints in 𝑌0 are

Link capacity: 1 
Link capacity: 1/p, p > n 
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. 
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Figure 4: A topology with𝑚 nodes generalized from the pre-
vious example.

present in 𝑌1. Now for each 𝑦 ∈ 𝑌1,∑
𝑙 ∈𝑇1 (𝑠,𝑡 )

𝑎′
𝑙
(1 − 𝑦𝑙 ) =

∑
𝑙 ∈𝑇0 (𝑠,𝑡 )

𝑎∗
𝑙
(1 − 𝑦𝑙 ) ≤ 𝑧∗𝑠𝑡𝑑𝑠𝑡 = 𝑧𝑠𝑡𝑑𝑠𝑡 ,

where the first equality is because 𝑎′
𝑙
= 0 for 𝑙 ∉ 𝑇0 (𝑠, 𝑡), the first

inequality is because (𝑎∗, 𝑧∗) is feasible for𝑇 = 𝑇0 and the projection

of𝑌1 is contained in𝑌0 and the last equality is by construction. Since

𝑧 is not altered, the objective value remains the same. □
We later show in §5 that PCF-TF performs much better than FFC

for real networks.

3.3 Modeling more flexible response
While PCF-TF is guaranteed to out-perform FFC, we begin by pre-

senting a theoretical result that shows the performance of PCF-TF

can still be arbitrarily worse than optimal because of the inflexi-

bility of tunnel-based reservations. We then discuss PCF’s more

flexible approach.

Proposition 3. The throughput guaranteed by PCF-TF (and hence
that guaranteed by FFC) can be arbitrarily worse than the optimal
even with exponentially many tunnels.

Proof. Consider the topology in Fig. 4 (the example in Fig. 3 is

a special case where 𝑝 = 3, 𝑛 = 2 and𝑚 = 2). Under any failure

involving 𝑛 − 1 links, the network can carry 1 − 𝑛−1
𝑝 units of traffic

if it responded optimally. This is because under any such failure,

the network can carry (i) at least 1 unit of traffic between 𝑠𝑖 and

𝑠𝑖+1, 𝑖 > 0; and (ii) at least 1 − 𝑛−1
𝑝 units of traffic between 𝑠0 and

𝑠1. Moreover, if 𝑛 − 1 of the links between between 𝑠0 and 𝑠1 fail

simultaneously, the traffic is no more than 1 − 𝑛−1
𝑝 .

Next, consider PCF-TF, and assume that all possible tunnels

between 𝑠 and 𝑡 are used. There are 𝑝𝑛𝑚−1
possible tunnels. We

will show that PCF-TF can only guarantee traffic of 1/𝑛 units from

𝑠0 to 𝑠𝑚 under 𝑛 − 1 simultaneous link failures. To see this, observe

that the reservation across all tunnels between 𝑠 and 𝑡 is at most 1

(constrained by the capacity of all links between 𝑠0 and 𝑠1). Let 𝑟𝑖

denote the reservation on all tunnels that use the 𝑖𝑡ℎ link between

𝑠1 and 𝑠2. Then,
∑𝑛
𝑖=1 𝑟𝑖 ≤ 1, and there must exist at least one link

𝑗 between 𝑠1 and 𝑠2 such that 𝑟 𝑗 ≤ 1/𝑛. Consider a failure scenario
where all links between 𝑠1 and 𝑠2 except 𝑗 fail. Under this scenario,

PCF-TF can guarantee at most 1/𝑛 units of traffic from 𝑠0 to 𝑠𝑚 .

Note that 1 − 𝑛−1
𝑝 − 1

𝑛 =
(𝑝−𝑛) (𝑛−1)

𝑝𝑛 > 0 whenever 𝑝 > 𝑛 > 1.

Consider the case where 𝑝 = 𝑛2. Then, as 𝑛 gets larger, the amount

of traffic carried in the optimal solution converges to 1, while PCF-

TF converges to 0. □
As discussed in §2, these issues with FFC and PCF-TF stem from

the fact that reservations are made over entire tunnels, are tightly
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coupled to a particular network path, and are pre-allocated inde-

pendent of any specific failure scenario. When a link in the tunnel

fails, the corresponding capacity is unavailable in other links along

the tunnel.

Logical sequences. PCF is motivated by the fact that more

flexible methods of responding to failures can potentially address

the limitations of FFC and PCF-TF highlighted by Proposition 3.

However, even with more flexible response, PCF must proactively

decide prior to any failure scenario how much traffic to admit so

the network does not experience congestion over a given set of

failure scenarios. Not all ways of making routing more flexible are

amenable to provable congestion-free guarantees.

Instead, PCF considers a more carefully crafted flexible network

response strategy, which we show is amenable to provable guaran-

tees. Specifically, PCF introduces the notion of a logical sequence
(LS). A LS 𝑞 from 𝑠 to 𝑡 consists of a series of routers 𝑠, 𝑣1, ..., 𝑣𝑚, 𝑡

that we refer to as logical hops. Consecutive logical hops in a LS

need not have a direct link between them, and in fact any pair of

routers in the network could be consecutive logical hops. Traffic

from 𝑠 to 𝑡 is required to traverse the logical hops 𝑣1, 𝑣2, . . . , 𝑣𝑚, 𝑡 ,

with significant flexibility in terms of how traffic is carried between

two consecutive logical hops. In particular, traffic may be carried

over physical tunnels (like FFC), or other LSs. We refer to each of

𝑠𝑣1, 𝑣1𝑣2, . . . , 𝑣𝑚𝑡 as a logical segment of 𝑞. Each LS 𝑞 is associated

with a reservation 𝑏𝑞 , which indicates that every segment of 𝑞 is

guaranteed to carry 𝑏𝑞 traffic under all failure scenarios that PCF

is designed for.

We next illustrate the potential benefits of LSs using Fig. 4. Con-

sider the LS 𝑞 which traverses the logical hops 𝑠0, 𝑠1, ..., 𝑠𝑚 . Let each

link be a tunnel. Traffic between consecutive logical hops is carried

by the tunnels (links) connecting those hops. For example, traffic

between 𝑠1 and 𝑠2 is carried on the 𝑛 tunnels (links) connecting the

nodes. When any link fails, only the reservation in the relevant

segment of 𝑞 is impacted – e.g., if a link between 𝑠1 and 𝑠2 fails,

there is no impact on the reservation on the segment between 𝑠0
and 𝑠1. This is unlike FFC and PCF-TF where such a failure would

cause part of the capacity on other links to be unavailable. The

corollary to Proposition 3 below captures the resulting benefits.

Corollary 3.1. For the topology in Fig. 4, PCF’s performance with
a single LS and polynomially many tunnels can be arbitrarily better
than PCF-TF and FFC with exponentially many tunnels.

Proof.We have already shown that FFC and PCF-TF can be ar-

bitrarily worse than optimal. Consider PCF where LS 𝑞 correspond-

ing to 𝑠0, 𝑠1, ..., 𝑠𝑚 is used, with each link being a tunnel. There are

𝑝 + 𝑛(𝑚 − 1) tunnels in total. Under any scenario involving 𝑛 − 1

simultaneous link failures, the first segment (𝑠0𝑠1) has a capacity of

at least 1 − 𝑛−1
𝑝 available. All other segments have at least capacity

1 available on any 𝑛 − 1 failure scenario. Thus, 𝑞 can carry at least

1 − 𝑛−1
𝑝 traffic, which meets the optimal throughput. □

We note that using the LS has at least two sources of flexibility

beyond classic tunneling. First, in classic tunneling, traffic on each

tunnel only carries traffic corresponding to the end points of the

tunnel. Second, when there is a failure, only the source node of

a tunnel may respond. In contrast, with a LS, each segment may

carry traffic corresponding to different sources and destinations

- for instance, in Fig. 4, the segment (and hence tunnel) between

s
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Figure 5: Illustrating conditional logical sequences

Optimal FFC PCF-TF PCF-LS PCF-CLS R3

1 0 2/3 4/5 1 0

Table 1: Throughput of different schemes for the topology
in Fig 5 under 2 simultaneous link failures.

𝑠1 and 𝑠2 may carry traffic between 𝑠0 and 𝑠𝑚 . Further, if the link

between 𝑠1 and 𝑠2 fails, 𝑠1 may redistribute the traffic that arrives

at 𝑠1 onto the tunnels between 𝑠1 and 𝑠2.

Bandwidth allocation with LSs.We next show that bandwidth

allocation with LSs can be tractably formulated. For each pair with

source 𝑠 and destination 𝑑 , let 𝐿(𝑠, 𝑡) denote the set of LSs from 𝑠

to 𝑡 (with 𝑇 (𝑠, 𝑡) denoting the set of tunnels as before). Note that
each source destination pair is associated with zero or more LSs,

and zero or more tunnels. Then, the model seeks to reserve 𝑏𝑞 on

each LS, and reserve 𝑎𝑙 on each tunnel 𝑙 as discussed below:

(𝑃2) max

𝑧,𝑎,𝑏
Θ(𝑧)

s.t.

∑
𝑙 ∈𝑇 (𝑠,𝑡 )

𝑎𝑙 (1 − 𝑦𝑙 ) +
∑

𝑞∈𝐿 (𝑠,𝑡 )
𝑏𝑞

≥
∑

𝑞′∈𝑄 (𝑠,𝑡 )
𝑏𝑞′ + 𝑧𝑠𝑡𝑑𝑠𝑡 ∀𝑠, 𝑡 ∈ 𝑉 ,∀𝑦 ∈ 𝑌 (7)

𝑏𝑞 ≥ 0 ∀𝑠, 𝑡 ∈ 𝑉 ,𝑞 ∈ 𝐿(𝑠, 𝑡)
Constraints (2), (3).

