1 Mountain stoneflies may tolerate warming streams: evidence from organismal 2 physiology and gene expression 3 4 Scott Hotaling^{1,*}, Alisha A. Shah^{2,*}, Kerry L. McGowan¹, Lusha M. Tronstad³, J. Joseph 5 Giersch⁴, Debra S. Finn⁵, H. Arthur Woods², Michael E. Dillon^{6,a}, and Joanna L. Kelley^{1,a} 6 7 Affiliations: 8 ¹ School of Biological Sciences, Washington State University, Pullman, WA, USA ² Division of Biological Sciences, University of Montana, Missoula, MT, USA 9 10 Wyoming Natural Diversity Database, University of Wyoming, Laramie, WY, USA 11 ⁴ U.S. Geological Survey, Northern Rocky Mountain Science Center, West Glacier, MT, USA 12 ⁵ Department of Biology, Missouri State University, Springfield, MO, USA 13 ⁶ Department of Zoology and Physiology and Program in Ecology, University of Wyoming, 14 Laramie, WY, USA 15 * Contributed equally 16 ^a Co-supervised research 17 18 **Correspondence:** 19 Scott Hotaling, School of Biological Sciences, Washington State University, Pullman, WA. 20 99164, USA; Email: scott.hotaling@wsu.edu; Phone: (828) 507-9950; ORCID: 0000-0002-5965-21 0986 22 23 Alisha A. Shah, Division of Biological Sciences, University of Montana, Missoula, MT, 59812, 24 USA, Email: alisha.shah@mso.umt.edu; Phone: (512) 694-7532; ORCID: 0000-0002-8454-25 7905 26 27 Running title: Thermal tolerance of mountain stoneflies 28 29 **Keywords:** critical thermal maximum; RNAseq; Plecoptera; alpine streams; thermal tolerance; 30 climate change; Lednia tumana; endangered species; glacier biology 31 32 Abstract: 33 Rapid glacier recession is altering the physical conditions of headwater streams. Stream

temperatures are predicted to rise and become increasingly variable, putting entire meltwater-

34

associated biological communities at risk of extinction. Thus, there is a pressing need to understand how thermal stress affects mountain stream insects, particularly where glaciers are likely to vanish on contemporary timescales. In this study, we tested the critical thermal maximum (CT_{MAX}) of stonefly nymphs representing multiple species and a range of thermal regimes in the high Rocky Mountains, USA. We then collected RNA-sequencing data to assess how organismal thermal stress translated to the cellular level. Our focal species included the meltwater stonefly, *Lednia tumana*, which was recently listed under the U.S. Endangered Species Act due to climate-induced habitat loss. For all study species, critical thermal maxima (CT_{MAX} > 20°C) far exceeded the stream temperatures mountain stoneflies experience (< 10°C). Moreover, while evidence for a cellular stress response was present, we also observed constitutive expression of genes encoding proteins known to underlie thermal stress (i.e., heat shock proteins) even at low temperatures that reflected natural conditions. We show that highelevation aquatic insects may not be physiologically threatened by short-term exposure to warm temperatures and that longer term physiological responses or biotic factors (e.g., competition) may better explain their extreme distributions.

Introduction:

Predicting how species will respond to climate change is a central goal of contemporary ecology (Araújo & New, 2007, Urban et al., 2016). This goal is difficult to achieve, however, because at a minimum it requires knowledge of extant distributions, physiological limits, and future conditions in relevant habitats. Mountain streams around the world are being transformed by climate change, primarily through rapid recession of glaciers and perennial snowfields (Hotaling et al., 2017). Warmer air temperatures are predicted to cause loss of permanent snow and ice, drive generally higher, more variable stream temperatures, and eventually lower flows in meltwater-dominated catchments (Huss & Hock, 2018, Jones et al., 2014). Rapid contemporary warming has already been observed in the European Alps, with streams warming at a mean rate of 2.5°C per decade (Niedrist & Füreder, 2020). Expected ecological responses include a reduction of biodiversity in headwater streams across multiple levels of biological organization and taxonomic groups (Bálint et al., 2011, Finn et al., 2013, Giersch et al., 2017, Hotaling et al., 2019a, Jordan et al., 2016). Considerable attention has been devoted to potential losses of aquatic insect diversity (e.g., Jacobsen et al., 2012). However, the specific mechanisms underlying physiological limits in alpine stream insects remain unknown. This knowledge gap is particularly important in light of the widely held assumption that aquatic insects living at high-elevations are cold-adapted stenotherms that will not tolerate warming

streams (Giersch *et al.*, 2015, Jacobsen *et al.*, 2012). Recent evidence that the thermal maxima of high-elevation stream taxa can exceed maximum water temperatures (e.g., Shah *et al.*, 2017b), that spring-dwelling cold stenotherms exhibit little variability in heat shock protein (HSP) expression across temperatures (e.g., Ebner *et al.*, 2019), and that meltwater-associated invertebrate communities persist despite widespread deglaciation (Muhlfeld *et al.*, 2020) all challenge this assumption, raising new questions about whether climate warming directly threatens headwater biodiversity. To better understand the degree to which headwater species can tolerate warming, links between relevant traits at the organismal (thermal stress) and cellular (e.g., gene expression) level are needed.

As ectotherms, insect body temperatures depend strongly on their external environment. Insects are therefore threatened by rising global temperatures, and recent studies have documented declines in their diversity (Lister & Garcia, 2018, Sánchez-Bayo & Wyckhuys, 2019). The effects of temperature on ectotherm performance and survival, however, are complex. Ectotherms may respond to stressful temperatures through plasticity or acclimatization (Seebacher et al., 2015), the evolution of higher thermal limits (Angilletta Jr et al., 2007), or behavioral thermoregulation (Kearney et al., 2009). Temperature can also affect organismal distributions indirectly. For instance, changing temperatures can alter ratios of oxygen supply and demand (Pörtner et al., 2007, Verberk et al., 2016b). Extreme temperatures can also provide natural buffering against invasions by competitors or predators (Isaak et al., 2015). Thus, temperature likely shapes both the evolution of aquatic insect physiology as well as local networks of biotic interactions (Shah et al., 2020). To understand the relationship between temperature and ectotherm tolerance, trait-based approaches (e.g., measuring upper thermal tolerance) can be informative. However, a focus on physiological traits at the whole-organism level may overlook other key aspects of a species' potential for response, perhaps limiting predictions of whether species can evolve in response to changing thermal regimes (Chown et al., 2010) or tolerate them in situ via plasticity. Thus, there is a need to connect traits from cellular to organismal levels and consider findings holistically.

Due to the high heat capacity of water, stream temperatures are less thermally variable than air. However, a surprising amount of variation still exists in streams due to many factors, including latitude, elevation, flow, and canopy cover (Shah *et al.*, 2017b). At high-elevations, an additional factor—the primary source of water input—plays an outsized role in dictating thermal variation downstream (Hotaling *et al.*, 2017). High-elevation freshwaters are fed by four major hydrological sources: glaciers, snowfields, groundwater aquifers, and subterranean ice (Hotaling *et al.*, 2019a, Tronstad *et al.*, In press, Ward, 1994). Glaciers and subterranean ice (e.g., rock

glaciers) promote near constant, extremely cold conditions (i.e., less than 3°C year-round) whereas snowmelt- and groundwater-fed streams are warmer and often more thermally variable (Hotaling *et al.*, 2019a, Tronstad *et al.*, In press). However, these general thermal "rules" apply only in close proximity to a primary source. Patterns can change dramatically downstream as flows are altered (e.g., pooling into a high-elevation pond) and sources mix (e.g., a warmer groundwater-fed stream flows into a glacier-fed stream). Resident aquatic taxa therefore experience vastly variable thermal conditions both within and across their life stages. With extensive thermal variation over small geographic scales and abundant, putatively cold-adapted resident invertebrates, high-elevation waters provide an ideal, natural model for testing hypotheses of physiological limits in a framework relevant to global change predictions.

hypotheses of physiological limits in a framework relevant to global change predictions.
In this study, we investigated gene expression as a function of tolerance to heat

103

104

105

106

107

108

109

110

111

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

In this study, we investigated gene expression as a function of tolerance to heat stress for stonefly nymphs collected from high-elevation streams in the northern Rocky Mountains. We focused on three taxa—Lednia tetonica, Lednia tumana, and Zapada sp.—all of which have habitat distributions closely aligned with cold, meltwater stream conditions. Lednia tumana was recently listed under the U.S. Endangered Species Act due to climate-induced habitat loss (U.S. Fish & Wildlife Service, 2019). To test tolerance to heat stress at the organism level, we measured the critical thermal maximum (CT_{MAX}), a widely used metric for comparing thermal tolerance among animals (Healy et al., 2018). We specifically addressed three overarching questions: (1) Does natural thermal variation in stream temperature predict mountain stonefly CT_{MAX}? (2) Do high-elevation stoneflies mount cellular stress responses when subjected to heat stress? And, if so, which genes are involved? (3) Is there a link between habitat conditions, organismal limits, and underlying gene expression? Following Shah et al. (2017b), we expected nymphs from streams with higher maximum temperatures to have correspondingly higher values of CT_{MAX}. We also expected to observe a signal of cellular stress with genes typical of heat stress responses (e.g., HSPs) upregulated. Finally, we expected nymphs that naturally experience higher temperatures to exhibit a correspondingly muted cellular stress response. Collectively, our study sheds new light on thermal stress in high-elevation stream insects and contributes new perspective to a pressing challenge for the field: clarifying whether species living in cold headwaters are as sensitive to warming temperatures as their extreme distributions suggest.

Table 1. Environmental variation, mountain range, and habitat types included in this study. GNP: Glacier National Park, Montana. GRTE: Teton Range, Wyoming. T_{MAX} : the maximum temperature observed, T_{RANGE} : the difference between the maximum and minimum temperatures observed, and T_{MEAN} : the mean temperature observed. All temperature data are in degrees Celsius. SPC: specific conductivity (μ S cm⁻¹), PI: Pfankuch Index, a measure of stream channel stability (higher values correspond to a less stable streambed). Temperatures were measured on a representative day in late July 2019 for all sites except Lunch Creek (data from late July 2014). See Table S1 for specific dates of temperature data collection.

