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Abstract
Developing spatial analytical methods as open source libraries is an important endeavor to enable open and replicable science.
However, despite the fact that large geospatial data and geospatial cyberinfrastructure (GeoCI) resources are becoming available,
many libraries and toolkits are only initialized and designed for analytics in a desktop environment. Coupling spatial analytical
functionality with big data and high-performance computing will result in immediate benefits for multidisciplinary research in
terms of addressing challenging socioeconomic and environmental problems, as well as supporting remote collaboration between
participants from physically distributed research groups, and assisting informed decision-making. In this article, we present the
design and implementation of a general workflow to integrate state-of-the-art open source libraries with GeoCI resources. We
also solve various interoperability and replicability issues that arise during the implementation process. The popular open source
Python Spatial Analysis Library (PySAL) was selected to build the interoperable Web service, WebPySAL, which was then
successfully integrated in GeoCI.With this integration between spatial analytics and cyberinfrastructure, the newGeoCI platform
provides easy-to-use, efficient, and interactive exploratory spatial analysis functions to public users. The GeoCI capability is
demonstrated through two regional economic case studies of (1) evaluating global spatial autocorrelation and identifying local
clusters in the spatial pattern of median household incomes for US counties (with global and local Moran’s I statistics) and (2)
modeling the space-time dynamics of per capita incomes at the state level (with spatial Markov statistics).
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Introduction

Geographic information science (GIScience) has led to tre-
mendous developments in new spatial analytical methods
and new data-driven techniques for supporting geospatial
problem solving. It has also contributed to multidisciplinary
research by providing modern theories, methodologies, soft-
ware, and tools to address pressing social and environmental
problems, such as understanding human mobility, regional
inequality, and global environmental change (Wang 2013;
Li et al. 2016c; Li et al. 2019a). The recent open science

movement also fosters the development of open source librar-
ies and software toolkits for spatial analysis (Li et al. 2010;
Steiniger and Hunter 2013; Swain et al. 2015), such as Python
Spatial Analysis Library (PySAL) (Anselin and Rey 2014;
Rey 2014; Rey et al. 2015), GeoDa (Anselin et al. 2010),
GDAL (Geospatial Data Abstraction Library; Warmerdam
2008), GRASS (Geographic Resources Analysis Support
System; Neteler et al. 2012), GIS, spacetime (Pebesma
2012), STARS (Space-Time Analysis of Regional Systems;
Rey and Janikas 2010), and spdep (Bivand et al. 2011). These
toolkits play a critical role in promoting continuous innova-
tions in GIScience.

There are two main working modes within the geospatial
community: the “single-user” mode and the “collaboration”
mode. The former is most suited to individual researchers who
possess professional domain knowledge. They generally con-
duct research and experiments from an exploratory perspec-
tive and in an “agile” manner. Since this working mode gives
researchers absolute control over the data and analytical
methods or software, it is very popular among individual
researchers.
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However, the single-user mode is infeasible in certain
scenarios, including:

& Very large projects that require the collaboration among
participants from different domains and physical loca-
tions. The data set, documents, and knowledge must be
simultaneously shared among team members in an effi-
cient way (Rinner et al. 2008; Sun and Li 2016).

& Time-critical and data-intensive scenarios (e.g., when a
natural disaster occurs), where massive data sets, includ-
ing basic terrain, hydrology, transportation data, and real-
time observation data, need to be gathered for on-the-fly
spatial analysis. The results should be delivered to
decision-makers in real time to ensure that rapid responses
and evacuation plans can be developed (Li et al. 2015b;
Wu et al. 2013).

& Mobile working projects or field investigations, where the
architecture of the system could be distributed. The server
side should be responsible for data storage and computa-
tion, while the tasks on the client side in relation to mobile
phones and tablets should involve data collection and vi-
sualization (Cerón et al. 2018).

& Demonstration and education scenarios (e.g., dashboard
system cases), where livestream data is visualized and data
patterns are displayed, or where the usage of complicated
data sets or newly developed data analysis methods are
taught through demonstrations (Harris 2003; Veenendaal
2015).

The rapid development of geospatial technologies has en-
abled scientists to gather large amounts of high-quality
georeferenced data from the physical world, society, the econ-
omy, social media, etc. Data deluges such as these provide
GIScience researchers with opportunities to obtain deeper in-
sights into the phenomena occurring in nature and society.
Consequently, the acceleration in the development and
achievement of theories, methods, software, and discoveries
is driven by the richness of the data of recent decades.

