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Abstract. Although many efforts are being made to provide educators with
dashboards and tools to understand student behaviors within specific technolog-
ical environments (learning analytics), there is a lack of work in supporting ed-
ucators in making data-informed design decisions when designing a blended
course and planning learning activities. In this paper, we introduce concept-
level design analytics, a knowledge-based visualization, which uncovers facets
of the learning activities that are being authored. The visualization is integrated
into a (blended) learning design authoring tool, edCrumble. This new approach
is explored in the context of a higher education programming course, where
teaching assistants design labs and home practice sessions with online smart
learning content on a weekly basis. We performed a within-subjects user study
to compare the use of the design tool both with and without the visualization.
We studied the differences in terms of cognitive load, design outcomes and user
actions within the system to compare both conditions to the objective of evalu-
ating the impact of using design analytics during the decision-making phase of
course design.

Keywords: Design Analytics, Blended Learning, Concept-level visualization, Author-
ing tool, Learning Design, Smart Learning Content

1 Introduction

Learning analytics (LA) has attracted a lot of attention of e-learning researchers and
practitioners over the last 10 years. Learning analytics allows instructors to evaluate
how students are learning within a learning context, providing them with data-based
evidence to improve the overall quality of the learning experience [1]. As the field
broadened, it has become customary to recognize different categories of learning
analytics and to distinguish each category by its targeted group of users or tasks. This
paper focuses on design analytics, one of the least explored areas within this broad
research field.

We adopt the definition of the term "design analytics" as the "metrics of design de-
cisions and related aspects that characterize learning designs" [2]. A learning design



(LD) is an explicit representation of a lesson plan created by a teacher [3]. Authoring
tools can assist teachers in the creation of learning designs, which can lead to compu-
tational representations of the elements within a learning design that can be automati-
cally analyzed. Some representations are generic or neutral, which enable only some
options for structural analysis of a course (e.g. the number of tasks, time planned for a
set of tasks, etc.). Other representations are specific to pedagogical approaches or
subject matter concepts and enables a more detailed level of analysis. Analytics of
these representations can support teachers' awareness and reflection about the accu-
mulated decisions taken along the learning process to inform pending decisions to-
ward completion of the course designs [2].

This paper explores some approaches for fine-grained design analytics focused on
visualizing critical metadata associated with learning content. Our proposed visualiza-
tion covers various metadata aspects, such as the type of learning content, the nature
of knowledge supported, and a list of specific knowledge concepts that a specific
fragment of learning content seeks to reinforce. After a brief review of related work
(Section 2), we explain what we mean by concept-level design analytics (Section 3)
and introduce its implementation in a design tool that supports teachers in selecting
the learning content. The design and results of an experimental study as a first explo-
ration of the value of concept-level design analytics are reported in sections 4 and 5.

2 Related work

2.1  Design analytics in learning design environments

The term design analytics, in the cross-road of LD and LA, was coined and defined in
the framework proposed by [2]. The framework is built on existing learning design
tooling that included features that align with the concept of design analytics. An ex-
ample of design analytics is provided by Web Collage, which analyzes the accumulat-
ed design aspects specified by the teacher when completing a template that is based
on a collaborative learning flow pattern [4]. With this analysis, the tool computes and
visualizes alerts that point teachers to pending actions needed to complete the design,
as required by the design guidelines underpinning the pattern [4].

The idea of learning design analytics can be also observed in the Activity or Peda-
gogy Profile tool, which enables the creation of a bar chart representation to help
teachers describe the distribution of tutorials and directed study modules [5]. The
profile represents tasks across six activity types of a detailed unit-by-unit or week-by-
week analysis. The tool was created to be helpful at different times in the design pro-
cess, from first ideas to evaluation and review. Moreover, the analytics bar charts can
be shared with learners and other stakeholders to express how learners are expected to
spend their time, in terms of balance and shape of the expected learning activity.