Population	Range	Taxa	Туре	T _{MAX}	T _{RANGE}	T _{MEAN}	SPC	PI
Lunch Creek	GNP	L. tumana	Snowmelt	9.9	5.7	6.2	40.7	25
Wind Cave	GRTE	Zapada sp.	Icy seep	3.2	0.5	2.8	101.1	18
Mt. St. John	GRTE	L. tetonica	Icy seep	4.6	2.2	3.0	25.0	34
Cloudveil Dome	GRTE	L. tetonica	Glacier-fed	2.1	0.3	2.0	4.1	32
Skillet Glacier	GRTE	L. tetonica	Glacier-fed	7.1	4.4	4.4	3.1	34
Tetonica Pond ^a	GRTE	L. tetonica	Pond	4.9	2.3	3.1	29.3	n/a

^a Named by the authors. Does not reflect official conventions.

Materials and Methods:

Specimen collection

133

134

135

136

137138

139

140

141

142

143144

145

146

147

148

149

150

151

152

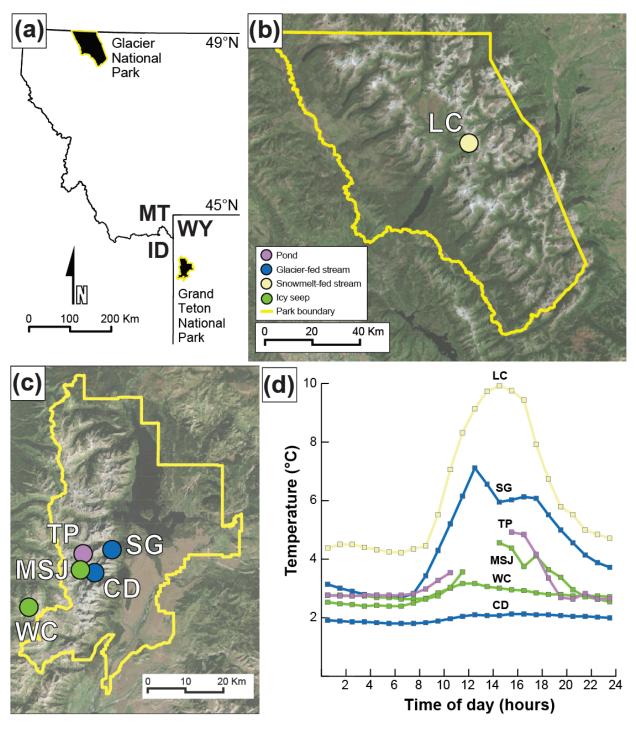
153

154

155

156

157


158

159

160

161

During the summer of 2018 (29 July-6 August), we collected late-instar stonefly nymphs representing at least three species (Lednia tetonica, Lednia tumana, and Zapada sp.; Family Nemouridae) from six streams in Glacier National Park (GNP), Montana, and Grand Teton National Park and the surrounding region (GRTE), Wyoming, USA (Fig. 1; Tables 1, S1). We selected a later summer timepoint because it represents the warmest stream temperatures nymphs experience before emerging in August. Also, given the acclimation capacity of CT_{MAX} in temperate aquatic insects (Shah et al., 2017a), we measured CT_{MAX} during this period because it is also when we expected CT_{MAX} to be highest. Specimens were collected by turning over rocks and gently transferring nymphs to a small tray filled with streamwater. Nymphs were brought to the laboratory as quickly as possible in 1 L Whirl-Pak bags (Nasco) filled with streamwater surrounded by snow or ice. Species were identified based on morphological variation following previous studies (e.g., Giersch et al., 2017). Unlike Lednia, multiple Zapada species can be present in the same stream and previous genetic data has indicated the potential for cryptic diversity in the group (Hotaling et al., 2019b). Therefore, we cannot exclude the possibility of more than one species of Zapada in the Wind Cave population and thus only identified Zapada to genus (Table 1).

Figure 1. (a) The region of the Rocky Mountains where this study was conducted including (b) Glacier National Park, MT and (c) Grand Teton National Park, WY and the surrounding region. (d) A thermograph of hourly temperatures for each study site in late July. Site acronyms (top to bottom): Lunch Creek (LC), Skillet Glacier (SG), Tetonica Pond (TP), Mt. St. John (MSJ), Wind Cave (WC), and Cloudveil Dome (CD). A complete 24-hour thermograph is not shown for MSJ and TP because only 21 and 19 hours of continuous data were recorded for those sites, respectively. More extensive thermal data are provided in Fig. S1.

Environmental data and aquatic habitat classifications

For each study stream, we measured temperature by placing *in situ* HOBO loggers (Temperature Pro v2, Onset Computer Corporation) that recorded temperature hourly. Lengths of logger deployments ranged from less than 24 hours (Mt. St. John, Tetonica Pond) to several days (Cloudveil Dome) or a full year (Lunch Creek, Skillet Glacier, Wind Cave). Using these data, we constructed a one-day thermograph for each site based on a representative day in late July (exact dates provided in Table S1) and estimated the highest (T_{MAX}), range (T_{RANGE}), and mean (T_{MEAN}) temperatures for that day. For two sites with more than one year of temperature data (Wind Cave: 2016, 2019; Lunch Creek: 2012, 2013, 2014), we compared multiple complete thermographs for July to ensure that our results were not biased by an unusual year- or day-specific pattern (Fig. S1). We also collected two additional environmental variables to inform our habitat classifications (see below): specific conductivity (SPC), measured with a YSI Professional ProPlus multiparameter probe which was calibrated at the trailhead before each sampling trip, and stream channel stability, calculated via a modified version of the Pfankuch Index (PI), a standard metric for assessing channel stability in mountain systems that integrates five key physical characteristics of the stream into a single value (Peckarsky *et al.*, 2014).

We classified sites into habitat types following previous studies (Giersch *et al.*, 2017, Hotaling *et al.*, 2019a, Tronstad *et al.*, In press). Briefly, we incorporated a site's primary hydrological source, environmental variation, and geomorphology, to group them into one of four habitat types: streams fed by a surface glacier ("glacier-fed"), a perennial snowfield ("snowmelt-fed"), emanating from subterranean ice (e.g., rock glaciers, "icy seep"), or slow-flowing, alpine ponds ("pond"). We categorized a stream as glacier-fed if it had a named glacier upstream and an extremely unstable streambed (PI > 30). Any other streams fed by perennial surface ice and snow were categorized as snowmelt-fed. We classified streams as icy seeps if we observed evidence of a subterranean ice source (e.g., lobes of a rock glacier), they were extremely cold (e.g., T_{MAX} < 5°C), and had high conductivity (SPC > 50; Hotaling *et al.*, 2019a). Ponds were identified by their low-angle profile and the presence of standing water.

Table 2. Morphological and physiological data included in this study. Holding: time (hours) that specimens were held at 3°C with no access to food before testing. N: sample size for each population. Mean body lengths were used as a proxy for mass and are reported in millimeters with standard errors. RNAseq: sample sizes for RNA sequencing for treatment (T; CT_{MAX}) and control (C; held at 3°C) specimens. Mean CT_{MAX} is given in degrees Celsius.

Population	Taxon	Length	Holding	Ν	Mean CT _{MAX}	RNAseq (N)
Lunch Creek	L. tumana	4.9 ± 0.5	72	24	28.7	3T / 3C
Wind Cave	Zapada sp.	4.4 ± 0.6	48	23	25.9	
Mt. St. John	L. tetonica	5.6 ± 0.7	12	24	26.6	3T / 3C
Cloudveil Dome	L. tetonica	4.5 ± 0.5	12	23	26.1	
Skillet Glacier	L. tetonica	5.6 ± 0.4	12	17	28.6	
Tetonica Pond	L. tetonica	4.6 ± 0.6	12	23	28.6	3T / 3C

Measuring critical thermal maxima (CT_{MAX})

Nymphs were brought into the laboratory as quickly as possible (typically less than 12 hours after collection) and transferred to holding chambers in 150-quart coolers filled with water from a nearby stream (Pacific Creek: 43.9036°, -110.5892°). We used aquarium chilling units (1/10 HP, Coralife) to maintain the holding baths at ~3°C (Fig. S2). Each holding chamber contained 12 nymphs in a ~2 L plastic container immersed in the bath such that both water and nymphs were isolated from the rest of the system. We included plastic mesh in each chamber to give nymphs substrate to cling to. We maintained high levels of water flow and dissolved oxygen by air stone bubbling in each chamber. Nymphs had no access to food during the holding period to ensure they were tested in a fasting state (i.e., after available food had been digested, absorbed, and cleared from the digestive tract). All nymphs were held in these conditions for at least ~12 hours before testing (Table 2).

We measured CT_{MAX}, a non-lethal temperature at which nymph locomotor function becomes disorganized. We placed up to 12 nymphs into mesh chambers (one individual per chamber) in a water bath held at 3°C. Because warming is the most obvious effect of climate change in high-mountain streams, we chose to only vary temperature, while maintaining natural flow and oxygenation with air pumps. Four thermo-electric cooling (TEC) plates attached to a temperature controller were used to increase temperature at ~0.25°C per minute. We recorded CT_{MAX} when an individual nymph could no longer right itself after being turned onto its back (Videos S1-S2). After a nymph reached its CT_{MAX}, we immediately transferred it to an 8°C bath for recovery and assessed survival by monitoring nymphs until they resumed normal movement. Nymphs were later preserved in ~95% ethanol. We measured body length to the nearest ¼ mm using a dissecting microscope and a millimeter grid attached to the base of the microscope. A

subset of nymphs were flash frozen at either their CT_{MAX} or holding temperature for RNA sequencing (RNAseq).

For CT_{MAX}, all statistical analyses were conducted in R v3.4.0 (R Core Team, 2013). We focused our main analysis on *L. tetonica* because we had data for multiple populations. We first analyzed the effect of body size (length) and acclimation period on CT_{MAX} with linear models. Because body size was not a significant predictor of CT_{MAX} (see Results), our final linear models assessing the effect of maximum stream temperature (T_{MAX}) on CT_{MAX} included only T_{MAX} as the predictor variable. We also assessed the effect of T_{MAX} on CT_{MAX} in a second, broader analysis which included the two populations of *L. tumana* and *Zapada* sp. While valuable, this 'all-species' analysis cannot be used to determine if CT_{MAX} varies among species or if the variation we observed is due to population-level differences because we lacked replicates for *L. tumana* and *Zapada* sp.

