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MIN-ORDERABLE DIGRAPHS\ast 

PAVOL HELL\dagger , JING HUANG\ddagger , ROSS M. MCCONNELL\S , AND ARASH RAFIEY\P 

Abstract. We unify several seemingly different graph and digraph classes under one umbrella.
These classes are all, broadly speaking, different generalizations of interval graphs, and include, in
addition to interval graphs, adjusted interval digraphs, complements of threshold tolerance graphs
(known as co-TT graphs), bipartite interval containment graphs, bipartite co-circular arc graphs, and
two-directional orthogonal ray bigraphs. (The last three classes coincide, but have been investigated
in different contexts.) We show that all of the above classes are united by a common ordering char-
acterization, the existence of a min ordering. However, because the presence or absence of reflexive
relationships (loops) affects whether a graph or digraph has a min ordering, to obtain this result,
we must define the graphs and digraphs to have those loops that are implied by their definitions.
These have been largely ignored in previous work. We propose a common generalization of all these
graph and digraph classes, namely signed-interval digraphs, characterized by the existence of a com-
pact representation, a signed-interval model, which is a generalization of known representations of
the graph classes. We show that the signed-interval digraphs are precisely those digraphs that are
characterized by the existence of a min ordering when the loops implied by the model are considered
part of the graph. We also offer an alternative geometric characterization of these digraphs. We
show that co-TT graphs are the symmetric signed-interval digraphs, the adjusted interval digraphs
are the reflexive signed-interval digraphs, and the interval graphs are the intersection of these two
classes, namely, the reflexive and symmetric signed-interval digraphs. Similar results hold for bipar-
tite interval containment graphs, bipartite co-circular arc graphs, and two-directional orthogonal ray
bigraphs.

Key words. graph classes, interval graphs, threshold tolerance graph, forbidden submatrices,
ordering characterization

AMS subject classifications. 05C75, 05C62, 05C17

DOI. 10.1137/19M1241763

1. Introduction. A digraph H is reflexive if each vv \in E(H), v \in V (H) (every
vertex in H has a loop); irreflexive if no vv \in E(H) (no vertex in H has a loop); and
symmetric if ab \in E(H) implies ba \in E(H). In this paper, we shall consider both
graphs and digraphs; we view graphs as symmetric digraphs by replacing each edge
uv by the two arcs uv, vu. (In particular, graphs can have loops, and irreflexive graphs
are loopless. We do not consider multiple edges.) However, in certain situations we
view bigraphs, i.e., bipartite graphs with a fixed bipartition, as oriented graphs, with
all edges oriented from one part of the bipartition to the other.

A graph H is an interval graph if it is the intersection graph of a family of intervals
on the real line, i.e., if there exists a family of intervals \{ [xv, yv]| v \in V (H)\} such that
uv \in E(H) if and only if [xu, yu] \cap [xv, yv] \not = \emptyset . The family of intervals is an interval
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Fig. 1. An interval graph and corresponding interval model. There is an implicit loop at each
vertex.

model of H. (See Figure 1.) Similarly, a graph is a circular-arc graph if it is the
intersection graph of a family of arcs on the circle.

A graph H is a threshold tolerance graph [34] if each vertex v can be assigned
a weight wv and a tolerance tv so that ab is an edge of H if and only if wa + wb >
min(ta, tb). (When all tv are equal, this defines a better known class of threshold
graphs [6].) Those graphs that are the complements of threshold tolerance graphs,
the co-threshold tolerance graphs (co-TT graphs) have also been shown to be those
graphs that are representable with a generalization of an interval model, called a
co-TT model. Details are given in the next section.

A generalization of interval models to directed graphs is the class of adjusted-
interval digraphs [13], where each vertex has a source interval and a sink interval that
share a common left endpoint, and for two vertices x and y, xy is a directed edge if
the source interval of x intersects the sink interval of y. We discuss the model in more
detail in the next section; an illustration is given in Figure 4. An interval model can
be seen as the special case where the source interval for each vertex is equal to the
sink interval for that vertex, necessitating only one interval to represent both.

A submatrix of a matrix M is the result of deleting any set of rows and columns of
M , leaving the relative order of the remaining rows and columns intact. Henceforth,
we will let \Sigma denote the matrix whose rows are 01 and 10 and let \Lambda denote the matrix
whose rows are 01 and 11 (see Figure 2). We note that these names are arbitrary,
as we were unfortunately not able to choose names that corresponded to the shape
of the matrix, as is the case for \Gamma . Let M , A, and B be matrices. M is A-free if
A is not the submatrix of M induced by any subset of its rows and columns, and it
is \{ A,B\} -free if it is A-free and B-free. A min ordering of a digraph H is a linear
ordering < of the vertices of H, so that ab \in E(H), a\prime b\prime \in E(H), and a < a\prime , b\prime < b
implies that ab\prime \in E(H) [13] (cf. also [19], where min ordering is called an X-underbar
enumeration).

In other words, a min ordering is an ordering of the vertices such that when the
ordering of rows and columns of the adjacency matrix matches this ordering, it is
\{ \Sigma ,\Lambda \} -free.