Another example is the Learning Design Support Environment (LDSE or the Learn-
ing Designer). The LDSE provides an analysis of the properties of the designs being
created by the teacher with the environment as a learning design tool [6]. In particu-
lar, it generates charts that visualize the proportion of time that students are expected
to spend on the diverse types of tasks that are planned in the design, from “acquisi-



tion” to more active forms of “inquiry, discussion, production and practice”. This
information serves as feedback to teachers about the nature of the learning experience
that the learning design proposes.

The Educational Design Studio [7] is a physical environment for multiple design-
ers working in teams that is equipped with wall projectors, whiteboards, a digital tab-
letop, and other tools. The various displays allow for several representations of the
designs being created. The environment collects data from the designs and generates
various charts; for example, the proportion of learning tasks distributed in the learning
spaces (e.g. tasks occurring at the lecture room, at the lab, or online). This information
enhances awareness of the broad view and the progress of their designs while building
and editing individual tasks, as well as facilitating comparison between designs.

The concept of design analytics has been more extensively exploited in the ed-
Crumble learning design tool. edCrumble is a pedagogical planner that provides a
visual representation of the learning designs, strongly characterized by data analytics,
that can facilitate the planning, visualization, understanding and reuse of complex
blended learning designs [8]. Specifically, the decision-making that occurs during the
design process is supported by design analytics that result from the design of the ac-
tivities sequenced in a timeline. The design analytics provided include several catego-
ries: in-class/out-of-class time analytics, tasks’ cognitive process, type of student
work, teacher presence, and task evaluation mode. In each category, it is possible to
have different visualizations: global time analytics, analytics that depend on the activ-
ities’ type (in or out-of-class), and analytics that depend on the learning objectives.

In this paper, we present our attempt to further expand the design analytics compo-
nent of edCrumble in order to support teachers at an extremely fine-grained design
level. The new design analytics proposals will account for the metadata from the new
integration of smart learning content into the resources’ panel.

2.2 Open Learner Modelling and Navigation Support for Smart learning
Content

Blended learning approaches usually attempt to focus each of their different learning
contexts on the activities that could be performed most efficiently in this context. For
example, lecture classroom time could focus on the explanation of complicated topics
and discussions and a lab session could focus on solving sample problems where the
help of a human teaching assistant might be necessary, while online learning might be
devoted to self-study, self-assessment, and practice. As the complexity of learning
tools increases, the online component of blended learning is increasingly focused on
practicing with so-called smart learning content [9]. Each element of this smart con-
tent is a relatively complex interactive activity, which engages students in exploration
and provides real-time performance feedback. For example, in the area of computer
science education, some previously explored types of smart content included interac-
tive animations, worked examples, parameterized semantics questions, Parson’s puz-
zles, and programming problems. As each smart learning content item is relatively
complex and advanced, it usually allows a student to practice a number of different
course concepts or skills, which could be introduced in different lectures or course



units. This complex nature of smart learning content makes it hard for the student to
accurately track progress and to select the most relevant learning content item for
further practice.

To improve student knowledge-tracking ability in their work with smart learning
content, several researchers suggested concept-level open learner models (OLM) [10].
A concept-level OLM recognizes the presence of multiple domain knowledge com-
ponents (KC), such as concepts and skills, and visualizes student knowledge progress
separately for each of these skills. Made popular by the field of intelligent tutoring
systems as skillometers [11], concept-level OLM has become popular in other types
of e-learning systems. A brief review of different concept-level OLM visualizations
can be found in [12].

In our own work, we have explored visual interfaces, which combine topic-level
open learner modeling with navigation support in order to help learners in selecting
most relevant learning content [13]. Most recently, we explored student-focused con-
cept-level knowledge visualization to help students in tracking their knowledge and
selecting relevant smart content [14]. In this paper, we attempt to further expand the
application area of concept-level knowledge visualization by exploring its value in a
different context—helping instructors select learning content in a blended learning
context.

