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physiology and gene expression

Scott Hotaling™*, Alisha A. Shah?*, Kerry L. McGowan', Lusha M. Tronstad?, J. Joseph
Giersch?, Debra S. Finn®, H. Arthur Woods?, Michael E. Dillon®?, and Joanna L. Kelley'?

Affiliations:

' School of Biological Sciences, Washington State University, Pullman, WA, USA

2 Division of Biological Sciences, University of Montana, Missoula, MT, USA

® Wyoming Natural Diversity Database, University of Wyoming, Laramie, WY, USA

4 U.S. Geological Survey, Northern Rocky Mountain Science Center, West Glacier, MT, USA
® Department of Biology, Missouri State University, Springfield, MO, USA

® Department of Zoology and Physiology and Program in Ecology, University of Wyoming,
Laramie, WY, USA

* Contributed equally

@ Co-supervised research

Correspondence:

Scott Hotaling, School of Biological Sciences, Washington State University, Pullman, WA,
99164, USA; Email: scott.hotaling@wsu.edu; Phone: (828) 507-9950; ORCID: 0000-0002-5965-
0986

Alisha A. Shah, Division of Biological Sciences, University of Montana, Missoula, MT, 59812,
USA, Email: alisha.shah@mso.umt.edu; Phone: (512) 694-7532; ORCID: 0000-0002-8454-
7905

Running title: Thermal tolerance of mountain stoneflies

Keywords: critical thermal maximum; RNAseq; Plecoptera; alpine streams; thermal tolerance;

climate change; Lednia tumana; endangered species; glacier biology

Abstract:
Rapid glacier recession is altering the physical conditions of headwater streams. Stream

temperatures are predicted to rise and become increasingly variable, putting entire meltwater-
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associated biological communities at risk of extinction. Thus, there is a pressing need to
understand how thermal stress affects mountain stream insects, particularly where glaciers are
likely to vanish on contemporary timescales. In this study, we tested the critical thermal
maximum (CTwmax) of stonefly nymphs representing multiple species and a range of thermal
regimes in the high Rocky Mountains, USA. We then collected RNA-sequencing data to assess
how organismal thermal stress translated to the cellular level. Our focal species included the
meltwater stonefly, Lednia tumana, which was recently listed under the U.S. Endangered
Species Act due to climate-induced habitat loss. For all study species, critical thermal maxima
(CTwuax > 20°C) far exceeded the stream temperatures mountain stoneflies experience (< 10°C).
Moreover, while evidence for a cellular stress response was present, we also observed
constitutive expression of genes encoding proteins known to underlie thermal stress (i.e., heat
shock proteins) even at low temperatures that reflected natural conditions. We show that high-
elevation aquatic insects may not be physiologically threatened by short-term exposure to warm
temperatures and that longer term physiological responses or biotic factors (e.g., competition)

may better explain their extreme distributions.

Introduction:

Predicting how species will respond to climate change is a central goal of contemporary
ecology (Araujo & New, 2007, Urban et al., 2016). This goal is difficult to achieve, however,
because at a minimum it requires knowledge of extant distributions, physiological limits, and
future conditions in relevant habitats. Mountain streams around the world are being transformed
by climate change, primarily through rapid recession of glaciers and perennial snowfields
(Hotaling et al., 2017). Warmer air temperatures are predicted to cause loss of permanent snow
and ice, drive generally higher, more variable stream temperatures, and eventually lower flows
in meltwater-dominated catchments (Huss & Hock, 2018, Jones et al., 2014). Rapid
contemporary warming has already been observed in the European Alps, with streams warming
at a mean rate of 2.5°C per decade (Niedrist & Flreder, 2020). Expected ecological responses
include a reduction of biodiversity in headwater streams across multiple levels of biological
organization and taxonomic groups (Balint et al., 2011, Finn et al., 2013, Giersch et al., 2017,
Hotaling et al., 2019a, Jordan et al., 2016). Considerable attention has been devoted to
potential losses of aquatic insect diversity (e.g., Jacobsen et al., 2012). However, the specific
mechanisms underlying physiological limits in alpine stream insects remain unknown. This
knowledge gap is particularly important in light of the widely held assumption that aquatic

insects living at high-elevations are cold-adapted stenotherms that will not tolerate warming
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streams (Giersch et al., 2015, Jacobsen et al., 2012). Recent evidence that the thermal maxima
of high-elevation stream taxa can exceed maximum water temperatures (e.g., Shah et al.,
2017b), that spring-dwelling cold stenotherms exhibit little variability in heat shock protein (HSP)
expression across temperatures (e.g., Ebner et al., 2019), and that meltwater-associated
invertebrate communities persist despite widespread deglaciation (Muhlfeld et al., 2020) all
challenge this assumption, raising new questions about whether climate warming directly
threatens headwater biodiversity. To better understand the degree to which headwater species
can tolerate warming, links between relevant traits at the organismal (thermal stress) and
cellular (e.g., gene expression) level are needed.

As ectotherms, insect body temperatures depend strongly on their external environment.
Insects are therefore threatened by rising global temperatures, and recent studies have
documented declines in their diversity (Lister & Garcia, 2018, Sanchez-Bayo & Wyckhuys,
2019). The effects of temperature on ectotherm performance and survival, however, are
complex. Ectotherms may respond to stressful temperatures through plasticity or acclimatization
(Seebacher et al., 2015), the evolution of higher thermal limits (Angilletta Jr et al., 2007), or
behavioral thermoregulation (Kearney et al., 2009). Temperature can also affect organismal
distributions indirectly. For instance, changing temperatures can alter ratios of oxygen supply
and demand (Portner et al., 2007, Verberk et al., 2016b). Extreme temperatures can also
provide natural buffering against invasions by competitors or predators (Isaak et al., 2015).
Thus, temperature likely shapes both the evolution of aquatic insect physiology as well as local
networks of biotic interactions (Shah et al., 2020). To understand the relationship between
temperature and ectotherm tolerance, trait-based approaches (e.g., measuring upper thermal
tolerance) can be informative. However, a focus on physiological traits at the whole-organism
level may overlook other key aspects of a species’ potential for response, perhaps limiting
predictions of whether species can evolve in response to changing thermal regimes (Chown et
al., 2010) or tolerate them in situ via plasticity. Thus, there is a need to connect traits from
cellular to organismal levels and consider findings holistically.