We note that the matrix with rows 11 and 10, called \Gamma in the literature [8, 32],
is obtained from the matrix \Lambda by reversing the order of both rows and columns. (See
Figure 2.) It follows that a matrix has a \Gamma -free ordering if and only if it has a \Lambda -free
ordering. (Each is the reverse ordering of the other.) We include both options to be
able to match the standard terminology in two different areas.
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Fig. 2. A min ordering of a digraph is an ordering of its vertices such that neither of the left
two depicted submatrices \Sigma (leftmost matrix) and \Lambda (middle matrix) occurs in the corresponding
adjacency matrix; on the right, for comparison, is the matrix \Gamma .

The presence or absence of loops (1's on the diagonal of the adjacency matrix)
can affect whether the graph has a min ordering. It was pointed out in [13] that when
loops are added to every vertex of an interval graph, it has a \{ \Sigma ,\Lambda \} -free ordering.
(Equivalently, its augmented adjacency matrix has a min ordering.) In other words,
we consider interval graphs to be reflexive. This quite naturally corresponds to the
definition of interval graphs, since each interval intersects itself. Similarly, the model
of adjusted interval digraphs implies that they are reflexive, since a vertex's source
interval intersects its sink interval at their shared left endpoint.

In this paper, we observe that a co-TT model of a co-TT graph implies that
some vertices have loops and others do not. This issue has been ignored in the
previous literature on the class. In the present paper, we show that when the loops
that are implied by a co-TT model of the graph are included, it is min-orderable.
Although an ordering characterization, essentially equivalent to ours, was known [34],
its relationship to min orderings has not been previously recognized. By explicitly
considering the loops, we were able to view the ordering as a min ordering, and thereby
link co-TT graphs to the other classes having a min ordering.

The main goal of this paper is to promote a common generalization of all of these
classes by combining elements of adjusted interval models and co-TT models to obtain
what we will call a signed-interval model of a digraph. We call the class of graphs
that are representable with a signed-interval model the signed-interval digraphs. We
note that we hyphenate the term signed-interval digraph in order to emphasize that
it is the intervals that are signed (positive or negative), as distinguished from signed
graphs or digraphs. The signed-interval model implies which vertices have loops and
which do not. We show that when the implied loops are included in the digraph,
it has a min ordering. We show that the class of signed-interval digraphs is equal
to the class of digraphs that have a min ordering, giving a characterization of the
min-orderable digraphs in terms of representability with a signed-interval model.

When we view interval graphs and co-TT graphs as digraphs, we consider them
to be symmetric digraphs, i.e., each edge uv is replaced by the two opposite arcs uv
and vu. With this in mind, the classes of interval graphs, co-TT graphs, and adjusted
interval digraphs are all subclasses of the class of signed-interval digraphs. We show
that, in fact, interval graphs are exactly the subclass of signed-interval digraphs that
are symmetric and reflexive, the co-TT graphs are the subclass that are symmetric,
and the adjusted interval digraphs are the subclass that are reflexive.

As mentioned earlier, we view bigraphs differently. A uniform orientation of
bipartite graph G is the digraph that results from selecting a bipartition\{ A,B\} of G
and orienting all of its edges from A to B. (The choice of which bipartition is taken is
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Fig. 3. The world of digraphs.

arbitrary.) Note that the uniform orientations of bipartite graphs are precisely those
irreflexive digraphs where every vertex is a source or a sink. We will show that a
uniform orientation of a bigraph G is a signed-interval digraph if and only if G is the
complement of a circular-arc graph.

It follows from [11, 25, 29, 36] that the class of bipartite graphs that are comple-
ments of circular-arc graphs is equal to the class of interval containment bigraphs and
is also equal to the class of two-directional orthogonal-ray bigraphs defined below. We
will call uniform orientations of these bigraphs two-directional orthogonal-ray digraphs
or 2DOR digraphs (cf. Figure 3), remembering that the class has all of these equivalent
descriptions. We emphasize once more that while interval graphs and co-TT graphs
are viewed as symmetric digraphs, these bigraphs (2DOR bigraphs, interval contain-
ment bigraphs, and bipartite graphs that are complements of circular-arc graphs) are
viewed as uniform orientations of bipartite graphs.

Because the uniform orientations of these bipartite graphs are irreflexive, their
uniform orientations are disjoint from the adjusted interval digraphs, hence disjoint
from the interval graphs. Because they are antisymmetric, their intersection with the
co-TT graphs is trivial: it is the class of edgeless, loopless digraphs, the only loopless
digraphs that are both symmetric and antisymmetric.

In Figure 3 we illustrate these relationships on a grid representing all digraphs,
with the top half being reflexive digraphs and the left half being symmetric digraphs.
The central rectangle, the region A\cup B\cup C \cup D, represents the class of signed-interval
digraphs (i.e., min-orderable digraphs), while A \cup B and A \cup C represent adjusted-
interval digraphs and co-TT graphs, respectively. The small rectangle E represents
the uniform orientations of 2DOR bigraphs. (It has a trivial intersection with the
region C, not shown in the figure, as noted in the preceding paragraph.)