3 Concept-Level Design Analytics for Blended Learning

The key idea of concept-level design analytics is to visualize the concept coverage of
individual learning activities as well as learning sessions (such as a lecture, a lab, or a
home practice) to help instructors in creating balanced learning designs. A learning
activity is usually associated with metadata, which describes its type, engaged con-
cepts or learning objectives, expected time to complete, and other aspects. This
metadata is critical to create balanced learning designs. For example, learning practice
prepared for a specific lecture should offer a balance of examples and problems, ra-
ther than over-focus on just one of these types of activities, and should cover all criti-
cal concepts introduced during the lecture, rather than over-focusing on some of them.
Such a balance is usually hard to achieve without supporting the instructors with ap-
propriate design analytics.

In this section, we present the design of a concept-level design visualization com-
ponent, which extends the design analytics offered to the users of edCrumble. To
demonstrate the power of the concept-based approach, we apply it to a relatively chal-
lenging design context: developing lab and practice sessions for an introductory pro-
gramming course that uses several kinds of smart learning content. This context is
challenging, since these kinds of smart content are of a different nature (examples vs.
problems) and cover different kinds of programming knowledge (program compre-
hension vs. program construction). Moreover, each content item engages students in
practicing a number of different programming concepts.

To support teachers in adapting this complex context, our designed visualization
offered a concept-level visualization of a learning session being constructed and al-



lowed teachers to compare different aspects of the constructed session on the concept-
level by using a mirrored bar chart visualization (i.e., balance of concepts between
problems and examples). Firstly, the bar chart approach for showing the distribution
of concepts in a programming domain was defined after a series of user studies de-
scribed in [14]. Secondly, the mirrored layout was grounded by findings in infor-
mation visualization research, which show that correlation tasks (i.e. easily detecting
if two data distributions were similar or not) are better supported when presented
through graphs with a mirrored layout [15], and that the visual system’s capability for
detecting differences between two regions is more efficient when they are shown as
mirror images of each other, as compared to repeated translations of each other [16].

We explain the behavior of this visualization with the following scenario. The pro-
cess of adding a new activity to a learning session starts with selecting a type of learn-
ing activity to add. To support the programming context, six types of smart learning
content for introductory programming (Table 1) have been integrated into the re-
sources panel of the design tool (Fig.1. A).

Table 1. Smart learning content integrated into the learning design tool, distinguishing be-
tween examples and problems and construction and comprehension types.

ID Title Type Description

WebEx  Annotated  Example Annotated program examples. Students can click each line
Examples Compr of code to see the related explanation for that line [17].

AnimEx Animated  Example Animated program execution examples, which visualize
Examples ~ Compr. line-by-line execution of a piece of code [18].

PCEX Program Example Interactive program construction examples. Each example
Construc-  Constr. provides a goal that specifies the given example’s func-
tion Exam- tionality. User can click on each line of code for getting
ples explanations [19].

PCEXch Program Problem  Small problems to help students developing program con-
Construc-  Constr. struction skills. Each challenge is a code example with 1-3
tion Chal- removed lines. Students need to drag-drop candidate lines
lenges to complete a program to achieve the provided goal [19].

Quizjet  Parameter- Problem Parameterized problems for self-assessment of student
ized Prob- Compr.  knowledge of programming semantics. Students are asked

lems to predict the final value of a program output [20].

PCRS Program- Problem Coding exercises with automatic assessment. The system
ming exer-  Constr. asks user to complete a partial code skeleton and then, it
cises checks the submitted answer using a set of tests [21].

By clicking on each resource tab, the system shows a list of the corresponding activi-
ties available for this content type. Users can select the preview button to open and try
each activity and make an informed decision when selecting the activities for a new
session. When an activity is judged as suitable to be used in the design, users can drag
and drop the activity’s icon to the open session (lecture, lab or practice) in the editor
(Fig.1. B). Once an activity has been aggregated into the design, the design analytics



panel (Figl. C) offers a short animation that allows the user to visualize the activity’s
contribution in terms of concept-level knowledge coverage (knowledge gained upon
its completion).

edCrumble @ # Give feedback saved onR = (2]
JAVA COURSE USERT2 e B g 30 ® 28/04/2019 & 13/05/2019 s v
e Moucs® o es or0s/209 600 & []© e - o
+
Smart learning content tabs B oy ovosonieoo & [ Jo
Poex  pos_on B

Anim_Ex

I a® 0o

| Applying exercicies related with LECT4. I

i}

BUN O AN G

e e RN

abril 2019 maig 2019

30 1 2 3

= -
-
m ™ I A

practices

et

practiced

Fig. 1. Screenshot of the learning design tool’s editor. (A) Resources panel with the 6 catego-
ries of smart learning content; (B) Editor for the selected session in the timeline; (C) Design
analytics’ visualizations; (D) Timeline with the in-class and out-of-class sessions.