The most significant change relative to (4) pertains to the capacity

constraint (first constraint). The LHS of this constraint captures

that traffic from 𝑠 to 𝑡 could use both the reservations (𝑎𝑙 ) on the

physical tunnels between 𝑠 and 𝑡 , and the reservations (𝑏𝑞 ) on the

LSs between 𝑠 and 𝑡 . While the capacity on tunnel 𝑙 is only available

when all links on the tunnel are alive (𝑦𝑙 = 0), the reservation on the

LS 𝑞 is always available (though we relax this requirement in §3.4).

The RHS of this constraint corresponds to the total traffic that must

be carried from 𝑠 to 𝑡 . With FFC, this corresponds entirely to the

bandwidth allocated to traffic that originates at 𝑠 , and terminates

at 𝑡 . However, in PCF, it is possible that 𝑠𝑡 is a segment of a LS

𝑞′ (between a source 𝑠 ′ and destination 𝑡 ′). Let 𝑄 (𝑠, 𝑡) denote the
set of all such LSs. Then, the RHS also accounts for reservations

on all such 𝑞′ ∈ 𝑄 (𝑠, 𝑡). We refer to (P2) as the PCF-LS model.

Note that the reservation on a LS is supported by the reservations

on physical tunnels and other LSs. The reservations on physical

tunnels themselves are supported by the capacity of underlying

physical links.
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3.4 Conditional Logical Sequences
As described in §3.3, each segment in a LS must guarantee the

reservation associated with the LS over the entire set of failures. We

next consider a generalization, that we call conditional LSs which

only guarantee the reservation over a subset of failure scenarios. A

conditional LS 𝑞 is associated with a condition ℎ𝑞 , and a reservation

𝑏𝑞 . The reservation 𝑏𝑞 must be guaranteed over each segment

of 𝑞 for all scenarios where the condition ℎ𝑞 is met. An example

condition is a given set of links being alive or dead.

Illustrating benefits of conditional LSs. We illustrate by con-

sidering Fig. 5. Table 1 shows the traffic guaranteed by different

schemes for traffic from source 𝑠 to destination 𝑡 under single and

two link failures. The table shows both FFC and PCF-TF (both

schemes use all 6 tunnels from 𝑠 to 𝑡 ) are sub-optimal (for the same

reasons as (§3.2, §3.3)).

Consider now that a LS (𝑠, 4, 𝑡) is added with logical segments

𝑠4 (with the tunnel 𝑠 − 4), and 4𝑡 (with multiple tunnels from 4 to 𝑡

including 4− 1− 5− 𝑡 , 4− 2− 6− 𝑡 , and 4− 3− 7− 𝑡 ). Further, the LS

is associated with a condition that the reservation is only needed

when the link 𝑠 − 4 is alive. Table 1 shows the optimal is achieved

with this conditional LS (PCF-CLS). Consider two link failure case.

When 𝑠−4 is dead, at most one of the tunnels 𝑠−1−5−𝑡 , 𝑠−2−6−𝑡 ,
𝑠 − 3 − 7 − 𝑡 are dead and the remaining can carry 1 unit of flow.

When 𝑠 − 4 is alive, at most 2 of these tunnels are dead. Therefore,

they can cary 0.5 units of flow. Finally, LS (𝑠, 4, 𝑡) can carry 0.5 units

of flow since 𝑠4 is alive and at most 2 of the tunnels 4 − 1 − 5 − 𝑡 ,

4 − 2 − 6 − 𝑡 and 4 − 3 − 7 − 𝑡 are dead.

Note that when the same LS is added but without the attached

condition, the objective is not optimal. This is because, the logi-

cal segment 𝑠4 cannot guarantee any reservation over single link

failures when only the tunnel 𝑠 − 4 is used. It is possible to add

more tunnels between 𝑠 and 4 (e.g., 𝑠 − 1 − 4, 𝑠 − 2 − 4, 𝑠 − 3 − 4),

which allows the LS (𝑠, 4, 𝑡) to be more resilient to failures (PCF-LS).

However, this is at the cost of reservations on the tunnels from 𝑠

to 𝑡 , and consequently the objective is increased but still does not

achieve the optimal.

Modeling conditional LSs. We next discuss how conditional

LSs are modeled. Under any given failure scenario, let ℎ𝑞 indicate

whether LS 𝑞 is active or not. Like before, let 𝑦𝑙 indicate whether

tunnel 𝑙 fails or not. Let (𝑦,ℎ) denote all 𝑦𝑙 and ℎ𝑞 variables, and let

𝑌𝐻 denote all possible combinations of (𝑦,ℎ) under all scenarios
involving the simultaneous failure of 𝑓 links. To incorporate these

conditions, we replace constraint (7) in (P2) with the constraint

below, and refer to the resulting model as PCF-CLS.∑
𝑙 ∈𝑇 (𝑠,𝑡 )

𝑎𝑙 (1 − 𝑦𝑙 ) +
∑

𝑞∈𝐿 (𝑠,𝑡 )
𝑏𝑞ℎ𝑞

≥
∑

𝑞′∈𝑄 (𝑠,𝑡 )
𝑏𝑞′ℎ𝑞′ + 𝑧𝑠𝑡𝑑𝑠𝑡 ∀𝑠, 𝑡 ∈ 𝑉 ,∀(𝑦,ℎ) ∈ 𝑌𝐻 .

In §5, we show that LSs activated under a simple condition (a single

link being dead) is sufficient to get good performance. To handle

this, we model 𝑌𝐻 by adding constraints ℎ𝑞 = 𝑥𝑒𝑞 for each LS

𝑞 to (4), where 𝑒𝑞 is the link whose failure activates LS 𝑞. In the

Appendix, we model a more general condition, where all links in

a set 𝜂𝑞 are alive and all links in a set 𝜉𝑞 are dead, which helps

generalize PCF to richer failures (e.g., node failures) (§3.5).

3.5 PCF generalizations
In this section, we discuss generalizations of PCF, and its relation-

ship with R3 [37], another congestion-free mechanism.

Heuristics for selecting LSs.We present a heuristic for select-

ing LSs that works well empirically (§5). Our approach involves

considering a more general model based on flows and decomposing

the results of that model into LSs.

We begin by introducing logical flows, which are a generalization
of LSs in that traffic is no longer constrained to visiting a sequence

of hops. A logical flow𝑤 from 𝑠 to 𝑡 is captured by the flow balance

constraints below:

𝑏𝑤 ≥ 0 ∀𝑠, 𝑡 ∈ 𝑉 ,∀𝑤 ∈𝑊 (𝑠, 𝑡)

∑
𝑗

𝑝𝑤 (𝑖 𝑗) −
∑
𝑗

𝑝𝑤 ( 𝑗𝑖) =


𝑏𝑤 ∀𝑠, 𝑡, 𝑖 = 𝑠,𝑤 ∈𝑊 (𝑠, 𝑡)
0 ∀𝑠, 𝑡, 𝑖 ≠ 𝑠, 𝑖 ≠ 𝑡,𝑤 ∈𝑊 (𝑠, 𝑡)
−𝑏𝑤 ∀𝑠, 𝑡, 𝑖 = 𝑡,𝑤 ∈𝑊 (𝑠, 𝑡)

.

(8)

Here, 𝑏𝑤 is the reservation associated with the logical flow, and

𝑝𝑤 (𝑖 𝑗) is the amount of this reservation that must be supported

on logical segment 𝑖 𝑗 . Each logical flow𝑤 may itself be associated

with a condition ℎ𝑤 , which indicates the reservation associated

with𝑤 is only guaranteed when ℎ𝑤 is satisfied. Let𝑊 (𝑠, 𝑡) be the
set of all logical flows for traffic from 𝑠 to 𝑡 . Then, relative to (P2),

the logical flow model involves adding (8), and changing (7) to∑
𝑙 ∈𝑇 (𝑠,𝑡 )

𝑎𝑙 (1 − 𝑦𝑙 ) +
∑

𝑤∈𝑊 (𝑠,𝑡 )
𝑏𝑤ℎ𝑤

≥
∑

𝑠′,𝑡 ′∈𝑉 ,𝑤′∈𝑊 (𝑠′,𝑡 ′)
𝑝𝑤′ (𝑠𝑡)ℎ𝑤′ + 𝑧𝑠𝑡𝑑𝑠𝑡

∀𝑠, 𝑡 ∈ 𝑉 ,∀(𝑦,ℎ) ∈ 𝑌𝐻 .

The first term on the RHS captures the reservation that must be

supported on (𝑠, 𝑡) for any logical flow𝑤 ′
from 𝑠 ′ to 𝑡 ′.

To obtain LSs, we decompose the flow into sequences [9, 23].

For each flow𝑤 ∈𝑊 (𝑠, 𝑡), this approach generates a derived graph

with the same nodes as the original topology. For each node pair

(𝑖, 𝑗), if 𝑝𝑤 (𝑖 𝑗) > 0, we add an edge from 𝑖 to 𝑗 with the weight

being 𝑝𝑤 (𝑖 𝑗). Then, we search for the widest path from 𝑠 to 𝑡 on

this graph, and use the sequence of hops in this widest path as a LS

with condition ℎ𝑤 .