Due to the high heat capacity of water, stream temperatures are less thermally variable
than air. However, a surprising amount of variation still exists in streams due to many factors,
including latitude, elevation, flow, and canopy cover (Shah et al., 2017b). At high-elevations, an
additional factor—the primary source of water input—plays an outsized role in dictating thermal
variation downstream (Hotaling et al., 2017). High-elevation freshwaters are fed by four major
hydrological sources: glaciers, snowfields, groundwater aquifers, and subterranean ice (Hotaling

et al., 2019a, Tronstad et al., In press, Ward, 1994). Glaciers and subterranean ice (e.g., rock
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glaciers) promote near constant, extremely cold conditions (i.e., less than 3°C year-round)
whereas snowmelt- and groundwater-fed streams are warmer and often more thermally variable
(Hotaling et al., 2019a, Tronstad et al., In press). However, these general thermal “rules” apply
only in close proximity to a primary source. Patterns can change dramatically downstream as
flows are altered (e.g., pooling into a high-elevation pond) and sources mix (e.g., a warmer
groundwater-fed stream flows into a glacier-fed stream). Resident aquatic taxa therefore
experience vastly variable thermal conditions both within and across their life stages. With
extensive thermal variation over small geographic scales and abundant, putatively cold-adapted
resident invertebrates, high-elevation waters provide an ideal, natural model for testing
hypotheses of physiological limits in a framework relevant to global change predictions.

In this study, we investigated gene expression as a function of tolerance to heat stress
for stonefly nymphs collected from high-elevation streams in the northern Rocky Mountains. We
focused on three taxa—Lednia tetonica, Lednia tumana, and Zapada sp.—all of which have
habitat distributions closely aligned with cold, meltwater stream conditions. Lednia tumana was
recently listed under the U.S. Endangered Species Act due to climate-induced habitat loss (U.S.
Fish & Wildlife Service, 2019). To test tolerance to heat stress at the organism level, we
measured the critical thermal maximum (CTwmax), a widely used metric for comparing thermal
tolerance among animals (Healy et al., 2018). We specifically addressed three overarching
questions: (1) Does natural thermal variation in stream temperature predict mountain stonefly
CTwmax? (2) Do high-elevation stoneflies mount cellular stress responses when subjected to heat
stress? And, if so, which genes are involved? (3) Is there a link between habitat conditions,
organismal limits, and underlying gene expression? Following Shah et al. (2017b), we expected
nymphs from streams with higher maximum temperatures to have correspondingly higher
values of CTuax. We also expected to observe a signal of cellular stress with genes typical of
heat stress responses (e.g., HSPs) upregulated. Finally, we expected nymphs that naturally
experience higher temperatures to exhibit a correspondingly muted cellular stress response.
Collectively, our study sheds new light on thermal stress in high-elevation stream insects and
contributes new perspective to a pressing challenge for the field: clarifying whether species
living in cold headwaters are as sensitive to warming temperatures as their extreme distributions

suggest.
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Table 1. Environmental variation, mountain range, and habitat types included in this study.
GNP: Glacier National Park, Montana. GRTE: Teton Range, Wyoming. Tuax: the maximum
temperature observed, Trance: the difference between the maximum and minimum
temperatures observed, and Twmean: the mean temperature observed. All temperature data are in
degrees Celsius. SPC: specific conductivity (uS cm™), PI: Pfankuch Index, a measure of stream
channel stability (higher values correspond to a less stable streambed). Temperatures were
measured on a representative day in late July 2019 for all sites except Lunch Creek (data from
late July 2014). See Table S1 for specific dates of temperature data collection.

Population Range Taxa Type Twax  Trange  Twmean  SPC  PI
Lunch Creek GNP L. tumana Snowmelt 9.9 5.7 6.2 40.7 25
Wind Cave GRTE Zapadasp. Icy seep 3.2 0.5 2.8 1011 18
Mt. St. John GRTE L. tetonica Icy seep 4.6 2.2 3.0 250 34

Cloudveil Dome GRTE L. tetonica Glacier-fed 2.1 0.3 2.0 4.1 32
Skillet Glacier GRTE L. tetonica Glacier-fed 7.1 4.4 4.4 3.1 34
Tetonica Pond® GRTE L. tetonica Pond 4.9 2.3 3.1 29.3 n/a

@Named by the authors. Does not reflect official conventions.

Materials and Methods:
Specimen collection

During the summer of 2018 (29 July-6 August), we collected late-instar stonefly nymphs
representing at least three species (Lednia tetonica, Lednia tumana, and Zapada sp.; Family
Nemouridae) from six streams in Glacier National Park (GNP), Montana, and Grand Teton
National Park and the surrounding region (GRTE), Wyoming, USA (Fig. 1; Tables 1, S1). We
selected a later summer timepoint because it represents the warmest stream temperatures
nymphs experience before emerging in August. Also, given the acclimation capacity of CTuax in
temperate aquatic insects (Shah et al., 2017a), we measured CTuax during this period because
it is also when we expected CTwmax to be highest. Specimens were collected by turning over
rocks and gently transferring nymphs to a small tray filled with streamwater. Nymphs were
brought to the laboratory as quickly as possible in 1 L Whirl-Pak bags (Nasco) filled with
streamwater surrounded by snow or ice. Species were identified based on morphological
variation following previous studies (e.g., Giersch et al., 2017). Unlike Lednia, multiple Zapada
species can be present in the same stream and previous genetic data has indicated the
potential for cryptic diversity in the group (Hotaling et al., 2019b). Therefore, we cannot exclude
the possibility of more than one species of Zapada in the Wind Cave population and thus only

identified Zapada to genus (Table 1).



162
163

164
165
166
167
168
169
170

National
Park

(a)__‘ Glacier 49°N

. Pond
@ Glacier-fed stream
O Snowmelt-fed stream
m Grand Q© oy sesp
Teton Park bound:
0 100 200 Km National —
~———
Park

I NN N NN NN SN N N
8 10 12 14 16 18 20 22 24

Time of day (hours)

Figure 1. (a) The region of the Rocky Mountains where this study was conducted including (b)
Glacier National Park, MT and (c) Grand Teton National Park, WY and the surrounding region.
(d) A thermograph of hourly temperatures for each study site in late July. Site acronyms (top to
bottom): Lunch Creek (LC), Skillet Glacier (SG), Tetonica Pond (TP), Mt. St. John (MSJ), Wind
Cave (WC), and Cloudveil Dome (CD). A complete 24-hour thermograph is not shown for MSJ
and TP because only 21 and 19 hours of continuous data were recorded for those sites,
respectively. More extensive thermal data are provided in Fig. S1.
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Environmental data and aquatic habitat classifications