In addition to the big data deluge, cyberinfrastructure (CI)
theories and technologies have undergone extensive develop-
ment, and numerous commercial and academic products and
platforms have been widely adopted, including Amazon
Cloud, Microsoft Azure, Google Earth Engine, Hadoop, and
Apache Spark. These CI facilities are capable of hosting big
data sets and conducting large-scale analyses and simulations
that are infeasible on individual desktops. All of these factors
combine to render the second collaborative working mode
increasingly popular (Rinner et al. 2008). In the geospatial
domain, Earth and environment science is a discipline that
has witnessed a widespread adoption of cyberinfrastructure
to support scalable and online data analysis and decision-mak-
ing. Exemplar projects include DataOne (Allard 2012),
OpenTopography (Krishnan et al . 2011), GEON

(GEOscience network; Keller 2003), PolarHub (Li 2018),
and Ocean Observatories Initiative (OOI; Rodero Castro and
Parashar 2016). They each provide a cyberinfrastructure solu-
tion to increase open sharing, effective search, and analytics of
environmental, atmospheric, or geological data. In the social
sciences, however, such efforts are sparse. But social scientists
do have access to data and knowledge that have great practice
value, and these data and the sharing of such data will com-
plete the picture of a “knowledge society” that (physical) sci-
entists are exploiting quite lonely in. It was also argued by
Unsworth (2008) that the social sciences need more collabo-
rative computational methods and decision-making. What
is more, producing replicable research has become an in-
creasing concern across al l science discipl ines.
Replicability ensures that a research can be validated,
the data and methods can be easily reused, and science
can be more rapidly advanced. The work we present in
this paper aims right at addressing the above challenges
by building a cyberinfrastructure for social sciences and
making spatial-social analytics openly available as well as
replicable.

The remainder of the paper is organized as follows:
Section 2 introduces related research in developing CI to sup-
port interoperable research. Section 3 describes the integration
strategy and implementation details of the proposed GeoCI
platform. Section 4 uses two use cases to demonstrate the
power of the CI in performing spatial social analysis interac-
tively and efficiently. This section also presents a comparison
of the performance of spatial analyses in the desktop environ-
ment with the proposed cyber-environment. We conclude our
work with potential areas of future research in Section 5.

Literature Review

Coupling spatial analysis models with CI resources to support
collaborative research under the Web environment could ac-
celerate the solution process of complex spatial problems and
support effective decision-making.

A number of related research studies and practices have
been conducted recently with different areas of focus
(Anselin and Rey 2012). Some of these studies and practices
are dedicated to deploying sophisticated spatial analysis
models in a high-performance computing (HPC) environment
to solve data-intensive research questions related to hydrology
(Rajib et al. 2016), ecology (Dubois et al. 2013; Sugumaran
et al. 2009), and the environment (Delipetrev et al. 2014;
Swain et al. 2015). Others have focused on technical solu-
tions, such as the design and implementation of a CI working
environment to handle and manipulate big geospatial data and
conduct analyses and simulations (Astsatryan et al. 2015;
Mihon et al. 2013; Wang and Liu 2009), or develop a com-
puting capacity to parallelize the geoprocessing in a HPC
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environment (Laura et al. 2015; Wang et al. 2009; Wang and
Armstrong 2009).

However, challenges remain to enable a smart CI that al-
lows online collaborative analysis of spatial social data.
Several of the main challenges are:

1. The lack of interoperability between software compo-
nents: The deployed toolkits should be compatible with
popular open standards and be easily exploited by users in
a Web-based environment.

2. The lack of provenance and metadata to capture automat-
ically the spatial analytical workflows: This lack could be
one of the most critical factors under the collaborative and
reproducible working mode. It refers to all of the infor-
mation involved, ranging from how spatial data is pro-
duced and how geoprocessing steps are chained and con-
ducted, to how to obtain results. This is key for maintain-
ing quality control and reproducing a spatial analytical
process (Anselin et al. 2014; Wu et al. 2015).

3. The granularity of the functionalities and their exposure as
application programming interfaces (APIs): Many open
source libraries are designed for the single-user working
mode, where the functionalities of each method and class
are usually designed to be atomic, thus helping users to
combine various methods in a flexible manner in order to
conduct the exploratory analysis. However, when
deploying the functions on the server side, the communi-
cation cost between the client and server needs to be con-
sidered. The most intuitive way to reduce the communi-
cation cost is to combine atomic APIs with non-atomic
APIs. This results in a sophisticated workflow, as several
parameter inputs from users can be accepted all at once.
This can be exemplified in the inference of local indica-
tors of spatial association (LISAs) (Anselin 1995).

4. The provision of proper documentation and supporting
materials: Many open source projects serve as pioneers
in implementing and introducing newly developed meth-
odologies of spatial analysis.When deploying these meth-
odologies, the provision of adequate documentation and
materials to educate users to appropriately use the APIs
should be carefully considered.