The lower half of the large rectangle corresponds to all digraphs that are not
reflexive; the small rectangle E belongs to the region of irreflexive digraphs (not
marked in the figure). Similarly, the right half of the larger rectangle corresponds to all
digraphs that are not symmetric, while E lies in the region of antisymmetric digraphs
(unmarked in the figure). In fact, E is the intersection of the class of uniform bipartite
digraphs (which are irreflexive and antisymmetric) and the rectangle A \cup B \cup C \cup D.

A graph G is chordal if every cycle C of length greater than three in G has a
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Fig. 4. An adjusted interval digraph and a corresponding adjusted interval model. The source
interval for each vertex is the upper one.

chord, i.e., a nonloop edge not on C whose endpoints are both in C. A graph is
strongly chordal if every closed walk C of even length greater than four has an odd
chord, which is a chord whose endpoints are an odd distance apart on C. Farber
showed [8] that a graph is strongly chordal if and only if its vertices can be ordered
so that the corresponding augmented adjacency matrix is \Gamma -free.

Our characterization of interval graphs as the reflexive, symmetric signed-interval
digraphs is equivalent to the characterization stating that they are the reflexive min-
orderable graphs. Although the relationship of co-TT graphs to min orderings has
not previously been recognized, the equivalent orderings from [34] imply that co-TT
graphs are strongly chordal [34].

Min orderings are a useful tool for graph homomorphism problems. A homomor-
phism of a digraph G to a digraph H is a mapping f : V (G) \rightarrow V (H) such that
f(u)f(v) \in E(H) whenever uv \in E(G). Digraph homomorphism problems are a
special case of constraint satisfaction problems. A general tool for solving polynomial
time solvable constraint satisfaction problems are the so-called polymorphisms [4].
Without going into the technical details, we mention that min orderings are equiv-
alent to conservative semilattice polymorphisms [13]. In particular, if a digraph H
has a min ordering, there is a simple polynomial time algorithm to decide if a given
input graph G admits a homomorphism to a fixed digraph H [19, 26]. In fact, the
algorithm is well known in the AI community as the arc-consistency algorithm [4, 26];
it is easy to see that it also solves list homomorphism problems, where we seek a
homomorphism of input G to fixed H taking each vertex of G to one of a ``list"" of
allowed images [10, 11, 12, 13]. In fact, many (but not all) homomorphism and list
homomorphism problems that can be solved in polynomial time can be solved using
arc-consistency with respect to a min ordering.

2. Previous work. Interval graphs are important in graph theory and in ap-
plications, and are distinguished by several elegant characterizations and efficient
recognition algorithms [3, 10, 14, 16, 20, 31, 38]. One attempt to extend the concept
to digraphs is given in [37], but many of the desirable structural properties are ab-
sent. More recently, the more restricted class of adjusted interval digraphs has been
found to offer a nicer generalization of interval graphs [13]. Recall that digraph H
is an adjusted interval digraph if there are two families of real intervals, the source
intervals \{ [xv, yv]| v \in V (H)\} and the sink intervals and \{ [xv, zv]| v \in V (H)\} such that
uv \in E(H) if and only if the source interval for u intersects the sink interval for v.
(See Figure 4.) This differs from the class in [37] in that the left endpoint, xv, must
be shared by the two intervals [xv, yv] and [xv, zv] assigned to v; they are ``adjusted.""
An adjusted interval model of H is a set of source and sink intervals that represent H
in this way.

An interval model of an interval graph G can be viewed as two mappings \{ v \rightarrow 
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xv| v \in V (H)\} and \{ v \rightarrow yv| v \in V (H)\} such that xv \leq yv for each v \in V (H), and
such that uv \in E(H) if and only if yv \leq xu and yu \leq xv; [xv, yv] is the interval
corresponding to v. The constraint xv \leq yv comes from the need for [xv, yv] to be an
interval. The proposition that two intervals intersect is the same as the proposition
(xv \leq yu and xu \leq yv), since this means that neither interval lies entirely to the right
of the other.

A generalization of interval models is obtained by dropping the constraint xv \leq yv
for each v \in V (H) in this formulation, while retaining the constraint that uv is an
edge if and only if xv \leq yu and xu \leq yv. Recall that a graph H is a threshold tolerance
graph [34] if each vertex v can be assigned a weight wv and a tolerance tv so that for
all a, b \in V (H), ab is an edge of H if and only if wa + wb > min(ta, tb), and the
co-TT graphs are the complements of threshold tolerance graphs. A graph H is a
co-TT graph if there exist real numbers xv, yv, v \in V (H), such that ab \in E(H) if and
only if xa \leq yb and xb \leq ya [18]. This differs from the definition of interval graphs
in that it is no longer required that xv \leq yv, illustrating the motivation for dropping
the constraint in this case. (See Figure 5.) That these are precisely the co-TT graphs
is easily seen by letting xv = wv and yv = tv  - wv. The two mappings v \rightarrow xv and
v \rightarrow yv are called the co-TT model of H.

