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ABSTRACT

Personalized recommendation of learning content is one of the
most frequently cited benefits of personalized online learning. It is
expected that with personalized content recommendation students
will be able to build their own unique and optimal learning paths
and to achieve course goals in the most optimal way. However, in
many practical cases students search for learning content not to ex-
pand their knowledge, but to address problems encountered in the
learning process, such as failures to solve a problem. In these cases,
students could be better assisted by remedial recommendations fo-
cused on content that could help in resolving current problems. This
paper presents a transparent and explainable interface for remedial
recommendations in an online programming practice system. The
interface was implemented to support SQL programming practice
and evaluated in the context of a large database course. The paper
summarizes the insights obtained from the study and discusses
future work on remedial recommendations.
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1 INTRODUCTION

Over the last decade, the issues of transparency and control in rec-
ommender systems (RecSys) have emerged as an important stream
of research. One technology that has been studied in this context is
the explanation of recommendations. Research has shown that ex-
planations can increase persuasiveness of the recommended items
as well as users’ trust and satisfaction with the recommender sys-
tem [17]. Based on these results, guidelines have been developed for
designing and evaluating the benefits of explanations [16]. Despite
of the increasing volume of research on explaining recommenda-
tions, this work has been predominantly focused on traditional
taste-based and interest-based recommendation in e-commerce and
media consumption systems and such items ad products, movies
or songs [11]. In this paper, we explore the problem of explaining
recommendations in a considerably different domain, e-learning,
where recommendations usually focus on user’s knowledge rather
than interests. Here, we explore a relatively new class of remedial
recommendations focused on helping to address problems encoun-
tered during the learning process. Following a brief review of related
work, we introduce a novel interface for explaining remedial rec-
ommendations. The remaining part of the paper reviews the results
of our study of this technology in a target educational context. We
conclude by discussing lessons learning and planning future work.

2 RELATED WORK

A field that has been understudied in the RecSys context is the educa-
tional domain, where the main goal of a recommender system is to
support students’ learning by filtering educational content for the
different learning settings that differ from one individual student
to another [18]. Although there is a large body of research on Edu-
cational Recommender Systems (EdRecSys) [6], to the best of our
knowledge, there is no research work that has tried to investigate
the effects of explanations for students in EdRecSys contexts. Thus, it
is not clear how feasible it is to directly transfer the lessons learned
in other recommendation domains into this context. The closest
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attempt we have identified is the work of Putnam and Conati [13],
which studied students’ perceptions and attitudes toward explana-
tions for automatically generated hints in an Intelligent Tutoring
System scenario.

The aforementioned gap is important to address because EdRec-
Sys are different from conventional RecSys as their main goal is sup-
porting students’ learning [6]. Thus, not only the interests/preferences
of the end-users (students) are important to generate the recom-
mendations, the level of domain knowledge at each stage of their
learning is crucial for suggesting appropriate learning activities to
each student [18]. Hence, this difference makes it necessary to (1)
include students and instructors in the design of the recommen-
dation approach since its conception [14], and (2) define proper
evaluation metrics to assess the recommendations effectiveness
which must include students’ learning [7].

The implementation of EdRecSys stresses how critical it is to
consider that each student is unique in terms of her “knowledge
readiness” for attempting learning activities. Likewise, we hypoth-
esize that it is also important to ponder the students’ ability to
process recommendations and understand potential explanations.
In other scenarios, researchers have discovered that the explana-
tions’ level of detail can affect users’ mental models with both
positive and negative effects [11]. Additionally, they have found
that explanations’ complexity (e.g., depth and visual format) could
either help or burden users’ understanding [15].

Altogether, there is an evident lack of research on the effects
of transparency in the context of educational recommendations.
Exploring the potential benefits/drawbacks of recommendations
and their explanations will contribute to improving the future of
adaptive and personalized online learning. In this paper, we aim to
fill this research gap through an empirical classroom study.