Each bar on the concept-level knowledge visualization chart (Figl. C) represents a
domain concept, and its length represents how frequently the concept will be prac-
ticed by the learner when working with the selected session content (which could be
also considered to be an estimation of knowledge gained after completing the ses-
sion). The name of concepts that the instructor should target when designing for a
specific lecture (e.g. lecture 4, with its subsequent lab-4 and practice-4 sessions) are
highlighted in yellow for facilitating their coverage (see the seven concepts highlight-
ed in Figs. 1 and 2). The concepts shown to the left of the highlighted ones are those
targeted by the previous lecture, whereas those placed to the right are the ones which
has not yet been introduced past lectures. The system also offers the possibility of
previewing the contribution of a candidate activity to the overall design by situating
the mouse over it, before dragging and dropping it into the selected session. The sys-
tem then shows the preview of its contribution to learning different concepts by add-
ing striped-bars to the visualization, as a short animation is shown when bars are add-
ed (Fig. 2 left).

In the analytics panel, we can find three tabs that offer different types of concept-
level comparisons, depending on the sessions and the activities’ types and knowledge.
This comparisons help to balance the concept coverage of selected content by content
type, session type, or covered knowledge. The first tab ‘Type of session’ (Fig. 2 left)
allows a user to compare the concept-contribution of the activities selected, depending
in which type of session they have been placed. It also offers the possibility of switch-
ing between three comparisons (Lecture/Lab, Lecture/Practice and Lab/Practice ses-
sions). The second tab ‘Examples/Problems’ (Fig. 2 right) offers a unique comparison
between these two types of activities but gives the option of filtering the results by



visualizing only Lab, Practice, or both. The same applies for the third tab ‘Compre-
hension/Construction’.
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Fig. 2. Design analytics provided in concept-level visualizations. Left: Activity contribution
split by the type of session (i.e., lecture on top, lab on the bottom). Right: Activity contribution
split by content type (i.e., examples on top, problems on the bottom. Striped bars (left) indicate
the preview of the contribution of a possible addition of a new resource.

4 Exploring the Value of Concept-Level Design Analytics

4.1 Participants and Sample

Evaluating a system focused on instructors as users is a known challenge, due to the
limited availability of qualified participants. For our study, we recruited a total of 10
domain experts (six female) who were sufficiently qualified as introductory pro-
gramming instructors. All of the instructors were computer or information science
PhD students in a public university. Eligibility criteria required individuals to have
knowledge in programming languages and experience as instructors or teaching assis-
tants. Their ages ranged from 24 to 32 (M=28, SE=0.90) and they had between one
and 13 years of teaching experience (M=3.50, SE=1.15). The scores (on a six-point
scale) of how often their teaching tasks had implied selecting what activities and what
type of teaching resources would be used during a course were (M=3.70, SE=0.42;
M=3.60, SE=0.48), respectively. The scores (on a five-point scale) related to the in-
structors’ background knowledge of programming in general, in Java, and interpreting
graphs were (M=4.50, SE=0.17; M=4.20, SE=0.20; M=4.20, SE=0.20) respectively.
In addition to the 10 instructors, two teaching assistants were recruited as pilot users
to test and refine the procedure; however, their work has not been considered in the
analysis. All 12 subjects were compensated for their participation in the study.