One view of a co-TT model is that there are now intervals whose ``beginning,"" xv,
may come after their ``end,"" yv. In other words, we may have ``intervals"" [xv, yv] with
yv < xv. We may view a co-TT model as consisting of intervals [xv, yv], v \in V (H),
some of which are oriented in the positive direction (have xv \leq yv) and others are
oriented in the negative direction (have xv > yv). We speak of positive or negative
intervals, and positive or negative vertices that correspond to them. (In the literature
[15, 18, 23, 34], the direction is denoted by colors of the intervals: positive intervals
and vertices are colored blue, and negative intervals and vertices are colored red.)

The definition of adjacency in a co-TT model implies that two positive vertices
are adjacent if and only if they intersect; in particular, each positive vertex has a
loop. Two negative vertices are never adjacent; in particular, negative vertices have
no loops. Finally, a positive vertex u corresponding to a positive interval [a, b] and a
negative vertex v corresponding to a negative interval [c, d] are adjacent if and only
if [d, c] is contained in [a, b] (i.e., a \leq d \leq c \leq b).

We emphasize that our definition of co-TT graphs differs from the standard defi-
nition [15, 18, 34]. In the standard definition, the condition ab \in E(H) \Leftarrow \Rightarrow xa \leq yb
and xb \leq ya is applied only for a \not = b, ignoring the issue of loops. We generalize the
condition to the case where a = b, which can require that some of the vertices have
loops. Thus, a graph under the standard interpretation is co-TT if and only if with a
suitable addition of loops it is co-TT under our definition above. It is not necessary
to know a co-TT model of the graph in order to convert a co-TT graph without loops
into one satisfying our definition in linear time. The closed neighborhood of a vertex
x, denoted N [x], consists of x and its neighbors. Two vertices are true twins if they
have identical closed neighborhoods. A vertex is simplicial if its closed neighborhood
induces a complete subgraph. It was shown in [18] that if a graph H is co-TT (in the
standard sense), then it has a co-TT model with negative intervals for all simplicial
vertices without true twins and all other intervals positive. Thus, there is an easy
translation between the co-TT graphs as defined here and the standard irreflexive co-
TT graphs, namely, loops may be placed on all vertices other than simplicial vertices
that have no true twins. A linear time algorithm is given in [15] for performing this
operation.

Note that the interval graphs are those co-TT graphs that have a co-TT model
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Fig. 5. A co-TT graph and a corresponding co-TT model; ab is an edge since 1 \leq 10 and 3 \leq 8,
ad is an edge since 1 \leq 2 and 7 \leq 8. However, bd is not an edge: although 7 \leq 10, 3 is not less
than or equal to 2. The example of this figure is one of the well-known minimal graphs that are not
interval graphs, illustrating that the interval graphs are a proper subclass of the co-TT graphs.

where all vertices are positive. In other words, they are the reflexive co-TT graphs.
Adjacency on a set of intervals can also be defined by interval containment.

A graph is a containment graph of intervals [17] if there is a family of intervals
\{ [xv, yv]| v \in V (H)\} on the real line such that uv \in E(H) if and only if one of
[xu, yu] and [xv, yv] contains the other. A graph is a containment graph of intervals
if and only if it and its complement are both transitively orientable, thus if and only
if it is a permutation graph [17].

A concept related to interval graphs for bipartite graphs is as follows. A bipartite
graph H with parts A,B is an interval bigraph if there are intervals \{ [xa, ya], a \in A\} 
and \{ [xb, yb], b \in B\} , such that for a \in A and b \in B, ab \in E(H) if and only if
[xa, ya] \cap [xb, yb] \not = \emptyset . Such a set of intervals is known as an interval bigraph model of
the graph. For this paper, a more relevant class is a bipartite version of this concept.
A bipartite graph H with parts A,B is an interval containment bigraph [21, 29] if
there are sets of intervals \{ Ia| a \in A\} and \{ Jb| b \in B\} , such that ab \in E(H) if and
only if Jb \subseteq Ia. These graphs have been independently studied from the point of
view of another geometric representation, defined as follows [36]. A bipartite graph
H with parts A and B is called a 2DOR bigraph if there exist a set \{ Ua, a \in A\} of
upwards vertical rays and a set \{ Rb, b \in B\} of horizontal rays to the right such that
ab \in E(H) if and only if Ua\cap Rb \not = \emptyset . It is known that a bipartite graph is an interval
containment bigraph if and only if its complement is a circular arc graph [11, 29] (and
thus if and only if it is a two-directional orthogonal ray bigraph).

Matrices that can be permuted to avoid small submatrices have been of much
interest [1, 30, 32]. This of course corresponds to characterizations of digraphs by for-
bidden ordered subgraphs [7, 24]. Our focus is on \{ \Sigma ,\Lambda \} -free matrices. A relationship
between this and the previous work is described in section 6.