3  SQL PROGRAMMING PRACTICE SYSTEM
WITH REMEDIAL RECOMMENDATIONS

3.1 Interface

The core of the SQL Programming Practice System is the Mastery
Grids interface which offers open learner modeling (OLM) [5] and
provides access to several types of learning content [12]. The ver-
sion of Mastery Grids interface for SQL is presented in Figure 1-A.
Mastery Grids uses a topic-level approach to OLM where the course
content is grouped into a set of topics (see Fig. 1-A). The level of
progress for each topic is visualized using a color opacity. The
higher the opacity, the higher the progress of the learner in that
topic. In addition to the topic-level progress visualization, Mas-
tery Grids shows the progress level for each type of content for
each topic. In Fig. 1-A, the available practice content for the topic
SELECT-FROM is shown, as well as the associated progress level for
each content. In addition, the interface recommends most appropri-
ate learning activities to each learner in two ways: (1) highlighting
recommended activities with stars on the grid of activities and (2)
offering them as a ranked list on the left from the grid. Students
can access the learning content by clicking on an activity cell or a
line of the ranked list.
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3.2 Learning Content

In this study, Mastery Grids provided access to three types of inter-
active practice content for learning SQL programming: annotated
examples (labeled as Examples in Fig. 1-A), animated examples,
and query problems. Annotated examples provide step by step text
explanations to SQL query statements, which are delivered by the
WebEx system [4]. Query animations visualize the execution of a
query. The aim of these examples is visually demonstrating how
various query clauses are executed (step-by-step) to help students
understand the semantics of the query. Finally, query problems
require students to write an SQL query to solve the given problem
prompt using the associated database schema. The correctness of
the query is evaluated against a model solution using the sample
database and immediate feedback is provided. These problems are
served by the SQL-KnoT (Knowledge Tester) system [3]. SQL-KnoT
leverages template-based problem-generation. Every time a student
accesses a problem, the actual problem is randomly selected from a
problem set associated with the template. SQL-KnoT problems are
critical for the study because the knowledge-level of a student is
updated based on her attempts on these problems.

3.3 Student Modeling and Knowledge Level
Visualization

Mastery Grids can depict the concept-level knowledge estimation as
abar chart (see Fig. 1-C&D). Each bar represents the actual student’s
knowledge level estimated by the system for a specific concept. Ini-
tially, all bar lengths are set to 0 and start to increase based on the
successful problem-solving attempts. The knowledge estimates are
calculated by the CUMULATE user modeling server [19]. CUMU-
LATE combines evidence generated from problem-solving attempts
using an asymptotic function. This asymptotic function is used to
calculate the probability of a learner mastering a concept. The prob-
ability of mastery increases with each successful attempt. CUMU-
LATE does not take into consideration wrong attempts. Therefore,
there is no decrease in knowledge level (i.e., there’s no penalty in
the student model) — even if a student fails. The asymptotic nature
of the CUMULATE student modeling function implies that when
a student starts studying a new concept, learning gains are high;
however, these learning gains rapidly become smaller as the student
becomes more proficient on the subject.

The concepts are grouped and arranged along the x-axis by
topic, according to the order in which topics are covered in the
course (see Fig. 1-C&D). When students mouse over a grid cell
that represents a topic, the interface highlights the concepts in the
bar chart that the topic covers. Learners can check their estimated
knowledge of the related concepts in a specific topic to the presence
or absence of bars in the chart. The concepts that are associated
with each content are also highlighted similarly. The height of each
bar indicates the estimated level of knowledge of the student. We
also used a second visual encoding variable to represent the level of
struggle of a specific concept. This variable is color, and we defined
a color scale going from red to green. The bar color gets greener
with a higher success rate, and it gets gray if the concept has not
been practiced recently. If a concept is labeled as struggling (see
section 3.4.1), the system depicts it with a warning sign shown on
top of the concept bar, as shown in Fig. 1-C&D.
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Presenting the current progress level provides navigational sup-
port to the students. In our previous study [8], we introduced per-
sonalized recommendation approaches to improve existing navi-
gational support. The top three recommended content items were
highlighted using red stars on colored cells for topics and con-
tent. This way of representing recommended items does not force
students to follow the recommendations but rather help them to
combine both progress information and recommendation to decide
their next action step. Originally, Mastery Grids does not provide
any hint or explanation for a given recommendation. In our previ-
ous work [1], the interface was redesigned to connect recommen-
dations with a finer-grained concept-level OLM and explored an
approach to explain the learning content recommendations. Fol-
lowing that study, we shared our new system design and the study
plan in [2] where we focused on producing remedial recommen-
dations to support struggling students. Moreover, we introduced a
simpler recommendation approach and reduced the complexity of
the student modeling service. The details of the recommendation
approach and student modeling are explained in the next section.
Following [2], in the current paper, we share the results of that
study.