Initiated in 2012, the NSF-funded GeoCI platform serves
as a one-stop portal for interoperating and visualizing distrib-
uted geospatial data resources (Li et al. 2016a, 2019a). A
spatial data search engine is integrated into GeoCI, thus en-
abling it to discover an extensive amount of open geospatial
data shared on the internet (Li 2018). Rich data visualization
and exploration functions have also been integrated into the
GeoCI. Furthermore, this portal employs cutting-edge tech-
niques for the efficient representation, management, and trans-
fer of geospatial big data (Li et al. 2016c; Song et al. 2016;
Shao and Li 2018). In this article, we will use GeoCI platform

as the test bed to demonstrate its ability to support social
science research.

We first enable Web-based spatial analytics by deploying
PySAL library asWebPySAL based on a widely adoptedWeb
service standard. These Web services are then seamlessly in-
tegrated into the GeoCI portal so that advanced spatial analy-
sis functions can interoperate with the various spatial and tem-
poral data for an integrated study. The deployment strategy
and architecture of various components make our system
highly interoperable from a user’s perspective and extensible
from a developer’s perspective.

Methodologies and System Implementation

The Interoperable Architecture of WebPySAL

Our implementation selected PySAL, a python-based open
source library for spatial analysis and statistics (Rey and
Anselin 2010). This library is based on modularized design
and contains modules for point pattern analysis
(pointpats), spatial distribution dynamics analysis (giddy),
map classification (mapclassify), and exploratory spatial
data analysis (esda), among others. All these core modules,
and their class and function definition, as well as relevant
metadata, configuration file, and documentation, are auto-
matically fetched using the sphinx library (Brandl 2009) to
support the deployment of the functions into a series of
Web services; we named it WebPySAL, to enable geospatial
interoperability across different platforms and programming
languages (Fig. 1).

In WebPySAL, the OGC (Open Geospatial Consortium)
WPS (Web Processing Service) standards are adopted for pro-
viding geoprocessing services. A python-based open source
library, PyWPS (Čepický 2007), is employed for platform
development. PyWPS provides OGC WPS implementation
on the server side and supports easy wrapping of spatial ana-
lytical functions into WPS. In our implementation, PyWPS
acts as the middleware for transforming the functionalities
from PySAL into WebPySAL. Each spatial analysis function-
ality is wrapped in an individual class, with predefined inputs
and outputs, according to the rules of PyWPS. PyWPS will
then publish these functionalities as OGC-compliant WPS
services.

The followingWPS operations are enabled forWebPySAL
analytics: (1) GetCapabilities: provides xml files that hold
metadata about the service, including service provider infor-
mation and available processes; (2) DescribeProcess: provides
a detailed description of the supported processes, their param-
eter settings, and input/output formats; (3) execute: allows
users to invoke operations by providing proper data and
input/output variables through a Web request. A
WebPySAL execution operation is capable of accepting a
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wide range of inputs, including (1) literal data, such as num-
bers, strings, and Booleans; (2) complex data, such as GML,
JSON, and text files; (3) file references, such as URLs (for
geoprocessing, the systemwill automatically fetch the data set
according to the URLs on the server side); and (4) results/
outputs of other operations. This provides users with the flex-
ibility to chain multiple operations together to generate and
execute a complex geoprocessing task.

Provenance and Metadata

Tracking the provenance of operations is a key factor to
ensure the full replicability of data analysis as well as the
interoperability with other systems. These are critical fac-
tors in the current and increasingly popular context of col-
laboration (Anselin et al. 2014). Two strategies for main-
taining provenance are adopted in WebPySAL’s imple-
mentation: software versioning and metadata for executing
geoprocesses.

In WebPySAL, since each geoprocessing API wraps
some specific functionalities from the submodules of
PySAL, the development version of these submodules will
be automatically extracted and used by WebPySAL. In

terms of the open source libraries that are developed and
upgraded rapidly, this strategy can help users obtain a bet-
ter sense of which library version they are using and
whether or not they can obtain results that are identical to
older versions.

The execution metadata of WebPySAL contains all of
the essential parameters needed to execute the API. After
specific parameters and configurations are provided by an
end user, they will be injected into the execution request
form and submitted to the server side to initialize the
analytic process. These forms are in XML (eXensible
Markup Language) format and designed to be readable
by both humans and machines. In this way, the prove-
nance of a workflow can be properly captured so that
users can replicate the process to obtain identical results
at a later time.