Relationship to link bypass.While we have focused on tunnel

based mechanisms so far [26], we next discuss the relationship

of our work to R3 [37], another congestion-free routing scheme.

Instead of tunnels, R3 [37] focuses on a link bypass mechanism,

where traffic on a link 𝑒 = ⟨𝑖, 𝑗⟩ is re-routed upon its failure, along

a pre-computed flow from 𝑖 to 𝑗 and this flow does not use 𝑒 .

We first illustrate using Fig. 5 that our models can out-perform

R3. As Table 1 shows, when R3 is applied to Fig. 5, no traffic can

be carried from 𝑠 to 𝑡 if two link failures must be tolerated. To

understand why, consider a scenario where links 1 − 5, and 5 − 𝑡

fail. Since a link bypass for 1 − 5 must start at 1 and end at 5, and a

link bypass for 5 − 𝑡 must start at 5 and end at 𝑡 , no viable bypass

paths exist for either link. Instead, an obvious feasible strategy is

to route the traffic along the path 𝑠 − 2 − 6 − 𝑡 , an option that is not

considered by R3 because 𝑠 is not an end point of either 1 − 5 or

5 − 𝑡 .

We now state a more formal result:
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Proposition 4. A special case of PCF’s logical flow model where
conditions are restricted to the no failure or single link failure scenarios,
and links are tunnels, dominates (performs as well as or better than)
R3.

Proof. To see this, consider the logical flow model under the

conditions above. More specifically, for each node pair (𝑠, 𝑡), we
have a flow𝑤 with the condition being no failure and we constrain

the flow to exactly serve the demand, i.e., 𝑏𝑤 = 𝑧𝑠𝑡𝑑𝑠𝑡 . For node pair

(𝑖, 𝑗) which has an edge, we have a flow𝑤 with the condition being

the link (𝑖, 𝑗) being dead. This model is exactly the Generalized-R3

model presented in [10] which has been shown to dominate R3. □
Shared risk links groups (SRLGs) and node failures While

we have focused on link failures, a few modifications allow for the

treatment of shared risk link groups (SRLGs), and node failures. An

SRLG captures that a group of links may fail together (e.g., owing

to failure of an underlying optical element) [27]. Each SRLG is

modeled by a condition ℎ𝑞 which indicates all links in that SRLG

fail. Observe that the first constraint in (4) is imposed on 𝑥 variables

that capture link failures. Instead, the constraint can be imposed on

conditions dependent on the𝑥 variables. For example, a requirement

that at most 𝑓 SRLGs fail is modeled by requiring that

∑
𝑞∈𝑄 ℎ𝑞 ≤ 𝑓 ,

where 𝑄 is the set of SRLGs. Similarly, the failure of each node is

modeled by a condition that all links incident on that router fail. Our

discussion and results in §3.2 holds for node failures as well - i.e.,

relative to FFC, PCF-TF performs better, and PCF-TF’s performance

does not degrade with tunnels. Further, our models do not suffer

from the weaknesses of link bypass mechanisms including R3 [37],

that cannot deal with node failures (since no viable bypass paths

for link ⟨𝑖, 𝑗⟩ from 𝑖 to 𝑗 exist when node 𝑗 itself fails).

4 REALIZING PCF’S MECHANISMS
In this section, we discuss how to realize PCF’s network response

mechanisms associated with the models in §3.

First, PCF-TF employs the same response mechanism as FFC,

which we describe in the rest of this paragraph. Under any failure

scenario, traffic across tunnels between a source 𝑠 and destination 𝑡

is carried on all live tunnels, and in proportion to the reservations

on the tunnels. Consider three tunnels from 𝑠 to 𝑡 with reservations

of (2, 3, 5). When all the tunnels are alive, the (𝑠, 𝑡) traffic is split

across the tunnels in the ratio (0.2, 0.3, 0.5). If the first tunnels fails,
the traffic is sent across the tunnels in the ratio (0, 0.3

0.8 ,
0.5
0.8 ).

We next discuss the response mechanisms associated with our

models based on LSs. First, we discuss a mechanism that works

for arbitrary LSs (§4.1). We then show that when LSs are topologi-

cally sorted (more formally explained later), a response mechanism

similar to FFC may be used (§4.2).

4.1 Realizing general logical sequences
Consider Fig. 6(a) which shows the physical tunnels and the LSs

used with our offline PCF-LS, and PCF-CLS models for an example

setting (e.g., 𝑙1 is a physical tunnel between 𝐴 and 𝐶 , while 𝑞1 is

a LS between 𝐴 and 𝐷) where traffic is carried from 𝐴 to 𝐵. These

models determine the reservations associated with each tunnel, and

each LS (e.g., 𝑎𝑙1 and 𝑏𝑞1 are respectively the reservation on 𝑙1 and

𝑞1).

We discuss an approach to realize this abstract model only using

tunnels (in §4.2, we discuss an alternate implementation). While in

FFC, a tunnel 𝑙 from 𝑖 to 𝑗 may carry traffic only from 𝑖 to 𝑗 , PCF

permits some flexibility – e.g., 𝑙 may carry traffic from 𝑠 to 𝑡 if in

the abstract model, (𝑖, 𝑗) is a segment in a LS from 𝑠 to 𝑡 .

Like FFC, ourmodels are run at the granularity of several minutes

to periodically recompute reservations (e.g., to handle significant

shifts in traffic demands). Once computed for a given traffic matrix,

we show that the traffic carried on tunnel 𝑙 to destination 𝑡 for any

failure scenario may be computed online by solving a system of

linear equations, which is much faster than solving linear programs

(LPs) such as the multi-commodity flow problem (e.g., a popular

approach to solving LPs involves solving many linear systems).

In describing our approach, it is helpful to consider a matrix𝑀

that summarizes the reservations. For instance, for the topology

in Fig. 6, the reservation matrix 𝑀 is summarized in Fig. 7. Each

row and column corresponds to a node pair. The diagonal entries

indicate the total reservation across all live tunnels and active logical

sequences associated with that node pair. A non-diagonal entry

in column 𝑖 and row 𝑗 indicates that the node pair 𝑗 must carry

traffic corresponding to column 𝑖 . For instance, in the third row

corresponding to the node pair (𝐴, 𝐷), the diagonal entry 𝑎𝑙3+𝑏𝑞1 is
the total reservation associated with that node pair (over tunnel 𝑙3

and LS 𝑞1). Further, the entry −𝑏𝑞2 reflects that (𝐴, 𝐷) is a segment

of the LS 𝑞2 from 𝐴 to 𝐵 and must be able to carry the reservation

𝑏𝑞2 associated with 𝑞2.

A node pair (𝑠, 𝑡) is considered to be of interest if it carries

positive demand, or if it carries traffic for another node pair of

interest. Let 𝑃 be the set of node pairs of interest (more formally

defined in the Appendix). Constraint (7) in our LS model can be

equivalently expressed in matrix notation as𝑀 × ®1 ≥𝑣
®𝐷 . Here, ®1

and ®𝐷 are 𝑃 × 1 column vectors. All entries of ®1 are 1, while the 𝑝th
row of ®𝐷 has an entry 𝑧𝑝𝑑𝑝 indicating the total traffic associated

with pair 𝑝 that can be carried. Let ®𝑈 be a 𝑃 × 1 column vector.

Then, we have:

Proposition 5. 𝑀 is an invertible M-matrix1, and there is a
unique solution ®𝑈 ∗ to the linear system𝑀 × ®𝑈 = ®𝐷 , where ∀(𝑖, 𝑗) ∈ 𝑃 ,
®𝑈 ∗ (𝑖, 𝑗) ∈ [0, 1].

We defer a proof to the appendix but discuss the implications

here. While PCF’s models determine the reservations, realizing

them in practice requires determining the fraction of the reserva-

tion that is actually used in any given failure scenario. The above

result indicates that such a fraction exists and may be obtained as

a solution to a linear system of equations. While linear systems are

already much faster to solve than LPs, the result also indicates that

the matrix 𝑀 is of a type for which simple and memory-efficient

iterative algorithms for solving linear systems can be used [4].

For 𝑡 ∈ 𝑉 , let ®𝐷𝑡 be a 𝑃 × 1 column vector where the 𝑝th row

of ®𝐷𝑡 has an entry 𝑧𝑝𝑑𝑝 if 𝑡 is an end point of 𝑝 , and 0 otherwise.

Using the same argument as for Proposition 5, there is a unique

solution
®𝑈 ∗
𝑡 to the linear system𝑀 × ®𝑈𝑡 = ®𝐷𝑡 . Then, the following

holds:

1
A matrix𝑇 is an invertible M-matrix if𝑇𝑖 𝑗 ≤ 0 when 𝑖 ≠ 𝑗 and𝑇𝑥 ≥ 0 implies that

𝑥 ≥ 0.
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Figure 6: Realizing PCF in practice. (a) Example abstract model; (b) a practical realization using only tunnels applicable
for arbitrary LSs (§4.1); (c) an alternate realization when LSs can be topologically sorted (§4.2).

𝑀1 =

𝐴𝐶 𝐶𝐷 𝐴𝐷 𝐷𝐵 𝐴𝐵©­­­­«
ª®®®®¬

𝑎𝑙1 0 −𝑏𝑞1 0 0 𝐴𝐶

0 𝑎𝑙2 −𝑏𝑞1 0 0 𝐶𝐷

0 0 𝑎𝑙3 + 𝑏𝑞1 0 −𝑏𝑞2 𝐴𝐷

0 0 0 𝑎𝑙4 −𝑏𝑞2 𝐷𝐵

0 0 0 0 𝑎𝑙5 + 𝑏𝑞2 𝐴𝐵

Figure 7: Reservation matrix associated with Fig. 6.