4.2  Design and Procedure

To assess the value of the design analytics that were provided, we compared the inter-
face without the visualizations (baseline interface) to the one with the visualizations
(visualizations interface). Due to the size of our sample, we used a within-subjects
design. Instructors were asked to perform two different tasks with the system, and all



of them experienced both treatments. The order of treatments was randomized to con-
trol for the effect of ordering (half of the instructors started the study using the base-
line interface) and each participant did each task with just one treatment. The tasks
were designed within the context of a higher education programming course (JAVA
course) of 15 weeks: each week had a lecture and a lab session in class, and practice
time at home. Our study was focused on the third and fourth weeks (the editor was
prepared with the sessions of these two weeks to allow instructors to design within
this framework) and asked instructors perform realistic design tasks to target concepts
explained specifically in Lecture 4, which is described as follows. Task 1: Design a
Lab session for Lecture 4 using eight (problems) activities in total. a) Try to ensure
that the practice session covers key concepts introduced during the class (as shown by
lecture examples). b) Try to strike a balance between problems that focus on program
comprehension and program construction. Task 2: Design a Practice session for the
Lecture 4 using 20 (examples and problems) activities in total. a) Try to ensure that
the practice covers key concepts introduced at the class (as shown by lecture exam-
ples). b) Try to ensure a balance of examples and problems. c) Make sure that the
student will have a chance to practice both program comprehension and program
construction skills. The order of the tasks was not randomized, since we considered
the second task to be an extension of the first (albeit with a higher difficulty). Instruc-
tors received two training sessions, one about the use of the design tool itself and the
other about the use of the visualization. The group that started the study with the base-
line interface received the tool training before the first task and the visualization train-
ing before the second task, while the group that started with the visualization got both
trainings before the first task. During the tasks, instructors had access to help files on
the six types of activities with a short description of each one (indicating the catego-
ries to which they belonged: examples/problems and construction/comprehension).
After each task, we asked instructors to complete a post-task questionnaire. At the end
of the study, instructors filled out a final questionnaire.

4.3  Data collection and analysis

We collected the action logs of the instructors while they interacted with the system.
Above all, we focused on the actions that took place within the resources panel and
the visualizations tabs. Moreover, we also gathered the learning design outcomes
generated during the study to assess the instructors’ performance of the tasks. After
each task, we used the NASA TLX questionnaire [22] which aimed to measure the
instructors’ cognitive load of the tasks’ performances. We used a paper version of the
questionnaire that included both known parts (rating and weights). The final ques-
tionnaire asked instructors to provide their feedback about the use of visualizations
and the design tool. It had two open questions to ask instructors about their prefer-
ences between the two treatments, as well as which interface they found to be more
efficient in performing the given tasks and why. The third question asked instructors
to order the three type of visualizations by their level of usefulness. Next, 14+5 items
were presented to instructors for gathering their feedback about the visualizations and
the design tool (all of them were seven-point Likert scale: strongly disagree: 1,



strongly agree: 7). The final open question gave instructors the opportunity to provide
general suggestions or comments.

5 Results and Discussion

5.1  Cognitive load

The first result of the NASA TLX questionnaire indicates that the second task (TLX
index of 56.2) presented more difficulties to the instructors than the first task (TLX
index of 37.1). This is an expected result that validates the design of the study, which
ordered the tasks by its level of difficulty (not randomized). Global TLX indexes
indicate that, in both tasks, the perceived workload was higher when instructors do
not use visualizations. The perceived mental demand (MD) is always higher when
without visualization, and this difference is significant when comparing all tasks’
performances together (using the visualization: M=169, SE=36.2; without visualiza-
tion: M=253, SE=35; p<0.05). Significant results were also found for the temporal
demand (TD) (p=0.043) and frustration (FR) (p=0.015) values when performing the
first task. Instructors using the visualization felt that more time was needed to perform
the task (time was also slightly higher in the second task when using visualizations),
whereas those using the baseline interface felt more frustrated.

5.2 Action Analysis

The click data collected when instructors worked on the tasks provided an objective
measure of how the two conditions (with and without the visualization) affect the way
subjects use the system. Results of the action analysis (Table 2) reveal significant
difference between the number of clicks performed for previewing the activities (the
number of clicks being significantly higher in the case of not using the visualizations).

Table 2. User actions with the system while performing each task during the two treatments.