We will take the spatial weight construction, which is
essential to many spatial analytical tasks, as an example.
Spatial weights, often in the format of a matrix, provide
the spatial relationships among spatial entities. The higher
the weight value, the stronger the spatial relation. Table 1
shows the metadata description for the WebPySAL Web
service API which provides KNN (K-nearest neighbor)-

Fig. 1 The architecture of WebPySAL
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based spatial weight operation. The required input param-
eters include “Data” as well as 2 optional input

parameters: “Number of nearest neighbors” and “Id
Variable.” According to this metadata, an “execution”

Table 1 Metadata description for the process of KNN spatial weight
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operation can be invoked to create the weight matrix
based on user input. The execution metadata will be saved
on the server side to ensure that the analysis can be
reproduced by the same or different researchers.

Abstraction and Aggregation of PySAL Functions to
Provide Synthetic APIs

PySAL was originally designed for a desktop working envi-
ronment. During its implementation, the object-oriented strat-
egy was adopted, meaning that class objects are widely used
for hosting analysis functions and relevant variables. When
users are exploring the library within the desktop environment
(e.g., in a Jupyter Notebook), intermediate results, such as
class instances and variables, can be easily stored and reused
for the next-step analysis. Consequently, it is appropriate to
make each method atomic so that it is only responsible for
performing a single task; this enables end users to flexibly
combine different methods in the exploratory analysis.
WebPySAL will be mainly used in the Web environment;
interacting and transforming data between the server and cli-
ent will be more time-consuming than in a local environment,
and this will also burden the user interface design on the cli-
ent’s side. Thus, forWebPySAL, the data transmitted between
the server and client via a network should not be too
fragmented, and the interaction should not be too frequent.
During the implementation of WebPySAL, we adopt a
“synthetical” strategy that enables each WebPySAL API to
take combined input parameters, conduct the entire
geoprocessing workflow, and return the completed results.
Specifically, semantic-based workflow generation (Li et al.
2019b) is enabled in our collaborative spatial-statistical anal-
ysis environment. In this semantic framework, ontological
components including theme ontology, spatial operation on-
tology, and spatial data ontology are developed. The spatial
operation ontology describes the input, output and the func-
tion of a spatial operation. The spatial data ontology provides
a hierarchical and semantic classification of spatial data,
which serves as the input or the output of a spatial operation.
The theme ontology defines workflow templates for different
use cases. It also includes a spatial theme ontology that clas-
sifies locations depicting municipal boundaries for place name
disambiguation in a spatial query. In addition, service
chaining rules are defined to plug data and operation services
into the workflow template automatically. The chained result
is a synthetic workflow metadata which is compliant with
OGCWPS standard and executable using aWPS engine, such
as GeoServer. This metadata also serves as the provenance of
the analytical workflow as well as the required input of the
synthetic APIs.

The results returned from the APIs can then be used for
visualization and interpretation on the client’s side.

Figure 2 illustrates the different ways of interacting be-
tween PySAL and WebPySAL when calculating Moran’s I
statistic, which is an important measure for spatial autocor-
relation of a data set. In the desktop environment, the user
needs to invoke 3 functions sequentially in order to read
the geospatial file, generate a weight matrix, and initialize
Moran’s I statistic. Different parameters should be sepa-
rately provided to these functions during the process.
Results concerning Moran’s I are assigned to the Moran
object as attributes. All of the intermediate results are tem-
porarily stored in the local computer’s memory for quick
access. Under the Web environment, the “synthetical” API
takes the inputs of all the parameters needed to produce the
final results. After the parameter inputs are submitted
through the execution request form to the server’s side,
they will be assigned to their respective atomic functions
in order to execute the processing chain. When the process
is finished, the resulting attributes will be extracted and
injected into the result bundle and returned to the user or
stored on the server side as files for future access. After the
results are returned, the memory for preserving the inter-
mediate results will be freed on the server side. From Fig.
2, we can see that the user only needs to interact with
WebPySAL once to invoke the API, and they still have
the flexibility of providing different parameter values.

Integration of WebPySAL into GeoCI

Currently, a large number of organizations are collecting
and sharing geospatial data sets on the internet through
OGC’s WFS and WMS (Web Map Service) standards for
both public and scientific use. In our previous work, we
developed a geospatial data discovery engine named
PolarHub (Li et al. 2016b), which is capable of collecting
metadata information from hundreds of thousands of
geospatial data sets. The metadata information is stored
in a relational database and integrated into GeoCI’s system
(Li et al. 2019b). A geospatial data search engine is imple-
mented in GeoCI to help users conveniently find their de-
sired data sets by using keywords and/or spatial extent
filtering (Li et al. 2015a). The selected data sets can be
easily included in GeoCI under the user’s account for vi-
sualization and analysis.

