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Abstract

Learning knowledge graph (KG) embeddings is an emerging
technique for a variety of downstream tasks such as summa-
rization, link prediction, information retrieval, and question
answering. However, most existing KG embedding models ne-
glect space and, therefore, do not perform well when applied
to (geo)spatial data and tasks. Most models that do consider
space primarily rely on some notions of distance. These mod-
els suffer from higher computational complexity during train-
ing while still losing information beyond the relative distance
between entities. In this work, we propose a location-aware
KG embedding model called SE-KGE. It directly encodes spa-
tial information such as point coordinates or bounding boxes
of geographic entities into the KG embedding space. The re-
sulting model is capable of handling different types of spatial
reasoning. We also construct a geographic knowledge graph
as well as a set of geographic query-answer pairs called
DBGeo to evaluate the performance of SE-KGE in comparison
to multiple baselines. Evaluation results show that SE-KGE
outperforms these baselines on the DBGeo data set for the
geographic logic query answering task. This demonstrates
the effectiveness of our spatially-explicit model and the im-
portance of considering the scale of different geographic en-
tities. Finally, we introduce a novel downstream task called
spatial semantic lifting which links an arbitrary location in the

study area to entities in the KG via some relations. Evaluation
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on DBGeo shows that our model outperforms the baseline by

a substantial margin.

1 | INTRODUCTION AND MOTIVATION

The term Knowledge Graph (KG) typically refers to a labeled and directed multi-graph of statements (called triples)
about the world. These triples often originate from heterogeneous sources across domains. According to Nickel,
Murphy, Tresp, and Gabrilovich (2015), most of the widely used KGs are constructed in a curated (e.g., WordNet),
collaborative (e.g., Wikidata, Freebase), or auto semi-structured (e.g., YAGO (Hoffart, Suchanek, Berberich, &
Weikum, 2013), DBpedia, Freebase) fashion rather than an automated unstructured approach (e.g., Knowledge
Vault (Dong et al., 2014)). Despite containing billions of statements, these KGs suffer from incompleteness and
sparsity (Dong et al., 2014; Lao, Mitchell, & Cohen, 2011; Mai, Janowicz, et al., 2019). To address these problems,
many relational machine learning models (Nickel et al., 2015) have been developed for KG completion tasks,
including several embedding-based techniques such as RESCAL (Nickel, Tresp, & Kriegel, 2012), TransE (Bordes,
Usunier, Garcia-Duran, Weston, & Yakhnenko, 2013), TransH (Wang, Zhang, Feng, & Chen, 2014), HOLE (Nickel,
Rosasco, & Poggio, 2016), R-GCN (Schlichtkrull et al., 2018), and TransGCN (Cai, Yan, Mai, Janowicz, & Zhu, 2019).
The key idea of the embedding-based technique (Bordes et al., 2013; Cai et al., 2019; Nickel et al., 2016; Wang
et al., 2014; Wang, Mao, Wang, & Guo, 2017) is to project entities and relations in a KG onto a continuous vector
space such that entities and relations can be quantitatively represented as vectors/embeddings.

The aforementioned incompleteness and sparsity problems also affect the performance of downstream tasks
such as question answering (Wang et al., 2018) since missing triples or links result in certain questions becoming
unanswerable (Rajpurkar, Jia, & Liang, 2018). Consequently, researchers have recently focused on relaxing these
unanswerable queries or predicting the most probable answers based on KG embedding models (Hamilton, Bajaj,
Zitnik, Jurafsky, & Leskovec, 2018; Mai, Yan, Janowicz, & Zhu, 2019; Wang et al., 2018).

Most research on KG embeddings has neglected spatial aspects such as the location of geographic entities,
despite the important role such entities play within KGs (Janowicz, Scheider, Pehle, & Hart, 2012). In fact, most of
the current KG embedding models (e.g., TransE, TransH, TransGCN, R-GCN, and HOLE) ignore triples that contain
datatype properties, and, hence, literals for dates, texts, numbers, geometries, and so forth. Put differently, prop-
erties such as dbo:elevation, dbo:populationTotal, and dbo:areaWater, to name but a few, are not con-
sidered during the training phase. Instead, these models strictly focus on triples with object type properties, leading
to substantial information loss in practice. A few models do consider a limited set of datatypes. LiteralE (Kristiadi,
Khan, Lukovnikov, Lehmann, & Fischer, 2019) is one example, which encodes numeric and date information into
its embedding space, while MKBE (Pezeshkpour, Chen, & Singh, 2018) encodes images and unstructured texts.
Therefore, in this work, we propose a novel technique which directly encodes spatial footprints, namely point
coordinates and bounding boxes, thereby making them available while learning KG embeddings.

Geographic information forms the basis for many KG downstream tasks such as geographic knowledge
graph completion (Qiu, Gao, Yu, & Lu, 2019), geographic ontology alignment (Zhu, Hu, Janowicz, & McKenzie,
2016), geographic entity alignment (Trisedya, Qi, & Zhang, 2019), geographic question answering (Mai, Yan, et al.,
2019), and geographic knowledge graph summarization (Yan, Janowicz, Mai, & Zhu, 2019). In the following, we
will focus on geographic logic query answering as an example and more concretely on conjunctive graph queries
(CGQs) or logic queries (Hamilton et al., 2018). Due to the sparsity of information in KGs, many (geographic)
queries are unanswerable without spatial or non-spatial reasoning. Knowledge graph embedding techniques have,
therefore, been developed to handle unanswerable questions (Hamilton et al., 2018; Mai, Janowicz, et al., 2019;
Mai, Yan, et al., 2019; Wang et al., 2018) by inferring new triples in the KG embedding space based on exist-
ing ones. However, since most KG embedding models cannot handle datatype properties, thus cannot encode
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geographic information into the KG embedding space, they perform spatial reasoning tasks poorly in the KG em-

bedding space, which in turn leads to a poor performance in handling unanswerable geographic questions

SELECT ?State WHERE ({

?RiverMouth dbo:state ?State. (a)
?River dbo:mouthPosition ?RiverMouth. (b)
?River dbp:etymology dbr:Alexander_von_Humboldt. (c)

Listing 1: Query ¢g4: An unanswerable SPARQL query over DBpedia which includes a partonomy

relation

One example of unanswerable geographic questions that can be represented as a logic query is Which states
contain the mouth of a river which is named after Alexander von Humboldt? (Query q,). The corresponding SPARQL
query is shown in Listing 1. Running this query against the DBpedia SPARQL endpoint yields no results. In fact,
two rivers are named after von Humboldt—dbr:Humboldt River and dbr:North Fork Humboldt
River—and both have mouth positions as entities in DBpedia (dbr:Humboldt River  mouthPosi-
tion 1 and dbr:North Fork Humboldt River  sourcePosition _ _1). However, the
dbo:state (or dbo:isPartOf) relation between these river mouths and other geographic features such as
states is missing. This makes Query g, unanswerable (graph query pattern (a) in Listing 1). If we use the locations
of the river mouths to perform a simple point-in-polygon test against the borders of all states in the U.S., we can
deduce that dbr:Nevada contains both river mouths

SELECT ?place WHERE ({

dbr:Yosemite_National Park dbo:nearestCity ?place.