3.4 Educational Recommender System

3.4.1  Recommendation Approach. In this study, we used a remedial
recommendation approach, which focuses on suggesting learning
activities that cover some of the concepts where students have
exhibited some level of struggle [1, 2]. In other words, remedial
recommendations should target the concepts with which a student
struggled recently.

To generate remedial recommendations, we used the concept-
level knowledge estimated by CUMULATE student model and
concept-level success rate to calculate a difficulty score for each
learning activity. The difficulty score diff;; of an activity i for stu-
dent j is calculated by equation 1:

diﬁijZ Zwk(a*ij+(1—a)*skj
k

1
2k Wi @
where k is a concept associated with activity i, Q; is knowledge
level estimate, s ; is the success rate of student j on concept k, and
wy is the topic-level importance of the concept calculated by using
tf-idf approach (i.e., the more unique a concept in a topic, the higher
its importance). We considered each problem-solving attempt as an
opportunity for the concepts associated with it and calculated the
average success rate per concept in last t attempts. For this study, ¢
is set to 10 and « is set to 0.5 to put equal importance on knowledge
level and the success rate.

To focus on struggled concepts, we eliminate learning activities
that do not have any struggled concepts from the recommendation
process. We defined a concept as struggling if students started to fail
on problems that cover the concept. Specifically, using the concept-
based success rate (s ), we defined a concept as struggling if si ; <
0.5. As s is calculated by using the last ¢t attempts, the system will
not label a concept as struggling if the student starts to perform well
(assuming the success rate goes above 0.5). We further calculated
the median difficulty score after each attempt to specify suitable
activities to recommend as remediation, i.e. learning content that
is not too hard but at the same time not too easy. We hypothesized
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that activities which reside at median level difficulty for a student
would not be so hard or so easy to lead any further hardship or
discouragement. The details of the recommendation process can be
found in [2].

3.4.2 Explanations for Learning Content Recommendations. Given
our past work on communicating learners the reasons behind sug-
gesting them learning activities [1], we decided to define different
experimental treatments by combining textual and visual explana-
tory elements. Our goal here is to examine the different effects that
different explanation formats can have on students working with
recommended content in an online learning environment. Thus,
we defined 4 treatment groups that are explained here:

(1) NoExp group: In this group, no explanation is provided to the
students when mousing over a recommended activity (see A
in Fig. 1). Thus, learners do not know why a specific learning
material was suggested to them.
TextualExp group: Only an explanation based on natural lan-
guage is provided to these students when mousing over rec-
ommended activities (see B in Fig. 1). This explanation format
textually describes (a) how many struggling concepts the learn-
ing content is covering and, at the same time, (b) how many
concepts in that specific activity the student has shown a good
proficiency-level (which makes it more approachable to solve
the ongoing misconceptions).
VisualExp group: Here, a concept-based OLM is used as a visual
explanatory component when mousing over recommended ac-
tivities (see C in Fig. 1). By examining their own OLMs, students
are able to know how many struggling concepts they have (as
they are highlighted with warning signs) and their respective
level of proficiency on each of the concepts covered by the activ-
ity. Each concept bar visualizes the learner’s knowledge-state
by means of two graphic variables:

e length: shows the cumulative estimation of knowledge of the
student, which is calculated based in the historical perfor-
mance on problems involving that concept.

e color: shows the success rate on the most recent attempts
on problems that include that concept, by using a scale that
ranges from red (0%) to green (100%) and using yellow as an
intermediate point (50 %).

It is important to mention that for this group, the visual OLM

highlights the information about the associated concepts for

the moused over activities, but not only for the recommended
ones (i.e., when mousing over non-recommended activities they
can see their knowledge state on associated concepts).