3. Signed-interval digraphs and min orderings. We have now seen exten-
sions of interval graphs in two different directions. First, taking two (adjusted) inter-
vals instead of just one interval extends them to a class of digraphs. Second, admitting
negative intervals extends them to a broader class of (symmetric) graphs. Both of
these generalizations have proved very fruitful [10, 13, 15, 28, 18, 23, 34].
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Fig. 6. A signed-interval digraph and a corresponding signed-interval model. The source in-
terval for each vertex is the upper one. There is a loop at a because its positive source interval
intersects its positive sink interval. There is an edge from a to b because a's positive source interval
contains b's negative sink interval, an edge from b to c because b's positive source interval intersects
c's positive sink interval, and an edge from d to c because d's negative source interval is contained
in c's positive sink interval.

We now define a new class of digraphs that unifies these extensions by assigning
a source vertex and a sink vertex to each vertex, as in the adjusted interval model,
and allowing these intervals to be either positive or negative, as in the co-TT model.
In particular, a signed-interval model is obtained by assigning, for each v \in V (H), a
source interval [xv, yv] and a sink interval [xv, zv], such that it is not required that
yv, zv \geq xv, and uv \in E(H) if and only if xu \leq zv and xv \leq yu. A graph is a
signed-interval digraph if it can be modeled in this way. (See Figure 6.) The model
can be viewed as three mappings from V (H) to the real line, v \rightarrow xv, v \rightarrow yv, and
v \rightarrow zv. Since it is possible that xv > yv and/or xv > zv, each of [xv, yv] and [xv, zv]
can be negative or positive. Since the source interval and sink interval for v share the
endpoint xv, we retain the property that the intervals are adjusted.

Let H be a signed-interval digraph and consider a signed-interval model of H
given by the ordered pairs (Iv, Jv) of intervals where Iv = [xv, yv] and Jv = [xv, zv].
For \alpha , \beta \in \{ +, - \} , we say a vertex v is of type (\alpha , \beta ) if Iv is an \alpha -interval and Jv is
a \beta -interval. The subdigraph of H induced by (+,+)-vertices is an adjusted interval
digraph. The ( - , - )-vertices of H form an independent set. The arcs between the
(+, - )- and ( - , - )-vertices form a 2DOR digraph. The arcs between the ( - ,+)- and
( - , - )-vertices also form a 2DOR digraph. Similar properties hold for the other parts
and their connections.

It has previously been recognized that interval graphs, adjusted interval digraphs,
and two-directional orthogonal ray digraphs have min orderings when care is taken
to specify which vertices have loops and which do not [10, 13, 25, 36].

The main result of this section is the following.

Theorem 3.1. A digraph admits a min ordering if and only if it is a signed-
interval digraph.

Before embarking on the proof we offer an alternate definition of a min ordering.
Consider any linear ordering < of V (H). To this ordering, we prepend an initial
element \alpha , which is a placeholder and not a vertex. Thus, \alpha < x for each vertex x.
Suppose the adjacency matrix is ordered according to <. For a vertex u, we denote
by O(u) the last vertex v (in the order <), such that v is an out-neighbor of u, or \alpha 
if a has no out-neighbor. (See Figure 7.) Similarly, for each vertex x, we denote by
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Fig. 7. A matrix in a \{ \Sigma ,\Lambda \} -free ordering; v is the last out-neighbor O(u) of u in the ordering
and y is the last in-neighbor I(x) of x in the ordering. The absence of an edge from u to x would
violate the ordering property, since rows u, y and columns x, v would contain one of the matrices \Sigma ,
\Lambda ; cf. Figure 2.

I(x) the last vertex y such that y is an in-neighbor of x, or \alpha if a has no in-neighbor.

Proposition 3.2. A linear ordering < of V (H) is a min ordering of a digraph
H if and only if the following property holds:

ux \in E(H) if and only if u \leq I(x) and x \leq O(u).

Proof. (See Figure 7.) Suppose first that < is a min ordering of H with \alpha 
prepended. If ux \in E(H), then by the definition of O(u), I(x) we have u \leq I(x)
and x \leq O(u). On the other hand, let u \leq I(x) and x \leq O(u). Note that if u = I(x)
or x = O(u), we have ux \in E(H) also by definition. Therefore, it remains to consider
vertices u, x such that u < y = I(x) and x < v = O(u). Then uv, yx \in E(H) and the
min ordering property implies that ux \in E(H). This proves the property.

Conversely, assume that < is a linear ordering of V (H) with \alpha prepended and
that the property holds for <. We claim it is a min ordering of H. Otherwise,
some ab \in E(H), a\prime b\prime \in E(H), a < a\prime , b\prime < b would have ab\prime \not \in E(H). This is a
contradiction, since we have a < a\prime \leq I(b\prime ) and b\prime < b \leq O(a).

We proceed to prove the theorem.

Proof. Suppose < is a min ordering of a digraph H with \alpha prepended. We
represent each vertex v \in V (H) by the mappings v \rightarrow v, v \rightarrow O(v), v \rightarrow I(v). In
other words, v is represented by the two intervals [v,O(v)] and [v, I(v)]. It follows
from Proposition 3.2 that ab \in E(H) if and only if a \leq I(b) and b \leq O(a). Thus, H
is a signed-interval digraph.