Listing 2: Query ¢g: A SPARQL query over DBpedia which indicates a simple point-wise distance

relation

Another example is the query in Listing 2, which asks for the nearest city to Yosemite National Park (Query qg).
If the triple(dbr:Yosemite National Park dbo:nearestCity dbo:Mariposa, California) is
missing from the current knowledge graph, Query gg becomes unanswerable, while it could simply be inferred by a
distance-based query commonly used in GIS. Similar cases can include cardinal directions such as dbp:north. All
these observations lead to the following research question: how could we enable spatial reasoning via partonomic
relations, pointwise metric relations, and directional relations in KG embedding-based systems?

One may argue that classical spatial reasoning can be used instead of direct location encoding to obtain answers
to the aforementioned questions. This is partially true for data and query endpoints that support GeoSPARQL and
for data sets that are clean and complete. However, in some cases even GeoSPARQL-enabled query endpoints
cannot accommodate spatial reasoning due to inherent challenges of representing spatial data in KGs . These
challenges stem from principles of conceptual vagueness and uncertainty (Regalia, Janowicz, & McKenzie, 2019),
and are further complicated by technical limitations. In this study we aim to enable the model to perform implicit
spatial reasoning in the hidden embedding space. Instead of performing classical spatial reasoning by explicitly
carrying out spatial operations during query time, the spatial information (points or bounding boxes) of geographic
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entities (e.g., Indianapolis) is directly encoded into the entity embeddings which are jointly optimized with relation
embeddings (e.g., isPartOf). The trained embeddings of geographic entities encode their spatial information, while
by embedding the spatial relations we also hope to capture some of their implicit semantics for simple spatial rea-
soning tasks. At query time, a normal link prediction process can be used to answer geographic questions and no
explicit spatial reasoning is needed. More details of this example can be found in Section 7.

Existing approaches are only able to incorporate spatial information into the KG embedding space in a very
limited fashion, (e.g., through their training procedures). Furthermore, they estimate entity similarities based on
some form of distance measures among entities, and ignore their absolute positions or relative directions. For
example, Trisedya et al. (2019) treated geographic coordinates as strings (sequences of characters) and used a
compositional function to encode these coordinate strings for geographic entity alignment. In order to incorpo-
rate distance relations between geographic entities, both Mai, Yan, et al. (2019) and Qiu et al. (2019) borrowed the
translation assumption from TransE (Bordes et al., 2013). For each geographic triple s = (h, r, t) in the KG, where
h and t are geographic entities, the geospatial distance between h and t determines the frequency of resampling
this triple such that triples containing two closer geographic entities are sampled more frequently, and thus these
two geographic entities are closer in the embedding space. Similarly, Yan et al. (2019) used distance information
to construct virtual spatial relations between geographic entities during the KG summarization process. This data
conversion process (coordinates to pairwise distances) is unnecessarily expensive and causes information loss
(e.g., absolute positions and relative directional information). In this work, we explore directly encoding entity
locations into a high-dimensional vector space, which preserves richer spatial information than distance measures.
These location embeddings can be trained jointly with KG embeddings.

Location encoders (Chu et al., 2019; Mac Aodha, Cole, & Perona, 2019; Mai et al., 2020) refer to the neural
network models which encode a pair of coordinates into a high-dimensional embedding which can be used in
downstream tasks such as geo-aware fine-grained image classification (Chu et al., 2019; Mac Aodha et al., 2019;
Mai et al., 2020) and Point Of Interest (POI) type classification (Mai et al., 2020). Mai et al. (2020) showed that
multi-scale grid cell representation outperforms commonly used kernel based methods (e.g., the radial basis func-
tion (RBF)) as well as the single-scale location encoding approaches. Given the success of location encoding in
other machine learning tasks, the question is whether we can incorporate the location encoder architecture into a
KG embedding model to make it spatially explicit (Mai, Yan, et al., 2019). One initial idea is to directly use a location
encoder as the entity encoder which encodes the spatial footprint (e.g., coordinates) of a geographic entity into
a high-dimensional vector. Such entity embeddings can be used in different decoder architectures for different
tasks. However, several challenges remain to be solved for this initial approach.

First, point location encoding can handle pointwise metric relations such as distance (e.g., dbo:nearestCity) as
well as directional relations (e.g., dbp:north, dbp:south)in KGs, but it is not easy to encode regions which are critical
for relations such as containment (e.g., dbo:isPartOf,dbo:location,dbo:city,dbo:state,and dbo:country).
For example, in Query q,, the location encoder can encode dbr:Yosemite _National _ Park and dbo:Mari-
posa, Californiaastwo high-dimensional embeddings based on which distance relations can be computed since
the location embeddings preserve the relative distance information between locations (Mai et al., 2020). However,
point locations and location embeddings are insufficient to capture more complex relations between geographic enti-
ties such as containment as these require more complex spatial footprints (e.g., polygons). This indicates that we need
to find a way to represent geographic entities as regions instead of points in the embedding space based on location
encoders, especially for large-scale geographic entities such as dbr:California, which is represented as a single pair
of coordinates (a point) in many widely used KGs. We call this the scale effect to emphasize the necessity of encoding
the spatial extents of geographic entities instead of points, especially for large-scale geographic entities.

The second challenge is how to seamlessly handle geographic and non-geographic entities together in the same
entity encoder framework. Since the location encoder is an essential component of the entity encoder, how should
we deal with non-geographic entities that do not have spatial footprints? This is a non-trivial problem. For example,
in order to weight triples using distance during KG embedding training, Qiu et al. (2019) constructed a geographic KG
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which only contains geographic entities. Mai, Yan, et al. (2019) partially solved the problem by using a lower bound
| as the lowest triple weight to handle non-geographic triples. However, this mechanism cannot distinguish triples
involving both geographic and non-geographic entities from triples that only contain non-geographic entities.

The third challenge is how to capture the spatial and other semantic aspects at the same time when designing
a spatially-explicit KG embedding model based on location encoders. The embedding of a geographic entity is ex-
pected to capture both its spatial (e.g., spatial extent) and other semantic information (e.g., type information) since
both of them are necessary to answer geographic questions. Take Query g, in Listing 1 as an example. Intuitively,
to answer this query, the spatial information is necessary to perform partonomical reasoning to select geographic
entities which contain a given river mouth, while type information is required to filter the answers and get enti-
ties with type state. Therefore, we need both spatial and type information encoded in the entity embeddings to
answer this question. The traditional KG embedding models fail to capture the spatial information, which leads to
lower performance in geographic question answering.