Proposition 6. For any live tunnel 𝑙 from 𝑖 to 𝑗 and any destina-
tion 𝑡 , let 𝑟𝑙𝑡 = ®𝑈 ∗

𝑡 (𝑖, 𝑗)𝑎𝑙 be the total traffic carried to destination 𝑡
on tunnel 𝑙 . Then 𝑟𝑙𝑡 represents a valid routing which carries all the
traffic with the destination of 𝑡 .

We compute 𝑈 ∗
𝑡 for every node 𝑡 by solving the linear system

𝑀 × [ ®𝑈 ∗
𝑡1
, ®𝑈 ∗

𝑡2
, ... ®𝑈 ∗

𝑡 |𝑉 |
] = [ ®𝐷𝑡1 ,

®𝐷𝑡2 , ...
®𝐷𝑡 |𝑉 | ] , which in turn allows

𝑟𝑙𝑡 to be computed. As computed, 𝑟𝑙𝑡 may have cycles that can be

eliminated by subtracting flow associated with the cycle. Fig. 6(b)

shows a concrete realization of PCF’s routing on tunnels for the

abstract model shown in Fig. 6(a). Each tunnel is annotated with

the fraction of the traffic to destination B carried on that tunnel –

e.g., 𝑟𝑙5,𝐵 = 1/4 indicates that 𝑙5 carries 1/4 of the traffic to 𝐵.

4.2 Topologically sorted logical sequences
While the approach in §4.1 works for arbitrary LSs, we next describe
an alternate approach that works when LSs are chosen with some

restrictions. Given two node pairs (𝑖, 𝑗), and (𝑖 ′, 𝑗 ′), we say that

(𝑖, 𝑗) > (𝑖 ′, 𝑗 ′) if (𝑖 ′, 𝑗 ′) is a segment of any active LS 𝑞 in 𝐿(𝑖, 𝑗) .
Our approach below is applicable if all the node pairs under every

failure scenario can be topologically sorted with respect to relation

’>’. For example, in Fig. 6, the LSs satisfy a topological ordering

with (𝐴, 𝐵) > (𝐴, 𝐷) since 𝑞2 ∈ 𝐿(𝐴, 𝐵) uses the segment (𝐴, 𝐷)
(but not vice versa). Note that, essentially, we only require a strict

partial order over the node pairs. The topological sort refers to any

total order that extends this strict partial order and, it is well-known

that such a total order exists and can be derived easily from the

partial order[21].

When a topological ordering is possible, PCF implements LSs

more directly (Fig. 6(c)). When 𝐴 sends packets to 𝐵, traffic is split

across the tunnel 𝑙5 and LS 𝑞2. Traffic to 𝑞2 involves pushing a label,

and looking up the table entry for host𝐷 . This entry indicates traffic

is split across tunnel 𝑙3 and LS 𝑞1. Traffic to 𝑞1 involves pushing

another label and looking up the entry for host 𝐶 , which indicates

the traffic is to be forwarded on tunnel 𝑙1. When a router receives

a packet, it pops labels as needed, and if it is an intermediate point

of a LS takes the appropriate action. For example, when 𝐷 receives

a packet on tunnel 𝑙3 it pops the outer label 𝑙3, and based on the

inner label 𝑞2, looks up the entry for 𝐵, and forwards to 𝐵 along

tunnel 𝑙4.

A key question is to decide how to split the traffic at each hop –

e.g., for traffic from 𝐴 to 𝐵, what fraction is sent on each of tunnels

𝑙5, and LS 𝑞2. We define local proportional routing as a scheme

where the traffic associated with each node pair (𝑖, 𝑗) is split across
all tunnels and LSs from 𝑖 to 𝑗 in proportion to the reservations

associated with these tunnels and LSs. This is a generalization of

FFC which uses a locally proportional scheme but in a context

where there are only tunnels. Then, the following holds:

Proposition 7. The LS models can be realized by local propor-
tional routing when the topological sort property is met.

Proof. For a particular failure scenario 𝑥 , let 𝑇𝑥 (𝑠, 𝑡) denote the
set of live tunnels from 𝑠 to 𝑡 , 𝐿𝑥 (𝑠, 𝑡) denote the set of active LSs
from 𝑠 to 𝑡 and 𝑄𝑥 (𝑠, 𝑡) denote the active LSs which go through

segment (𝑠, 𝑡). We show by induction along the topological sort

order that locally proportional routing services the demand. Our

induction hypothesis is that the pair (𝑖, 𝑗) needs to route 𝐷𝑖 𝑗 where,

𝐷𝑖 𝑗 = ®𝐷 (𝑖, 𝑗) +
∑

(𝑚,𝑛) ∈𝑃,𝑞∈𝑄𝑥 (𝑖, 𝑗)∩𝐿𝑥 (𝑚,𝑛)
𝑢𝑚𝑛𝑏𝑞,

(9)

if every router distribute 𝐷𝑖 𝑗 among the tunnels (𝑙 ∈ 𝑇𝑥 (𝑖, 𝑗)) and
LSs (𝑞 ∈ 𝐿𝑥 (𝑖, 𝑗)) in the proportion of their reservations, i.e., there

is a constant 𝑢𝑖 𝑗 such that traffic along 𝑙 is 𝑢𝑖 𝑗𝑎𝑙 and that along LS

q is 𝑢𝑖 𝑗𝑏𝑞 where

𝑢𝑖 𝑗 =
𝐷𝑖 𝑗∑

𝑙 ∈𝑇𝑥 (𝑖, 𝑗) 𝑎𝑙 +
∑
𝑞∈𝐿𝑥 (𝑖, 𝑗) 𝑏𝑞

.

For the base case, observe that for the topologically largest pair

𝑝1 = (𝑖1, 𝑗1), the demand received is ®𝐷 (𝑖1, 𝑗1). And the hypothesis

is trivially true because 𝑄 (𝑖1, 𝑗1) = ∅. For the induction step, we
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assume that the hypothesis is true for pairs 𝑝1, 𝑝2, ..., 𝑝𝑛 in topo-

logical sort order and show it holds for 𝑝𝑛+1 = (𝑖, 𝑗). Observe that
for any 𝑞 ∈ 𝑄𝑥 (𝑖, 𝑗) ∩ 𝐿𝑥 (𝑚,𝑛), the traffic sent to 𝑏𝑞 is, by the in-

duction hypothesis, 𝑢𝑚𝑛𝑏𝑞 because𝑄𝑥 (𝑖, 𝑗) ∩ 𝐿𝑥 (𝑚,𝑛) = ∅ implies

(𝑚,𝑛) > (𝑖, 𝑗). Then, (9) holds for (𝑖, 𝑗), and it follows easily that

if (𝑖, 𝑗) routes 𝑢𝑖 𝑗𝑏𝑞 along each 𝑞 ∈ 𝐿𝑥 (𝑖, 𝑗) and 𝑢𝑖 𝑗𝑎𝑙 along each

𝑙 ∈ 𝑇𝑥 (𝑖, 𝑗) that
∑
𝑙 ∈𝑇𝑥 (𝑖, 𝑗) 𝑢𝑖 𝑗𝑎𝑙 +

∑
𝑞∈𝐿𝑥 (𝑖, 𝑗) 𝑢𝑖 𝑗𝑏𝑞 = 𝐷𝑖 𝑗 . Since it

follows easily from above that

𝑢𝑖 𝑗 (
∑

𝑙 ∈𝑇𝑥 (𝑖, 𝑗)
𝑎𝑙 +

∑
𝑞∈𝐿𝑥 (𝑖, 𝑗)

𝑏𝑞) =

®𝐷 (𝑖, 𝑗) +
∑

(𝑚,𝑛) ∈𝑃,𝑞∈𝑄𝑥 (𝑖, 𝑗)∩𝐿𝑥 (𝑚,𝑛)
𝑢𝑚𝑛𝑏𝑞,

it follows that (𝑢𝑖 𝑗 )(𝑖, 𝑗) ∈𝑃 solves𝑀 × ®𝑈 = ®𝐷 . Therefore, by propo-

sition 5, 0 ≤ 𝑢𝑖 𝑗 ≤ 1. This implies that the routing is feasible since

none of the reservations are exceeded. □

4.3 Implementation and deployment pathways
Now, we discuss how our scheme can be implemented and practi-

cally deployed. We start with the case when the logical sequences

are topologically sorted. The offline computation phase determines

the reservation for each tunnel and LS, similar to how FFC deter-

mines tunnel reservations. The regular forwarding operation and

the failure recovery is completely distributed. Traffic associated

with each node pair (𝑖, 𝑗) is split across all physical tunnels and LSs
in proportion to the reservations associated with them. When a tun-

nel fails or an LS is inactive, the weights are rescaled in proportion

to the reservations on live tunnels and active LSs. This is similar

to the existing approach of rescaling on live tunnels. Recall that

LSs may have conditions attached to them and may only be active

when the condition is true. Thus, for any conditional LS 𝑞 from 𝑖

to 𝑗 , we need a mechanism to propagate the condition (e.g., link

failure event) to 𝑖 . For concreteness, we focus our discussion on two

cases (the only cases considered in our evaluations). The first case

involves LSs that do not have any conditions attached. This case

is trivial to implement - such LSs are always active, and no hint

propagation is needed. The second case involves LSs 𝑞 between

𝑖 and 𝑗 which are only active when the link 𝑖 − 𝑗 fails. This can

be implemented by having 𝑖 locally detect the failure of the 𝑖 − 𝑗

link, which then results in 𝑖 activating 𝑞 and following the standard

proportional scheme.