Conversely, suppose we have the three mappings v \rightarrow xv, v \rightarrow yv, v \rightarrow zv from
V (H) to the real line, such that ab \in E(H) if and only if xa \leq zb and xb \leq ya.
Without loss of generality, we may assume the points \{ xv| v \in V (H)\} are all distinct.
Then we claim that the left-to-right ordering of the points xv yields a min ordering
< of H, with a real point preceding these points corresponding to \alpha . (Specifically, we
define a < b if and only if xa precedes xb.) Consider now ab \in E(H), a\prime b\prime \in E(H),
with a < a\prime , b\prime < b. This means that xa < xa\prime \leq zb\prime and xb\prime < xb \leq ya, whence we
must have ab\prime \in E(H).

In the construction of the proof, a vertex v is assigned a positive source interval
if O(v) > v and a negative one otherwise, and a positive sink interval if I(v) > v and
a negative one otherwise. By Proposition 3.2, if both of v's intervals are positive, v
requires a loop, and it cannot have a loop if at least one of its intervals is negative.
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Fig. 8. Illustration for the proof of Theorem 4.1.

4. An alternate geometric representation of signed-interval digraphs.
Digraphs that admit a min ordering have another geometric representation. Let C be
a circle with two distinguished points (the poles) N and S, and let H be a digraph.
Let Iv, v \in V (H) and Jv, v \in V (H) be two families of arcs on C such that each Iv
contains N but not S, and each Jv contains S but not N . We say that the families Iv
and Jv are consistent if they have the same clockwise order of their clockwise ends,
i.e., the clockwise end of Ia precedes in the clockwise order the clockwise end of Ib if
and only if the clockwise end of Ja precedes in the clockwise order the clockwise end
of Jb. Suppose two families Iv, Jv are consistent; we define an ordering \prec on V (H)
where a \prec b if and only if the clockwise end of Ia precedes in the clockwise order the
clockwise end of Ib; we call \prec the ordering generated by the consistent families Iv, Jv.
Note that \prec is a total order on V (H).

A bi-arc model of a digraph H is a consistent pair of families of circular arcs,
Iv, Jv, v \in V (H), such that ab \in E(H) if and only if Ia and Jb are disjoint. A digraph
H is called a bi-arc digraph if it has a bi-arc model.

Theorem 4.1. A digraph H admits a min ordering if and only if it is a bi-arc
digraph.

Proof. Suppose Iv, Jv form a bi-arc model of H. We claim that the ordering \prec 
generated by Iv, Jv is a min ordering of H. Indeed, suppose a \prec a\prime and b\prime \prec b have
ab, a\prime b\prime \in E(H). Then Ia\prime spans the area of the circle betweenN and the clockwise end
of Ia, and Jb spans the area of the circle between S and the clockwise end of Jb\prime . (See
Figure 1.) This implies that Ia and Jb\prime are disjoint: indeed, the counterclockwise end
of Ia is blocked from reaching Jb\prime by Jb (since ab \in E(H)), and the counterclockwise
end of Jb\prime is blocked from reaching Ia by Ia\prime (since a\prime b\prime \in E(H)). (The clockwise ends
are fixed by the ordering \prec .)

Conversely, suppose < is a min ordering of H. We construct families of arcs
Iv and Jv, with v \in V (H), as follows. The intervals Iv will contain N but not S,
the intervals Jv will contain S but not N . The clockwise ends of Iv are arranged in
clockwise order according to <, as are the clockwise ends of Jv. The counterclockwise
ends will now be organized so that Iv, Jv, v \in V (H), becomes a bi-arc model of H.
For each vertex v \in V (H), we define O(v) and I(v) as in the proof of Theorem 1.
Then we assign the counterclockwise endpoint of Iv to be N if v has no out-neighbors,
or else extend Iv counterclockwise as far as possible without intersecting JO(v), and
assign the counterclockwise endpoint of each Jv to be S if v has no in-neighbors,
or else extend Jv counterclockwise as far as possible without intersecting II(v). We
claim this is a bi-arc model of H. Clearly, if b > O(a), then Ia intersects Jb by
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the construction, and similarly for a > I(b) we have Jb intersecting Ia. This leaves
disjoint all pairs Ia, Jb such that a \leq I(b) and b \leq O(a); since aO(a), I(b)b \in E(H),
the definition of min ordering implies that ab \in E(H), as required.

Corollary 4.2. The following statements are equivalent for a digraph H.
\bullet H has a min ordering.
\bullet H is a signed-interval digraph.
\bullet H is a bi-arc digraph.

5. Bipartite graphs.

Definition 5.1. A bipartite graph G is a signed-interval bigraph if some uniform
orientation H of G is a signed-interval digraph.

We will show below that if some uniform orientation of a bipartite graph G is
a signed-interval digraph, then so is every uniform orientation. If G is a signed-
interval bigraph, then a signed-interval model of a uniform orientation H of G gives
a representation of G: ab is an undirected edge of G if and only if one of ab and ba is
an edge of H.