For each study stream, we measured temperature by placing in situ HOBO loggers
(Temperature Pro v2, Onset Computer Corporation) that recorded temperature hourly. Lengths
of logger deployments ranged from less than 24 hours (Mt. St. John, Tetonica Pond) to several
days (Cloudveil Dome) or a full year (Lunch Creek, Skillet Glacier, Wind Cave). Using these
data, we constructed a one-day thermograph for each site based on a representative day in late
July (exact dates provided in Table S1) and estimated the highest (Tuax), range (Trance), and
mean (Tvean) temperatures for that day. For two sites with more than one year of temperature
data (Wind Cave: 2016, 2019; Lunch Creek: 2012, 2013, 2014), we compared multiple complete
thermographs for July to ensure that our results were not biased by an unusual year- or day-
specific pattern (Fig. S1). We also collected two additional environmental variables to inform our
habitat classifications (see below): specific conductivity (SPC), measured with a YSI
Professional ProPlus multiparameter probe which was calibrated at the trailhead before each
sampling trip, and stream channel stability, calculated via a modified version of the Pfankuch
Index (PI), a standard metric for assessing channel stability in mountain systems that integrates
five key physical characteristics of the stream into a single value (Peckarsky et al., 2014).

We classified sites into habitat types following previous studies (Giersch et al., 2017,
Hotaling et al., 2019a, Tronstad et al., In press). Briefly, we incorporated a site’s primary
hydrological source, environmental variation, and geomorphology, to group them into one of
four habitat types: streams fed by a surface glacier (“glacier-fed”), a perennial snowfield
(“snowmelt-fed”), emanating from subterranean ice (e.g., rock glaciers, “icy seep”), or slow-
flowing, alpine ponds (“pond”). We categorized a stream as glacier-fed if it had a named glacier
upstream and an extremely unstable streambed (PI > 30). Any other streams fed by perennial
surface ice and snow were categorized as snowmelt-fed. We classified streams as icy seeps if
we observed evidence of a subterranean ice source (e.g., lobes of a rock glacier), they were
extremely cold (e.g., Tmax < 5°C), and had high conductivity (SPC > 50; Hotaling et al., 2019a).

Ponds were identified by their low-angle profile and the presence of standing water.
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Table 2. Morphological and physiological data included in this study. Holding: time (hours) that
specimens were held at 3°C with no access to food before testing. N: sample size for each
population. Mean body lengths were used as a proxy for mass and are reported in millimeters
with standard errors. RNAseq: sample sizes for RNA sequencing for treatment (T; CTwuax) and
control (C; held at 3°C) specimens. Mean CTwuax is given in degrees Celsius.

Population Taxon Length Holding N Mean CTuax  RNAseq (N)
Lunch Creek L.tumana 4905 72 24 28.7 3T/3C
Wind Cave Zapadasp. 4.4+0.6 48 23 259 --

Mt. St. John L. tetonica 5.6+0.7 12 24 26.6 3T/3C
Cloudveil Dome L. tefonica 4.5+0.5 12 23 26.1 -

Skillet Glacier L. tetonica 5604 12 17 28.6 -

Tetonica Pond L. tetonica 4.6+0.6 12 23 28.6 3T/3C

Measuring critical thermal maxima (CTyax)

Nymphs were brought into the laboratory as quickly as possible (typically less than 12
hours after collection) and transferred to holding chambers in 150-quart coolers filled with water
from a nearby stream (Pacific Creek: 43.9036°, -110.5892°). We used aquarium chilling units
(1/10 HP, Coralife) to maintain the holding baths at ~3°C (Fig. S2). Each holding chamber
contained 12 nymphs in a ~2 L plastic container immersed in the bath such that both water and
nymphs were isolated from the rest of the system. We included plastic mesh in each chamber to
give nymphs substrate to cling to. We maintained high levels of water flow and dissolved
oxygen by air stone bubbling in each chamber. Nymphs had no access to food during the
holding period to ensure they were tested in a fasting state (i.e., after available food had been
digested, absorbed, and cleared from the digestive tract). All nymphs were held in these
conditions for at least ~12 hours before testing (Table 2).

We measured CTwuax, a non-lethal temperature at which nymph locomotor function
becomes disorganized. We placed up to 12 nymphs into mesh chambers (one individual per
chamber) in a water bath held at 3°C. Because warming is the most obvious effect of climate
change in high-mountain streams, we chose to only vary temperature, while maintaining natural
flow and oxygenation with air pumps. Four thermo-electric cooling (TEC) plates attached to a
temperature controller were used to increase temperature at ~0.25°C per minute. We recorded
CTwmax when an individual nymph could no longer right itself after being turned onto its back
(Videos S1-S2). After a nymph reached its CTuax, we immediately transferred it to an 8°C bath
for recovery and assessed survival by monitoring nymphs until they resumed normal movement.
Nymphs were later preserved in ~95% ethanol. We measured body length to the nearest 4 mm

using a dissecting microscope and a millimeter grid attached to the base of the microscope. A
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subset of nymphs were flash frozen at either their CTuax or holding temperature for RNA
sequencing (RNAseq).

For CTwuax, all statistical analyses were conducted in R v3.4.0 (R Core Team, 2013). We
focused our main analysis on L. tetonica because we had data for multiple populations. We first
analyzed the effect of body size (length) and acclimation period on CTuax with linear models.
Because body size was not a significant predictor of CTuax (see Results), our final linear models
assessing the effect of maximum stream temperature (Twax) on CTuax included only Tuax as the
predictor variable. We also assessed the effect of Tuax on CTwax in a second, broader analysis
which included the two populations of L. tumana and Zapada sp. While valuable, this ‘all-
species’ analysis cannot be used to determine if CTuax varies among species or if the variation
we observed is due to population-level differences because we lacked replicates for L. tumana

and Zapada sp.

RNA sequencing

During the thermal tolerance experiment, a subset of individuals from three populations
and both Lednia species (Lunch Creek, L. tumana; Mt. St. John and Tetonica Pond, L. tetonica;
Fig. 1a, Table 2) were sampled for RNAseq. Nymphs at their CTuax (treatment) and others that
remained at the holding temperature (control) were flash frozen in liquid nitrogen. We sampled
three treatment and three control nymphs for each population (N = 18 total; Table 2). Samples
were stored in liquid nitrogen until they were transferred to a -80° freezer. We extracted total
RNA from entire nymphs following the NucleoSpin RNA (Macherey-Nagel Inc.) protocol. For
extraction, specimens were re-flash frozen with liquid nitrogen in a 1.5 mL microcentrifuge tube
and ground into a fine powder with a sterilized pestle. We quantified RNA with a Qubit 2.0
fluorometer (Thermo Fisher Scientific) and assessed RNA extraction quality via fragment
analysis with an ABI 3730 DNA Analyzer (Thermo Fisher Scientific).