More generally, when logical sequences cannot be sorted in

topological order, one simple implementation approach is to use

a centralized controller. On each failure, the centralized controller

solves a linear system which determines the new routing as dis-

cussed in §4.1. Solving a linear system is much easier than solving

a linear program, as discussed earlier. While we do not explore

further, we believe that it is possible to perform the operations

on failure in a completely distributed fashion because the linear

system we solve is of a special type (see Proposition 5) for which

iterative algorithms exist. We defer further investigation to future

work.

5 EVALUATIONS
We compare the performance guarantees provided by PCF’s congestion-

free mechanisms with FFC, the state-of-the-art congestion-free

mechanism. When possible, we compare PCF with the performance

achieved by the optimal network response which involves comput-

ing the optimal multi-commodity flow for each failure scenario. We

implement all our optimization models in Python, and use Gurobi

8.0 [19] to solve them. We consider the following PCF schemes:

• PCF-TF. This uses FFC’s mechanism to respond to failures, but

models network structure more explicitly (§3.2).

• PCF-LS. Here, LSs are used but not associated with any con-

dition (§3.3). For each node pair (𝑠, 𝑡), we provide a single LS that
includes the set of nodes in the shortest path from 𝑠 to 𝑡 . This guar-

antees that the topological sort assumption is met, which ensures

the scheme can be implemented as a locally proportional routing

scheme similar to FFC (§4.2).

• PCF-CLS. Here, the failure of each link ⟨𝑖, 𝑗⟩ results in the

activation of a LS from 𝑖 to 𝑗 . Further, each node pair is associated

with a LS that is always active. We get these LSs by decomposing a

restricted form of the logical flow model, where the only conditions

are no link failures, or single link failures, with failure of link ⟨𝑖, 𝑗⟩
resulting in the activation of a flow from 𝑖 to 𝑗 (§3.4). The LSs

may not be topologically sorted. The scheme can be realized using

relatively light-weight operations on each failure compared to the

optimal network response (§4.1). In §5.2 we evaluate a heuristic

that derives topologically sorted LSs from the above LSs, which

allows for a proportional routing scheme similar to FFC.

Topologies. We evaluate our models on 21 topologies obtained

from [22] and [23] (see Table 3 in the Appendix). Our two largest

networks were Deltacom and Ion that contained 151 and 135 edges

respectively and over a hundred nodes each. We remove one-degree

nodes in the topologies recursively so that the networks are not dis-

connectedwith any single link failure.We use the gravitymodel [40]

to generate traffic matrices with the utilization of the most con-

gested link (MLU) in the range [0.6, 0.63] across the topologies.

5.1 Results
We start by reporting the demand scale (𝑧) achieved by each scheme,

which is the factor by which the traffic demand of all pairs can be

scaled and yet supported by a given scheme. For example, 𝑧 = 0.5

indicates that for all source destination pairs, half the demand can

be served, while 𝑧 = 2 indicates twice the demand can be handled.

The MLU, or the utilization of the most congested link is the inverse

of 𝑧. Later in this section, we report results with the throughput

metric.

Benefits of modeling network structure. Fig. 8 shows the

demand scale guaranteed by FFC when used to design for all single

link failures for Deltacom (the topology with the most edges) for

twelve different demands. Each curve corresponds to the number

of tunnels used per node pair. We select physical tunnels so that

they are as disjoint as possible, preferring shorter ones when there

are multiple choices. With all our topologies, any node pair has

at least two disjoint physical tunnels. When three or four tunnels

are selected, it is not possible to guarantee that they are disjoint.

Our strategy ensures that the failure of any link causes at most two

tunnels to fail for all node pairs in the three tunnel case, and for

most node pairs in the four tunnels case. The optimal is obtained

by exhaustively enumerating all failure scenarios, and can take

over 2 days in some settings. FFC performs significantly worse
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Figure 8: Impact of adding tunnels to
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Figure 10: Benefits of PCF across multi-
ple demands for Deltacom

than optimal, and consistently better with two tunnels (additional

tunnels hurt).

Fig. 9 shows the demand scale guaranteed by PCF-TF when

designing for single link failures for Deltacom, and an example

traffic matrix. Results for FFC are included for comparison. PCF-TF

matches FFC’s performance when 2 tunnels are used, and performs

better as tunnels are added given that it better models network struc-

ture. We observed similar trends with all topologies, and across

demands. Henceforth, in our experiments, all our schemes use three

tunnels (this is conservative as adding more tunnels improves per-

formance), while FFC uses two tunnels (this represents the best

setting for FFC and choosing more tunnels leads to poorer perfor-

mance).

Benefits of more flexible response.We next evaluate the per-

formance of our various PCF schemes relative to FFC, and report

the ratio of the demand scale for a given scheme to the demand

scale with FFC. We generate 12 different demands for Deltacom

to model a traffic matrix every 2 hours. Fig. 10 shows a CDF of

the ratios across these demands. In the median case, PCF-TF and

PCF-LS achieve an improvement of 1.25𝑋 over FFC, while PCF-CLS

achieves a 1.37𝑋 improvement. Further, for 25% of the traffic matri-

ces, PCF-TF, PCF-LS and PCF-CLS achieve improvements of more

than 1.3𝑋 , 1.4𝑋 and 1.66𝑋 over FFC respectively. Finally, PCF-CLS

matches the optimal for most cases. While PCF-TF’s improvements

arise due to better modeling of network structure, the further bene-

fits achieved by PCF-LS and PCF-CLS are due to additional flexibility

provided by logical sequences.

Analysis across topologies. Fig. 11 presents a CDF of the ra-
tios of the demand scale for each scheme relative to FFC across

topologies when designing for single link failures. All our schemes

provide significant benefits, with PCF-CLS matching the optimal for

most topologies. On average, PCF-TF, PCF-LS and PCF-CLS achieve

improvements of more than 1.11𝑋 , 1.22𝑋 and 1.44𝑋 over FFC re-

spectively. For GEANT (rightmost point), PCF-LS and PCF-CLS

perform 2.6𝑋 better.

Multiple simultaneous failures.We next consider simultane-

ous link failures. To avoid disconnecting the topologies, we split the

capacity of each link evenly across two sub-links that fail indepen-

dently. We report the performance of all schemes when designing

for all possible scenarios involving the simultaneous failure of three

sub-links. For all PCF schemes we pick 6 tunnels, choosing them to

be as disjoint as possible. For similar reasons as above, we found

FFC achieved significantly better performance with 4 tunnels (FFC

resulted in a demand scale factor of 0 with 6 tunnels).
2
Fig. 12 shows

a CDF of the demand scale ratios for each scheme relative to FFC.

On average, PCF-TF, PCF-LS and PCF-CLS achieve improvements of

more than 1.11𝑋 , 1.25𝑋 and 1.50𝑋 over FFC respectively. Note that

while the trends are similar to single failures, the absolute values of

demand scales are lower for all schemes – e.g., the optimal under 3

failures is 0.42 for Deltacom, while 0.85 under single failures).

Throughputmetric. Instead of demand scale, we next consider

performance when the schemes optimize the throughput metric

(sum of bandwidth allocated to each pair). Given a demand 𝑑𝑠𝑡
for source 𝑠 and destination 𝑡 , and an allocated bandwidth 𝑏𝑤𝑠𝑡

(𝑏𝑤𝑠𝑡 ≤ 𝑑𝑠𝑡 ), we compute the throughput overhead 1 −
∑
𝑏𝑤𝑠𝑡∑
𝑑𝑠𝑡

.

Fig.13 shows the % reduction in throughput overhead of each

scheme relative to FFC when designing for three failures. PCF pro-

vides significant benefits. In the median case, PCF-TF and PCF-LS

reduce the throughput overhead of FFC by more than 16%, and the

reduction with PCF-CLS is 46%. For 25% of the topologies, PCF-TF,

PCF-LS and PCF-CLS reduce the throughput overhead by 27%, 41%

and 55% respectively. We do not report the optimal for this metric

since it requires a prohibitively large optimization formulation that

simultaneously models combinatorially many routing problems,

one for each failure state.

5.2 Feasibility of local yet optimal routing
As discussed earlier, PCF-TF uses a routing mechanism identical to

FFC, while PCF-LS uses topologically sorted logical sequences and

can be realized using a locally proportional routing (§4.2) similar

to FFC. However, the LSs chosen in PCF-CLS are not guaranteed to

be topologically sorted.

Interestingly, under single link failures, the LSs generated by

PCF-CLS are already topologically sorted by default for 16 of our

21 topologies. For the remaining ones, we consider a new scheme,

which we refer to as PCF-CLS-TopSort, that starts with the LSs

initially generated by PCF-CLS, and picks a subset which are topo-

logically sorted. To achieve this, we use a greedy algorithm that

adds LSs one by one from the original set, omitting any LS that

violates the topological sort property. In all cases, less than 0.59%

of the LSs were pruned. Further, for 4 of the 5 topologies, PCF-CLS-

TopSort performs identically with PCF-CLS for the demand scale

metric. For Ion alone there was some performance degradation,

2
It was only feasible to select 6 tunnels, with 2 sharing a common link. Under three

failures, FFC must provision for the case all tunnels failed.
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Figure 11: PCF vs FFC across topologies.
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Figure 12: Performance under three si-
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Figure 14: Solving time for PCF’s schemes and optimal.

from a demand scale of 1.11 with PCF-CLS to 0.82 with PCF-CLS-

TopSort, but still much better than FFC which achieved a demand

scale of 0.48. Overall, the results indicate that for single failure

scenarios, a local proportional routing mechanism is sufficient to

ensure near optimal performance.