Note that a signed-interval bigraph is not necessarily a signed-interval digraph
in the sense given previously. For signed interval bigraphs we must first assign a
uniform orientation before considering whether the adjacency matrix has a \{ \Sigma ,\Lambda \} -
free ordering. Once it is assigned, the rows and columns of the nonempty elements
of the matrix are disjoint, which implies that the rows and columns can be ordered
independently.

The bi-adjacency matrix of a bipartite graph G with parts A,B has its i, jth entry
equal to 1 if and only if the ith vertex in A is adjacent to the jth vertex in B. Note
that for this interpretation it is not required that the matrix be square.

Definition 5.2. A 0-1 matrix has a bipartite min ordering if it has an indepen-
dent permutation of rows and columns that is \{ \Sigma ,\Lambda \} -free.

Lemma 5.3. A bipartite graph G = (A,B,E) is a signed-interval bigraph if and
only if its biadjacency matrix has a bipartite min ordering.

Proof. Let C be a biadjacency matrix of a bipartite graph G, where A is its
rows and B is its columns. Let H be a uniform orientation of G from A to B. An
n \times n adjacency matrix M for H can be obtained by moving the rows of A to the
first | A| rows of M , the columns of B in the last | B| columns, and placing zeros
elsewhere. Permuting the columns in A does not change M , since they only contain
zeros. Similarly, permuting the rows in B does not change M .

Suppose an independent permutation \pi A of rows and \pi B of columns of C produces
a \{ \Sigma ,\Lambda \} -free matrix. The symmetric permutation \pi A of both rows and columns of A
and a symmetric permutation \pi B of both rows and columns of B produces a \{ \Sigma ,\Lambda \} -
free ordering of M .

Conversely, suppose H is a signed-interval digraph. There is a symmetric permu-
tation of rows and columns of its adjacency matrix M that is \{ \Sigma ,\Lambda \} -free. Moving
the rows in A to the first | A| positions without changing their relative order and mov-
ing the columns of | B| to the last | B| positions without changing their relative order
gives a \{ \Sigma ,\Lambda \} -free independent permutation of C in the first | A| rows and last | B| 
columns.

Theorem 5.4. The following statements are equivalent for a bipartite graph H.
\bullet H is a signed-interval bigraph.
\bullet H is a two-directional orthogonal ray bigraph.
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\bullet The complement of H is a circular arc graph.
\bullet H is an interval containment bigraph.

Proof. The equivalence of the last three classes follows from a combination of
results from [11, 25, 29, 36]. We complete the theorem by showing the equivalence,
for bipartite graphs, of the signed-interval bigraphs and the two-directional orthogonal
ray bigraphs (cf. also [25] where the third statement is shown to be equivalent to the
existence of a min ordering.)

Suppose H has a signed-interval model given by the three mappings v \rightarrow xv, v \rightarrow 
yv, v \rightarrow zv such that ab \in E(H) if and only if xa \leq zb and xb \leq ya. We construct a
two-directional ray model for H as follows. For each a \in A, we take an upwards ver-
tical ray starting in the point Pa with x-coordinate equal to ya and with y-coordinate
equal to xa. For each b \in B, we take a horizontal ray to the right, starting in the
point Qb with x-coordinate xb and y-coordinate zb. Now Pa intersects Qb if and only
if xb \leq ya and xa \leq zb, i.e., if and only if ab \in E(H) as required.

Now suppose that H has a two-directional model, i.e., upwards vertical rays
Ua, a \in A, and horizontal rays to the right Rb, b \in B, such that ab \in E(H) if and
only if Ua \cap Rb \not = \emptyset . We will prove that H has a min ordering, whence it is a signed-
interval digraph by Theorem 3.1. We will define the orders < on A and on B as
follows. Assume the starting point of the vertical ray Ua has the (x, y)-coordinates
(ua, va), and the starting point of the horizontal ray Rb has the (x, y)-coordinates
(rb, sb), for a \in A, and b \in B. It is easy to see that we may assume, without loss of
generality, that all ua, a \in A, and rb, b \in B are distinct, and similarly for va, a \in A,
and sb, b \in B. We define a < a\prime in A if and only if va < v\prime a, and define b < b\prime in B if
and only if rb < rb\prime . We show that this is a min ordering of the bipartite digraph H.
Otherwise, some ab \in E(H), a\prime b\prime \in E(H), a < a\prime , b\prime < b have ab\prime \not \in E(H). There are
two possibilities for ab\prime \not \in E(H); either ua < rb\prime or ua > rb\prime , va > sb\prime . In the former
case, Ua \cap Rb = \emptyset , in the latter case Ua\prime \cap Rb\prime = \emptyset , contradicting the assumptions.

6. Special cases. We now explore what min orderings look like in the spe-
cial cases we have discussed, namely reflexive graphs, reflexive digraphs, undirected
graphs, and bipartite graphs. The results are all corollaries of Theorem 3.1 and
Proposition 3.2.

Corollary 6.1. A reflexive digraph H is a signed-interval digraph if and only if
it is an adjusted interval digraph.

Next we focus on symmetric digraphs, i.e., graphs.