We prepared RNAseq libraries from 1 pg of total RNA with the NEBNext Poly(A) mRNA
Magnetic Isolation Module (NEB) according to the manufacturer protocol. We targeted a 300-
450 basepair (bp) fragment size distribution. For cDNA amplification, fifteen PCR cycles were
used for all libraries. Presence of a PCR product was visually assessed using an eGel (Thermo
Fisher Scientific). Final libraries were quantified with a Qubit 2.0 fluorometer and further
assessed for quality, amount of cDNA, and fragment size distribution using a 2100 BioAnalyzer
with the High Sensitivity DNA Analysis kit (Agilent). Libraries were then pooled in equal

nanomolar concentrations and sequenced on one lane of an lllumina HiSeq4000 with 100 bp
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paired-end chemistry by the Roy J. Carver Biotechnology Center at the University of lllinois

Urbana-Champaign.

Gene expression analyses and protein annotation

We assessed raw sequence data quality with fastQC v0.11.4 (Andrews, 2010) and
visualized a combined output for all libraries with MultiQC v1.5 (Ewels et al., 2016). Next, we
trimmed reads in three successive rounds, all with Trim Galore! v0.4.1 (Krueger, 2015) and
default settings except as noted. First, we removed adapter sequences (--illumina --stringency
6). Next, we trimmed for quality and poly-A tails (--quality 20 --stringency 6 --adapter A{30} --
adapter2 A{30}). We then trimmed for poly-T tails and discarded reads that had become too
short (--stringency 6 --length 50 --adapter T{30} --adapter2 T{30}). We assessed the quality of
the trimmed reads with fastQC v0.11.4. We randomly subsampled one library (Library 3;
Control, Mt. St. John) to 80% of its original amount because its sequencing depth was much
higher than the rest of the data set. For this, we used the reformat function of BBTools v37.80
(Bushnell, 2014). We removed one library (Library 9; Control, Mt. St. John) from all downstream
analyses as it had just 2.6 million reads, far fewer than any other library (see Results).

We mapped reads to the L. tumana reference genome (GenBank #QKMV00000000.1)
with the mitochondrial genome (GenBank #MH374046; Hotaling et al., 2019c) appended to it.
We used HiSat2 v2.1.0 (Pertea et al., 2015) with default settings, first building an index of the
reference with the hisat2-build command. To ensure no bias was introduced by differential
mapping rates between L. tumana and L. tetonica samples to the L. tumana reference genome,
we compared the mean mapping rates for both species with an unpaired t-test. Because HiSat2
outputs unsorted SAM files, we converted the output to sorted BAM files with samtools v1.7 (Li
et al., 2009).

We generated a gene count matrix for each library with StringTie v1.3.5 (Pertea et al.,
2015). We first ran StringTie with the default settings to assemble alignments into potential
transcripts without a reference annotation (-G) because none is available for L. tumana. Next,
we used the --merge utility to combine library-specific sets of transcripts into a merged,
putatively non-redundant set of isoforms. This tool outputs a merged Gene Transfer Format
(GTF) file. We then re-ran StringTie using the merged GTF (-G) and the flags -B and -e to
enable the output of Ballgown GTF files for the global set of transcripts shared by all samples.
Next, we ran the prepDE.py script, also part of the StringTie package, to generate counts

matrices for all genes and transcripts identified in the previous steps.

10
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We performed differential expression analyses using edgeR v3.26.8 (Robinson et al.,
2010) in R version 3.5.2 (R Core Team, 2013). We filtered our data set by requiring transcripts
to have more than five total reads and to be present in at least two samples. To visually
compare expression variation across groups of interest (i.e., treatments, species, and
populations), we used the plotPCA function. After filtering, we identified structure in global gene
expression that could not be explained by sample preparation, library size, species, population,
or treatment (Fig. S3). We removed this unwanted variation with RUVseq v1.18.0 (Risso et al.,
2014). Specifically, we used the “in silico empirical”’ functionality of RUVg where a set of the
least differentially expressed genes (DEGs) are identified and used as controls to globally
normalize variation in the data set. We used the default timmed mean of M-values (TMM)
method to normalize the data and calculate effective library sizes (Fig. S4). Dispersions were
estimated using a generalized linear model and a Cox-Reid profile-adjusted likelihood
(McCarthy et al., 2012). We identified DEGs with quasi-likelihood F-tests (Lun et al., 2016)
which were run using contrasts. We performed DEG identification across three levels of
comparison: (1) Within-populations between treatment (collected at their CTuax) and control
(held at 3°C) specimens. (2) Between treatment and control for L. tetonica specimens only (Mt.
St. John and Tetonica Pond). (3) Between treatment and control for all specimens. A false
discovery rate (FDR) < 0.05 was used to identify DEGs.

To annotate our data set, we extracted the longest isoform for each gene using the
CGAT toolkit and the ‘gtf2gtf’ function (Sims et al., 2014). We then extracted genes from the file
containing the longest isoforms with gffread v.0.9.9 (Trapnell et al., 2012). We performed a
blastx search for each gene (E-value: 0.001) against the manually curated and reviewed Swiss-
Prot database (Boeckmann et al., 2003; accessed 1 March 2019). Using the results of our
blastx search, we annotated genes, retrieved gene ontology (GO) terms, and mapped GO terms
using Blast2GO v5.2 (Conesa et al., 2005). We annotated DEGs with the top BLAST hit per
transcript. For DEGs without a match in the Swiss-Prot database, we performed two additional
searches using online tools: (1) a batch search against the RFAM database (Kalvari et al., 2017;
http://rfam.org/search) and (2) a manual blast search (E-value: 0.001) against the automatically
annotated and unreviewed TrEMBL database (Boeckmann et al., 2003; http://uniprot.org/blast/).
In Blast2GO v5.2, we performed GO term enrichment analyses using the results of our
blastx/Swiss-Prot annotations on two test sets with one-tailed Fisher’'s Exact Tests and FDR <
0.05 after correcting for multiple tests: (1) upregulated genes for L. tetonica only and (2)
downregulated genes for L. tetonica only. We did not perform GO term enrichment analysis for

L. tumana because no DEGs were identified for the representative population we examined

11
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(Lunch Creek; see Results). We also did not perform GO term enrichment on the overall Lednia
data set because of redundancy with the L. tetonica analysis (i.e., roughly two-thirds of the
same individuals would be included). For enrichment analyses, the complete set of transcripts
with BLAST hits were used as the reference set.