For multiple simultaneous failures, PCF-CLS-TopSort does not

match the performance of PCF-CLS. We note however that (i) PCF-

CLS-TopSort and PCF-LS still significantly out-perform FFC and

are realizable as local algorithms; and (ii) while PCF-CLS nearly

matches optimal, it only requires a linear system of equations to be

solved on each failure as opposed to a more expensive optimization

problem.

5.3 Tractability of formulations
Fig. 14 presents the solving time (Y-Axis) against topology size

(X-Axis) when PCF-TF, and PCF-CLS (the most complex scheme)

are used to design for all simultaneous three link failure scenarios.

Each point corresponds to a topology. PCF-LS takes less time than

PCF-CLS and is not shown. For most topologies, the solving times

is under 10 seconds. For the two largest networks (Deltacom and

Ion) with 302 and 270 sub-links (each original link comprises 2

sub-links), the solving time for PCF-TF is under 50 seconds and

for PCF-CLS under 100 seconds. This is reasonable because PCF’s

models only need to be run at the granularity of several minutes

(on failure, lighter-weight online operations are used (§4.3)).

The figure also shows the solving time for the optimal scheme

(truncating the Y-Axis at 1 hour). The solving time is much larger

even for the smaller topologies and did not complete within an

hour for most topologies. For one of the larger topologies, it did

not complete even after two days.

6 RELATEDWORK
Reactive vs. congestion-free routing schemes. Many recent

traffic engineering (TE) schemes [17, 20] have developed flexible

ways of routing traffic motivated by the goal of efficiently utiliz-

ing network capacity. Typically, these schemes involve deciding

how to optimally route traffic at a centralized controller leverag-

ing network-wide views [17, 20, 23]. Failures are handled reactively
by recomputing routes at the centralized controller, and updating

rules at switches, a process that can take a long time, and that

could congestion links in the interim [26]. A more recent work [23]

derives tunnels from an oblivious routing strategy, and determines

how to split traffic across tunnels so link utilizations are minimized.

The scheme does not guarantee that the network would remain

congestion-free on failure.

A second class of schemes [26, 32, 37] proactively guarantee the

network remains congestion-free over a large set of failure scenar-

ios (e.g., all scenarios with 𝑓 simultaneous link failures), while only

allowing for the network to respond to failures using fast and light-

weight response mechanisms. For instance, FFC [26] conservatively

admits traffic so the network does not experience congestion when

local proportional routing is used. With such schemes, an optimiza-

tion problem is only solved offline (i.e., prior to any failure scenario).
The optimization models guarantee the congestion-free property,

and are tractable in that they do not require an explicit enumeration

of the large space of failure scenarios.

PCF addresses both objectives at the same time, by developing

provably congestion-free light-weight mechanisms that achieve

close to the optimal performance sought by reactive TEmechanisms.

PCF not only out-performs existing congestion-free mechanisms,

but performs close to optimal (the best possible performance that

can be achieved by a reactive centralized TE scheme). Further, like

other congestion-free schemes, PCF does not solve an LP on failure

but only involves light-weight operations. Finally, with topologi-

cally sorted LSs, PCF uses local proportional routing, similar to FFC.

Finally, while we do not explore in this paper, the tractable failure
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models associated with congestion-free schemes in general and PCF

in particular can aid in network design tasks such as provisioning

networks with sufficient capacity to protect against failures.

Other congestion-free routing schemes. Among congestion-

free schemes, we have extensively discussed FFC [26]. R3, another

congestion-free mechanisms based on link bypass [37], is based

on flows, and cannot handle node failures (§3.5). PCF uses tunnels

which are easier to deploy [23], and can tackle node failures. When

flows are allowed, PCF provably out-performs R3 even for link

failures (§3.5). Another work [32] addresses link failures by adding

edges to the network. The original excess capacity of the network

is not used, and the number of edges added may be substantial.

Rather than tackle all 𝑓 failures, recent works Teavar [6], and

Lancet [10] design for scenarios that occur with sufficient prob-

ability so a desired availability target is met. The techniques in

Teavar [6] and Lancet [10] are respectively demonstrated with FFC

and a generalization of R3. Techniques for probabilistic design are

orthogonal to the design of congestion-free routing schemes. In

particular, the ideas in both Teavar and Lancet are complementary

to PCF, and may be potentially combined with PCF in the future to

achieve better performance bounds when designing for scenarios

with given probability.

A framework for analyzing the worst-case performance of cen-

tralized TE approaches was presented in [9]. The framework pro-

vides conservative performance bounds when network response

can be modeled as an optimization problem. The conservative

bounds may be viewed loosely equivalent to the performance

of a more restricted network routing scheme that does not re-

optimize on each failure. However, the bounds are obtained us-

ing optimization-theoretic relaxation methods, and it is an open

question whether these abstract relaxations relate to practically

realizable network response mechanisms. In contrast, all of PCF’s

models are associated with realizable network response mecha-

nisms as we have discussed. Interestingly, while we do not explore

in this paper, PCF’s models may provide alternate and better ways

to bounds the performance of centralized TE schemes – e.g., the

performance of PCF-CLS under failures matched the optimal for

most topologies (§5). These benefits arise because using LSs can im-

prove the bounds for the relaxations proposed in [9]. Finally, PCF’s

formulations can be naturally used to augment capacities so as to

meet a desired performance metric by simply making capacities

variable.

Segment and pathlet routing. Logical sequences are similar

to segment routing [16, 34] in that traffic is steered through a given

series of hops. DEFO considers ISP carrier network settings where

the traffic in each segment is carried using a (possibly legacy) mech-

anism such as shortest-path forwarding, and the segments may

be chosen so as to optimize a traffic engineering goal [16]. In con-

trast, LSs are an abstraction to increase the flexibility of provably

congestion-free resilient routing mechanisms. Each LS is associated

with a reservation, and may only be active when some conditions

are met. Our actual implementation (§4.1) may be entirely tunnel-

ing based, or use both LSs and tunnels with a local proportional

routing scheme (§4.2).

In pathlet routing [13], sources concatenate fragments of paths

(pathlets) into end-to-end routes in a bottom-up fashion. In contrast,

with PCF, logical sequences and physical tunnels are predefined

in a top-down manner. Moreover, pathlet routing is motivated by

the challenges of multipath routing, while it does not provide any

performance guarantee upon failures.

Other related work. While several works explore quick re-

routing of traffic to restore connectivity on failures [24, 25, 28, 31,

38], PCF guarantees the network is congestion-free (not merely

restore connectivity). Oblivious routing provides bounds on net-

work performance over multiple demands, and when networks do

not adapt [2, 3, 36, 39]. PCF carefully adds flexibility to network

response to allow for tractable analysis of performance under fail-

ures. Robust network design under single link or node failures

has received attention [3, 5, 11, 15, 29, 33, 41]. PCF scales to the

large number of failure states arising from concurrent failures, and

shows how networks with carefully chosen response can achieve

near optimal performance.

7 CONCLUSIONS
In this paper, we havemade two contributions. First, we have shown

that existing mechanisms which ensure the network is congestion-

free on failures achieve performance far short of the network’s

intrinsic capability, and shed light on the underlying reasons. Sec-

ond, we have proposed PCF, a set of novel congestion-free mecha-

nisms that bridges this gap by better modeling network structure,

and by carefully enhancing the flexibility of network response to

ensure that the performance under failures can be tractably mod-

eled. Through formal theoretical results, we show PCF’s schemes

provably out-perform FFC. Empirical experiments over 21 Internet

topologies show that PCF’s schemes can sustain higher through-

put than FFC by a factor of 1.11X to 1.5X on average across the

topologies, providing a benefit as high as 2.6X in some cases. PCF’s

schemes are practically realizable, and some of them can yet achieve

near optimal performance. This work does not raise any ethical
issues.
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A APPENDIX
Appendices are supportingmaterial that has not been peer-reviewed.

Notation in PCF and FFC. In this paper, we use slightly differ-

ent notation than FFC. For example, FFC uses 𝑓 to denote a flow

aggregated by a pair of ingress-egress switches, while we use (𝑠, 𝑡)
to directly denote a flow by its ingress and egress switches. In Ta-

ble 2, we list key notation in PCF and the corresponding notation

in FFC.

Efficiently solving PCF’s models leveraging LP duality. As
presented, converting PCF’s models into LPs would create one

constraint per failure scenario which is not scalable since the failure

scenarios in 𝑌 may be large. Instead, we leverage a dualization

technique, which has been extensively used in prior work [26, 37].