Finally, thanks to the inductive learning nature of the location encoder, another interesting question is how to
design a spatially-explicit KG embedding model so that it can be used to infer new relations between entities in a KG
and any arbitrary location in the study area. We call this task spatial semantic lifting by analogy with traditional semantic
lifting, which refers to the process of associating unstructured content to semantic knowledge resources (De Nicola,
DiMascio, Lezoche, & Tagliano, 2008). For example, given any location x;, we may want to ask which radio station
broadcasts at x;, that is, to infer dbo:broadcastArea. None of the existing KG embedding models can solve this task.

In this work we develop a spatially-explicit KG embedding model, SE-KGE, which directly solves those chal-

lenges. The contributions of our work are as follows:

1. We develop a spatially-explicit KG embedding model (SE-KGE), which applies a location encoder to in-
corporate spatial information (coordinates and spatial extents) of geographic entities. To the best of our
knowledge, this is the first KG embedding model that can incorporate spatial information, especially
spatial extents, of geographic entities into the model architecture.

2. SE-KGE is extended to an end-to-end geographic logic query answering model which predicts the most probable
answers to unanswerable geographic logic queries over a KG.

3. We apply SE-KGE to a novel task, spatial semantic lifting. Evaluations show that our model can substantially
outperform the baseline by 9.86% on AUC and 9.59% on APR for the DBGeo data set. Furthermore, our analysis
shows that this model can achieve implicit spatial reasoning for different types of spatial relations.

The remainder of this article is structured as follows. We briefly summarize related work in Section 2. We then
discuss basic concepts in Section 3. In Section 4 we formalize the query answering and spatial semantic lifting
task. Then, in Section 5, we give an overview of the logic query answering task before introducing our method. In

Section 6 we describe the SE-KGE architecture. We then summarize our experiments and evaluations in Section 7.
Finally, we provide a conclusion in Section 8.

2 | RELATED WORK

In this section, we briefly review related work on KG embeddings, query answering, and location encoding.

2.1 | Knowledge graph embedding

Learning KG embeddings is an emerging topic in both the Semantic Web and Machine Learning fields. The idea is
to represent entities and relations as vectors or matrices within an embedding space such that these distributed
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representations can be easily used in downstream tasks such as KG completion and question answering. Many
KG embedding models have been proposed such as RESCAL (Nickel et al., 2012), TransE (Bordes et al., 2013), and
TransH (Wang et al., 2014). Most of these approaches cannot handle triples with datatype properties nor triples
involving spatial footprints.
The only KG embedding methods considering distance decay between geographic entities are Qiu et al. (2019)
and Mai, Yan, et al. (2019). Mai, Yan, et al. (2019) computed the weight of each geographic triple s = (h, r, t) as

max (In , where h and t are geographic entities, and D is the longest (simplified) Earth surface distance. €

_b I)
dis(h,t)+e’
is a hyperparameter to avoid zero denominator and | is the lowest edge weight we allow for each triple. As for
non-geographic triples, | is used as the triple weight. Then this KG is treated as an undirected, unlabeled, edge-
weighted multi-graph. An edge-weighted PageRank is applied on this multi-graph. The PageRank score for each
node/entity captures the structure information of the original KG as well as the distance decay effect among
geographic entities. These scores are used in turn as weights to sample the entity context from the 1-degree
neighborhood of each entity which is used in the KG embedding training process. As for Qiu et al. (2019), the
distance decay effect was deployed in a triple negative sampling process. Given a triple s = (h, r, t) in the KG, each
negative triple s’ = (W ,r,t') of it was assigned a weight based on:

dis(h,t)+6 -1 (1)
Weeo = | 1,+,], 10810, ——+—,
geo ( +l- 10810 dis(h’, t')+6’ l)
where 0 is a hyperparameter to avoid a zero denominator. Weeo is used in the max-margin loss function for the embed-
ding model training. Note that non-geographic triples are not considered in Qiu et al. (2019). We can see that, instead
of directly encoding an entity’s location, they rely on some form of distance measures as weights for triple resampling.
This process is computationally expensive and does not preserve other spatial properties such as direction. In con-

trast, our work introduces a direct encoding approach to handle spatial information.

2.2 | Query answering

Compared to link prediction (Bordes et al., 2013), query answering (Hamilton et al., 2018; Mai, Janowicz, et al.,
2019; Wang et al., 2018) focuses on a more complex problem since answering a query requires a system to con-
sider multiple triple patterns together. Wang et al. (2018) designed an algorithm to answer a subset of SPARQL
queries based on a pretrained KG embedding model. However, this is not an end-to-end model since the KG
embedding training and query answering process are separated. Hamilton et al. (2018) proposed an end-to-end
logic query answering model, GQE, which can answer conjunctive graph queries. CGA (Mai, Janowicz, et al., 2019)
further improved GQE by using a self-attention-based intersection operator. In our work, we will utilize GQE and
CGA (Mai, Janowicz, et al., 2019) as the underlying logic query answering baseline. We provide an overview of

logic query answering in Section 5.

2.3 | Location encoding

Generating representations of points/locations that can benefit representation learning is a long-standing problem
in machine learning. There are many well-established methods such as the kernel trick (Schélkopf, 2001) widely used
in support vector machine classification and regression. However, these location representation methods use the

positions of training examples as the centers of Gaussian kernels and thus need to memorize the training examples.
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Kejriwal and Szekely (2017) proposed a graph embedding approach to representing GeoNames locations as
high-dimensional embeddings. They converted the locations in GeoNames into a weighted graph where locations
are nodes and the weight of each edge is computed based on the distance between two locations. Then a GloVe
(Pennington, Socher, & Manning, 2014) word embedding model is applied on this generated graph to obtain the
embedding for each location. Despite its novelty, this model is in a transductive learning setting, which means that
if new locations are added, the weighted graph has to be regenerated and the whole model needs to be retrained.
In other words, this embedding approach cannot be easily generalized to unseen locations. This calls for inductive
learning(Hamilton, Ying, & Leskovec, 2017a) models.

Recently, a location encoding technique (Chu et al., 2019; Mac Aodha et al., 2019; Mai et al., 2020) has been
proposed to directly encode a location (pair of coordinates) x as a high-dimensional vector which can be incorporated
into multiple downstream tasks. As shown by Mai et al. (2020), the advantages of location encoding are that: (1) it can
preserve absolute position information as well as relative distance and direction information between locations; and
(2) it does not need to memorize the positions of training examples as all kernel-based methods do (Schélkopf et al.,
1997); (3) in contrast to many transductive learning models, it is an inductive learning model (Battaglia et al., 2018)
which can encode any location/point no matter whether it appears in the training data set or not.