WebPySAL’s geoprocessing APIs have been fully inte-
grated into GeoCI. Specific exploratory data analysis mod-
ules are designed and implemented to help users take ad-
vantage of WebPySAL’s spatial analysis models and func-
tionalities. The architecture of the integrated systems is
presented in Fig. 3.

A typical workflow for a user in GeoCI is as follows: First,
a user browses the data sets available in GeoCI and selects the
suitable ones. Next, the user can select a spatial analysis mod-
ule in GeoCI and provide the spatial data set and other input
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parameters in a graphic user interface. Once the request is
submitted, the geoprocessing APIs in WebPySAL will be in-
voked and the results will be returned. Last, the GeoCI will

parse the resultant data, then visualize and demonstrate the
results through interactive maps, graphics, and provenance
information.

Fig. 3 The architecture of GeoCI

Fig. 2 A comparison of the interaction modes with PySAL and WebPySAL in a desktop environment vs. Web environment
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Illustration and Experiments on Spatial
and Spatiotemporal Statistics

In this section, we use two use cases to illustrate how GeoCI
can help users fulfill spatial analytical tasks with visual aids in
a convenient, efficient, and replicable fashion. The case in
section “Global and Local Indicators of Spatial Association”
represents an important way in exploring global and local
spatial patterns of lattice data at a given time point. The spatial
statistics methods—global and local Moran’s I statistics—are
integrated into GeoCI to investigate the global pattern and the
heterogeneity of spatial dependence. The case in section
“Spatial Markov Tests” explores the role of space in shaping
the evolution of a variable (i.e., per capita income) over time.
We demonstrate the ability of GeoCI in performing spatiotem-
poral statistical analysis by integrating spatial Markov method
to reveal how the transition of states (i.e., the status of being
poor or rich) is dependent on location and status of spatial
neighbors. Both methods are widely used in regional econom-
ic studies and social science applications.

Global and Local Indicators of Spatial Association

Global and local indicators of spatial association are the most
important tools for exploring the spatial distribution of a given
variable at a given time point. Both pertain to the question of
spatial randomness by examining whether or to what degree
location similarity and attribute similarity coincide. While
global indicators operate at the global level, meaning that a
single summary statistic is produced, local indicators operate
at the local level by decomposing the global indicators to
provide insights into local patterns, such as hot and cold spots,
as well as the instability of spatial associations (Anselin 1995).

The PySAL submodule esda implements a wide array of
global indicators including Moran’s I, Geary’s C, Getis-Ord
G, and joint count statistics. All of these global indicators have
also been integrated in WebPySAL and GeoCI. Here, we de-
tail the usage of Moran’s I and local Moran’s I as an illustra-
tion: These are the most widely used in empirical settings.
Given n spatial observations with attribute Y, the global indi-
cator of spatial association, Moran’s I (Cliff and Ord 1981),
can be defined in Eq. (1):

I ¼ n
S0

∑n
i¼1∑

n
j¼1ZiWi; jZ j

∑n
i¼1ZiZi

ð1Þ

where zi ¼ yi−y is the deviation from the global mean, andW
is the (n,n) spatial weight matrix formalizing the spatial rela-
tionship between any pair of spatial units:

S0 ¼ ∑
n

i¼1
∑
n

j¼1
Wi; j

Inference could bemade under the normality assumption or
based on random permutations. For the proper estimation and
inference of this statistic, the user must supply the attribute,
spatial weight matrix, and number of permutations if
randomization-based inference is desired. We shall see that
WebPySAL provides options for setting these parameters in
a convenient fashion.

Local Moran’s I is a spatial decomposition of Moran’s I,
which has a value for each spatial unit. This is shown in Eq.
(2). As suggested by Anselin (1995), a pseudo p value could
be obtained for Ii, based on conditional randomization. The
required parameters are similar to the global indicator.

I i ¼
n−1ð ÞZi∑n

j¼1Wi; jZ j

∑n
j¼1Z

2
j

ð2Þ

Data

We applied the global and local indicators of spatial asso-
ciation to the median household incomes of 3219 US
counties in 2016. The county boundaries were acquired
from the US Census Bureau’s TIGER (Topologically
Integrated Geographic Encoding and Referencing) geo-
graphic database and the “Unemployment and Median
Household Income for the U.S., States, and Counties,
2007–17.” The county-level median household incomes
in 2016 were downloaded from the website of the US
Department of Agriculture. These 2 data sets are spatially
joined and hosted on our test bed as a standard WFS data
service for public use. The spatial distribution of the me-
dian household incomes can be conveniently visualized in
GeoCI, as shown in Fig. 4. It can be seen that similar
values tend to be geographically close to each other.