To test if stoneflies from more thermally variable environments have muted cellular
responses to stress, we identified all genes annotated as heat shock proteins based on BLAST
hit descriptions. Next, we sorted these genes by their overall expression [logz counts per million
(logCPM)] and filtered them to a final set using two criteria: (1) We only included genes
expressed at moderate to high levels (= 4 logCPM) and (2) only retained the most expressed hit
(highest mean logCPM) for each unique gene. We did this to prevent any potential bias due to
one gene being represented by multiple hits (see Results). Next, we calculated the mean
difference in logCPM between treatment and control nymphs for each gene and population.
Because the data were not normally distributed (P, Shapiro-Wilk < 0.001), we compared the
distributions of mean differences for each population using a Kruskal-Wallis rank sum test
followed by a Dunn test for multiple comparisons. All scripts and commands used in this study

are available on GitHub (https://github.com/scotthotaling/Lednia RNAseq).

Results:
Environmental data and species collection

According to the environment criteria described above, we identified one snowmelt-fed
stream (Lunch Creek: GNP), two icy seeps (Wind Cave, Mt. St. John; GRTE), two glacier-fed
streams (Cloudveil Dome, Skillet Glacier; GRTE), and one alpine pond (Tetonica Pond; GRTE;
Table 1). We collected L. tumana from Lunch Creek, Zapada sp. from Wind Cave, and L.
tetonica from the other four sites (Fig. 1, Table 1). Lunch Creek was the warmest (Tvean =
6.2°C; Tuax = 9.9°C) and most thermally variable site (Trance = 5.7°C; Table 1). Cloudveil Dome
(Tmax = 2.1°C) and Wind Cave (Tumax = 3.2°C) were the coldest and least variable sites (Trance <
0.5°C; Table 1). Icy seeps were the coldest and least thermally variable habitat type overall
(Tmax, icy seeps = 3.9°%; Trange, icy seeps = 1.4°C). For the two sites with two or more years of
available temperature data (2 years, Wind Cave; 3 years, Lunch Creek), thermal differences

across years were negligible (Fig. S1).
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Figure 2: (a) The effect of maximum stream temperature (Tmax) on critical thermal maximum
(CTwmax) for each nymph (smaller, lighter circles) with means for each population also shown
(darker, outlined circles). Asterisks mark the species with only a single population sample
(Zapada sp. and L. tumana). Trendlines indicate significant relationships between Tuax and
CTwax for two separate linear models for L. tetonica only (blue line) and for all species (black
line). In both analyses, stoneflies from colder streams had lower CTuax values than those from
warmer streams. (b) Box plots showing variation in CTuax across species. Black horizontal lines
in each box indicate the median with lower and upper bounds of the box representing the lower
and upper quartiles of the data, respectively. Whiskers show the maximum and minimum
values.

Thermal physiology

We confirmed that all nymphs survived the CTuax treatment (except for those that were
immediately flash frozen for RNAseq and could not be assessed). Body size had no effect on
CTwax in the L. tetonica (P = 0.58) nor all-species analysis (P = 0.28; Fig. S5). We therefore did
not include body size as a covariate in our statistical models. We also found no effect of
acclimation period on CTuax (P = 0.41). We found differences in CTuax among populations of L.
tetonica (Fig. 2a). Stoneflies inhabiting colder sites exhibited lower CTuax values compared to
those from warmer sites (F185 = 26.108, P < 0.001). We observed the lowest CTwuax for L.
tetonica in Cloudveil Dome (Tuax = 2.1°C; CTmax = 26.1°C), and the highest for L. tetonica in
Tetonica Pond (Tuax = 5°C; CTmax = 29.2°C). We also found a significant positive relationship
between Tuax and CTwuax in the all-species analysis which included L. tumana and Zapada sp.
(F1,132 = 39.054, P < 0.001). Although we could not statistically test differences in CTuax among

species due to a lack of replicate L. fumana and Zapada sp. populations, our results indicate
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that CTwax may be highest for L. tumana (Fig. 2b). However, this finding may simply be
reflective of the only L. fumana population sampled also being from Lunch Creek, the warmest

site included in this study.

RNA sequencing and annotation

We generated 368.8 million read pairs for 18 libraries with a mean per sample of 20.6
million £ 1.9 million (min. = 2.6 million, max. = 39.2 million). After filtering, subsampling of the
library with the most reads, and dropping the library with the fewest reads, we retained 354.1
million read pairs. On average, 85.2% of reads mapped to the L. tumana reference genome with
L. tumana libraries mapping at a slightly higher rate (mean 89.0% =+ 0.5%; min. = 87.8%, max. =
91.0%) than L. tetonica (mean = 83.2% + 0.6%; min. = 81.0%, max. = 84.5%; P, t-test <
0.0001). However, this difference in mapping rate did not extend to a difference in total reads
mapped (mean, L. tumana = 19.2 million, mean L. tetonica = 21.7 million; P, t-test = 0.42). Raw
reads for this study are deposited on the NCBI SRA under BioProject PRINA587097.
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Figure 3. Global differences in gene expression for stonefly nymphs color-coded by treatment
(red, CTwmax) or control (blue, held at 3°C) and grouped by species (colored polygons) and
populations (shapes).
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Differential expression

After filtering and processing of the data set, our gene counts matrix contained 52,954
unique entries. We observed global differences in gene expression between L. tumana and L.
tetonica (Fig. 3). When L. tumana and L. tetonica were combined (“Lednia”), 80 genes were
differentially expressed: 65 upregulated and 15 downregulated in the treatment (CTwuax) versus
control group (FDR < 0.05). When only L. tetonica populations were considered (“Tetonica”), 71
genes were differentially expressed: 60 upregulated, 11 downregulated. Thirty-four DEGs were
shared between groups (32 upregulated, two downregulated). When each population was
considered alone, no DEGs were identified (including for Lunch Creek, the only L. tumana
population). While we report results for the Lednia and Tetonica data sets above, we focus
hereafter on Tetonica because it contains the most statistical power (two populations) with no
potential for species-specific bias. Furthermore, due to the fragmented nature of the L. tumana
genome (contig N50: 4.7 kilobases (kb); 74,445 contigs > 1 kb; Hotaling et al., 2019c), portions
of the same gene were likely present on different contigs in the reference. When we assembled
transcripts, this manifested as unique transcripts annotated to the same gene. Thus, in many
instances (e.g., hexamerins, HEXA; Figs. 4, S6), we recovered multiple independent hits to the
same gene. While multiple hits may reflect biological reality (e.g., more than one copy of a gene
in the genome perhaps reflecting a gene family expansion) we cannot draw such a conclusion.
We specify how multiple hits to the same gene were handled where appropriate.