240241 RNA sequencing

During the thermal tolerance experiment, a subset of individuals from three populations and both *Lednia* species (Lunch Creek, *L. tumana*; Mt. St. John and Tetonica Pond, *L. tetonica*; Fig. 1a, Table 2) were sampled for RNAseq. Nymphs at their CT_{MAX} (treatment) and others that remained at the holding temperature (control) were flash frozen in liquid nitrogen. We sampled three treatment and three control nymphs for each population (*N* = 18 total; Table 2). Samples were stored in liquid nitrogen until they were transferred to a -80° freezer. We extracted total RNA from entire nymphs following the NucleoSpin RNA (Macherey-Nagel Inc.) protocol. For extraction, specimens were re-flash frozen with liquid nitrogen in a 1.5 mL microcentrifuge tube and ground into a fine powder with a sterilized pestle. We quantified RNA with a Qubit 2.0 fluorometer (Thermo Fisher Scientific) and assessed RNA extraction quality via fragment analysis with an ABI 3730 DNA Analyzer (Thermo Fisher Scientific).

We prepared RNAseq libraries from 1 μ g of total RNA with the NEBNext Poly(A) mRNA Magnetic Isolation Module (NEB) according to the manufacturer protocol. We targeted a 300-450 basepair (bp) fragment size distribution. For cDNA amplification, fifteen PCR cycles were used for all libraries. Presence of a PCR product was visually assessed using an eGel (Thermo Fisher Scientific). Final libraries were quantified with a Qubit 2.0 fluorometer and further assessed for quality, amount of cDNA, and fragment size distribution using a 2100 BioAnalyzer with the High Sensitivity DNA Analysis kit (Agilent). Libraries were then pooled in equal nanomolar concentrations and sequenced on one lane of an Illumina HiSeq4000 with 100 bp

paired-end chemistry by the Roy J. Carver Biotechnology Center at the University of Illinois Urbana-Champaign.

Gene expression analyses and protein annotation

We assessed raw sequence data quality with fastQC v0.11.4 (Andrews, 2010) and visualized a combined output for all libraries with MultiQC v1.5 (Ewels *et al.*, 2016). Next, we trimmed reads in three successive rounds, all with Trim Galore! v0.4.1 (Krueger, 2015) and default settings except as noted. First, we removed adapter sequences (--illumina --stringency 6). Next, we trimmed for quality and poly-A tails (--quality 20 --stringency 6 --adapter A{30}} --adapter A{30}}). We then trimmed for poly-T tails and discarded reads that had become too short (--stringency 6 --length 50 --adapter T{30}} --adapter 2 T{30}}). We assessed the quality of the trimmed reads with fastQC v0.11.4. We randomly subsampled one library (Library 3; Control, Mt. St. John) to 80% of its original amount because its sequencing depth was much higher than the rest of the data set. For this, we used the reformat function of BBTools v37.80 (Bushnell, 2014). We removed one library (Library 9; Control, Mt. St. John) from all downstream analyses as it had just 2.6 million reads, far fewer than any other library (see Results).

We mapped reads to the *L. tumana* reference genome (GenBank #QKMV00000000.1) with the mitochondrial genome (GenBank #MH374046; Hotaling *et al.*, 2019c) appended to it. We used HiSat2 v2.1.0 (Pertea *et al.*, 2015) with default settings, first building an index of the reference with the hisat2-build command. To ensure no bias was introduced by differential mapping rates between *L. tumana* and *L. tetonica* samples to the *L. tumana* reference genome, we compared the mean mapping rates for both species with an unpaired *t*-test. Because HiSat2 outputs unsorted SAM files, we converted the output to sorted BAM files with samtools v1.7 (Li *et al.*, 2009).

We generated a gene count matrix for each library with StringTie v1.3.5 (Pertea *et al.*, 2015). We first ran StringTie with the default settings to assemble alignments into potential transcripts without a reference annotation (-G) because none is available for *L. tumana*. Next, we used the --merge utility to combine library-specific sets of transcripts into a merged, putatively non-redundant set of isoforms. This tool outputs a merged Gene Transfer Format (GTF) file. We then re-ran StringTie using the merged GTF (-G) and the flags -B and -e to enable the output of Ballgown GTF files for the global set of transcripts shared by all samples. Next, we ran the prepDE.py script, also part of the StringTie package, to generate counts matrices for all genes and transcripts identified in the previous steps.

We performed differential expression analyses using edgeR v3.26.8 (Robinson et al., 2010) in R version 3.5.2 (R Core Team, 2013). We filtered our data set by requiring transcripts to have more than five total reads and to be present in at least two samples. To visually compare expression variation across groups of interest (i.e., treatments, species, and populations), we used the plotPCA function. After filtering, we identified structure in global gene expression that could not be explained by sample preparation, library size, species, population, or treatment (Fig. S3). We removed this unwanted variation with RUVseq v1.18.0 (Risso et al., 2014). Specifically, we used the "in silico empirical" functionality of RUVg where a set of the least differentially expressed genes (DEGs) are identified and used as controls to globally normalize variation in the data set. We used the default trimmed mean of M-values (TMM) method to normalize the data and calculate effective library sizes (Fig. S4). Dispersions were estimated using a generalized linear model and a Cox-Reid profile-adjusted likelihood (McCarthy et al., 2012). We identified DEGs with quasi-likelihood F-tests (Lun et al., 2016) which were run using contrasts. We performed DEG identification across three levels of comparison: (1) Within-populations between treatment (collected at their CT_{MAX}) and control (held at 3°C) specimens. (2) Between treatment and control for L. tetonica specimens only (Mt. St. John and Tetonica Pond). (3) Between treatment and control for all specimens. A false discovery rate (FDR) \leq 0.05 was used to identify DEGs.

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

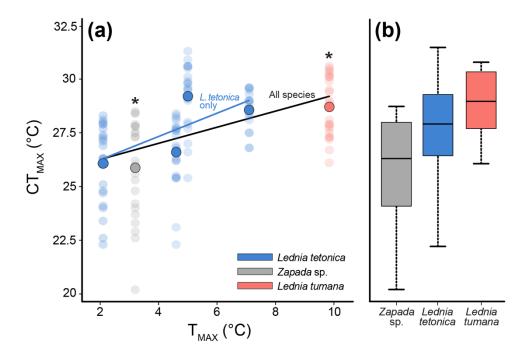
324

325

326

327

To annotate our data set, we extracted the longest isoform for each gene using the CGAT toolkit and the 'gtf2gtf' function (Sims et al., 2014). We then extracted genes from the file containing the longest isoforms with gffread v.0.9.9 (Trapnell et al., 2012). We performed a blastx search for each gene (E-value: 0.001) against the manually curated and reviewed Swiss-Prot database (Boeckmann et al., 2003; accessed 1 March 2019). Using the results of our blastx search, we annotated genes, retrieved gene ontology (GO) terms, and mapped GO terms using Blast2GO v5.2 (Conesa et al., 2005). We annotated DEGs with the top BLAST hit per transcript. For DEGs without a match in the Swiss-Prot database, we performed two additional searches using online tools: (1) a batch search against the RFAM database (Kalvari et al., 2017; http://rfam.org/search) and (2) a manual blast search (E-value: 0.001) against the automatically annotated and unreviewed TrEMBL database (Boeckmann et al., 2003; http://uniprot.org/blast/). In Blast2GO v5.2, we performed GO term enrichment analyses using the results of our blastx/Swiss-Prot annotations on two test sets with one-tailed Fisher's Exact Tests and FDR ≤ 0.05 after correcting for multiple tests: (1) upregulated genes for L. tetonica only and (2) downregulated genes for L. tetonica only. We did not perform GO term enrichment analysis for L. tumana because no DEGs were identified for the representative population we examined

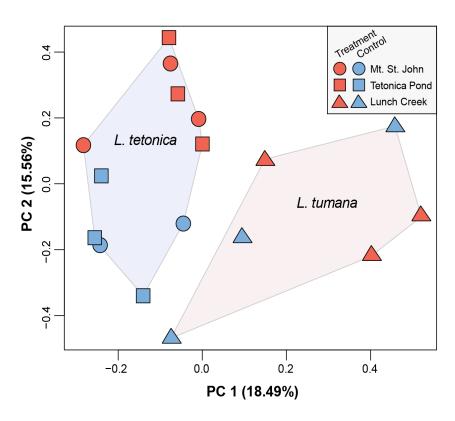

(Lunch Creek; see Results). We also did not perform GO term enrichment on the overall *Lednia* data set because of redundancy with the *L. tetonica* analysis (i.e., roughly two-thirds of the same individuals would be included). For enrichment analyses, the complete set of transcripts with BLAST hits were used as the reference set.

To test if stoneflies from more thermally variable environments have muted cellular responses to stress, we identified all genes annotated as heat shock proteins based on BLAST hit descriptions. Next, we sorted these genes by their overall expression [log₂ counts per million (logCPM)] and filtered them to a final set using two criteria: (1) We only included genes expressed at moderate to high levels (≥ 4 logCPM) and (2) only retained the most expressed hit (highest mean logCPM) for each unique gene. We did this to prevent any potential bias due to one gene being represented by multiple hits (see Results). Next, we calculated the mean difference in logCPM between treatment and control nymphs for each gene and population. Because the data were not normally distributed (*P*, Shapiro-Wilk < 0.001), we compared the distributions of mean differences for each population using a Kruskal-Wallis rank sum test followed by a Dunn test for multiple comparisons. All scripts and commands used in this study are available on GitHub (https://github.com/scotthotaling/Lednia_RNAseq).