DualExp group: In this version of the interface both textual and

visual explanatory components explained above are shown to

the students when mousing over recommended activities (see

D in Fig. 1). We hypothesize that by having these explanatory

components together, learners could get a clearer picture about

why the recommendation algorithm selected those specific ac-
tivities to remediate their misconceptions (balance between
struggling concepts and concepts where they are proficient).
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4 STUDY DESCRIPTION

We conducted a classroom study in Spring 2019 term at Aalto Uni-
versity, major research university in Finland, from February to May.
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Figure 1: Four different experimental treatments which combine textual and visual elements for explaining recommenda-
tions in Mastery Grids: (A) No explanation (B) Textual explanation only (C) Visual explanation only (D) Visual and textual

explanation combined

Mastery Grids was offered as a practice system to students who
were enrolled in an undergraduate database management course
named "CS-A1150 - Databases". The course is a database manage-
ment course covering topics such as relational modeling, relational
algebra, UML modeling, SQL, transaction management, etc. The
course is compulsory for Computer Science and Industrial Engi-
neering and Management majors and highly recommended for
Computer Science minors. The course is also taken by many other
students in various bachelor’s and master’s programs. In total over
550 students enrolled the course. In the beginning of the course,
we informed students about this research and asked them to give
their consent to participate in it. The data used in this research
is from those students who gave their consent and were engaged
with Mastery Grids in some way. Not all students used the system,
because it was a voluntary additional learning resource.

Mastery Grids content is designed to help students to practice
on SQL topics and it was accessed through a direct link from A+
course management system [9], which was used to deliver other
contents and exercises of the course. The use of Mastery Grids was
not-mandatory but to encourage participation 20 extra exercise
points, which were about 7.5 % of all exercise points available, were
given to students if they solved 2 SQL problems per topic.

In this study, we followed a pre/post test design to examine the
learning gain throughout the semester. Before the SQL topics were
introduced, the pretest was administered. At the end of the semester,
the post-test was administered. Both tests include 10 problems, 5
multiple-choice and 5 SQL fill in the blank problems covering data
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definition, data query and data manipulation SQL commands related
to a given database schema. Post-test problems were isomorphic
to the pretest. However, in our analysis, we realized that students
do not spend enough time on post-test problems and decided to
use the final exam grades instead of post-test scores. Moreover,
students were asked to complete a questionnaire related to Mastery
Grids usage at the end of the semester. The questionnaire consisted
of questions related to system satisfaction, interface features and
recommendation quality. To encourage the students to take the
pre/post-tests and complete the questionnaire, 4 exercise points
and 1 exam bonus point (out of total 40 exam points) were given to
the students who completed them.

5 RESULTS

At the end of the experiment, we noticed that most of the students’
activity in the Mastery Grids was registered during the last weeks
of the course. At that point of the term, the provided educational
tools served more like a knowledge-confirmation instrument rather
than one for accurately measuring their knowledge acquisition
process. Given this, for further analysis we only consider the subset
of students who clearly exhibited needs for remediation at some
point of their work with the system, reflected by: (a) not having
a high success rate on their submissions, and (b) accessing to at
least a couple of recommended remedial problems. Thus, in the
subsequent analysis, we only considered students with an average
success rate lower than 75% and with at least more than 2 attempts
on recommended problems. After filtering out students who did
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not exhibit troubles when solving problems, we ended up having
18 students in the TextualExp, 25 in the VisualExp, 20 in the NoExp
and 20 in the DualExp group. Table 1 shows the summary statistics
for important usage variables after the filtering process mentioned
above.

Mean Sd Median

Learning indicators

Pretest 11.7 10.7 8

Posttest 38.8 125 433

Norm. Learn. Gain 776 211 824
Learning actions

Problems attempted 4135 19.1 37

Rec. problems attempted | 6.82 8.1 5

Correct problems 33.7 137 31

Table 1: Student behavior summary

5.1 Persuasiveness of Recommendations

We defined three levels of engagement with the activities: (1) the
probability to access them when they are moused over (access rate),
(2) the probability of attempting them when these are opened (con-
version rate), and (3) the probability of keep working on the activities
until solving it correctly (persistence rate). These three levels go
from a low level of persuasion, where the reflected engagement for
following the recommendation is low (i.e., it just takes a click), to a
deeper level of persuasion, where the commitment with working
in the recommended activity is higher (i.e., keep trying until the
problem is solved).