Empirical Results and Visualization

Global and local Moran’s I statistics are applied to the US
county-level median household incomes of 2016 to explore
the spatial distribution, or more specifically, whether the ob-
served incomes are randomly distributed spatially and wheth-
er there are hot spots of high incomes or cold spots of low
incomes. We begin with global Moran’s I. As displayed in
Fig. 5a, GeoCI provides a GUI for selecting values for all of
the relevant parameters. There are 2 ways to specify the spatial
weight matrix W: Choose a weight type (e.g., queen/rook
contiguity, KNN) so that a spatial weight matrix is constructed
for the geometries using functions in libpysal, or supply a
spatial weight file. Users also have the option to leave the
weight type parameter blank so that the default value is used.
This creates a row-normalized rook contiguity weight matrix,
where spatial units that share an edge are considered neigh-
bors. Here, we use the default value for the spatial weight; 999
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permutations are selected for randomization-based inference.
The same values are selected for the inference of local
Moran’s I, as shown in Fig. 5b.

The results of Moran’s I will be appended to the analysis
method window once the calculation is complete (Fig. 5a).
The visual impression of spatial clustering of similar values

Fig. 4 Map of county-level median household incomes of the USA in 2016

(a) Moran’’s I window         (b) Locall Moran’s I wwindow 

Fig. 5 Moran’s I and local Moran’s I in WebPySAL and GeoCI. a Moran’s I window. b Local Moran’s I window
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is confirmed by the positive and significantMoran’s I estimate
of 0.707, with a p value of 0 (rounded) under the normality
assumption, and pseudo p value of 0 (rounded) based on the
999 spatial permutations.

Having established that county-level median household in-
comes are spatially dependent from a global perspective, we
now turn to local Moran’s I statistics, the local decomposition
of global Moran’s I, to investigate potential heterogeneity of
spatial dependence. Compared with global Moran’s I which
produces a series of single values for the whole spatial distri-
bution, local Moran’s I produces a series of single values for
each spatial unit (US county here). Therefore, for each output
statistic from applying local Moran’s I, we will have a list of n
values, each corresponding to a county. As shown in Fig. 5b,
the output attributes, such as “Is” (local Moran’s I estimates),
“q” (quadrant location in the Moran’s I scatterplot), “p_sim”
(p values based on permutations), and “z_sim” (standardized
local Moran’s I based on permutations), comprise of n values
each. We could easily join any of these outputs with the coun-
ty boundaries to facilitate geovisualization in GeoCI. Figure 6
visualizes spatial distributions of two output variables: “q” on
the left and “z_sim” on the right. The map on the left uses four
colors to indicate whether a county’s and the average of its
neighbors’ median household incomes are higher or lower
than national average. For instance, red color represents
“HH” (High-High), indicating that a high-income county is
joint with its neighbor(s) with high incomes. Comparatively,
dark blue represents “LL” (Low-Low), indicating that both the
county and its neighbor counties have low income values. It is
visually obvious that hotspots (“HH”) are clustered in the
southwest coast and northeast coast while the coldspots
(“LL”) are clustered in the southeast. The map on the right
displays standardized local Moran’s I estimates, which could
be used for determining whether the estimate is statistically
significant. Usually, adopting 5% significance level means

that estimates out of the range [– 1.96, 1.96] are statistically
significant. Aside from these two output variables, we could
conveniently visualize other output variables of interests in
GeoCI.

Spatial Markov Tests

The first-order discrete Markov chains model is a widely used
stochastic model in which the current status is only dependent
on its status in the immediately preceding time period. It has
been widely applied to provide insights into the underlying
temporal dynamics of land use, land cover change, crime pat-
terns, and income distribution (McMillen and McDonald
1991; Quah 1993; Rey et al. 2014). By further assuming time
homogeneity, the transitional dynamics for the time span of
the entire study could be summarized in a (k, k) stochastic
matrix P, in which each element pi,j presents the probability
of transitioning from state i to j over 2 consecutive time pe-
riods. The maximum likelihood estimator bpij is displayed in

Eq. (3):

p̂ij ¼
nij

∑k
j¼1nij;

ð3Þ

where ni,j is the number of transitions from state i to j
across two consecutive time periods. The conventional
application of the Markov chains model to a spatial set-
ting assumes that the dynamics are identical across all
spatial units. Thus, P is estimated from the pooled data.
However, the ignorance of space in shaping the dynamics
could lead to false conclusions. Spatial Markov tests,
which test for spatial dependence in the discrete Markov
chains framework, have been developed, and their prop-
erties have been evaluated for the study of regional in-
come distribution dynamics (Rey et al. 2016; Kang and