In theory, we can adopt any location encoder (Chu et al., 2019; Mac Aodha et al., 2019; Mai et al., 2020) to
capture the spatial information of each geographic entity e; in a knowledge graph G. In this work, we utilize the
Space2Vec (Mai et al., 2020) location encoder, which is inspired by Nobel Prize-winning neuroscience research
about grid cells (Abbott & Callaway, 2014) as well as the position encoding module of the Transformer model
(Vaswani et al., 2017). Space2Vec first encodes a location x as a multi-scale periodic representation PE(x) by using
sinusoidal functions with different frequencies and then feeds the resulting embedding into an N-layer feed-

forward neural network NN():
LocEnc™ (x) = NN(PE(x)). (2)

The advantages of such a location encoder compared to previous work (Chu et al., 2019; Mac Aodha et al.,
2019) are that: (1) it can be shown that location embeddings from Space2Vec are able to preserve global position
information as well as relative distance and direction; and (2) the multi-scale representation learning approach
outperforms traditional kernel-based methods (e.g., RBF) as well as single-scale location encoding approaches
(Chuetal., 2019; Mac Aodha et al., 2019) for several machine learning tasks. In the following, we will use LocEnc™()

to denote the Space2Vec model.

3 | BASIC CONCEPTS

Definition 1 (Geographic Knowledge Graph)A geographic knowledge graph ¢ = (V, €)is a directed edge and node
labeled multigraph where Vis the set of entities/nodes and € is the set of directed edges. Any directed and
labeled edge will be called a triple s = (h, r, t) where the nodes become heads heV and tails te ¥, and the
role label r € R will be called the relationship between them. The set of triples/statements contained by G
is denoted by 7, and R denotes as the set of relations (predicates, edge labels) in ¢. Each triple can also be
represented as r(h, t), or r-1(t, h), where r-tindicates the inverse relation of r. Domain(r) and Range(r) indicate
the domain and range of relation r.

I'(): ¥ = Cis a function which maps an entity e€V to a unique type ce C, where C is the set of all entity types

in g.1

The geographic entity set V,, is a subset of V (¥, CV). PT(-) is a mapping function that maps any geographic
entity e€ V), to its geographic location (coordinates) P7 (e) = x, where xe AC R2 Here A denotes the bounding
box containing all geographic entities in the studied knowledge graph G. We call it the study area.
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V,n is a subset of V,, (V,, CV,,) which represents the set of large-scale geographic entities whose spatial ex-
tent cannot be ignored. In this work, we use a bounding box to represent a geographic entity’s spatial footprint.
PN (-)is a mapping function defined on ¥,, that maps a geographic entity e V,, to its spatial extent P.N'(e) and
PN (e) = [xmin;xmax] e R4, In the vector concatenation above, x™n, xMx e 4 C R2 indicate the southwest and north-
east point of the entity’s bounding box.

Note that in many existing KGs, a triple can include a datatype property (e.g., dbo:abstract) implying that
the tail is a literal. In line with related work (Bordes et al., 2013; Nickel et al., 2015, 2016; Wang et al., 2017), we
do not consider triples of this kind here in general. However, we do consider datatype properties about the spatial
footprints of geographic entities implicitly by using P7(-) or PA(-).2 While we do not model them directly as

triples, we use the spatial footprints of geographic entities as input features for the entity encoder.

Definition 2 (Conjunctive Graph Query (CGQ)) A conjunctive graph query (or logic query) is a query g € Q(Q) that
can be written as:

a=V53Vy, Vo, .. Vi by Aby A Ab,, )

whereb; = ri(e, V) withV, € {V;, V4, V,, ...,V ), e €V,reR,orb; = ri(V,, V) withV, .V, € {V;, V1, V,, ...,V L k#LreR.

Here Q(Q) is the set of all conjunctive graph queries that can be asked over . V, denotes the target variable
of Query q (target node) which will be replaced with the answer entity a, while V;,V,, ...,V,, are existentially
quantified bound variables (bound nodes). {e,|e, inq} is a set of anchor nodes and b; is a basic graph pattern in this
CGQ. We define the dependency graph of g as the graph with basic graph pattern {by, ...,b,} formed between
the anchor nodes {e,|e, inq} and the variable nodes V,,V,,V,, ..., V,, (Figure 1). Each conjunctive graph query can
be written as a SPARQL query.3

Note that the dependency graph of g represents computations on the KG and is commonly assumed to be a
directed acyclic graph (DAG) (Hamilton et al., 2018) where the entities (anchor nodes) e, in g are the source nodes
and the target variable V; is the unique sink node. This restriction makes the logic query answering task in line with
the usual question answering setup (e.g., semantic parsing (Berant, Chou, Frostig, & Liang, 2013; Liang, Berant,
Le, Forbus, & Lao, 2017)).

Definition 3 (Geographic Conjunctive Graph Query (GCQG))A conjunctive graph query g€ Q(Q) is said to be a
geographic conjunctive graph query (GCGQ) if the answer entity a corresponding to the target variable V,
is a geographic entity, that is, a = ¢(C,q) Aa€ V,;, where ¢(C,q) indicates the answer when executing Query
q on G. We denote all possible GCGQs on G by Qg,(G) CQ(C).

An example geographic conjunctive query gc is shown in Figure 1 whose corresponding SPARQL query is
shown in Listing 3. The corresponding natural language question is [ Which city in Alameda County, California is
the assembly place of Chevrolet Eagle and the nearest city to San Francisco Bay?]. This query is especially interest-
ing since it includes a non-spatial relation (dbo:assembly), a pointwise metric spatial relation (dbo:nearestC-
ity), and a partonomy relation (dbo:isPart0f). Note that executing each basic graph pattern in Query g over
DBpedia will yield multiple answers. For example, b; will return all subdivisions of Alameda County, California.
b, matches multiple assembly places of Chevrolet Eagle, such as dbr:0akland, California, dbr:0ak-
land Assembly,and dbr:Flint, Michigan. Interestingly, dbr:0akland Assembly should be located
in dbr:0akland, California, while there is no relationship between them in DBpedia except for their spa-
tial footprints, from which it can be inferred that they are close to each other. b; will return three entities4:

dbr:San Francisco, dbr:San Jose, California and dbr:0akland, California. Combining
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Alameda County,
California

Chevrolet Eagle

@sco Bay

?Place : Is Part Of (Alameda County, ? Place) A
Assembly (Chevrolet Eagle, ?Place) n
Nearest City(San Francisco Bay, ?Place)

T . _ Assembly
y

Oakland, California

& -WILEY-

FIGURE 1 Query qc. (Top) Conjunctive graph query and directed acyclic graph of the query structure
corresponding to the SPARQL query in Listing 3. by, by, and by indicate three basic graph patterns in Query qc.
?Place is the target variable shown as the red node, while the three green nodes are anchor nodes. There is no
bound variable in this query. (Bottom) The matched underlining knowledge graph patterns represented by solid
arrows. s,, sy, and sg indicate the matched triples for by, b,, and b; respectively for Query q¢

these three basic graph patterns will yield one answer, dbr:0akland, California.In our KG, both triples s;
(see Figure 1) and s, are missing, which makes Query g an unanswerable geographic query

SELECT ?place WHERE({
?place dbo:isPartOf dbr:Alameda_County,_California. (1)
dbr:Chevrolet_Fagle dbo:assembly ?place. (2)
dbr:San_Francisco_Bay dbo:nearestCity ?place. (3)

Listing 3: Query g¢: A geographic conjunctive query which is rewritten as a SPARQL query over

DBpedia including both non-spatial relations and different types of spatial relation.
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4 | PROBLEM STATEMENT

In this work, we focus on two geospatial tasks: geographic logic query answering and spatial semantic lifting.