A mixed-design ANOVA analysis on these different levels of
persuasion was performed by having: (a) one within-subjects factor
which is the type of activity (i.e., recommended or non-recommended)
and (b) two between-subjects factors corresponding to the two ex-
planation formats (i.e., visual and textual).

The goal of this analysis is to detect differences between the
experimental groups on their interaction behavior with recommen-
dations, by comparing this with their work with non-recommended
activities:

(1) Access rate: We found that the overall access rate was higher for
recommended than non-recommended activities, across all the
four explanatory interface treatments F(1,73)=4.624, p=.035 (see
Fig. 2). This reflects that regardless of showing or not showing
explanations students tended to click more on the suggested ac-
tivities highlighted by stars (Mean access rate=.36) when compar-
ing this with the non-recommended ones (Mean access rate=.32).
In this context, we also found that there was a significant in-
teraction effect between the two explanation formats on the
overall access rate, F(1,73)=4.132, p=.046 (see Fig. 4). This result
suggests that students tended to inspect problems in Mastery
Grids more frequently when they had access to partial expla-
nations (either visual or textual), while they were more careful
in clicking the activities that they moused over (regardless of
their recommendation status) when they received either none
or both type of explanations (see Fig. 4).

Conversion rate: A marginally significant interaction effect be-
tween the access/non-access to a visual explanation and the
activity type (recommended/non-recommended) was found,
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Activity type

B non_recommended

B recommended

.

NoExp TextualExp DualExp

Experimental group

VisualExp

Figure 2: Average access rate per treatment group

F(1,74)=3.738, p=.057 (see left side of Fig. 5). This result sug-
gests that in average, when students had access to visual ex-
planations for the recommended content, their willingness to
work on already-opened recommended activities (Mean con-
version rate=.811) was lower than on non-recommended ac-
tivities (Mean conversion rate=.841). The same marginally sig-
nificant interaction effect was found between textual explana-
tions and the activity type (recommended/non-recommended),
F(1,74)=3.377, p=0.07. Again, this indicates that in general, when
learners had the option to receive a textual explanation for rec-
ommended problems learners are controversially more likely
to start work on opened non-recommended problems (Mean
conversion rate=.833) rather than on opened recommended ones
(Mean conversion rate=.801). These results, combined, make us
hypothesize that the inclusion of individual explanatory ele-
ments can lead students to think a little bit more about the
appropriateness of the recommendations, especially when they
have the meta-cognitive ability to do this (more likely to happen
at the end of the course where students have a higher degree
of self-awareness about their own knowledge). For a complete
view of the conversion rates distribution across treatments,
please refer to Fig. 3.

Persistence rate: A marginally significant difference on the per-
sistence rate between recommended and non-recommended
activities was found, regardless of the recommendations’ ex-
plainability treatment applied on the Mastery Grids interface,
F(1,74)=3.32, p=.072 (see Fig. 6). Here, average persistence in
non - recommended activities (Mean persistence rate=.873) was
slightly higher than persistence in recommended ones (Mean
persistence rate=.83). Additionally, a marginal interaction effect
was found between the visual and textual explanation treat-
ments, F(1,74)=3.868, p=.053 (see Fig. 7). This shows that stu-
dents overall persistence on problems, once they start working
on them, is lower when they only had access to partial explana-
tions (opposite phenomenon discovered for access rate).
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Conversion rate
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Figure 3: Average conversion rate per treatment group
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per explanatory treatment
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Figure 5: Effects of individual explanatory treatments on
SQL problems’ conversion rates
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Grids per explanatory treatment

5.2 Effects of Recommendations on Learning

In order to try to link the effect of the work on remedial recom-
mendations to the final exam scores of students in the course, we
calculated a multiple linear regression model including variables
like pretest and proportion of attempted problems that were rec-
ommended ones. In the resulting model, only success rate on SQL
problems (regardless of their recommendation status) was the main
significant predictor on the final exam grade (Adjusted R?=0.185,
F(6,53)=3.236, p=0.0088). No significant effect of interactions with
remedial learning content was found in any of the four treatment
groups.