Fig. 6 Visualization of output variables for local Moran’s I in GeoCI
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Rey 2018). The alternative to spatial Markov tests con-
tends that the underlying dynamics are too complex to be
summarized in a single transition probability matrix.
Rather, the transition probability is context sensitive in
that it is also dependent on the current status of its neigh-
bors. The so-called spatial lag, which is the weighted av-
erage of neighbors’ values (e.g., income) shown in Eq.
(4), is usually used to quantify the status of neighbors:

Z t ¼ Wyt; ð4Þ

where zt is the n-dimensional spatial lag at t. Following
the similar discretization strategy to the original time se-
ries, the time series of spatial lags could also be
discretized into k categories, on which transition probabil-
ities are conditional, resulting in k spatially dependent
transition probability matrices. The likelihood ratio (LR),
x2, and Kullback information-based (Kullback et al. 1962)
tests can be calculated by comparing them with the single
matrix estimated from the pooled data.

Data

The average per capita incomes for the lower 48 US states
from 1929 to 2009 are used for demonstration. The data set
was acquired from Bureau of Economic Analysis in the US
Department of Commerce. The state-level cartographic
boundary data were downloaded from the US Census
Bureau’s geographic database. These 2 data sets are bound
together and hosted on our test bed as a standard WFS data
service. Note that the GeoCI portal is not limited to data ser-
vice on a local server; any remote server which provides such
data through standardized service can be integrated into the
portal in the same way. The map of per capita incomes of each
US state in 2009 can be easily visualized in GeoCI. We can
also interactively explore the time dimension with the help of
the time series plot, as shown in Fig. 7 (left figure). As the user
moves the vertical dotted line in the time series plot, the map
on the right will be updated to the chosen year (e.g., 1973),
and the colors of the time series plot will be updated to match
the color scheme of the map. In addition, we can select a US

Fig. 7 Interactive visualization of average per capita incomes for the lower 48 US states, 1929–2009. On the time series plot chart, x axis refers to the
year, and y axis refers to the per capita income. Each line shows the change of (normalized) per capita incomes of a state over time
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state on the map, the attribute of which will be displayed under
the time series plot.

Empirical Results and Visualization

The default values for the discretization and year-specific
quintiles are used as the cutoffs to discretize the continuous
per capita incomes and their spatial lags, giving rise to 5 in-
come classes “Poor” (1), “Lower” (2), “Middle” (3), “Upper”
(4), and “Rich” (5)), as well as a 5 × 5 transition probability
matrix under the null of spatial randomness of dynamics and 5
5 × 5 transition probability matrices under the alternative of
spatially dependent dynamics.

The results of the spatial Markov tests are appended to the
interface of the analysis method once the calculation is com-
pleted. Figure 8a shows the results of 3 spatial Markov tests:
all 3 test statistics are strongly significant: LR test statistic,
93.96 (p value 0.003); x2 test statistic, 96.07 (p value 0.002);
Kullback test statistic, 127.01 (p value 0.0006). These statis-
tics together will very small p values thus reject the null hy-
pothesis of spatial randomness of transition dynamics and

confirm the role of space in shaping the dynamics of US state
per capita incomes. We turn to the estimated transition prob-
abilities to further explore how spatial contexts impact the
dynamics. Figure 8b visualizes the estimated transition prob-
ability matrix P under the null of spatial random transition
dynamics (“Pooled”) and 5 spatially conditioned transition
probability matrices (“Spatial Lag 1/2/3/4/5”) in 6 heatmaps
with red representing a high probability and purple a low
probability. Since the null hypothesis is rejected based on all
3 spatial Markov tests, we only focus on the last 5 heatmaps.
Taking the one with title “Spatial Lag 1” as an example, this
heatmap visualizes the estimated probabilities of transitioning
from one income class to another for any US state with poor
neighbors. Comparatively, the heatmap with the title “Spatial
Lag 5” visualizes the transition probabilities for any US state
that has rich neighbors. For a US state which is poor and has
poor neighboring states, the probability for it to stay poor is
0.934 (first row, first column in the matrix named Spatial Lag
1). In comparison, when a poor state has rich neighbors
(Spatial Lag 5), the probability for it to stay poor is 0.857 (first
row, first column in the matrix named Spatial Lag 5), lower

Fig. 8 Output of spatial Markov tests. a Results of spatial Markov tests. bHeatmaps of the estimated transition probability matrices P under the null and
alternative hypotheses
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than 0.934 when a poor state has also poor neighbors. These
findings point to spatial poverty trap where states’ poverty
status reinforces one another spatially and could also have
important regional policy implications.