Task 1 (Logic Query Answering)Given a geographic knowledge graph ¢ and an unanswerable conjunctive graph
query qeQ(Q) (i.e., 9(G,q) = #), a query embedding function @ ,(q): Q(C) - R4 which is parameterized by 6,
is defined to map g to a vector representation of d dimension. The most probable answer toqis

the entity nearest to q = @ ,(q) in the embedding space:

d =arg maXe ey Q(®,,(q).Encle;)) = arg mMaXe, ey Q(q.e;) (4)

Here e; = Enc(e;) e R is the entity embedding of e; produced by an embedding encoder Enc(). Q(-) denotes the

cosine similarity function:

q-€

Qg,e) = ———
" lalliredl

(5)

Note that g can be a geographic query or non-geographic query (i.e., qe(Q(g)\Qgeo(Q))ngeo(g)). Geographic
logic query answering refers to a logic query answering process over Q,e,(G). The query embedding function
@ ,(q) is constructed based on all three components of SE-KGE without any extra parameters: Enc(), P(), and Z()
(i.e., 0 = {Onc,0p,07 ).

Task 2 (Spatial Semantic Lifting)Given a geographic knowledge graph ¢ and an arbitrary location xe A CR? from
the current study area A, and a relation r € R such that Domain(r) C V),

function ¥g, (x,r): A xR — R which is parameterized by 6., to map x and r to a vector representation of

» we define a spatial semantic lifting

d dimension (i.e., s = Yoo, (x,r) € RY). A nearest-neighbor search is utilized to search for the most probable

entity &’ €V, so that a virtual triple can be constructed between location x and € (i.e., r(x, ¢e')), where:

e =arg maXe, ey Q(‘I‘g’% (%,r),Enc(e;)) = arg MaXe ey Q(s,e;) (6)

The spatial semantic lifting function Yoo, (x,r) consists of two components of SE-KGE without any extra pa-
rameter: Enc() and P() (i.e., 65 = {0gn.0p ). This spatial semantic lifting task is related to the link prediction task
(Lao et al., 2011) which is commonly used in the KG embedding literature (Bordes et al., 2013; Cai et al., 2019;
Nickel et al., 2016). The main difference is that instead of predicting links between entities in the original knowl-
edge graph ¢ as link prediction does, spatial semantic lifting links an arbitrary location x to G. Since none of the

existing KG embedding models can directly encode locations, they cannot be used for spatial semantic lifting.

5 | LOGIC QUERY ANSWERING

Before introducing our SE-KGE model, we will first give an overview of how previous work (Hamilton et al., 2018;
Mai, Janowicz, et al., 2019) tackled the logic query answering task with KG embedding models. Generally speak-
ing, a logic query answering model is composed of three major components: entity encoder Enc(), projection

operator P(), and intersection operator I().

1. Entity encoder Enc(). This represents each entity as a high-dimensional vector (embedding).
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2. Projection operator P(). Given a basic graph patternb = r(e,-,\/j) (orb = r(V,-,Vj)) in a CGQ g, while the subject em-
bedding e (or v;) of entity e, (or variable V)) is known beforehand, P() projects the subject embedding through a
relation-specific matrix to predict the embedding of V;.

3. Intersection operator I(). This integrates different predicted embeddings of the same variable (e.g., Vj) from dif-
ferent basic graph patterns into one single embedding to represent this variable.

Given these three neural network modules, any CGQ g can be encoded by following their DAG query structures
such that the embedding of the unique target variable V, for each query can be obtained: v,. We call it query em-
bedding q = @ 4(q) = v, for CGQ g. Then the most probable answer is obtained by a nearest-neighbor search for q
in the entity embedding space (see Equation 4). Our work will follow the same model component setup and query
embedding computing process. However, neither Hamilton et al. (2018) nor Mai, Janowicz, et al. (2019) considered
encoding spatial information of geographic entities into the entity embedding space, which is the core contribution
of our work. Moreover, we extend the current model architecture such that it can also be applied to the spatial se-
mantic lifting task. This new task cannot be handled by previous work. In the following, we will use .(GQE) and .(CQA) to

indicate that these are model components used by Hamilton et al. (2018) and Mai, Janowicz, et al. (2019):

5.1 | Entity encoder

In general, an entity encoder aims to represent any entity in a KG as a high-dimensional embedding so that it
can be fed into subsequent neural network modules. The normal practice shared by most KG embedding models
(Bordes et al., 2013; Cai et al., 2019; Mai, Janowicz ,& Yan, 2018; Mai, Yan, et al., 2019; Nickel et al., 2016; Qiu
et al., 2019; Schlichtkrull et al., 2018; Wang et al., 2014) is to initialize an embedding matrix randomly where each
column indicates an embedding for a specific entity. The entity encoding becomes an embedding lookup process,
and these embeddings will be updated during the neural network backpropagation during training time.

Previous work has demonstrated that most of the information captured by entity embeddings is type informa-
tion (Hamilton, Ying, & Leskovec, 2017b; Hamilton et al., 2018). So Hamilton et al. (2018) and Mai, Janowicz, et al.
(2019) took a step further and used a type-specific embedding lookup approach. We call the resulting module
entity feature encoder Enc(c)().

Definition 4 (Entity Feature Encoder Enc(c)())Given any entity e;€V with type ¢; = I'(e;) €C from G, the entity
feature encoder Enc(c)() computes the feature embedding e§°) e R which captures the type information of

entity e; by using an embedding lookup approach:

Z_h
e = Enc(c)(ei) = C—(C') (7)
1 Zch Il

HereZ € RI9XICl js the type-specific embedding matrix for all entities with type ¢; = I'(e;) € C. h?c) is a one-hot
vector such that th’(c) will perform an embedding lookup operation which selects an entity feature embedding
from the corresponding column. || - ||,z denotes the L?-norm.