Results:

Environmental data and species collection

According to the environment criteria described above, we identified one snowmelt-fed stream (Lunch Creek: GNP), two icy seeps (Wind Cave, Mt. St. John; GRTE), two glacier-fed streams (Cloudveil Dome, Skillet Glacier; GRTE), and one alpine pond (Tetonica Pond; GRTE; Table 1). We collected *L. tumana* from Lunch Creek, *Zapada* sp. from Wind Cave, and *L. tetonica* from the other four sites (Fig. 1, Table 1). Lunch Creek was the warmest ($T_{MEAN} = 6.2^{\circ}C$; $T_{MAX} = 9.9^{\circ}C$) and most thermally variable site ($T_{RANGE} = 5.7^{\circ}C$; Table 1). Cloudveil Dome ($T_{MAX} = 2.1^{\circ}C$) and Wind Cave ($T_{MAX} = 3.2^{\circ}C$) were the coldest and least variable sites ($T_{RANGE} \le 0.5^{\circ}C$; Table 1). Icy seeps were the coldest and least thermally variable habitat type overall (T_{MAX} , icy seeps = 3.9°; T_{RANGE} , icy seeps = 1.4°C). For the two sites with two or more years of available temperature data (2 years, Wind Cave; 3 years, Lunch Creek), thermal differences across years were negligible (Fig. S1).


Figure 2: (a) The effect of maximum stream temperature (T_{MAX}) on critical thermal maximum (CT_{MAX}) for each nymph (smaller, lighter circles) with means for each population also shown (darker, outlined circles). Asterisks mark the species with only a single population sample (Zapada sp. and L. tumana). Trendlines indicate significant relationships between T_{MAX} and CT_{MAX} for two separate linear models for L. tetonica only (blue line) and for all species (black line). In both analyses, stoneflies from colder streams had lower CT_{MAX} values than those from warmer streams. (b) Box plots showing variation in CT_{MAX} across species. Black horizontal lines in each box indicate the median with lower and upper bounds of the box representing the lower and upper quartiles of the data, respectively. Whiskers show the maximum and minimum values.

Thermal physiology

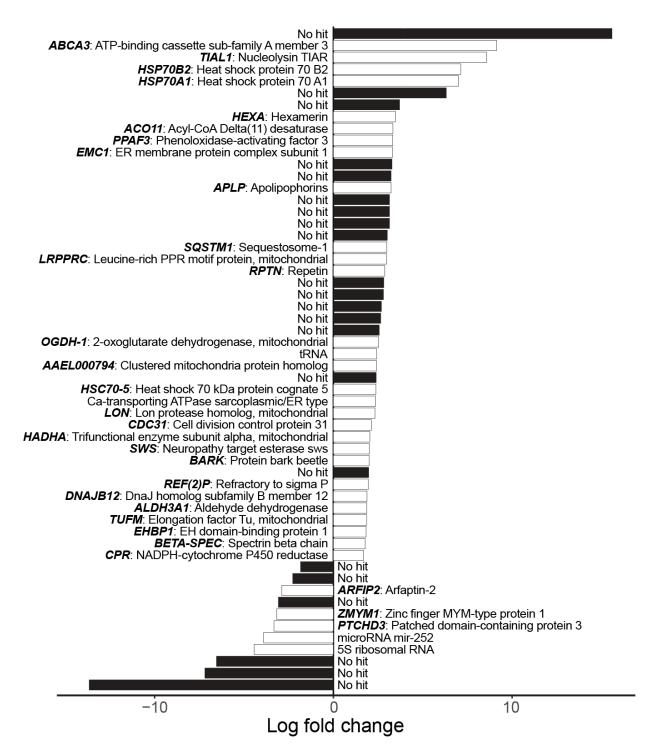
that CT_{MAX} may be highest for *L. tumana* (Fig. 2b). However, this finding may simply be reflective of the only *L. tumana* population sampled also being from Lunch Creek, the warmest site included in this study.

RNA sequencing and annotation

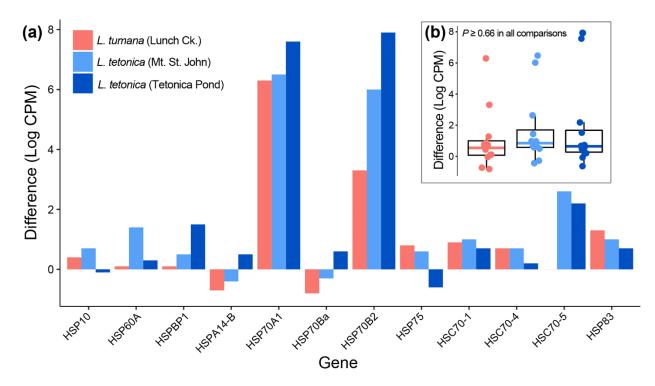
We generated 368.8 million read pairs for 18 libraries with a mean per sample of 20.6 million \pm 1.9 million (min. = 2.6 million, max. = 39.2 million). After filtering, subsampling of the library with the most reads, and dropping the library with the fewest reads, we retained 354.1 million read pairs. On average, 85.2% of reads mapped to the *L. tumana* reference genome with *L. tumana* libraries mapping at a slightly higher rate (mean 89.0% \pm 0.5%; min. = 87.8%, max. = 91.0%) than *L. tetonica* (mean = 83.2% \pm 0.6%; min. = 81.0%, max. = 84.5%; *P, t*-test < 0.0001). However, this difference in mapping rate did not extend to a difference in total reads mapped (mean, *L. tumana* = 19.2 million, mean *L. tetonica* = 21.7 million; *P, t*-test = 0.42). Raw reads for this study are deposited on the NCBI SRA under BioProject PRJNA587097.

Figure 3. Global differences in gene expression for stonefly nymphs color-coded by treatment (red, CT_{MAX}) or control (blue, held at 3°C) and grouped by species (colored polygons) and populations (shapes).

Differential expression


After filtering and processing of the data set, our gene counts matrix contained 52,954 unique entries. We observed global differences in gene expression between L. tumana and L. tetonica (Fig. 3). When L. tumana and L. tetonica were combined ("Lednia"), 80 genes were differentially expressed: 65 upregulated and 15 downregulated in the treatment (CT_{MAX}) versus control group (FDR ≤ 0.05). When only *L. tetonica* populations were considered ("Tetonica"), 71 genes were differentially expressed: 60 upregulated, 11 downregulated. Thirty-four DEGs were shared between groups (32 upregulated, two downregulated). When each population was considered alone, no DEGs were identified (including for Lunch Creek, the only L. tumana population). While we report results for the Lednia and Tetonica data sets above, we focus hereafter on *Tetonica* because it contains the most statistical power (two populations) with no potential for species-specific bias. Furthermore, due to the fragmented nature of the L. tumana genome (contig N50: 4.7 kilobases (kb); 74,445 contigs > 1 kb; Hotaling et al., 2019c), portions of the same gene were likely present on different contigs in the reference. When we assembled transcripts, this manifested as unique transcripts annotated to the same gene. Thus, in many instances (e.g., hexamerins, HEXA; Figs. 4, S6), we recovered multiple independent hits to the same gene. While multiple hits may reflect biological reality (e.g., more than one copy of a gene in the genome perhaps reflecting a gene family expansion) we cannot draw such a conclusion. We specify how multiple hits to the same gene were handled where appropriate.

For *Tetonica*, 46 DEGs (64.8%) had BLAST hits to the high-quality, manually curated Swiss-Prot database, 32 of which were unique (Table S2). Of the remainder, three (4.2%) had hits to the RFAM database and nine (12.7%) had hits to the TrEMBL database. Because the TrEMBL protein database is unreviewed, we only refer to Swiss-Prot/RFAM annotations unless specifically noted. The most upregulated gene [MSTRG.32248; log₂ fold change (logFC) = 15.6; FDR = 0.015] had no annotation to any database (Fig. 4). However, the next four most-upregulated genes (logFC = 7-9.1; Fig. 4) included *ABCA3*, which binds ATP, a nucleolysin (*TIAL1*), and two heat shock proteins *HSP70B2* and *HSP70A1*. The two heat shock proteins were also the most expressed DEGs (logCPM = 8.9 and 9.3, respectively) after three genes which were all annotated as hexamerins (*HEXA*; logCPM = 9.3-10). Fourteen DEGs had hits to the same apolipophorin gene, *APLP*, with relatively similar changes in expression (logFC, *APLP* = 2.1-3.8; Fig. S6) and overall expression levels (logCPM, *APLP* = 2.2-6.9). The three most downregulated genes did not have BLAST hits to the Swiss-Prot or RFAM databases [logFC = -6.6 to -13.7; Fig. 4], however two of them (MSTRG.1867 and MSTRG.3534) had TrEMBL hits though they were not informative in terms of predicted function (Table S2).


Forty-one GO terms were enriched in the upregulated *Tetonica* data set (Fig. S7): 26 were classified as being part of a biological process ontology, three were cellular component related, and 11 were linked to molecular function. The top four most significantly enriched GO terms were all lipid-related, including their transport, binding, and localization. Eight of the enriched GO terms (19.5% overall) were associated with protein folding, and three were linked to chaperone proteins which are commonly associated with physiological stress (Beissinger & Buchner, 1998). In the same vein, one enriched GO term – "heat shock protein binding" (GO:0031072; FDR = 0.015) – clearly reflected a link to heat stress at the cellular level. No GO terms were enriched for downregulated *Tetonica* DEGs.

Environmental variability and gene expression

Across all populations and species, 38 genes were annotated as heat shock proteins (HSPs). Of these, 12 unique genes were expressed at moderate to high levels (logCPM \geq 4; Fig. S8). We found no support for our hypothesis that stoneflies naturally experiencing higher (and more variable) temperatures exhibit muted cellular stress responses versus those inhabiting colder (and more thermally stable) streams (Fig. 5; P, Dunn's \geq 0.66).

Figure 4. Log fold change of *Lednia tetonica* DEGs (white = BLAST annotated; black = no hit; $FDR \le 0.05$). For annotated genes, only the hits to the Swiss-Prot or RFAM databases with the lowest FDRs are included. The full version of this figure, including any instances of multiple hits to the same protein, is provided in Fig. S6. Complete information for each annotation is provided in Table S2.

Figure 5. (a) Mean population-level differences in expression between treatment and control specimens for the 12 most highly expressed, unique HSPs annotated in this study. (b) Distributions of the values in (a) grouped by population. No significant differences were present (P, Dunn < 0.05).