For Tetonica, 46 DEGs (64.8%) had BLAST hits to the high-quality, manually curated
Swiss-Prot database, 32 of which were unique (Table S2). Of the remainder, three (4.2%) had
hits to the RFAM database and nine (12.7%) had hits to the TrEMBL database. Because the
TrEMBL protein database is unreviewed, we only refer to Swiss-Prot/RFAM annotations unless
specifically noted. The most upregulated gene [MSTRG.32248; log: fold change (logFC) = 15.6;
FDR = 0.015] had no annotation to any database (Fig. 4). However, the next four most-
upregulated genes (logFC = 7-9.1; Fig. 4) included ABCAS3, which binds ATP, a nucleolysin
(TIAL1), and two heat shock proteins HSP70B2 and HSP70A1. The two heat shock proteins
were also the most expressed DEGs (logCPM = 8.9 and 9.3, respectively) after three genes
which were all annotated as hexamerins (HEXA; logCPM = 9.3-10). Fourteen DEGs had hits to
the same apolipophorin gene, APLP, with relatively similar changes in expression (logFC, APLP
= 2.1-3.8; Fig. S6) and overall expression levels (logCPM, APLP = 2.2-6.9). The three most
downregulated genes did not have BLAST hits to the Swiss-Prot or RFAM databases [logFC = -
6.6 to -13.7; Fig. 4], however two of them (MSTRG.1867 and MSTRG.3534) had TrEMBL hits

though they were not informative in terms of predicted function (Table S2).
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Forty-one GO terms were enriched in the upregulated Tetonica data set (Fig. S7): 26
were classified as being part of a biological process ontology, three were cellular component
related, and 11 were linked to molecular function. The top four most significantly enriched GO
terms were all lipid-related, including their transport, binding, and localization. Eight of the
enriched GO terms (19.5% overall) were associated with protein folding, and three were linked
to chaperone proteins which are commonly associated with physiological stress (Beissinger &
Buchner, 1998). In the same vein, one enriched GO term — “heat shock protein binding”
(GO:0031072; FDR = 0.015) — clearly reflected a link to heat stress at the cellular level. No GO

terms were enriched for downregulated Tetonica DEGs.

Environmental variability and gene expression

Across all populations and species, 38 genes were annotated as heat shock proteins
(HSPs). Of these, 12 unique genes were expressed at moderate to high levels (logCPM 2 4;
Fig. S8). We found no support for our hypothesis that stoneflies naturally experiencing higher
(and more variable) temperatures exhibit muted cellular stress responses versus those

inhabiting colder (and more thermally stable) streams (Fig. 5; P, Dunn’s = 0.66).
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Figure 4. Log fold change of Lednia tetonica DEGs (white = BLAST annotated; black = no hit;
FDR < 0.05). For annotated genes, only the hits to the Swiss-Prot or RFAM databases with the
lowest FDRs are included. The full version of this figure, including any instances of multiple hits
to the same protein, is provided in Fig. S6. Complete information for each annotation is provided
in Table S2.
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Figure 5. (a) Mean population-level differences in expression between treatment and control
specimens for the 12 most highly expressed, unique HSPs annotated in this study. (b)
Distributions of the values in (a) grouped by population. No significant differences were present
(P, Dunn < 0.05).

Discussion:

As climate change proceeds, headwaters will be dramatically altered by the reduction or
loss of meltwater from glaciers and perennial snowfields (Hotaling et al., 2017). However, the
physiological limits of high-elevation aquatic insects, a group presumed to be acutely imperiled
by climate change, remain largely unknown. In this study, we explored the thermal physiology of
high-elevation stoneflies inhabiting the meltwater of rapidly fading glaciers and snowfields in the
Rocky Mountains. Our focal species are representative of an entire community that may be at
risk of climate-induced extirpation (Giersch et al., 2017, Hotaling et al., 2019a, Tronstad et al., In
press), and included L. tumana, a species listed under the U.S. Endangered Species Act due to
climate-induced habitat loss (U.S. Fish & Wildlife Service, 2019). We show that habitat thermal
conditions, specifically maximum temperatures, predict upper thermal limits and that nymphs
mount a cellular stress response when faced with heat stress. Contrary to our expectations,
however, we saw no link between the scale of the stress response and natural conditions that
nymphs experience. That is, stoneflies from warmer environments did not exhibit a muted
cellular stress response across HSPs versus those from cooler streams. Our results shed new

light on thermal tolerance of mountain stoneflies and complement recent cellular perspectives
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on aquatic insect thermal biology (Ebner et al., 2019, Gamboa et al., 2017). Broadly, our
findings and those of others (e.g., Ebner et al., 2019, Muhlfeld et al., 2020, Shah et al., 2017b,
Treanor et al., 2013), challenge the prevailing notion that aquatic insect larvae living in
extremely cold mountain streams cannot survive warming. For Lednia, with the ability to tolerate
short-term temperature spikes, we hypothesize that their headwater distributions may be a
product of longer-term physiological mechanisms (e.g., the capacity to develop at near freezing

temperatures) and biotic factors (e.g., species interactions at lower elevation).

Thermal tolerance

In mountain systems, thermal tolerance is important to organismal distributions and can
help explain the elevation limits of many terrestrial taxa (Andrews, 1998, Brattstrom, 1968,
Feder & Lynch, 1982, Huey & Webster, 1976, Oyen et al., 2016). Whether thermal tolerance
can also explain distributional limits of aquatic taxa is unknown (Polato et al., 2018). We show
that species of high-elevation stoneflies in the Rocky Mountains, often described as cold
stenotherms that are highly susceptible to warming (e.g., Giersch et al., 2017), can withstand
relatively high short-term temperatures (see also Shah et al., 2017b). Although the utility of
CTwax has been challenged due to its sensitivity to ramping rates, as well as acclimation and
starting temperatures (Rezende et al., 2011, Terblanche et al., 2011), recent arguments in favor
of its ecological relevance have also been made (Jgrgensen et al., 2019), especially when used
in a comparative framework. We contend that CTuax may be uniquely appropriate for mountain
stream taxa. Indeed, alpine streams are rapidly warming (e.g., Niedrist & Fulreder, 2020) and in
our study system, swift increases in temperature (over a few hours) are common (e.g., Lunch
Creek, Fig. 1d). With summer streamflows predicted to be reduced under climate change (Huss
& Hock, 2018), baseline temperatures and intraday temperature spikes will both increase as
meltwater volume declines and its buffering capacity is lost.