Both Hamilton et al. (2018) and Mai et al. (2019) use Enc(c)() as their entity encoder:

Enc®®e) = Enc'“M(e) = Enc(e)) ©

Figure 2 is an illustration of their approach. Note that this encoder does not consider the spatial information
(e.g., coordinates and spatial extents) of geographic entities, which leads to poorer performance for answering
geographic logic queries. As for our SE-KGE model, we add an additional entity space encoder, Enc(x)(), to handle
this (see Definition 7).
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5.2 | Projection operator

The projection operator is utilized to do link prediction: given a basic graph pattern b = r(h;,V;) in a CGQ q with
relation r in which h; is either an entity e; (an anchor node in g) or an existentially quantified bound variable V;, the
projection operator P() predicts the embedding e/ € R for variable V;. Here, the embedding of h; can be either the
entity embedding e; = Enc(C)(ei) or the computed embedding v; for V; which is known beforehand. Both Hamilton
et al. (2018) and Mai, Janowicz, et al. (2019) share the same projection operator P(CQE) = P(CGA by ysing a bilinear
matrix R, € R¥xd*:

o = PE& (e, r) = PICA(e.r) = REnc?(e) = Re; ifinput = (e;r) ©)
' PGV, 1) = PICCAV,r) = RV, ifinput = (V,,r)

R, can also be a bilinear diagonal matrix as DisMult (Yang, Yih, He, Gao, & Deng, 2015) whose corresponding projec-
tion operator is denoted by P(GQEaug),

In SE-KGE, we extend the projection operator P() so that it can be used in the spatial semantic lifting task (see
Definition 8).

Figure 3 uses the basic graph pattern b, = Assembly(Chevrolet Eagle, ?Place) in Figure 1 as an example to
demonstrate how to do link prediction with P(GQ8)() = PICCA(), The resulting embedding e,, can be treated as the

Entity Feature Encoder Enc(c)() Feature Entity
Embedding = Embedding
e’ e

O

O

Feature Embedding Lookup O

Entity e, :

O

O

O
Type-specific Feature
Embedding Matrix Z;

FIGURE 2 Entity encoder used by Hamilton et al. (2018) and Mai et al. (2019a)

by

assembly
Chevrolet Eagle >

OO0

OO0
X 08“80
0000

€ X R,

FIGURE 3 lllustration of projection operator P(GQE)() = P(CGA() ysed by Hamilton et al. (2018) and Mai et al.
(2019)

\

. 0000 .

0000




MAIET AL Transactions gz \W/[LEY 13

in GIS

prediction of the embedding of variable 2P1ace. By following the same process, we can predict the embedding of

the variable ?P1lace from the other two basic graph patterns b, and by: €;; and ;5.

5.3 | Intersection operator

The intersection operator I() is used to integrate multiple embeddings ey, €5, ..., €p, ...,e, Which represent the
same (bound or target) variable V; in a CGQ q to produce one single embedding e, to represent this variable.
Figure 4 illustrates this idea by using CGQ g in Figure 1 as an example where e;,, &,, and e, indicate the predicted
embedding of ?Place from three different basic graph patterns b,, b, and bs. The intersection operator integrates
them into one single embedding e, to represent ?Place. Since ?Place is the target variable of g, e, is the final
query embedding we use to do a nearest-neighbor search to obtain the most probable answer (see Task 1). More

formally, we have the following definition.

Definition 5 (Intersection Operator Z())Given a set of n different input embeddings ey, €y, ..., €, ..., €y, the

intersection operator Z() produces one single embedding e;:

e =1I({ep.en, ....€p ...,ep}) (10)

The intersection operator I() represents the logical conjunction in the embedding space. Any permutation-in-
variant function can be used here as a conjunction such as elementwise mean, maximum and minimum. We can
also use any permutation-invariant neural network architecture (Zaheer et al., 2017) such as Deep Sets (Zaheer
et al., 2017). GQE (Hamilton et al., 2018) used an elementwise minimum plus a feed-forward network as the

/ Alameda County,

\ California

ep2: IsPartOf! (Alameda County, ?Place) @

OO0000

es:7Place
000000 o olelolelele)
e,,: Assembly (Chevrolet Eagle, ?Place) o

OO0000

e3,: NearestCity (San Francisco Bay, ?Place)

FIGURE 4 |lllustration of intersection operator Z()
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intersection operator which we denote by Z(G8)(). Mai, Janowicz, et al. (2019) showed that their CGA model with
a self-attention based intersection operator Z/°¢"() can outperform GQE. So in this work, we use I(€*() as the
intersection operator I(). Readers who are interested in this technique are invited to check Mai, Janowicz, et al.
(2019) for more details.

5.4 | Query embedding computing

Hamilton et al. (2018) proposed a way to compute the query embedding of a CGQ g based on these three compo-
nents. Given a CGQ g, we can encode all its anchor nodes (entities) into the entity embedding space using Enc().
Then we recursively apply the projection operator P() and intersection operator Z() by following the DAG of q
until we get an embedding for the target node (variable V;), namely, g = ®.,(q) = v;. Then we use nearestneighbor
search in the entity embedding space to find the closest embedding, whose corresponding entity will be the pre-
dicted answer to Query q. For details of the query embedding algorithm, see Hamilton et al. (2018).

Figure 5 gives an illustration of the query embedding computation process in the embedding space by using
Query g as an example. We first use Enc() to get the embeddings of three anchor nodes (see the dashed green
box in Figure 5). Then P() (the three green arrows) is applied to each basic graph pattern to get three embeddings
€17 €5, and eg,. I() (red arrows) is used later on to integrate them into one single embedding e, or q for the target
variable ?Place.

In this work, we follow the same query embedding computation process. Furthermore, we extend the current

model architecture to perform spatial semantic lifting.

6 | SE-KGE MODEL

Since many geographic questions rely on spatial information (e.g., coordinates) and spatial reasoning, a spatially-
explicit model is desired for the geographic logic query answering task (Task 1). Moreover, the spatial semantic
lifting task (Task 2) is only possible if we have an entity encoder which can encode the spatial information of
geographic entities as well as a specially designed projection operator. To solve these problem, we propose a new
entity encoder Enc() (see Section 6.1) and a new projection operator (see Section 6.2) for our SE-KGE model. Tasks
1 and 2 then require different training processes which will be discussed in Sections 6.3 and 6.4. SE-KGE extends
the general logic query answering framework of GQE (Hamilton et al., 2018) and CGA (Mai, Janowicz, et al., 2019)

with explicit spatial embedding representations.

Input Entity Embedding Output Query Embedding
e !
~_'Py €12

Nearest

- | Neighbor

Search

FIGURE 5 lllustration of (geographic) logic query answering in the embedding space
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6.1 | Entity encoder

Definition 6 (Entity Encoder Enc())Given a geographic knowledge graph ¢, the entity encoder Enc(): ¥ —» R is
defined as a function parameterized by 6., which maps any entity e; €V to a vector representation of d
dimension, the so-called entity embedding e; € RY. Enc() consists of two parts, the entity feature encoder
Enc'?(): ¥ - R and the entity space encoder Enc™(): = R®. These two encoders map any entity eEeVto
a feature embedding efc) €R% and space embedding e,(x) R, respectively. The final entity embedding e;

is the concatenation of e/ and e®:

e; = Encle) = [Enc(c)(ei); Enc(x)(ei)] = [e%;eM]. (11)

Here [+] denotes vector concatenation of two column vectors and d = d© +d%. Enc()is defined in Definition 4.