Discussion:

As climate change proceeds, headwaters will be dramatically altered by the reduction or loss of meltwater from glaciers and perennial snowfields (Hotaling *et al.*, 2017). However, the physiological limits of high-elevation aquatic insects, a group presumed to be acutely imperiled by climate change, remain largely unknown. In this study, we explored the thermal physiology of high-elevation stoneflies inhabiting the meltwater of rapidly fading glaciers and snowfields in the Rocky Mountains. Our focal species are representative of an entire community that may be at risk of climate-induced extirpation (Giersch *et al.*, 2017, Hotaling *et al.*, 2019a, Tronstad *et al.*, In press), and included *L. tumana*, a species listed under the U.S. Endangered Species Act due to climate-induced habitat loss (U.S. Fish & Wildlife Service, 2019). We show that habitat thermal conditions, specifically maximum temperatures, predict upper thermal limits and that nymphs mount a cellular stress response when faced with heat stress. Contrary to our expectations, however, we saw no link between the scale of the stress response and natural conditions that nymphs experience. That is, stoneflies from warmer environments did not exhibit a muted cellular stress response across HSPs versus those from cooler streams. Our results shed new light on thermal tolerance of mountain stoneflies and complement recent cellular perspectives

on aquatic insect thermal biology (Ebner *et al.*, 2019, Gamboa *et al.*, 2017). Broadly, our findings and those of others (e.g., Ebner *et al.*, 2019, Muhlfeld *et al.*, 2020, Shah *et al.*, 2017b, Treanor *et al.*, 2013), challenge the prevailing notion that aquatic insect larvae living in extremely cold mountain streams cannot survive warming. For *Lednia*, with the ability to tolerate short-term temperature spikes, we hypothesize that their headwater distributions may be a product of longer-term physiological mechanisms (e.g., the capacity to develop at near freezing temperatures) and biotic factors (e.g., species interactions at lower elevation).

Thermal tolerance

In mountain systems, thermal tolerance is important to organismal distributions and can help explain the elevation limits of many terrestrial taxa (Andrews, 1998, Brattstrom, 1968, Feder & Lynch, 1982, Huey & Webster, 1976, Oyen et al., 2016). Whether thermal tolerance can also explain distributional limits of aquatic taxa is unknown (Polato et al., 2018). We show that species of high-elevation stoneflies in the Rocky Mountains, often described as cold stenotherms that are highly susceptible to warming (e.g., Giersch et al., 2017), can withstand relatively high short-term temperatures (see also Shah et al., 2017b). Although the utility of CT_{MAX} has been challenged due to its sensitivity to ramping rates, as well as acclimation and starting temperatures (Rezende et al., 2011, Terblanche et al., 2011), recent arguments in favor of its ecological relevance have also been made (Jørgensen et al., 2019), especially when used in a comparative framework. We contend that CT_{MAX} may be uniquely appropriate for mountain stream taxa. Indeed, alpine streams are rapidly warming (e.g., Niedrist & Füreder, 2020) and in our study system, swift increases in temperature (over a few hours) are common (e.g., Lunch Creek, Fig. 1d). With summer streamflows predicted to be reduced under climate change (Huss & Hock, 2018), baseline temperatures and intraday temperature spikes will both increase as meltwater volume declines and its buffering capacity is lost.

In addition to temperature spikes during certain seasons, average alpine stream temperatures are on the rise (Niedrist & Füreder, 2020). These higher, but sublethal, temperatures will likely have pervasive negative impacts on high elevation aquatic insects (Shah *et al.*, 2019). For example, long-term thermal tests of *L. tumana* development suggest that mortality during emergence greatly increases around 15 °C (A.A.S. & S.H., unpublished data), highlighting how subtle thermal effects on ecological timescales may limit the persistence of *L. tumana* and similar species. Long-term temperature shifts will likely have complex effects on larval energy budgets by differentially altering rates, as well as targets, of energy expenditure

(e.g., resource allocation between somatic growth, maintenance, and reproduction) and energy income from feeding.

Simultaneous increases in temperature and reductions in flow may also elevate heat sensitivity in mountain stoneflies by exacerbating a mismatch between oxygen supply and demand. For ectotherms, increasing temperature typically results in increased metabolic rates and greater demand for oxygen (Verberk *et al.*, 2016a). In aquatic habitats, this demand may not be met with adequate oxygen supply, eventually leading to decreased organismal fitness (Pörtner & Knust, 2007). Evidence for this phenomenon, however, is mixed (Verberk *et al.*, 2016b). With so little known of aquatic insect thermal physiology, it is imperative for future research to address effects of sublethal temperatures and oxygen limitation on thermal tolerance, especially in high-elevation aquatic insects that may encounter a lethal combination of increased temperatures and decreased oxygen from low flows (Jacobsen, 2020).

We observed variation in CT_{MAX} among populations of *L. tetonica*, suggesting that local thermal regime may be more important to thermal tolerance than regional thermal regime, and echoing the findings of other recent studies (Gutiérrez-Pesquera *et al.*, 2016, Shah *et al.*, 2017b). This effect of local conditions on thermal tolerance might outweigh differences due to evolutionary history because all species (e.g., *Lednia tetonica* and *Zapada* sp.) from cooler streams had lower CT_{MAX} than those from warmer streams (Fig. 2). Although we cannot determine if thermal variation among populations represents evolved differences, all specimens were held in a common thermal regime for at least 12 hours to limit the effects of previous thermal conditions on CT_{MAX} estimates. Regardless of the mechanism, the high-elevation stonefly nymphs included in this study appear poised to cope with short-term warming in streams, although some populations are likely to be more resilient than others (e.g., those experiencing higher present-day maximum temperatures).

Given that we focused on larvae in our study, we cannot discern whether other life stages (e.g., eggs or adults) differ in their thermal tolerance. However, we focused on nymphs for three reasons. First, the larval stage is the key developmental period for aquatic insects when the majority of growth and other fitness-related processes (e.g., egg production) occur, and recent modeling suggests that impacts of climate change on species can be greatly *underestimated* when the larval stage is overlooked (Levy *et al.*, 2015). Second, aquatic insect larvae typically do most of their growing during summer months, when the threat of heat stress is greatest. And, third, egg hatching success in the laboratory was recently shown to be consistently high for mountain stream insects, regardless of rearing temperature, including one treatment (12°C) that exceeded the highest temperatures the focal midges naturally

experienced (Schütz & Füreder, 2019). Still, future experiments that link traits (e.g., thermal tolerance) to cellular processes across aquatic insect life cycles will greatly improve our understanding of how sensitivity at key life stages may influence long-term viability of populations.

559 Gene expression

High-elevation stoneflies residing in cold meltwater-fed streams exhibited a cellular stress response when faced with temperatures at their CT_{MAX} . The bulk of this response was comprised of upregulated genes and included well-known stress response genes (e.g., HSPs; Lindquist & Craig, 1988), lesser known but potentially stress-related genes in insects (e.g., APLP, Dassati et al., 2014), and many DEGs that could not be annotated (Fig. 4). Three HSPs (HSP70B2, HSP70A1, HSC70-5) were upregulated in nymphs experiencing thermal stress. With well-established roles as cellular protectants, preventing protein denaturation, binding aberrant proteins, and many other stress-induced measures, the upregulation of HSPs was unsurprising (King & MacRae, 2015). However, given the seemingly psychrophilic lifestyle of Lednia, where individuals develop at temperatures near 0°C, we expected to see widespread upregulation of HSPs in treatment nymphs. This was not the case. Rather, Lednia appeared to constitutively express many HSPs even at low temperature (Fig. S8). This suggests that, contrary to the prevailing view, exposure to low temperatures may actually stress Lednia (see additional discussion below). Similar patterns of constitutive HSP expression have been observed in other cold-tolerant species. For instance, larval caddisflies (Ebner et al., 2019), polar fish (Buckley et al., 2004), and Antarctic grass (Reyes et al., 2003) constitutively express many HSPs, presumably to chaperone proteins at low temperature. The potential for Lednia to be stressed by cold temperatures is further supported by the inability of L. tumana nymphs to survive contact with ice (Hotaling et al., 2020).

We also observed upregulation of genes with lipid-related functions. Lipids, particularly those in membranes, are extremely sensitive to changes in temperature (Hazel, 1995), and because of their role in key biological processes (e.g., solute diffusion), are important for thermal acclimation and adaptation (Muir *et al.*, 2016, Pernet *et al.*, 2007). Many ectotherms remodel their membrane lipids under thermal stress to maintain fluidity, typically through increases in saturated fatty acids at higher temperatures (Muir *et al.*, 2016). The process of maintaining membrane fluidity in the face of changing temperatures has been termed homeoviscous adaptation (HVA; Sinensky, 1974). The degree of saturation in cuticular lipids of stoneflies varies across life stages, and was speculated to be related to thermal tolerance,

particularly as it relates to the aquatic versus terrestrial environment (Armold *et al.*, 1969). To our knowledge, the presence of HVA has not been explicitly tested for in any aquatic insect. However, before upregulation of lipid-related genes can be presumed to underlie HVA or similar functional changes in high-elevation stoneflies, alternate explanations about the role of lipids in development must be considered (see below).

While heat stress is presumed to drive the expression patterns we observed, aquatic insects accelerate their development and emerge earlier at warmer temperatures (Nebeker, 1971, Rempel & Carter, 1987), sometimes even during CT_{MAX} experiments (A.A.S., personal observation). Thus, some expression changes may be the result of developmental shifts rather than thermal stress directly. When exposed to long-term temperatures above those they naturally experience (e.g., $\geq 15^{\circ}$ C for ~1 month), *L. tumana* nymphs rapidly develop compared to those held at colder temperatures. However, rapidly emerging adults can get stuck and die while shedding their cuticle (S.H. and A.A.S., unpublished data). Some of our results appear more reflective of this developmental shift than heat stress directly. For instance, it has been suggested that ABCA3 is upregulated during insect wing development (Broehan et al., 2013). In our study, high temperatures induced upregulation of ABCA3, perhaps indicating accelerated wing development in preparation for adult emergence. Lipid content in aquatic insects also varies seasonally and tends to peak before metamorphosis, an energetically demanding activity (Cavaletto & Gardner, 1999). In the caddisfly, Clisoronia magnifica, roughly 80% of the lipid reserves needed for metamorphosis were used during the last instar (Cargill et al., 1985), which was the same developmental timepoint of the stoneflies included in this study.