In addition to temperature spikes during certain seasons, average alpine stream
temperatures are on the rise (Niedrist & Fureder, 2020). These higher, but sublethal,
temperatures will likely have pervasive negative impacts on high elevation aquatic insects (Shah
et al., 2019). For example, long-term thermal tests of L. tumana development suggest that
mortality during emergence greatly increases around 15 °C (A.A.S. & S.H., unpublished data),
highlighting how subtle thermal effects on ecological timescales may limit the persistence of L.
tumana and similar species. Long-term temperature shifts will likely have complex effects on

larval energy budgets by differentially altering rates, as well as targets, of energy expenditure
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(e.g., resource allocation between somatic growth, maintenance, and reproduction) and energy
income from feeding.

Simultaneous increases in temperature and reductions in flow may also elevate heat
sensitivity in mountain stoneflies by exacerbating a mismatch between oxygen supply and
demand. For ectotherms, increasing temperature typically results in increased metabolic rates
and greater demand for oxygen (Verberk et al., 2016a). In aquatic habitats, this demand may
not be met with adequate oxygen supply, eventually leading to decreased organismal fithess
(Portner & Knust, 2007). Evidence for this phenomenon, however, is mixed (Verberk et al.,
2016b). With so little known of aquatic insect thermal physiology, it is imperative for future
research to address effects of sublethal temperatures and oxygen limitation on thermal
tolerance, especially in high-elevation aquatic insects that may encounter a lethal combination
of increased temperatures and decreased oxygen from low flows (Jacobsen, 2020).

We observed variation in CTuax among populations of L. tetonica, suggesting that local
thermal regime may be more important to thermal tolerance than regional thermal regime, and
echoing the findings of other recent studies (Gutiérrez-Pesquera et al., 2016, Shah et al.,
2017b). This effect of local conditions on thermal tolerance might outweigh differences due to
evolutionary history because all species (e.g., Lednia tetonica and Zapada sp.) from cooler
streams had lower CTuax than those from warmer streams (Fig. 2). Although we cannot
determine if thermal variation among populations represents evolved differences, all specimens
were held in a common thermal regime for at least 12 hours to limit the effects of previous
thermal conditions on CTuax estimates. Regardless of the mechanism, the high-elevation
stonefly nymphs included in this study appear poised to cope with short-term warming in
streams, although some populations are likely to be more resilient than others (e.g., those
experiencing higher present-day maximum temperatures).

Given that we focused on larvae in our study, we cannot discern whether other life
stages (e.g., eggs or adults) differ in their thermal tolerance. However, we focused on nymphs
for three reasons. First, the larval stage is the key developmental period for aquatic insects
when the majority of growth and other fitness-related processes (e.g., egg production) occur,
and recent modeling suggests that impacts of climate change on species can be greatly
underestimated when the larval stage is overlooked (Levy et al., 2015). Second, aquatic insect
larvae typically do most of their growing during summer months, when the threat of heat stress
is greatest. And, third, egg hatching success in the laboratory was recently shown to be
consistently high for mountain stream insects, regardless of rearing temperature, including one

treatment (12°C) that exceeded the highest temperatures the focal midges naturally
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experienced (Schutz & Fureder, 2019). Still, future experiments that link traits (e.g., thermal
tolerance) to cellular processes across aquatic insect life cycles will greatly improve our
understanding of how sensitivity at key life stages may influence long-term viability of

populations.

Gene expression

High-elevation stoneflies residing in cold meltwater-fed streams exhibited a cellular
stress response when faced with temperatures at their CTuax. The bulk of this response was
comprised of upregulated genes and included well-known stress response genes (e.g., HSPs;
Lindquist & Craig, 1988), lesser known but potentially stress-related genes in insects (e.g.,
APLP, Dassati et al., 2014), and many DEGs that could not be annotated (Fig. 4). Three HSPs
(HSP70B2, HSP70A1, HSC70-5) were upregulated in nymphs experiencing thermal stress.
With well-established roles as cellular protectants, preventing protein denaturation, binding
aberrant proteins, and many other stress-induced measures, the upregulation of HSPs was
unsurprising (King & MacRae, 2015). However, given the seemingly psychrophilic lifestyle of
Lednia, where individuals develop at temperatures near 0°C, we expected to see widespread
upregulation of HSPs in treatment nymphs. This was not the case. Rather, Lednia appeared to
constitutively express many HSPs even at low temperature (Fig. S8). This suggests that,
contrary to the prevailing view, exposure to low temperatures may actually stress Lednia (see
additional discussion below). Similar patterns of constitutive HSP expression have been
observed in other cold-tolerant species. For instance, larval caddisflies (Ebner et al., 2019),
polar fish (Buckley et al., 2004), and Antarctic grass (Reyes et al., 2003) constitutively express
many HSPs, presumably to chaperone proteins at low temperature. The potential for Lednia to
be stressed by cold temperatures is further supported by the inability of L. tumana nymphs to
survive contact with ice (Hotaling et al., 2020).

We also observed upregulation of genes with lipid-related functions. Lipids, particularly
those in membranes, are extremely sensitive to changes in temperature (Hazel, 1995), and
because of their role in key biological processes (e.g., solute diffusion), are important for
thermal acclimation and adaptation (Muir et al., 2016, Pernet et al., 2007). Many ectotherms
remodel their membrane lipids under thermal stress to maintain fluidity, typically through
increases in saturated fatty acids at higher temperatures (Muir et al., 2016). The process of
maintaining membrane fluidity in the face of changing temperatures has been termed
homeoviscous adaptation (HVA; Sinensky, 1974). The degree of saturation in cuticular lipids of

stoneflies varies across life stages, and was speculated to be related to thermal tolerance,
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particularly as it relates to the aquatic versus terrestrial environment (Armold et al., 1969). To
our knowledge, the presence of HVA has not been explicitly tested for in any aquatic insect.
However, before upregulation of lipid-related genes can be presumed to underlie HVA or similar
functional changes in high-elevation stoneflies, alternate explanations about the role of lipids in
development must be considered (see below).