Corollary 6.2. A reflexive graph H is a signed-interval digraph if and only if
it is an interval graph. A graph H is a signed-interval digraph if and only if it is a
co-TT graph.

Proof. Consider an interval model or co-TT model of H, given by the mappings
v \rightarrow xv, v \rightarrow yv, setting the third mapping v \rightarrow zv with each zv = yv, yields a signed-
interval digraph model of H. Conversely, assume H is a graph, i.e., a symmetric
digraph that is a signed-interval digraph. Let < be a min ordering of H; we again have
O(v) = I(v) for all vertices v. We claim that the mappings v \rightarrow xv = v, v \rightarrow yv = O(v)
define a co-TT model. Indeed, from Proposition 3.2 we have ab \in E(H) if and only
if a \leq O(b) = yb and b \leq O(a) = ya, as required. If, in addition, H is reflexive, then
O(v) = I(v) \geq v, and \{ [v,O(v)], v \in V (H)\} is an interval model.

Corollary 6.2 gives a novel way to understand the relationship between these
classes.
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By Corollary 6.2, a graph is an interval graph if and only if there is an order-
ing of vertices such that its augmented adjacency matrix is \{ \Sigma ,\Lambda \} -free. Also, by
Corollary 6.2, a graph is a co-TT graph if and only if there is an ordering of vertices
such that its adjacency matrix with some assignment of 0's and 1's to the elements
of the diagonal is \{ \Sigma ,\Lambda \} -free. (One way to find such an assignment of 0's and 1's is
the one given in [18].) Recall again that Farber proved [8] that a graph is strongly
chordal if and only if there is an ordering of its vertices such that the corresponding
augmented adjacency matrix is \Gamma -free. A comparison of all these statements offers a
way to understand the relationship between interval graphs, co-TT graphs, and the
broader class of strongly chordal graphs.

7. Algorithms and characterizations. Interval graphs are known to have ele-
gant characterization theorems [14, 31]; cf. [16, 38] and efficient recognition algorithms
[3, 5, 20]. Thus, one might hope to be able to obtain similar results for their gener-
alizations and digraph analogues. This is true for all of the generalizations described
in this paper, at least to some degree. In this section we summarize what is known.

The prototypical characterization of interval graphs is the theorem of Lekkerkerker
and Boland [31]. In our language, it states that a reflexive graph H is an interval graph
if and only if it contains no asteroidal triple and no induced C4 or C5. An asteroidal
triple consists of three nonadjacent vertices such that any two are joined by a path not
containing any neighbors of the third vertex. An equivalent characterization by the
absence of a slightly less concise obstruction is given in [13]. A reflexive graph H is an
interval graph if and only if it contains no invertible pair. An invertible pair is a pair
of vertices u, v such that there exist two walks of equal length, P from u to v, and Q
from v to u, where the ith vertex of P is nonadjacent to the (i+1)st vertex of Q (for
each i), and also two walks of equal length R,S from v to u and u to v, respectively,
where the ith vertex of R is nonadjacent to the (i + 1)st vertex of S (for each i). It
is not difficult to see that an asteroidal triple is a special case of an invertible pair. A
number of variants of the definition of an invertible pair have arisen [13, 15, 23, 25],
and they have proved useful in giving characterization theorems for various classes.
It is proved in [13] that a reflexive digraph is an adjusted interval digraph if and only
if it contains no directed invertible pair. A directed version of an invertible pair is
defined in [13] in a manner similar to the above definition of an invertible pair. With
yet another labeled version of an invertible pair, we have the following obstruction
characterization of co-TT graphs: a graph is a co-TT graph if and only if it contains
no labeled invertible pair, which follows from the characterization in [15] in terms of
an interval ordering from [33]. For bipartite graphs, an analogous bipartite version
of an invertible pair yields the following result. A bipartite graph is a two-directional
orthogonal ray bigraph if and only if it contains no bipartite invertible pair [25]. In
fact, in [11] a stronger version is shown: there is a bipartite analogue of an asteroidal
triple, called an edge-asteroid, and a bipartite graph is a two-directional orthogonal ray
bigraph if and only if it contains no induced 6-cycle and no edge-asteroid. Bipartite
graphs that contain no edge-asteroids are characterized in [23]. Finally, in [28], there
is an obstruction characterization for signed-interval digraphs, which is a little more
technical than just an invertible pair [28].

There is a long history of efficient algorithms for the recognition of interval graphs,
many of them linear time, starting from [3] and culminating in [5]. A polynomial time
algorithm for the recognition of adjusted interval digraphs is given in [13]. It is not
known how to obtain a linear time, or even near-linear time algorithm. An O(n2)
algorithm for the recognition of two-directional orthogonal ray bigraphs follows from
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Theorem 5.4 and [33]. A more efficient algorithm in this case is also not known. On
the other hand, an O(n2) algorithm for the recognition of co-TT graphs has been given
in [15]. The obstruction characterization in [28] yields a polynomial time algorithm
for the recognition of signed-interval digraphs; in other words, to recognize whether
a digraph has a min ordering.
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