The upregulation of *HEXA* raises similar, albeit more complex, questions. Stoneflies possess two types of hexameric proteins in their hemolymph: hemocyanin (*HCD*), an oxygencarrying protein, and hexamerins, multi-functional proteins that likely evolved from hemocyanin (Amore *et al.*, 2011, Hagner-Holler *et al.*, 2007). We saw some evidence for the upregulation of *HCD* in heat-stressed stoneflies (Fig. S9), perhaps reflecting the physiological challenge of extracting the necessary oxygen from warmer water. However, while hexamerins likely evolved from *HCD*, their function shifted to storage proteins after they lost the ability to bind oxygen (Burmester, 2015, Markl & Winter, 1989). Present-day hexamerins primarily act as sources of amino acids during non-feeding periods (e.g., emergence, Haunerland, 1996) but may also play a role in cuticle formation (Burmester, 2015, Hagner-Holler *et al.*, 2007), a key stage in aquatic insect emergence. Thus, the upregulation of *HEXA* may be another cellular indicator of accelerated emergence to escape injurious conditions.

Mountain stream insects as cold stenotherms: reconsidering a historical paradigm

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

Aquatic insects living in chronically cold habitats have long been assumed to be coldadapted and therefore intolerant of warming (e.g., Giersch et al., 2017, Jacobsen et al., 2012). This assumption has rarely, if ever, been supported by direct measurements. A potential mismatch between theory and data is particularly important for imperiled species of conservation concern. Lednia tumana is federally endangered under the U.S. Endangered Species Act due to loss of cold, meltwater habitat (U.S. Fish & Wildlife Service, 2019). As glaciers disappear around the world (Huss & Hock, 2018), the demise of *Lednia* and similar species (e.g., Zapada sp.) is presumed to be merely a matter of time (Giersch et al., 2017). While this may be true, alternative hypotheses or threats beyond temperature, at least in the short term, should be considered. Chief among these is the guestion of realized niche breadth. Factors limiting niche breadth are diverse and may not be directly linked to temperature (e.g., interspecific competition or food availability, Connell, 1961, Roughgarden, 1974), although thermal sensitivity can certainly play a major role (Gilchrist, 1995). While terrestrial habitats exhibit a wide array of thermal variation, potentially allowing more thermal space for species with similar ecologies to exist in sympatry, the buffering capacity of flowing water may reduce the diversity of thermal niches in streams across similar spatial extents (Shah et al., 2020). Thus, if Lednia exhibit high short-term thermal tolerance, exceeding temperatures they naturally experience, and cellular signatures of stress even at low temperatures (e.g., constitutive expression of HSPs at 3°C), then we hypothesize that the distribution of Lednia and similar species reflects not a requirement for cold conditions but simply a greater tolerance for them versus other species. Rather than being an extreme thermal specialist, Lednia may have evolved a wide thermal niche allowing it to colonize environments free of limiting biological factors. Our hypothesis aligns with previous experimental evidence highlighting the potential for biotic factors beyond temperature to alter alpine stream ecosystems (Khamis et al., 2015) and large-scale ecological data showing the persistence of meltwater-associated biodiversity after deglaciation (Muhlfeld et al., 2020).

When considering climate change impacts on mountain stream biodiversity, it is important to distinguish between a species imperiled by rising temperatures, biotic factors, or seemingly by a combination of the two (e.g., Durance & Ormerod, 2010). At present, the prevailing theory is that a warmer water community will shift uphill and displace coldwater taxa as glaciers and perennial snowfields are lost (Hotaling *et al.*, 2017). This theory assumes that coldwater species (e.g., *Lednia*) will not be able to tolerate warmer conditions and will be extirpated while lower elevation species simultaneously track their preferred thermal conditions

upstream. However, if existing headwater communities can tolerate warmer conditions and their lower limits are set by other factors (e.g., competition), then climate change risks for mountain stream communities may be far less generalizable than currently assumed. For instance, if competition at lower elevations limits Lednia distributions then warming temperatures do not guarantee simplistic, binary outcomes of predicted presence or absence. Rather, the future of Lednia and similar taxa may depend upon whether their competitors shift uphill (rather than tolerate warmer conditions in situ), how resources may change, and additional factors that are difficult to predict (see Shah et al., 2020).

664 665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

656

657

658

659

660

661

662

663

Conclusion:

High-elevation stoneflies in the Rocky Mountains can tolerate higher temperatures in the short-term than those they experience in the wild. When challenged with heat stress, nymphs mount a cellular response that includes upregulation of classic stress response genes (e.g., HSPs) as well as genes that may be involved in developmental transitions from aquatic to terrestrial life stages. Aquatic insects, including L. tumana, develop more rapidly at stable warmer temperatures but also experience higher mortality during emergence (Nebeker, 1971; S.H. and A.A.S., unpublished data). Thus, the potential effects of sublethal warming on performance and other fitness-related traits warrant further investigation. However, in light of our results and similar studies (Ebner et al., 2019, Muhlfeld et al., 2020, Shah et al., 2017b), we challenge the premise that the distribution of mountain stream insects in cold, thermally stable habitats indicates specialized preferences for cold, or evolved physiologies that are only viable in the cold. Rather, the appearance of constitutive expression of many HSPs in Lednia as well as the inability of L. tumana nymphs to survive ice enclosure (Hotaling et al., 2020) indicate their contemporary thermal regimes may actually be injurious. Ultimately, if imperiled species like Lednia are not directly threatened by warming temperatures in the near term, then there is clear reason for greater optimism about their future. However, explicit investigations of their development under warmer regimes, rather than simplistic, short-term exposures, are needed in concert with new understanding of how other abiotic factors (e.g., oxygen supply), biotic interactions, and resource availability shape their distributions.

684 685 686

Acknowledgements:

- 687 We thank the University of Wyoming-National Park Service (UW-NPS) Research Station for 688 funding. S.H. and J.L.K. were supported by NSF awards #IOS-1557795 and #OPP-1906015. 689
 - A.A.S. was supported by an NSF Postdoctoral Research Fellowship in Biology (DBI-1807694).

690 M.E.D. was supported by NSF awards #DEB-1457659, #OIA-1826834, and #EF-1921562. 691 Harold Bergman, Winsor Lowe, Taylor Price, and Lydia Zeglin provided valuable logistic, 692 laboratory, or field assistance. The UW-NPS Research Station provided laboratory space to 693 perform the experiments and the Ghalambor Lab provided insect holding equipment. We 694 performed computational analyses on the Kamiak High Performance Computing Cluster at 695 Washington State University. We thank Christopher Kozakiewicz, Stephen Ormerod, Mark 696 Smithson, and three anonymous reviewers for comments that improved the manuscript. Any 697 use of trade, firm, or product names is for descriptive purposes only and does not imply 698 endorsement by the U.S. Government. 699 700 **Author contributions:** 701 S.H. and A.A.S. conceived of the study. S.H., A.A.S., K.L.M., L.M.T., J.J.G., D.S.F., M.E.D., and 702 J.L.K. collected the data. S.H. and A.A.S. analyzed the data and wrote the manuscript with input 703 from K.L.M., H.A.W., M.E.D., and J.L.K. All authors read and approved the final version. 704 705 Data sharing and accessibility: 706 The data that support the findings of this study are openly available in the supporting 707 information of this article, the NCBI SRA under BioProject #PRJNA587097, and GitHub 708 (https://github.com/scotthotaling/Lednia RNAseg). 709 710 References: 711 Amore V, Gaetani B, Puig MA, Fochetti R (2011) New data on the presence of hemocyanin in 712 Plecoptera: Recomposing a puzzle. J Insect Sci. 11, 153. 713 https://doi.org/10.1673/031.011.15301 714 Andrews RM (1998) Geographic variation in field body temperature of Sceloporus lizards. 715 Journal of Thermal Biology, 23, 329-334. https://doi.org/10.1894/PAS-17.1 716 Andrews S (2010) FastQC: a quality control tool for high throughput sequence data. Babraham 717 Bioinformatics, Babraham Institute, Cambridge, United Kingdom. 718 Angilletta Jr MJ, Wilson RS, Niehaus AC, Sears MW, Navas CA, Ribeiro PL (2007) Urban 719 physiology: city ants possess high heat tolerance. PLoS One, 2, e258. 720 https://doi.org/10.1371/journal.pone.0000258 721 Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends in Ecology & 722 Evolution, **22**, 42-47. https://doi.org/10.1016/j.tree.2006.09.010

723	Armold M, Blomquist G, Jackson L (1969) Cuticular lipids of insects—III. The surface lipids of
724	the aquatic and terrestrial life forms of the big stonefly, Pteronarcys californica Newport.
725	Comparative Biochemistry Physiology, 31, 685-692. https://doi.org/10.1016/0010-
726	406X(69)92068-4
727	Bálint M, Domisch S, Engelhardt C et al. (2011) Cryptic biodiversity loss linked to global climate
728	change. Nature Climate Change, 1, 313. https://doi.org/10.1038/nclimate1191
729	Beissinger M, Buchner J (1998) How chaperones fold proteins. Journal of Biological Chemistry,
730	379 , 245-259.
731	Boeckmann B, Bairoch A, Apweiler R et al. (2003) The SWISS-PROT protein knowledgebase
732	and its supplement TrEMBL in 2003. Nucleic Acids Res, 31, 365-370.
733	https://dx.doi.org/10.1093/nar/gkg095
734	Brattstrom BH (1968) Thermal acclimation in anuran amphibians as a function of latitude and
735	altitude. J Comparative Biochemistry & Physiology, 24, 93-111.
736	https://doi.org/10.1016/0010-406X(68)90961-4
737	Broehan G, Kroeger T, Lorenzen M, Merzendorfer H (2013) Functional analysis of the ATP-
738	binding cassette (ABC) transporter gene family of Tribolium castaneum. BMC Genomics
739	14 , 6. <u>https://doi.org/10.1186/1471-2164-14-6</u>
740	Buckley BA, Place SP, Hofmann GE (2004) Regulation of heat shock genes in isolated
741	hepatocytes from an Antarctic fish, Trematomus bernacchii. Journal of Experimental
742	Biology, 207 , 3649-3656. https://doi.org/10.1242/jeb.01219
743	Burmester T (2015) Expression and evolution of hexamerins from the tobacco hornworm,
744	Manduca sexta, and other Lepidoptera. Insect Biochemistry and Molecular Biology, 62,
745	226-234. https://doi.org/10.1016/j.ibmb.2014.11.009
746	Bushnell B (2014) BBTools software package.
747	Cargill AS, Cummins KW, Hanson BJ, Lowry RR (1985) The role of lipids, fungi, and
748	temperature in the nutrition of a shredder caddisfly, Clistoronia magnifica. Freshwater
749	Invertebrate Biology, 4 , 64-78. https://doi.org/10.2307/1467178
750	Cavaletto JF, Gardner WS (1999) Seasonal dynamics of lipids in freshwater benthic
751	invertebrates. In: Lipids in freshwater ecosystems. Springer.
752	Chown SL, Hoffmann AA, Kristensen TN, Angilletta Jr MJ, Stenseth NC, Pertoldi C (2010)
753	Adapting to climate change: a perspective from evolutionary physiology. Climate
754	Research 43 3-15 https://doi.org/10.3354/cr00879