While heat stress is presumed to drive the expression patterns we observed, aquatic
insects accelerate their development and emerge earlier at warmer temperatures (Nebeker,
1971, Rempel & Carter, 1987), sometimes even during CTuax experiments (A.A.S., personal
observation). Thus, some expression changes may be the result of developmental shifts rather
than thermal stress directly. When exposed to long-term temperatures above those they
naturally experience (e.g., > 15°C for ~1 month), L. tumana nymphs rapidly develop compared
to those held at colder temperatures. However, rapidly emerging adults can get stuck and die
while shedding their cuticle (S.H. and A.A.S., unpublished data). Some of our results appear
more reflective of this developmental shift than heat stress directly. For instance, it has been
suggested that ABCA3 is upregulated during insect wing development (Broehan et al., 2013). In
our study, high temperatures induced upregulation of ABCA3, perhaps indicating accelerated
wing development in preparation for adult emergence. Lipid content in aquatic insects also
varies seasonally and tends to peak before metamorphosis, an energetically demanding activity
(Cavaletto & Gardner, 1999). In the caddisfly, Clisoronia magnifica, roughly 80% of the lipid
reserves needed for metamorphosis were used during the last instar (Cargill et al., 1985), which
was the same developmental timepoint of the stoneflies included in this study.

The upregulation of HEXA raises similar, albeit more complex, questions. Stoneflies
possess two types of hexameric proteins in their hemolymph: hemocyanin (HCD), an oxygen-
carrying protein, and hexamerins, multi-functional proteins that likely evolved from hemocyanin
(Amore et al., 2011, Hagner-Holler et al., 2007). We saw some evidence for the upregulation of
HCD in heat-stressed stoneflies (Fig. S9), perhaps reflecting the physiological challenge of
extracting the necessary oxygen from warmer water. However, while hexamerins likely evolved
from HCD, their function shifted to storage proteins after they lost the ability to bind oxygen
(Burmester, 2015, Markl & Winter, 1989). Present-day hexamerins primarily act as sources of
amino acids during non-feeding periods (e.g., emergence, Haunerland, 1996) but may also play
a role in cuticle formation (Burmester, 2015, Hagner-Holler et al., 2007), a key stage in aquatic
insect emergence. Thus, the upregulation of HEXA may be another cellular indicator of

accelerated emergence to escape injurious conditions.
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622  Mountain stream insects as cold stenotherms: reconsidering a historical paradigm

623 Aquatic insects living in chronically cold habitats have long been assumed to be cold-
624  adapted and therefore intolerant of warming (e.g., Giersch et al., 2017, Jacobsen et al., 2012).
625  This assumption has rarely, if ever, been supported by direct measurements. A potential

626 mismatch between theory and data is particularly important for imperiled species of

627  conservation concern. Lednia tumana is federally endangered under the U.S. Endangered
628  Species Act due to loss of cold, meltwater habitat (U.S. Fish & Wildlife Service, 2019). As

629 glaciers disappear around the world (Huss & Hock, 2018), the demise of Lednia and similar
630 species (e.g., Zapada sp.) is presumed to be merely a matter of time (Giersch et al., 2017).
631  While this may be true, alternative hypotheses or threats beyond temperature, at least in the
632  short term, should be considered. Chief among these is the question of realized niche breadth.
633  Factors limiting niche breadth are diverse and may not be directly linked to temperature (e.g.,
634 interspecific competition or food availability, Connell, 1961, Roughgarden, 1974), although
635 thermal sensitivity can certainly play a major role (Gilchrist, 1995). While terrestrial habitats
636  exhibit a wide array of thermal variation, potentially allowing more thermal space for species
637  with similar ecologies to exist in sympatry, the buffering capacity of flowing water may reduce
638 the diversity of thermal niches in streams across similar spatial extents (Shah et al., 2020).
639  Thus, if Lednia exhibit high short-term thermal tolerance, exceeding temperatures they naturally
640 experience, and cellular signatures of stress even at low temperatures (e.g., constitutive

641  expression of HSPs at 3°C), then we hypothesize that the distribution of Lednia and similar
642  species reflects not a requirement for cold conditions but simply a greater tolerance for them
643  versus other species. Rather than being an extreme thermal specialist, Lednia may have

644  evolved a wide thermal niche allowing it to colonize environments free of limiting biological
645  factors. Our hypothesis aligns with previous experimental evidence highlighting the potential for
646  biotic factors beyond temperature to alter alpine stream ecosystems (Khamis et al., 2015) and
647 large-scale ecological data showing the persistence of meltwater-associated biodiversity after
648  deglaciation (Muhlfeld et al., 2020).

649 When considering climate change impacts on mountain stream biodiversity, it is

650 important to distinguish between a species imperiled by rising temperatures, biotic factors, or
651  seemingly by a combination of the two (e.g., Durance & Ormerod, 2010). At present, the

652  prevailing theory is that a warmer water community will shift uphill and displace coldwater taxa
653  as glaciers and perennial snowfields are lost (Hotaling et al., 2017). This theory assumes that
654  coldwater species (e.g., Lednia) will not be able to tolerate warmer conditions and will be

655 extirpated while lower elevation species simultaneously track their preferred thermal conditions
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upstream. However, if existing headwater communities can tolerate warmer conditions and their
lower limits are set by other factors (e.g., competition), then climate change risks for mountain
stream communities may be far less generalizable than currently assumed. For instance, if
competition at lower elevations limits Lednia distributions then warming temperatures do not
guarantee simplistic, binary outcomes of predicted presence or absence. Rather, the future of
Lednia and similar taxa may depend upon whether their competitors shift uphill (rather than
tolerate warmer conditions in situ), how resources may change, and additional factors that are
difficult to predict (see Shah et al., 2020).

Conclusion:

High-elevation stoneflies in the Rocky Mountains can tolerate higher temperatures in the
short-term than those they experience in the wild. When challenged with heat stress, nymphs
mount a cellular response that includes upregulation of classic stress response genes (e.g.,
HSPs) as well as genes that may be involved in developmental transitions from aquatic to
terrestrial life stages. Aquatic insects, including L. tumana, develop more rapidly at stable
warmer temperatures but also experience higher mortality during emergence (Nebeker, 1971;
S.H. and A.A.S., unpublished data). Thus, the potential effects of sublethal warming on
performance and other fithess-related traits warrant further investigation. However, in light of our
results and similar studies (Ebner et al., 2019, Muhlfeld et al., 2020, Shah et al., 2017b), we
challenge the premise that the distribution of mountain stream insects in cold, thermally stable
habitats indicates specialized preferences for cold, or evolved physiologies that are only viable
in the cold. Rather, the appearance of constitutive expression of many HSPs in Lednia as well
as the inability of L. tumana nymphs to survive ice enclosure (Hotaling et al., 2020) indicate their
contemporary thermal regimes may actually be injurious. Ultimately, if imperiled species like
Lednia are not directly threatened by warming temperatures in the near term, then there is clear
reason for greater optimism about their future. However, explicit investigations of their
development under warmer regimes, rather than simplistic, short-term exposures, are needed in
concert with new understanding of how other abiotic factors (e.g., oxygen supply), biotic

interactions, and resource availability shape their distributions.
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