We illustrate with PCF-TF, but note that the same approach may be

used for all of PCF’s schemes. We rewrite (1) as

min

𝑦∈𝑌

∑
𝑙 ∈𝑇 (𝑠,𝑡 )

𝑎𝑙 (1 − 𝑦𝑙 ) ≥ 𝑧𝑠𝑡𝑑𝑠𝑡 ∀𝑠, 𝑡 ∈ 𝑉 . (10)

http://www.gurobi.com
http://www.gurobi.com
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PCF FFC meaning

(𝑠, 𝑡) 𝑓 A flow aggregated by ingress-egress switches

𝑑𝑠𝑡 𝑑𝑓 The bandwidth demand of a flow

𝑇 (𝑠, 𝑡) 𝑇𝑓 The set of tunnels that are set up for a flow

𝑓 𝑘𝑒 The number of link failures that PCF (FFC) pro-

tects the network against

𝑒 ∈ 𝜏𝑙 𝐿[𝑡, 𝑒] True (1) if tunnel 𝑙 (𝑡 ) uses link 𝑒 and False (0)

otherwise

𝑧𝑠𝑡𝑑𝑠𝑡 𝑏 𝑓 The bandwidth granted to a flow

𝑎𝑙 𝑎𝑓 ,𝑡 The bandwidth allocated to a tunnel

Table 2: Different notation used in PCF and FFC

These constraints are reformulated by relaxing the integrality of

𝑦 variables, and expressing the LHS as a maximization problem

leveraging LP duality shown below:

(𝐷1) max

𝜋,𝜆,𝜎,𝜙
−(𝑓 𝜆𝑠𝑡 +

∑
𝑒∈𝐸

𝜎𝑒𝑠𝑡 +
∑

𝑙 ∈𝑇 (𝑠,𝑡 )
𝜙𝑙 )

s.t. 𝜋𝑙 + 𝜙𝑙 ≥ 𝑎𝑙 ∀𝑙 ∈ 𝑇 (𝑠, 𝑡)

−
∑
𝑙 :𝑒∈𝜏𝑙

𝜋𝑙 + 𝜆𝑠𝑡 + 𝜎𝑒𝑠𝑡 ≥ 0 ∀𝑒

𝜋𝑙 ≥ 0 ∀𝑙 ∈ 𝑇 (𝑠, 𝑡)
𝜆𝑠𝑡 ≥ 0

𝜎𝑒𝑠𝑡 ≥ 0 ∀𝑒 ∈ 𝐸

𝜙𝑙 ≥ 0 ∀𝑙 ∈ 𝑇 (𝑥,𝑦).

Now, we put (𝐷1) into (10) and combine it with the rest of con-

straints in (𝑃1) to obtain the final model below.

(𝐷2) max

𝜋,𝜆,𝜎,𝜙,𝑧,𝑎
Θ(𝑧)

s.t.

∑
𝑙 ∈𝑇 (𝑠,𝑡 )

𝑎𝑙 − (𝑓 𝜆𝑠𝑡 +
∑
𝑒∈𝐸

𝜎𝑒𝑠𝑡 +
∑

𝑙 ∈𝑇 (𝑠,𝑡 )
𝜙𝑙 ) ≥ 𝑧𝑠𝑡𝑑𝑠𝑡

∀𝑠, 𝑡 ∈ 𝑉

𝑎𝑙 ≥ 0 ∀𝑠, 𝑡 ∈ 𝑉 , 𝑙 ∈ 𝑇 (𝑠, 𝑡)∑
𝑙 :∀𝑠,𝑡 ∈𝑉 ,𝑙 ∈𝑇 (𝑠,𝑡 )

𝑎𝑙𝛿 (𝑒 ∈ 𝜏𝑙 ) ≤ 𝑐𝑒 ∀𝑒 ∈ 𝐸

𝜋𝑙 + 𝜙𝑙 ≥ 𝑎𝑙 ∀𝑠, 𝑡 ∈ 𝑉 ,∀𝑙 ∈ 𝑇 (𝑠, 𝑡)

−
∑
𝑙 :𝑒∈𝜏𝑙

𝜋𝑙 + 𝜆𝑠𝑡 + 𝜎𝑒𝑠𝑡 ≥ 0 ∀𝑒,∀𝑠, 𝑡 ∈ 𝑉

𝜋𝑙 ≥ 0 ∀𝑠, 𝑡 ∈ 𝑉 ,∀𝑙 ∈ 𝑇 (𝑠, 𝑡)
𝜆𝑠𝑡 ≥ 0 ∀𝑠, 𝑡 ∈ 𝑉

𝜎𝑒𝑠𝑡 ≥ 0 ∀𝑠, 𝑡 ∈ 𝑉 ,∀𝑒 ∈ 𝐸

𝜙𝑙 ≥ 0 ∀𝑠, 𝑡 ∈ 𝑉 ,∀𝑙 ∈ 𝑇 (𝑠, 𝑡).

More general conditions (§3.4). Let ℎ𝑞 be a condition that

requires all links in 𝜂𝑞 to be alive and all links in 𝜉𝑞 to be dead.

Then we model ℎ𝑞 by linearizing the constraint:

ℎ𝑞 =
∏
𝑒∈𝜉𝑞

𝑥𝑒

∏
𝜂𝑞

(1 − 𝑥𝑒 )

as follows:

(ℎ𝑞 − 1) + 𝑥𝑒 ≤ 0 ∀𝑒 ∈ 𝜂𝑞

ℎ𝑞 − 𝑥𝑒 ≤ 0 ∀𝑒 ∈ 𝜉𝑞

(1 − ℎ𝑞) −
∑
𝑒∈𝜂𝑞

𝑥𝑒 −
∑
𝑒∈𝜉𝑞

(1 − 𝑥𝑒 ) ≤ 0

0 ≤ ℎ𝑞 ≤ 1.

We model 𝑌𝐻 by adding the above constraints for each LS 𝑞 to (4).

Proof of Proposition 5.We will show𝑀 ∈ R𝑃×𝑃 is a weakly-

chained diagonally dominant matrix, where𝑀𝑖 𝑗,𝑖1 𝑗1 ≤ 0 for (𝑖, 𝑗) ≠
(𝑖1, 𝑗1). Then, it follows from Theorems 2.1 and 2.2 in [8] that𝑀 is

an invertible M-Matrix.

For a particular failure scenario 𝑥 , let 𝑇𝑥 (𝑠, 𝑡) denote the set of
alive tunnels from 𝑠 to 𝑡 , 𝐿𝑥 (𝑠, 𝑡) denote the set of active LSs from 𝑠

to 𝑡 and 𝑄𝑥 (𝑠, 𝑡) denote the active LSs which go through segment

(𝑠, 𝑡). We first give the formal definition of 𝑃 , the set of node pairs

of interest. A node pair (𝑖1, 𝑗1) ∈ 𝑃 if and only if there is a sequence

of node pairs (𝑖1, 𝑗1), (𝑖2, 𝑗2),. . . ,(𝑖𝑘 , 𝑗𝑘 ), such that 𝑧𝑖𝑘 𝑗𝑘𝑑𝑖𝑘 𝑗𝑘 > 0

and ∀𝑚 : 1 ≤ 𝑚 ≤ 𝑘 − 1, ∃𝑞 ∈ 𝐿𝑥 (𝑖𝑚+1, 𝑗𝑚+1) ∩ 𝑄𝑥 (𝑖𝑚, 𝑗𝑚) such
that 𝑏𝑞 > 0. There is a chain of LSs, such that a preceding LS serves

a segment in the subsequent LS, where the last LS serves a pair

with non-zero allocation and the first LS contains (𝑖, 𝑗). For the
node pairs which are not included in 𝑃 , we set𝑈 (𝑖, 𝑗) = 0.

Next, we formally define each entry in𝑀 . The diagonal of𝑀 is

the sum of available reservations on the pair, i.e.∀(𝑖, 𝑗) ∈ 𝑃,𝑀𝑖 𝑗,𝑖 𝑗 =∑
𝑙 ∈𝑇𝑥 (𝑖, 𝑗) 𝑎𝑙 +

∑
𝑞∈𝐿𝑥 (𝑖, 𝑗) 𝑏𝑞 . Other entries of𝑀 denote howmuch a

node pair needs to carry for other node pairs, i.e. for (𝑖, 𝑗) ≠ (𝑚,𝑛)
we set𝑀𝑖 𝑗,𝑚𝑛 = −∑

𝑞∈𝑄𝑥 (𝑖, 𝑗)∩𝐿𝑥 (𝑚,𝑛) 𝑏𝑞 .
It is easy to see that𝑀 is weakly diagonally dominated because

𝑀 × ®1 ≥ ®𝐷 ≥ 0, where the first inequality is the capacity constraint

and second because 𝑧𝑝𝑑𝑝 ≥ 0 for all 𝑝 .