755	Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M (2005) Blast2GO: a universa
756	tool for annotation, visualization and analysis in functional genomics research.
757	Bioinformatics, 21, 3674-3676. https://doi.org/10.1093/bioinformatics/bti610
758	Connell JH (1961) The influence of interspecific competition and other factors on the distribution
759	of the barnacle Chthamalus stellatus. Ecology, 42, 710-723.
760	https://doi.org/10.2307/1933500
761	Dassati S, Waldner A, Schweigreiter R (2014) Apolipoprotein D takes center stage in the stress
762	response of the aging and degenerative brain. Neurobiol Aging, 35, 1632-1642.
763	https://dx.doi.org/10.1016/j.neurobiolaging.2014.01.148
764	Durance I, Ormerod SJ (2010) Evidence for the role of climate in the local extinction of a cool-
765	water triclad. Journal of the North American Benthological Society, 29, 1367-1378.
766	https://doi.org/10.1899/09-159.1
767	Ebner JN, Ritz D, Von Fumetti S (2019) Comparative proteomics of stenotopic caddisfly
768	Crunoecia irrorata identifies acclimation strategies to warming. Mol Ecol, 28, 4453-4469.
769	https://doi.org/10.1111/mec.15225
770	Ewels P, Magnusson M, Lundin S, Käller M (2016) MultiQC: summarize analysis results for
771	multiple tools and samples in a single report. Bioinformatics, 32, 3047-3048.
772	https://doi.org/10.1093/bioinformatics/btw354
773	Feder ME, Lynch JF (1982) Effects of latitude, season, elevation, and microhabitat on field body
774	temperatures of neotropical and temperate zone salamanders. Ecology, 63, 1657-1664.
775	https://doi.org/10.2307/1940107
776	Finn DS, Khamis K, Milner AM (2013) Loss of small glaciers will diminish beta diversity in
777	Pyrenean streams at two levels of biological organization. Global Ecology and
778	Biogeography, 22 , 40-51. https://doi.org/10.1111/j.1466-8238.2012.00766.x
779	Gamboa M, Tsuchiya MC, Matsumoto S, Iwata H, Watanabe K (2017) Differences in protein
780	expression among five species of stream stonefly (Plecoptera) along a latitudinal
781	gradient in Japan. Archives of Insect Biochemistry & Physiology, 96, e21422.
782	https://doi.org/10.1002/arch.21422
783	Giersch JJ, Hotaling S, Kovach RP, Jones LA, Muhlfeld CC (2017) Climate-induced glacier and
784	snow loss imperils alpine stream insects. Global Change Biology, 23, 2577-2589.
785	https://doi.org/10.1111/gcb.13565
786	Giersch JJ, Jordan S, Luikart G, Jones LA, Hauer FR, Muhlfeld CC (2015) Climate-induced
787	range contraction of a rare alpine aquatic invertebrate. Freshwater Science, 34, 53-65.
788	https://doi.org/10.1086/679490

789	Gilchrist GW (1995) Specialists and generalists in changing environments. I. Fitness landscapes
790	of thermal sensitivity. Am Nat, 146, 252-270.
791	Gutiérrez-Pesquera LM, Tejedo M, Olalla-Tárraga M, Duarte H, Nicieza A, Solé M (2016)
792	Testing the climate variability hypothesis in thermal tolerance limits of tropical and
793	temperate tadpoles. Journal of Biogeography, 43, 1166-1178.
794	https://doi.org/10.1111/jbi.12700
795	Hagner-Holler S, Pick C, Girgenrath S, Marden JH, Burmester T (2007) Diversity of stonefly
796	hexamerins and implication for the evolution of insect storage proteins. Insect
797	Biochemistry and Molecular Biology, 37, 1064-1074.
798	https://doi.org/10.1016/j.ibmb.2007.06.001
799	Haunerland N (1996) Insect storage proteins: gene families and receptors. Insect Biochemistry
800	and Molecular Biology, 26 , 755-765. https://doi.org/10.1016/S0965-1748(96)00035-5
801	Hazel JR (1995) Thermal adaptation in biological membranes: is homeoviscous adaptation the
802	explanation? Annual Review of Physiology, 57, 19-42.
803	https://doi.org/10.1146/annurev.ph.57.030195.000315
804	Healy TM, Brennan RS, Whitehead A, Schulte PM (2018) Tolerance traits related to climate
805	change resilience are independent and polygenic. Global Change Biology, 24, 5348-
806	5360. https://doi.org/10.1111/gcb.14386
807	Hotaling S, Finn DS, Joseph Giersch J, Weisrock DW, Jacobsen D (2017) Climate change and
808	alpine stream biology: progress, challenges, and opportunities for the future. Biological
809	Reviews, 92, 2024-2045. https://doi.org/10.1111/brv.12319
810	Hotaling S, Foley ME, Zeglin LH et al. (2019a) Microbial assemblages reflect environmental
811	heterogeneity in alpine streams. Global Change Biology, 25 , 2576-2590.
812	https://doi.org/10.1111/gcb.14683
813	Hotaling S, Giersch JJ, Finn DS et al. (2019b) Congruent population genetic structure but
814	differing depths of divergence for three alpine stoneflies with similar ecology, geographic
815	distributions, and climate change threats. Freshwater Biology, 64 , 335-347.
816	https://doi.org/10.1111/fwb.13223
817	Hotaling S, Kelley JL, Weisrock DW (2019c) Nuclear and mitochondrial genomic resources for
818	the meltwater stonefly (Plecoptera: Nemouridae), Lednia tumana (Ricker, 1952). Aquatic
819	Insects, 40 , 362-369. https://doi.org/10.1080/01650424.2019.1639764
820	Hotaling S, Shah AA, Dillon ME, Giersch JJ, Tronstad LM, Finn DS, Kelley JL (2020) Cold
821	tolerance of mountain stoneflies (Plecoptera: Nemouridae) from the high Rocky
822	Mountains bioRxiv https://doi.org/10.1101/2020.06.25.171934

323	Huey RB, Webster TP (1976) Thermal blology of Anolis lizards in a complex fauna: the
824	Christatellus group on Puerto Rico. Ecology, 57, 985-994.
825	https://doi.org/10.2307/1941063
826	Huss M, Hock R (2018) Global-scale hydrological response to future glacier mass loss. Nature
827	Climate Change, 8, 135-140. https://doi.org/10.1038/s41558-017-0049-x
828	Isaak DJ, Young MK, Nagel DE, Horan DL, Groce MC (2015) The cold-water climate shield:
829	delineating refugia for preserving salmonid fishes through the 21st century. Global
830	Change Biology, 21, 2540-2553. https://doi.org/10.1111/gcb.12879
831	Jacobsen D (2020) The dilemma of altitudinal shifts: caught between high temperature and low
832	oxygen. Frontiers in Ecology and the Environment. https://doi.org/10.1002/fee.2161
833	Jacobsen D, Milner AM, Brown LE, Dangles O (2012) Biodiversity under threat in glacier-fed
834	river systems. Nature Climate Change, 2, 361-364. https://doi.org/10.1038/nclimate1435
835	Jones LA, Muhlfeld CC, Marshall LA, Mcglynn BL, Kershner JL (2014) Estimating Thermal
836	Regimes of Bull Trout and Assessing the Potential Effects of Climate Warming on
837	Critical Habitats. River Research and Applications, 30, 204-216.
838	https://doi.org/10.1002/rra.2638
839	Jordan S, Giersch JJ, Muhlfeld CC, Hotaling S, Fanning L, Tappenbeck TH, Luikart G (2016)
840	Loss of genetic diversity and increased subdivision in an endemic alpine stonefly
841	threatened by climate change. PLoS One, 11 , e0157386.
842	https://doi.org/10.1371/journal.pone.0157386
843	Jørgensen LB, Malte H, Overgaard J (2019) How to assess Drosophila heat tolerance: unifying
844	static and dynamic tolerance assays to predict heat distribution limits. Functional
845	Ecology, 33, 629-642. https://doi.org/10.1111/1365-2435.13279
846	Kalvari I, Argasinska J, Quinones-Olvera N et al. (2017) Rfam 13.0: shifting to a genome-centric
847	resource for non-coding RNA families. Nucleic Acids Res, 46, D335-D342.
848	https://doi.org/10.1093/nar/gkx1038
849	Kearney M, Shine R, Porter WP (2009) The potential for behavioral thermoregulation to buffer
850	"cold-blooded" animals against climate warming. Proceedings of the National Academy
851	of Sciences, 106 , 3835-3840. https://doi.org/10.1073/pnas.0808913106
852	Khamis K, Brown LE, Hannah DM, Milner AM (2015) Experimental evidence that predator range
853	expansion modifies alpine stream community structure. Freshwater Science, 34 , 66-80.
854	https://doi.org/10.1086/679484
855	King AM, Macrae TH (2015) Insect heat shock proteins during stress and diapause. Annual
856	Review of Entomology, 60 , 59-75. https://doi.org/10.1146/annurev-ento-011613-162107