6.1.1 | Entity space encoder

In our work, rather than using the terms location encoder and location embedding (Mac Aodha et al., 2019), we use
space encoder to refer to the neural network model that encodes the spatial information of an entity and call the
encoding results space embeddings. While location encoders focus on encoding a single point location, our space

encoder Enc(x)() aims to handle spatial information of geographic entities at different scales:

1. For a small geographic entity e;€V,\V,, such as a radio station or restaurant, we use its location
X = PT(e;) as the input to Enc™().

2. For a geographic entity with a large extent e; € V,,, such as a country or state, at each encoding time, we randomly
generate a point x,gt) as the input for Enc(x)() based on the two-dimensional uniform distribution defined on its spa-
tial extent (bounding box) PN (e;) = [xi"“"; X" (i.e., x,!” ~ U‘(x;“i”,x,!“ax)). Since during training Enc(x)() will be called
multiple times, it will at the end learn a uniform distribution over e;s bounding box. In practice, one can sample
using any process, such as stratified random sampling, or vary the sampling density by expected variation.

3. Foranon-geographic entity e; € V\ V,,, we randomly initialize its space embedding. One benefit of this approach
is that during the KG embedding training process, these embeddings will be updated based on backpropagation
in neural networks so that the spatial information of its connected entities in G will propagate to this embedding
as its pseudo-space footprint. For example, a person’s spatial embedding will be close to the embedding of his/

her birthplace or hometown.
The entity space encoder Enc(")() is formally defined as follows:

Definition 7 (Entity space encoder Enc(x)()) Given any entity e;eV from G, Enc¥() computes the space embedding
eX = Enc(x)(ei)eRd(x) by

LocEnc™ (x;),where x; = PT (e;), ife; €V \ Vpp,
e =3 LocEnc® (x")where x{ ~ U (xMin xax) P A/(e;) = [xMinxmax], i e; € Vn (12)
th’vx) .
—nth?*'l\g’ if e eV\th.

Here Z, and hg") are the embedding matrix and one-hot vector for non-geographic entities in the entity space
encoder Enc(")(), similarly to Equation(7). LocEnc(X)() denotes a location encoder module (see Equation 2). Figure 6
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FIGURE 6 Entity encoder Enc() of SE-KGE. Compared with previous work (Figure 2), an entity space encoder
component Enc™ () is added to capture the spatial information of geographic entities

illustrates the architecture of the entity encoder Enc(). Compared to the GQE entity encoder Enc(GQE)() shown in

W) which leverages a multi-

Figure 2, the proposed entity encoder of SE-KGE adds the entity space encoder Enc
scale grid cell representation to capture the spatial information of geographic entities.

As far as using a bounding box as an approximation is concerned, one reason to use bounding boxes instead
of real geometries is that performing the point-in-polygon operation in real time during machine learning model
training is very expensive and not efficient. Many spatial databases use bounding boxes as approximations of
real geometries to avoid intensive computation. We adopt the same strategy here. Moreover, the detailed spatial
footprint of e; is expected to be captured through the training process of the entity embedding. For example,
even if the model is only aware of the bounding box of California, by using the dbo:isPartOf relations between

California and its subdivisions, the model will be informed of all the spatial extents of its subdivisions.
6.2 | Projection operator
Definition 8 (Projection operator P()Given a geographic knowledge graph ¢, a projection operator

P():VUAXR—RY maps a pair (e;,r), (V,r), or (x;r) to an embedding e/. According to the input, () can be
treated as one of the following:
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T assembly
( Chevrolet Eagle ) >

OO0O00O00)
X
© 0000

ei=[e®; ] X  blockdiagR(®,RX) P e = [e(©) ; ]
FIGURE 7 lllustration of projection operator P©() of SE-KGE with input (e;,r)

1. link prediction P(e)(e,», rl—given a triple’s head entity e; and relation r, predicting the tail;

2. link predictionP'®(V;,r)—given a basic graph pattern b = r(V;,V}) and v;, which is the computed embedding for the
existentially quantified bound variable V;, predicting the embedding for variable V;; and

3. spatial semantic IiftingP"‘)(xi,r)—given an arbitrary location x; and relation r, predicting the most probable linked
entity.

Formally, P() is defined as:

PO (e,r) = diag(RY,(RY(RY)Enc(e;) = diag(R”,(RM)e;, ifinput = (e,r)
/=1 PEV,n) = diagR (RY)v;, ifinput = (V1) (13)
PY(x,,r) = diag(R™,(R)[LocEnc™ (x,);LocEnc™ (x)],  ifinput = (x;r)

where Rﬁc) € Rd9xd? Rﬁx) e R4xd 3nd foc) e R4“xd" 3re three trainable and relation-specific matrices. Rﬁc) and fo) focus
on the feature embedding and space embedding. Rf‘d transforms the space embedding e,m to its correspondence in
feature embedding space. diag(Rﬁc),Rf")) eR%™d and diag(RfXC),Rf‘)) € R denote two block-diagonal matrices based
on Ric), Rixl and . [LocEnc(X)(x,»);LocEnc(x) (x;)] indicates the concatenation of two identical space embeddings
LocEnc? (x;). Here, we use the same P () for the first two cases to indicate they share the same neural network archi-
tecture. This is because both of them are link prediction tasks with different inputs.

Figure 7 illustrates the idea of projection operator P() by using the basic graph pattern b, in g (see Figure 1)
as an example of link prediction (case (1)). Given the embedding of dbr:Chevrolet _Eagle and the rela-
tion-specific matrix diag(Rﬁc),RfX)) for relation dbo:assembly, we can predict the embedding of the variable
?Place, €.

Figure 8 shows how to use 7™ () in the semantic lifting task (case (3); see Section 6.4. for a detailed description).
Note that “x” in Figures 7 and 8 indicates diag(R", Rﬁx))e,- and diag(Rixc),Rﬁxl)[LocEnc(X) (X;);LocEnc(X) (x;)], respectively.

r

6.3 | Geographic logic query answering @ ,(q) model training

We train the SE-KGE model on both the original KG structure with an unsupervised objective £, (Section 6.3.1)

and the query-answer pairs with a supervised objective L, (Section 6.3.2):

LY = Lyc+Lagn (14)
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FIGURE 8 Spatial semantic lifting in the embedding space by using Enc() and P%®()

6.3.1 | Unsupervised KG training phase

In this phase, we train SE-KGE components based on the local KG structure. In G = (V,€), for every entity e; €V, we
first obtain its 1-degree neighborhood Nie;) = {(r,;, e )l (e, &) €GYU{(r;},

n different tuples from N(e;) to form a sampled neighborhood N, (e;) € N(e;) and [N, (e;)| = n. We treat this subgraph

ey lroilei e,) €G). We need to sample

as a CGQ with n basic graph patterns, in which entity e; holds the target variable position. The model predicts the
embedding of e; such that the correct embedding e; is the closest one to the predicted embedding e/’ against all

embeddings e; in the negative sample set Neg(e;):

Lig= D D max(0,A-QHys(e)e)+QHcsle).er)) (15)

€€V er eNegle;)

where
e/ = Hygle) = I({P(eqry)l(rgeq) €N, (e)}) (16)

Here Ly is a max-margin loss and A is the margin.