5.3 Subjective feedback

At the end of the experiment, we asked students to fill a post-
questionnaire which covered aspects like overall satisfaction with
the system (3 items) and their perception about the quality of the
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System satisfaction

TextualExp
Experimental group

NoExp VisualExp DualExp

Figure 8: System satisfaction per treatment groups

remedial recommendations that were provided (5 items). The post-
questionnaire included items in a Likert scale (1=strongly disagree,
5=strongly agree). Based on the survey responses we performed a
factor analysis, which resulted in the confirmation of the existence
of the aforementioned two factors (satisfaction and recommenda-
tions quality).

In terms of overall satisfaction with the system, we did not find
any significant differences in the average satisfaction score given by
the learners (see Fig. 8). On the other hand, we asked students about
their opinion about the appropriateness of the recommendations
in terms of helpfulness for their learning process (e.g., one of the
items used was: “The system recommended too many bad learning
materials”). We found a significant interaction effect of the two
explanatory treatments (i.e., visual and textual explanations) on the
final opinion of students about the quality of the given recommen-
dations F(1,57)=4.669, p=.035 (see Fig. 9). We determined that in
average, whenever they get partial recommendation explanations
(only textual or only visual) they expressed a more positive opinion
about the quality of the recommendations. Combining this finding
with the conversion rate results explained in section 5.1 sheds light
about learners reactions to having at least one component in the
interface that provides some (incomplete) information about how
the problem recommendations were generated.

6 DISCUSSION AND CONCLUSIONS

In summary, our studies confirmed that the presence of remedial
recommendation affects learning content selection behavior of stu-
dents - recommended activities highlighted with stars were on
average more attractive. While this information correlates with
past research on the impact of recommendations, it doesn’t pro-
vide reliable evidence of recommendation quality or impact since
users are known to trust recommendations even when they are
deliberately deceiving [10]. Specifically, in the context of our study
when the students accessed practice content at the end of their
course, a chance for recommendations to be less than perfect was
relatively high since the system was not able to track knowledge
gained by the students through most of their work in class. In this
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Figure 9: Recommendation quality per treatment group

situation, student reactions to recommendations after they accessed
and examined the recommended content, and especially when they
started to explore it, could provide a more reliable insight on the
value of different kinds of explanation.

In this context, we found a rather unexpected impact of the pro-
vided explanations on the student conversion (i.e., a decision to start
working with a problem when opened) and overall persistence (i.e.,
willingness to continue working with a SQL-KnoT problem once
started). As the data show, the learners exhibited lower conversion
rates for recommended problems than for non-recommended ones
when any type of explanations (i.e., visual or textual) were provided.
This result suggests that both explanation types enabled students
to better add their own judgment on the top of recommendation
and make a more balanced decision about working or not on an
open recommended problem rather than rushing to anything that
is recommended. In our context where student model was likely to
be incomplete (leading to inadequate recommendations) it was an
important advantage. A good evidence that the recommended prob-
lems in our context might not be the best match for student needs
is the discovery that students’ persistence on attempted problems
was in average lower for recommended than for non-recommended
problems (hinting that students were able to choose better problems
if their decision was not affected by inadequate recommendations).

Another interesting finding is that learners were more persistent
in problems (regardless if they were recommended or not) when
they had access to full or no recommendations’ explanations rather
instead of partial ones. This behavior is opposed to the impact of
explanations found on the access rate, where partial explanations
positively influenced students’ engagement in clicking on problems
(when compared with none or full explanations). We hypothesize
that this situation could be explained by the nature of partial ex-
planations. With partial explanations, recommendations, even far
from being perfect, were looking quite convincing — starting from
encouraging the students to open recommended content and then
to proceed with it with a considerable persistence. In contrast, full
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explanations provided a better chance for the student to under-
stand why a content was recommended and likely realize that their
“current knowledge” referred by the explanations to justify recom-
mended content doesn’t represent to their true level of knowledge -
which the system was not able to model. In this situation, explana-
tions could reveal that recommendations within the system are not
perfect, making students less inclined to start on a recommended
problem. Yet, when the students had a chance to examine the prob-
lem in detail, they were more inclined to continue their work on
the problem until solving it correctly.