Comparison of Computational Time Between
WebPySAL and PySAL

Compared with the desktop-based data analysis working
mode, there is an overhead of communication time between
the server side and client side when conducting the analysis on

WebPySAL. In this section, we conduct a series of experi-
ments to reveal whether the overhead of communication time
will significantly affectWebPySAL’s performance in terms of
computational time. Experiment 1 will compare the perfor-
mance variation of two spatial statistical methods: (1) local
Moran’s I statistics, (2) inter- and intra-regional indicators of
exchange mobility (inter- and intra-regional Tau statistics)
(Rey 2016). Experiment 2 will compare different data sets: a
data set of 48 US states and a data set of 3141 US counties.
Experiment 3 will compare different numbers (99, 499, 999)
of permutations to use for the statistical inference.

Fig. 8 (continued)
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The performance of the experiments is evaluated under the
computing environment configured in the following way:
WebPySAL is hosted on a server machine with 2 12-core
2.1-GHz 64-bit Xeon CPUs and 64-GB RAM running
Ubuntu 16.04.4. The client side is tested on a laptop with a
4-core 2.50-GHz 64-bit Intel i-7 CPU and 8-GB RAM run-
ning Windows 10. The internet speed for the experiment is
relatively high (50 Mbps). The geospatial data sets used for
PySAL are stored locally on the same laptop, while the data
sets for WebPySAL are provided as a WFS service hosted on
the same server.

Series of tests are conducted with combinations of dif-
ferent methods, data sets, and permutation times. For the
PySAL calculation, since the data loading time is very
short, we only record the total time in each calculation.
For WebPySAL, we record (1) the total calculation time
and (2) the time used for communication and data trans-
mission. Figure 9 presents the comparison results. The sol-
id orange lines represent time consumption in PySAL; the
solid blue lines and dashed lines represent the total calcu-
lation time and communication time, respectively, in
WebPySAL. From the graphs, we find that:

& For the small state-based data set (results presented in the
first column), all of the calculations can be completed

within 1 s. Hence, the differences in time consumption
between PySAL and WebPySAL will not be noticed by
users.

& When calculating local Moran’s I with the large county-
based data set (results presented in the top right), the total
time cost of WebPySAL is slightly longer. This is as a
result of the communication between the server side and
client side.

& When calculating the more complex regional Tau with
county-based data, since the time spent on simulation is
extensive, the communication time is negligible in such
cases. It is worthy of note that since the Numpy library is
adopted to conduct the matrix calculations, which is
parallelized, the calculation time will be much shorter on
a powerful machine. Hence, enabled by our GeoCI-based
strategy, the computer’s intensive computations can be
moved to a cloud server from a local computer, yielding
a much better performance in the WebPySAL environ-
ment as a result.

To summarize, the experimental results show that the com-
munication overhead is consistently low compared with the
actual computation time in WebPySAL. Hence, it is a feasible
and efficient solution for handling complex computing tasks
in the proposed service-oriented architecture.

Fig. 9 Comparison of time taken on PySAL and WebPySAL in different experiments
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Discussion and Conclusion

This article introduces our research in designing and
implementing an interoperable and replicable CI—GeoCI
for online spatial-statistical-visual analytics. In particular, we
introduce the sharing of spatial analytical functions within a
popular open source library, PySAL, through standard WPS
interface. This new Web package—WebPySAL—is integrat-
ed seamlessly into GeoCI and works collaboratively with
GeoCI’s existing modules for data integration, visualization,
and analytical workflow generation. The powerful GeoCI
platform harnesses scalable spatial analysis modules to ad-
dress real-world research challenges.

Our research contributes to the field in several important
ways. We have established the GeoCI as a working model to
benefit the GIScience and social science communities.We have
presented strategies and methodologies concerning how to
guarantee interoperability and replicability of complex spatial
analysis.We have implemented an interactive and user-friendly
GUI in the Web portal of GeoCI to assist users in conducting
exploratory spatial/spatiotemporal data analysis with massive
open-access geospatial data sets. In addition to the potential
benefits of this work as a result of its bridging spatial analysis
toolkits with CI, the design and implementation of this system
also enables online replicability of analyses. Researchers can
easily reproduce others’ results in the GeoCI portal without the
need of setting up system environment, implementing the algo-
rithm or duplicating the workflow. Thus, this solution could
also help users who lack a GIScience background, knowledge,
or programming skills to better understand and adopt advanced
spatial analytical methodologies.

The integration work of PySAL’s advanced spatial analysis
functionalities into GeoCI will continue. An active instance of
GeoCI is currently available.1 In the future, we will continue
to exploit cutting-edge computing technology, such as edge-
computing and microservices to enable the ubiquitous use of
GeoCI in both traditional and edge devices (i.e., mobile
phone). Parallelization strategies which incorporate space-
time patterns in the data and analytics (Wang et al. 2020) will
be developed and integrated into GeoCI to further improve
system performance.
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