357	Krueger F (2015) Trim Galore!: a wrapper tool around Cutadapt and FastQC to consistently
858	apply quality and adapter trimming to FastQ files. Babraham Bioinformatics, Cambridge,
859	United Kingdom.
360	Levy O, Buckley LB, Keitt TH, Smith CD, Boateng KO, Kumar DS, Angilletta Jr MJ (2015)
361	Resolving the life cycle alters expected impacts of climate change. Proceedings of the
362	Royal Society B: Biological Sciences, 282, 20150837.
363	https://doi.org/10.1098/rspb.2015.0837
864	Li H, Handsaker B, Wysoker A et al. (2009) The sequence alignment/map format and SAMtools.
865	Bioinformatics, 25, 2078-2079. https://doi.org/10.1093/bioinformatics/btp352
866	Lindquist S, Craig E (1988) The heat-shock proteins. Annual Review of Genetics, 22, 631-677.
867	https://doi.org/10.1146/annurev.ge.22.120188.003215
868	Lister BC, Garcia A (2018) Climate-driven declines in arthropod abundance restructure a
869	rainforest food web. Proceedings of the National Academy of Sciences, 115, E10397-
870	E10406. https://doi.org/10.1073/pnas.1722477115
871	Lun AT, Chen Y, Smyth GK (2016) It's DE-licious: a recipe for differential expression analyses
872	of RNA-seq experiments using quasi-likelihood methods in edgeR. In: Statistical
873	Genomics. Springer.
874	Markl J, Winter S (1989) Subunit-specific monoclonal antibodies to tarantula hemocyanin, and a
875	common epitope shared with calliphorin. Journal of Comparative Physiology B, 159,
876	139-151. https://doi.org/10.1007/BF00691734
877	Mccarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of multifactor RNA-Seq
878	experiments with respect to biological variation. Nucleic Acids Res, 40 , 4288-4297.
879	https://dx.doi.org/10.109/nar/gks042
880	Muhlfeld CC, Cline TJ, Giersch JJ, Peitzsch E, Florentine C, Jacobsen D, Hotaling S (2020)
881	Specialized meltwater biodiversity persists desite widespread deglaciation. Proceedings
882	of the National Academy of Science, 117 , 12208-12214.
883	https://doi.org/10.1073/pnas.2001697117
884	Muir AP, Nunes FL, Dubois SF, Pernet F (2016) Lipid remodelling in the reef-building
885	honeycomb worm, Sabellaria alveolata, reflects acclimation and local adaptation to
886	temperature. Sci Rep, 6 , 35669. https://doi.org/10.1038/srep35669
887	Nebeker AV (1971) Effect of water temperature on nymphal feeding rate, emergence, and adult
888	longevity of the stonefly Pteronarcys dorsata. Journal of the Kansas Entomological
889	Society 44 21-26

890	Niedrist GH, Füreder L (2020) Real-time warming of alpine streams: (re)defining invertebrates'
891	temperature preferences. River Research and Applications.
892	https://doi.org/10.1002/rra.3638
893	Oyen KJ, Giri S, Dillon ME (2016) Altitudinal variation in bumble bee (Bombus) critical thermal
894	limits. Journal of Thermal Biology, 59 , 52-57.
895	https://doi.org/10.1016/j.jtherbio.2016.04.015
896	Peckarsky BL, Mcintosh AR, Horn SC et al. (2014) Characterizing disturbance regimes of
897	mountain streams. Freshwater Science, 33, 716-730. https://doi.org/10.1086/677215
898	Pernet F, Tremblay R, Comeau L, Guderley H (2007) Temperature adaptation in two bivalve
899	species from different thermal habitats: energetics and remodelling of membrane lipids.
900	Journal of Experimental Biology, 210 , 2999-3014. https://doi.org/10.1242/jeb.006007
901	Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL (2015) StringTie
902	enables improved reconstruction of a transcriptome from RNA-seq reads. Nature
903	Biotechnology, 33, 290-295. https://doi.org/10.1038/nbt.3122
904	Polato NR, Gill BA, Shah AA et al. (2018) Narrow thermal tolerance and low dispersal drive
905	higher speciation in tropical mountains. Proceedings of the National Academy of
906	Sciences, 115, 12471-12476. https://doi.org/10.1073/pnas.1809326115
907	Pörtner HO, Knust R (2007) Climate change affects marine fishes through the oxygen limitation
908	of thermal tolerance. Science, 315, 95-97. https://doi.org/10.1126/science.1135471
909	Pörtner HO, Peck L, Somero G (2007) Thermal limits and adaptation in marine Antarctic
910	ectotherms: an integrative view. Philos Trans R Soc Lond B Biol Sci, 362, 2233-2258.
911	https://dx.doi.org/10.1098/rstb.2006.1947
912	R Core Team (2013) R: A language and environment for statistical computing.
913	Rempel RS, Carter JC (1987) Temperature influences on adult size, development, and
914	reproductive potential of aquatic Diptera. Canadian Journal of Fisheries and Aquatic
915	Sciences, 44, 1743-1752. https://doi.org/10.1139/f87-213
916	Reyes MA, Corcuera LJ, Cardemil L (2003) Accumulation of HSP70 in Deschampsia antarctical
917	Desv. leaves under thermal stress. Antarctic Science, 15, 345-352.
918	https://doi.org/10.1017/S0954102003001366
919	Rezende EL, Tejedo M, Santos M (2011) Estimating the adaptive potential of critical thermal
920	limits: methodological problems and evolutionary implications. Functional Ecology, 25,
921	111-121. https://doi.org/10.1111/j.1365-2435.2010.01778.x

922	Risso D, Ngai J, Speed TP, Dudoit S (2014) Normalization of RNA-seq data using factor
923	analysis of control genes or samples. Nature Biotechnology, 32, 896.
924	https://doi.org/10.1038/nbt.2931
925	Robinson MD, Mccarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential
926	expression analysis of digital gene expression data. Bioinformatics, 26, 139-140.
927	https://doi.org/10.1093/bioinformatics/btp616
928	Roughgarden J (1974) Niche width: biogeographic patterns among Anolis lizard populations.
929	Am Nat, 108 , 429-442.
930	Sánchez-Bayo F, Wyckhuys KA (2019) Worldwide decline of the entomofauna: A review of its
931	drivers. Biological Conservation, 232, 8-27. https://doi.org/10.1016/j.biocon.2019.01.020
932	Schütz SA, Füreder L (2019) Egg development and hatching success in alpine chironomids.
933	Freshwater Biology, 64, 685-696. https://doi.org/10.1111/fwb.13254
934	Seebacher F, White CR, Franklin CE (2015) Physiological plasticity increases resilience of
935	ectothermic animals to climate change. Nature Climate Change, 5, 61.
936	https://doi.org/10.1038/nclimate2457
937	Shah AA, Dillon ME, Hotaling S, Woods HA (2020) High elevation insect communities face
938	shifting ecological and evolutionary landscapes. Current Opinion in Insect Science, 41,
939	1-6. https://doi.org/10.1016/j.cois.2020.04.002
940	Shah AA, Funk WC, Ghalambor CK (2017a) Thermal acclimation ability varies in temperate and
941	tropical aquatic insects from different elevations. J Integrative Comparative Biology, 57,
942	977-987. https://doi.org/10.1093/icb/icx101
943	Shah AA, Gill BA, Encalada AC et al. (2017b) Climate variability predicts thermal limits of
944	aquatic insects across elevation and latitude. Functional Ecology, 31, 2118-2127.
945	https://doi.org/10.1111/1365-2435.12906
946	Shah AA, Woods HA, Havird JC et al. (2019) Temperature-dependence of metabolic rate in
947	tropical and temperate aquatic insects: support for the Climate Variability Hypothesis in
948	mayflies but not stoneflies. bioRxiv. https://doi.org/10.1101/2019.12.25.888578
949	Sims D, Ilott NE, Sansom SN et al. (2014) CGAT: computational genomics analysis toolkit.
950	Bioinformatics, 30, 1290-1291. https://doi.org/10.1093/bioinformatics/btt756
951	Sinensky M (1974) Homeoviscous adaptation—a homeostatic process that regulates the
952	viscosity of membrane lipids in Escherichia coli. Proceedings of the National Academy of
953	Sciences, 71, 522-525. https://dx.doi.org/10.1073/pnas.71.2.522

954	Terblanche JS, Hoffmann AA, Mitchell KA, Rako L, Le Roux PC, Chown SL (2011) Ecologically
955	relevant measures of tolerance to potentially lethal temperatures. J Exp Biol, 214, 3713-
956	3725. https://doi.org/10.1242/jeb.061283
957	Trapnell C, Roberts A, Goff L et al. (2012) Differential gene and transcript expression analysis of
958	RNA-seq experiments with TopHat and Cufflinks. Nature Protocols, 7, 562.
959	https://doi.org/10.1038/nprot.2012.016
960	Treanor HB, Giersch JJ, Kappenman KM, Muhlfeld CC, Webb MAH (2013) Thermal tolerance of
961	meltwater stonefly Lednia tumana nymphs from an alpine stream in Waterton-Glacier
962	International Peace Park, Montana, USA. Freshwater Science, 32, 597-605.
963	https://doi.org/10.1899/12-100.1
964	Tronstad LM, Hotaling S, Giersch JJ, Wilmot OJ, Finn DS (In press) Headwater streams fed by
965	subterranean ice: potential climate refugia for mountain communities? Western North
966	American Naturalist.
967	U.S. Fish & Wildlife Service (2019) Endangered and Threatened Wildlife and Plants:
968	Threatened Species Status for Meltwater Lednian Stonefly and Western Glacier Stonefly
969	with a Section 4(d) Rule. Federal Register, 84, 64210-64227.
970	Urban MC, Bocedi G, Hendry AP et al. (2016) Improving the forecast for biodiversity under
971	climate change. Science, 353, aad8466. https://doi.org/10.1126/science.aad8466
972	Verberk WC, Durance I, Vaughan IP, Ormerod SJ (2016a) Field and laboratory studies reveal
973	interacting effects of stream oxygenation and warming on aquatic ectotherms. Global
974	Change Biology, 22 , 1769-1778. https://doi.org/10.1111/gcb.13240
975	Verberk WC, Overgaard J, Ern R, Bayley M, Wang T, Boardman L, Terblanche JS (2016b)
976	Does oxygen limit thermal tolerance in arthropods? A critical review of current evidence.
977	Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology,
978	192 , 64-78. <u>https://doi.org/10.1016/j.cbpa.2015.10.020</u>
979	Ward J (1994) Ecology of alpine streams. Freshwater Biology, 32, 277-294.
980	https://doi.org/10.1111/j.1365-2427.1994.tb01126.x