This hypothesis is supported by the analysis of students’ opinions
about recommendation quality. According to these data, remedial
recommendations were perceived to be of better quality when they
were justified by partial recommendation explanation (either only
textual or visual) than when received none or complete explana-
tions. With these partial explanations, learners were able to only
“partially” understand the underlying approach for generating those
recommendations, which sometimes was not perfect given (a) the
late stage of their learning process, and (b) the low accuracy of
the student model. Results suggest that with full explanations (i.e.,
more information), the recommendations’ quality was more likely
to be critically judged.

7 LIMITATIONS AND FUTURE WORK

While our study brought some interesting and unexpected out-
comes, it is important to stress that it had some practical limitations
that constrained the interpretation of the presented results. As we
mentioned, the use scenario appeared to be different from the ex-
pected study scenario. Instead of using the system throughout the
term, the design of the credit rewards of the study encouraged stu-
dents to use it very late in the course when their domain knowledge
was quite high and yet not reflected by the system’s learner model.
This context allowed us to spot an unusual impact of explanations
on student behavior. Yet, the resulting decrease of the recommenda-
tion quality might have some other unexpected impact on student
work, which could affect our results.

Secondly, for data analysis purposes we decided to only sample
the subset of learners that failed at a considerable rate and that,
at the same time, had access to more than a couple of remedial
recommendations (i.e., the target support population for the educa-
tional recommender system). However, these assumptions could be
considered as too strict, which undermines the generalizability of
the conclusions. For example, we did not get insights from students
that were presented with remedial recommendations in Mastery
Grids but never accessed or attempted the recommended content -
which is one of the target aspects to explore in future studies.

Currently, a new classroom experiment is being performed,
where incentives for students were clear from the beginning of
the term. In this way, we will be able to measure the effects of hav-
ing this remedial recommender support for students throughout
all the incremental stages in the course.

ACKNOWLEDGMENTS

The work of the first author was funded by CONICYT PFCHA/
Doctorado Becas Chile/ 2018 - 72190680. This research has also

142

UMAP °20 Adjunct, July 14-17, 2020, Genoa, Italy

been partially supported by NSF award DLR-1740775 to the third
author.

REFERENCES

[1] Jordan Barria-Pineda, Kamil Akhuseyinoglu, and Peter Brusilovsky. 2019. Ex-
plaining Need-Based Educational Recommendations Using Interactive Open
Learner Models. In Adjunct Publication of the 27th Conference on User Model-
ing, Adaptation and Personalization (Larnaca, Cyprus) (UMAP’19 Adjunct). As-
sociation for Computing Machinery, New York, NY, USA, 273-277. https:
//doi.org/10.1145/3314183.3323463

Jordan Barria-Pineda, Kamil Akhuseyinoglu, and Peter Brusilovsky. 2019. Ex-
plaining need-based educational recommendations using interactive open learner
models. In Adjunct Publication of the 27th Conference on User Modeling, Adaptation
and Personalization. 273-277.

Peter Brusilovsky, Sibel Somyiirek, Julio Guerra, Roya Hosseini, Vladimir
Zadorozhny, and Paula ] Durlach. 2015. Open social student modeling for person-
alized learning. IEEE Transactions on Emerging Topics in Computing 4, 3 (2015),
450-461.

Peter Brusilovsky, Michael Yudelson, and Sergey Sosnovsky. 2004. An adap-
tive E-learning service for accessing Interactive examples. In E-Learn: World
Conference on E-Learning in Corporate, Government, Healthcare, and Higher Ed-
ucation. Association for the Advancement of Computing in Education (AACE),
2556-2561.

Susan Bull and Judy Kay. 2010. Open Learner Models. In Advances in Intelligent
Tutoring Systems, Roger Nkambou, Jacqueline Bourdeau, and Riichiro Mizoguchi
(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 301-322.

Hendrik Drachsler, Hans G.K. Hummel, and Rob Koper. 2009. Identifying the
goal, user model and conditions of recommender systems for formal and informal
learning. Journal of Digital Information 10, 2 (2009), 1-17.

Mojisola Erdt, Alejandro Fernandez, and Christoph Rensing. 2015. Evaluating Rec-
ommender Systems for Technology Enhanced Learning: A Quantitative Survey.
IEEE Transactions on Learning Technologies 8, 4 (2015), 326-344.