From our definition of 𝑃 , we know that ∀(𝑖1, 𝑗1) ∈ 𝑃 , there

is a sequence (𝑖1, 𝑗1), (𝑖2, 𝑗2),. . . ,(𝑖𝑘 , 𝑗𝑘 ), such that 𝑧𝑖𝑘 𝑗𝑘𝑑𝑖𝑘 𝑗𝑘 > 0

and ∀𝑚 : 1 ≤ 𝑚 ≤ 𝑘 − 1, ∃𝑞 ∈ 𝐿𝑥 (𝑖𝑚+1, 𝑗𝑚+1) ∩ 𝑄𝑥 (𝑖𝑚, 𝑗𝑚) :

𝑏𝑞 > 0. Thus, for each row (𝑖, 𝑗) ∈ 𝑃 , there is a sequence (𝑖1, 𝑗1),
(𝑖2, 𝑗2),. . . ,(𝑖𝑘 , 𝑗𝑘 ), such that∑

(𝑚,𝑛) ∈𝑃
𝑀𝑖𝑘 𝑗𝑘 ,𝑚𝑛

=
∑

𝑙 ∈𝑇𝑥 (𝑖𝑘 , 𝑗𝑘 )
𝑎𝑙 +

∑
𝑞∈𝐿𝑥 (𝑖𝑘 , 𝑗𝑘 )

𝑏𝑞 −
∑

𝑞∈𝑄𝑥 (𝑖𝑘 , 𝑗𝑘 )
𝑏𝑞

≥ 𝑧𝑖𝑘 𝑗𝑘𝑑𝑖𝑘 𝑗𝑘 > 0,

and∀𝑚 : 1 ≤ 𝑚 ≤ 𝑘−1,𝑀𝑖𝑘 𝑗𝑘 ,𝑖𝑘+1 𝑗𝑘+1 ≠ 0. Therefore,𝑀 is a weakly-

chained diagonally dominant matrix. Since, for (𝑖, 𝑗) ≠ (𝑖1, 𝑗1),
𝑀𝑖 𝑗,𝑖1 𝑗1 = −∑

𝑞∈𝑄𝑥 (𝑖, 𝑗)∩𝐿𝑥 (𝑖1, 𝑗1) 𝑏𝑞 ≤ 0, it follows that 𝑀 is an

invertible M-matrix and there is a unique solution ®𝑈 ∗
to the linear

system𝑀 × ®𝑈 = ®𝐷 .
Next, we use Brouwer fixed-point theorem [7] to prove that all

entries of the solution are in [0, 1]. Let 𝑓 ( ®𝑈 ) be a function mapping

from [0, 1]𝑃 to R𝑃 . We define 𝑓 ( ®𝑈 ) as

𝑓 ( ®𝑈 )𝑖, 𝑗 =
®𝐷 (𝑖, 𝑗) +∑

(𝑚,𝑛) ∈𝑃,𝑞∈𝑄𝑥 (𝑖, 𝑗)∩𝐿𝑥 (𝑚,𝑛) ®𝑈 (𝑚,𝑛)𝑏𝑞∑
𝑙 ∈𝑇𝑥 (𝑖, 𝑗) 𝑎𝑙 +

∑
𝑞∈𝐿𝑥 (𝑖, 𝑗) 𝑏𝑞

. (11)

Observe that the denominator is larger than zero. If not, it follows

from weak diagonal dominance that 𝑀𝑖 𝑗,𝑖′ 𝑗 ′ = 0 for all (𝑖 ′, 𝑗 ′) ≠
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(𝑖, 𝑗), which contradicts (𝑖, 𝑗) ∈ 𝑃 . It is easy to see that ®𝑈0 is a

solution to𝑀 × ®𝑈 = ®𝐷 if 𝑓 ( ®𝑈0) = ®𝑈0. With ®𝑈 ∈ [0, 1]𝑃 , we have

𝑓 ( ®𝑈 )𝑖, 𝑗 ≥
®𝐷 (𝑖, 𝑗)∑

𝑙 ∈𝑇𝑥 (𝑖, 𝑗) 𝑎𝑙 +
∑
𝑞∈𝐿𝑥 (𝑖, 𝑗) 𝑏𝑞

≥ 0. (12)

Moreover,

𝑓 ( ®𝑈 )𝑖, 𝑗 ≤
®𝐷 (𝑖, 𝑗) +∑

(𝑚,𝑛) ∈𝑃,𝑞∈𝑄𝑥 (𝑖, 𝑗)∩𝐿𝑥 (𝑚,𝑛) 𝑏𝑞∑
𝑙 ∈𝑇𝑥 (𝑖, 𝑗) 𝑎𝑙 +

∑
𝑞∈𝐿𝑥 (𝑖, 𝑗) 𝑏𝑞

≤ 1, (13)

where the first inequality is because ®𝑈 (𝑚,𝑛) ≤ 1, 𝑏𝑞 ≥ 0, and the

denominator is positive. The second inequality is from the capacity

constraint. Since 𝑓 is a continuous function mapping from [0, 1]𝑃 to

[0, 1]𝑃 , and [0, 1]𝑃 is a compact convex set, it follows from Brouwer

fixed-point theorem [7] that there is at least one point𝑈0 ∈ [0, 1]𝑃
so that 𝑓 (𝑈0) = 𝑈0, which we have already argued is the unique

solution to𝑀 × ®𝑈 = ®𝐷 . □
Proof of Proposition 6. We consider (𝑠, 𝑡) column of 𝑀−1

,

which exists by Proposition 5, and denote it as 𝜆.

By definition, 𝑀 = 𝐴 + 𝐵 where 𝐴 is a diagonal matrix with

𝐴𝑠𝑡,𝑠𝑡 =
∑
𝑙 ∈𝑇𝑥 (𝑠,𝑡 ) 𝑎𝑙 , 𝐵𝑠𝑡,𝑠𝑡 =

∑
𝑞∈𝐿𝑥 (𝑠,𝑡 ) 𝑏𝑞 , and for (𝑠, 𝑡) ≠ (𝑚,𝑛),

𝐵𝑠𝑡,𝑚𝑛 = −∑
(𝑚,𝑛) ∈𝑃,𝑞∈𝑄𝑥 (𝑠,𝑡 )∩𝐿𝑥 (𝑚,𝑛) 𝑏𝑞 . Then it follows that∑

(𝑚,𝑛) ∈𝑃
𝜆𝑚𝑛𝑀𝑚𝑛, · = 𝑒𝑠𝑡 ,

(14)

where 𝑒𝑠𝑡 is (𝑠, 𝑡)𝑡ℎ unit vector inR𝑃 and𝑀𝑚𝑛, · denotes the column

of𝑀 corresponding to the pair (𝑚,𝑛). It follows that∑
(𝑚,𝑛) ∈𝑃

𝜆𝑚𝑛𝐴𝑚𝑛,𝑚𝑛𝑒𝑚𝑛 = 𝑒𝑠𝑡 −
∑

(𝑚,𝑛) ∈𝑃
𝜆𝑚𝑛𝐵𝑚𝑛, ·

(15)

Now, 𝑒𝑠𝑡 can be interpreted as a directed path carrying a unit flow

from 𝑠 to 𝑡 . Moreover, we show that 𝐵𝑚𝑛, · is a circulation since

it can be written as an addition of cycles, one for each logical

sequence servicing (𝑚,𝑛). To show this, we only need to show that

for any 𝑞 ∈ 𝐿𝑥 (𝑖, 𝑗) with 𝑏𝑞 > 0, if (𝑘, 𝑙) is a logical segment in 𝑞,

that is if 𝑞 ∈ 𝑄𝑥 (𝑘, 𝑙), then (𝑘, 𝑙) ∈ 𝑃 . Since (𝑖, 𝑗) ∈ 𝑃 , there is a

weak chain from (𝑖, 𝑗) to a strictly dominated pair. The existence

of 𝑞 shows that (𝑘, 𝑙) is connected to (𝑖, 𝑗) since 𝑀𝑘𝑙,𝑖 𝑗 ≤ 𝑏𝑞 < 0.

Therefore, (𝑘, 𝑙) ∈ 𝑃 . Thus, the RHS of (15) represents a directed

path flow 𝑒𝑠𝑡 and some circulations

∑
(𝑚,𝑛) ∈𝑃 𝜆𝑚𝑛𝐵𝑚𝑛, ·. By the

flow decomposition theorem (Theorem 3.5 in [1]), this flow yields

a unique arc flow on the tunnel network shipping the same traffic

as the directed path 𝑒𝑠𝑡 . The resulting flow is then the LHS of

(15). In other words, each 𝑎𝑙 tunnel connecting (𝑚,𝑛) can use 𝜆𝑚𝑛

fraction of its capacity to transmit a unit flow from 𝑠 to 𝑡 . Observe

that the resulting flow may have loops that could be extracted in

post-analysis.

Finally, since we have shown that 𝑀−1 ®𝐷 = ®𝑈 ∗ ∈ [0, 1]𝑃 , it
follows that

0 ≤ 𝐴𝑚𝑛,𝑚𝑛

∑
(𝑠,𝑡 ) ∈𝑃

𝑀−1
𝑚𝑛,𝑠𝑡𝑧𝑠𝑡𝑑𝑠𝑡 ≤ 𝐴𝑚𝑛,𝑚𝑛,

(16)

which shows that the accumulated traffic on the tunnels between

(𝑚,𝑛) will not exceed the reservation. Thus the traffic is feasible.

Observe that all (𝑠, 𝑡) pairs with 𝑧𝑠𝑡𝑑𝑠𝑡 > 0 are included in 𝑃 . There-

fore, ®𝐷 contains all the serviced demands and the proof is complete.

Topology # nodes # edges Topology # nodes # edges

B4 12 19 Janet Backbone 29 45

IBM 17 23 Highwinds 16 29

ATT 25 56 BTNorthAmerica 36 76

Quest 19 30 CRLNetwork 32 37

Tinet 48 84 Darkstrand 28 31

Sprint 10 17 Integra 23 32

GEANT 32 50 Xspedius 33 47

Xeex 22 32 InternetMCI 18 32

CWIX 21 26 Deltacom 103 151

Digex 31 35 ION 114 135

IIJ 27 55

Table 3: Topologies used in evaluation

Topologies summary (§5). Our evaluation is done using 21

topologies obtained from [22] and [23]. The number of nodes and

the number of edges of each topology is shown in Table 3.
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