With Visualization Without Visualization P
Task Action M (SE) M (SE)
T1 Total actions 119.4 (18.16) 136.6 (23.0)
Click preview activity 4.2(2.8) 21.4(3.04)
Add activity 10.2 (0.73) 11.2 (1.69)
Delete activity selected 2.2(0.73) 3.4 (1.75)
Time Spent (min) 13.78 11.88
T2 Total actions 236.4 (26.28) 211.4(17.4)
Click preview activity 1.6 (1.03) 23.4 (5.3) #*p=0.03 T-test
Add activity 26.4 (2.79) 23.4(1.8) between-
Delete activity selected 6.2 (2.96) 4(1.9) subjects

Time Spent (min) 19.14 17.72
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The fact of introducing the visualizations seems to change the behavior of the instruc-
tors in selecting the activities. When visual analytics were available, instructors pre-
viewed the activities much less frequently (4.2 and 6.2 times on average in tasks 1 and
2, compared with 21.4 and 23.4 in the baseline case). In other words, they decided
whether or not to add the activity to the session by previewing the activity’s contribu-
tion to the concept-level visualization, rather than previewing the activity itself. We
can also observe that the time needed to perform the tasks was slightly higher on av-
erage in the condition with visualizations; however, this difference was not signifi-
cant. Thus, the introduction of the visualization did not significantly influence the
design time. Actions related to the addition and deletion of activities indicated similar
results for both treatments.

5.3  Learning Design Outcomes

The learning designs collected after instructors completed the tasks provide an objec-
tive measure of how the two treatments affect the way subjects designed the two ses-
sions (the lab and practice sessions required in the two tasks, respectively). As shown
in Table 3, the presence of visualization slightly increased the instructors’ ability to
focus on the concepts of the target and immediate previous lectures when selecting
activities (onTopicCurrent and OnTopicPrevious). However, the most impressive
difference between the conditions was the almost complete disappearance of concepts
that had not yet been introduced during the lectures (outTopic). The presence of these
"future" concepts in practice and lab sessions is undesirable, since the students have
not yet been introduced to them; yet instructors frequently miss these unwanted con-
cepts when selecting learning content. As our data shows, the concept-level design
analytics helped designers to avoid these future concepts in their design. When in-
structors used the baseline interface, they introduced, on average, a significantly high-
er number of future concepts (M=5.6, SE=2.61 in the first task; M=8.2, SE= 5.3 in the
second task). When using the visualization, the cases of introducing future concepts
practically disappeared (0 in task 1; M=1, SE=.63 in task 2).

Table 3. Learning designs’ outcomes. *(p=0.011; p<0.05) T-test between subjects.

With Visualization Without Visualization P
Task  Selected concepts M (SE) M (SE)
Tl OnTopicCurrent 13 (.84) 10.6 (.60)
OnTopicPrevious 10.2 (1.59) 8.2 (1.28)
OutTopic (future) 0 5.6 (2.61) *
T2 OnTopicCurrent 29.2 (1.39) 28.8 (1.90)
OnTopicPrevious 28 (5.06) 21(2.12)
OutTopic (future) 1(.63) 82(5.3)

Consider the distribution of the concepts’ coverage from the learning design out-
comes. Figure 3 shows how many times concepts have been practiced in the designed



11

sessions, on average, depending on the tasks and the treatments. Results show that
using the visualization approach may have a positive impact on concept-level balance
when it is necessary to select just a few activities (task 1), as the educator needs to be
more precise when selecting the best ones for their class. However, when the instruc-
tor can select a higher number of activities (task 2), the probability of covering the
necessary concepts by chance is higher and the presence of visualizations has a lower
impact on improving the concept-level balance. However, the selection of a higher
number of activities in the second task without using the visualizations led users to
introduce a higher number of future concepts. When using the visualizations, in both
cases, the number of future concepts selected was reduced drastically.
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Fig. 3. Mean of the number of times that a concept is practiced during Task 1 (left) and Task 2
(right) (extracted from the learning designs outcomes) depending on the learning designs’ con-
ditions (either using or not using the visualizations). Activities can practice a concept more than
once, and more than one concept at the same time. Note that there are 13 previous concepts, 8
current concepts, and a counter for future concepts.