Roya Hosseini, I-Han Hsiao, Julio Guerra, and Peter Brusilovsky. 2015. What
Should I Do Next? Adaptive Sequencing in the Context of Open Social Student
Modeling. In Design for Teaching and Learning in a Networked World, Grainne
Conole, Tomaz Klobuc¢ar, Christoph Rensing, Johannes Konert, and Elise Lavoué
(Eds.). Springer International Publishing, Cham, 155-168.

Ville Karavirta, Petri Ihantola, and Teemu Koskinen. 2013. Service-oriented
approach to improve interoperability of e-learning systems. In 2013 IEEE 13th
International Conference on Advanced Learning Technologies. IEEE, 341-345.
Mark Keane, Maeve O’Brien, and Barry Smyth. 2008. Are people biased in their
use of search engines? Communications of ACM 51, 2 (2008), 49-52.

Todd Kulesza, Simone Stumpf, Margaret Burnett, Sherry Yang, Irwin Kwan, and
Weng Keen Wong. 2013. Too much, too little, or just right? Ways explanations
impact end users’ mental models. Proceedings of IEEE Symposium on Visual
Languages and Human-Centric Computing, VL/HCC (2013), 3-10.

Tomasz D Loboda, Julio Guerra, Roya Hosseini, and Peter Brusilovsky. 2014.
Mastery grids: An open source social educational progress visualization. In
European conference on technology enhanced learning. Springer, 235-248.
Vanessa Putnam and Cristina Conati. 2019. Exploring the Need for Explainable
Artificial Intelligence (XAI) in Intelligent Tutoring Systems (ITS). In Joint Pro-
ceedings of the ACM IUI 2019 Workshops co-located with the 24th ACM Conference
on Intelligent User Interfaces (IUI'19), Los Angeles, USA, March 20, 2019.

Olga C. Santos and Jesus G. Boticario. 2015. Practical guidelines for designing and
evaluating educationally oriented recommendations. Computers and Education
81 (2015), 354-374.

Aaron Springer and Steve Whittaker. 2019. Progressive Disclosure: Empirically
Motivated Approaches to Designing Effective Transparency. In Proceedings of
the 24th International Conference on Intelligent User Interfaces (IUI °19). 107-120.
Nava Tintarev and Judith Masthoff. 2010. Designing and Evaluating Explanations
for Recommender Systems. In Recommender Systems Handbook, Second Edition.
Vol. 2. 479-510.

Nava Tintarev and Judith Masthoff. 2012. Evaluating the effectiveness of expla-
nations for recommender systems: Methodological issues and empirical studies
on the impact of personalization. User Modeling and User-Adapted Interaction 22,
4-5 (2012), 399-439.

Katrien Verbert, Nikos Manouselis, Xavier Ochoa, Martin Wolpers, Hendrik
Drachsler, Ivana Bosnic, and Erik Duval. 2012. Context-aware recommender
systems for learning: A survey and future challenges. IEEE Transactions on
Learning Technologies 5, 4 (2012), 318-335.

Michael Yudelson, Peter Brusilovsky, and Vladimir Zadorozhny. 2007. A User
Modeling Server for Contemporary Adaptive Hypermedia: An Evaluation of the
Push Approach to Evidence Propagation. In Proceedings of the 11th International
Conference on User Modeling (UM ’07), Cristina Conati, Kathleen McCoy, and
Georgios Paliouras (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 27-36.

[2]

7

(8]

(10]

[11

[12

(13

(14]

[15

[16

[17

=
&

[19


https://doi.org/10.1145/3314183.3323463
https://doi.org/10.1145/3314183.3323463

	Abstract
	1 Introduction
	2 Related work
	3 SQL Programming Practice System with Remedial Recommendations
	3.1 Interface
	3.2 Learning Content
	3.3 Student Modeling and Knowledge Level Visualization
	3.4 Educational Recommender System

	4 Study Description
	5 Results
	5.1 Persuasiveness of Recommendations
	5.2 Effects of Recommendations on Learning
	5.3 Subjective feedback

	6 Discussion and Conclusions
	7 Limitations and Future work
	Acknowledgments
	References