Figure 4 presents the balance of concepts from the design outcomes, depending on the
characteristics of the smart learning content. Contrary to expectations, the difference
for the balance of example versus problem activities between using or not using visu-
alizations is very low; and this balance is also very low in the case of balancing com-
prehension versus construction activities. We can observe only a moderate improve-
ment of the balance and coverage of the previous concepts in both graphs when using
visualizations, as well as a reduction of future concepts, as we discussed above. These
results are not entirely surprising. Being domain experts, the instructors were able to
understand the type and the most essential concepts of each activity by carefully re-
viewing its content and were sufficiently successful in balancing the number of activi-
ties added to the design (as tasks were requiring). As the log data shows, by preview-
ing the activities, the instructors were able to achieve a reasonably balance, however,
for the price of higher load. With the visualization, however, the instructors were able
to reach a slightly better balance by using visual previews rather than content pre-
views and with lower load.
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Fig. 4. Mean of the number of times that a concept is practiced during Task 2 (extracted from
the learning designs’ outcomes), depending on the learning designs’ conditions (using or not
using the visualizations). Comparison between example activities versus problem activities
(left), and comprehension versus construction (right).

5.4  User Feedback Analysis

In the final questionnaire, all 10 instructors stated that they preferred to use the inter-
face with the visualization, and that this condition allowed them to more effectively
design their sessions. The visualizations were easy to understand and were useful in
deciding which activity to choose; they helped instructors to check whether they were
doing well enough in designing the course, as well as thinking about how knowledge
was balanced. Regarding their preference about the three visualizations’ tabs, six out
of ten found the ‘Type of session’ comparison to be more useful. However, two in-
structors indicated the ‘Examples vs. Problems’ comparison as their preferred option,
and two other instructors selected the ‘Construction vs. Comprehension’ comparison
as their favorite. We can conclude that all three comparisons were meaningful for the
instructors in order to create their course designs.

6 Conclusions

This paper explores some approaches for fine-grained level design analytics focused
in visualizing critical metadata associated with smart learning content. Among
metadata aspects covered by our visualization are the type of learning content, the
nature of knowledge supported by it, and the list of specific knowledge concepts that
a specific fragment of learning content allows students to practice. The visualization
has been integrated into a (blended) learning design authoring tool. We expected that
the concept-level design analytics would help instructors in selecting the most appro-
priate learning content and would result in designing more balanced learning sessions.
We performed a within-subjects user study contrasting conditions both with and with-
out the visualization. Our results indicate that the use of concept-level design analyt-
ics may reduce the cognitive load of design tasks, especially in terms of mental de-
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mand. We also demonstrated that the use of design analytics has facilitated the selec-
tion of the most suitable activities without significantly affecting the overall design
time. Interestingly, the presence of the visualizations has changed the behavior of
instructors in the process of selecting the activities, by just previewing their contribu-
tion to the visualization without looking deeper within their content. When examining
the learning outcomes, the most impressive result was an almost complete disappear-
ance of future concepts from sessions designed with the help of visualization. Select-
ing content that requires future concepts is usually a design error, and the presence of
the concept-level design analytics helped users to avoid these errors. Beyond that, the
differences in concept balance between the conditions were small. In addition, our
results hint that the visualization may have a higher impact on the concept-level bal-
ance when it is necessary to select just a few activities, as the instructor needs to be
more precise selecting the best ones. On the contrary, when the instructor can select a
higher number of activities, the probability of covering the concepts by chance is
higher and the visualizations have a smaller impact on improving the overall balance
among concept levels.

Although our results indicate that the use of design analytics improves the overall
learning design quality, our study has some limitations. Most importantly, the number
of subjects was too small to draw a general conclusion, which is, however, typical for
studies focused on instructor-level users. Future research will be necessary to explore
and evaluate the use of concept-level design analytics with a larger sample in other
educational contexts and in comparing different types of visualizations. Moreover,
further research may explore the connection of design analytics with learning analyt-
ics extracted from the existing smart learning content.
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