6.3.2 | Supervised query-answer pair training phase

We train SE-KGE by using conjunctive query-answer pairs. We first sample X different conjunctive graph query (logical
query)-answer pairs S = {(q;,a;)} from G. We treat each entity as the target variable of a CGQ and sample K queries for
each DAG structure. All DAG structures we considered in this work are shown in Figure 9. The way to do query sampling
is to sort the nodes in a DAG in topological order and sample one basic graph pattern at a time by following this order
and navigating on the ¢ (Hamilton et al., 2018). In order to generate a GCGQ, we have the restriction e; € Vpt-

The training objective is to make the correct answer entity embedding a; the closest one to the predicted query
embedding q; = ®,(q;) against all the negative answers’ embeddings a; in negative answer set Neg(r;,a;. We also

use a max-margin loss:

Loa= D, D max(0,A-Qq;a)+Q(q;a,)) (17)

(a;,a,)€S a7 eNeg(a;,a;)

For Neg(g;,a;) we compared two negative sampling strategies: 1) negative sampling: Neg(r;,a;) C V is a fixed-size set of
entities such that, foralle; € Neg(r;,a;), I'(e;) = I'le;) and e #e;; 2) hard negative sampling: Neg(q;,a;) is a fixed-size set of
entities which satisfy some of the basic graph patterns b;; (see Definition 2) in g; but not all.
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FIGURE 9 DAG structures of the conjunctive graph queries we sampled from ¢. Nodes indicate entities

or variables and edges indicate basic graph patterns. The red node is the target variable of the corresponding
query. The DAG structures surrounded by red boxes indicate queries sampled with the hard negative sampling
method

6.4 | Spatial semantic lifting ¥ o (x,r) model training

We randomly select a point x; € .4 C R? from the study area, and use location encoder LocEnc® to encode its loca-
tion embedding esx) €R¥. Since we do not have the feature embedding for this location, to make the whole model
an inductive learning one, we use P¥() to predict the tail embedding e’ = Yo, (x;, r) of this virtual triple r(x;,e’). This
is equivalent to posing a query r(x;, ?e) to G. A nearest-neighbor search in the entity embedding space will produce
the predicted entity which can link to location x; with relation r. Since given any location x; from the study area,
‘I‘g,ggsl(xi,r) can predict the entity embedding that x; can link to given relation r, this is a fully inductive learning-
based model. This model does not require location x; to be selected from a predefined set of locations which is a
requirement for transductive learning-based models such as Kejriwal and Szekely (2017). Figure 8 shows the idea
of spatial semantic lifting.

We train the spatial semantic lifting model SE—KGE, with Enc(), 7©(), and P¥() by using two objectives: a link
prediction objective L, (Section 6.4.1) and a spatial semantic lifting objective Lg (Section 6.4.2):

L5 = £ o+ Lo (18)
6.4.1 | Link prediction training phase

Thelink prediction training phase aims to train the feature embeddings of each entity. Foreachtriples; = (h;,r;, t;) €T,
we can use Enc() and P®() to predict the tail entity embedding given the head and relation (P®©(h,r,)), or predict
the head entity embedding given the tail and relation (P®(t;, r;%). Note that we have two separate P')() for r, and

ri‘i. The loss function is given by:

Lp= ), Y max(0,A-Q(P(h,n)t) +Q(P (h,n)t)
si=(hyrt)ET tr eNeg(t;)
, (19)
+ ) Y, max(0,A-Q(PE (L, 7)) + QP (t,r),h)
s=(h;rt)ET hi eNegy(h;)

where Neg,(e;) is the set of negative entities which share the same type with entity e;.
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6.4.2 | Spatial semantic lifting training phase

We also directly optimize our model on the spatial semantic lifting objective. We denote by 7, and 7, sets
of triples whose head (or tail) entities are geographic entities (i.e., 7; = {sjs; = (h,r,t;) €T Ah; €V} and
T, = {sils; = (h,r;, t) €T At; €V, )). The training objective is to make the tail entity embedding t; the closest one to
the predicted embedding P¥(X(h,), r;) against all negative entity embeddings t;. We do the same for the inverse

triple (t,-,ri‘i,h,»). The loss function is given by:

Los= ) Y max(0,A-Q(PY(X(h)r).t) +QPY (X (h)r)t)
si=(h,r,t) €T, t7 eNeg,(t;)

(20)
+ ) Y max(0,A—Q(PU(X(t)r ) ) +QPY (X (t)r ) b)),
s;=(hr,t;) €T, h- eNeg;(h;)
where
X(e) = x; = PT (e), ife; €Vp\ Vpn (21)

X~ U (xmin, xmaX) DA (e) = [XM; XM, if e, €V,

7 | EXPERIMENT

To demonstrate how SE-KGE incorporates spatial information of geographic entities such as locations and spa-
tial extents we experimented with two tasks: geographic logic query answering and spatial semantic lifting. To
demonstrate the effectiveness of spatially-explicit models and the importance of considering the scale effect in
location encoding we select multiple baselines on the geographic logic query answering task. To show that SE-KGE
is able to link a randomly selected location to entities in the existing KG with some relation, which none of the

existing KG embedding models can solve, we proposed a new task - spatial semantic lifting.

7.1 | DBGeo data set generation

In order to evaluate our proposed location-aware KG embedding model SE-KGE, we first build a geographic KG
which is a subgraph of DBpedia by following the common practice in KG embedding research (Bordes et al., 2013;
Mai, Yan, et al., 2019; Wang et al., 2014). We select the U.S. mainland as the study area A since previous research
(Janowicz et al., 2016) has shown that DBpedia has relatively richer geographic coverage in the U.S. The KG con-
struction process is as follows:

1. We collect all the geographic entities within the U.S. mainland as the seed entity set V.4 which ac-
counts for 18,780 geographic entities,5 We then collect their 1- and 2-degree object property triples
with dbo: prefix predicates/relations (http://dbpedia.org/spargl?help=nsdecl).

2. We compute the degree of each entity in the collected KG and delete any entity, together with its correspond-
ing triples, if its node degree is less than a threshold 5. We use 5 = 10 for non-geographic entities and 5 = 5 for
geographic entities, because many geographic entities, such as radio stations, have fewer object-type property
triples and a smaller threshold ensures that a relatively large number of geographic entities can be extracted
from the KG.

3. We further filter out those geographic entities that are newly added from Step 2 and are outside of the U.S.
mainland. The resulting triples form our KG, and we denote the geographic entity set as V.


http://dbpedia.org/sparql?help=nsdecl
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4. We split Ginto training, validation and testing triples in the ratio of 90:1:9, so that every entity and every relation
appears in the training set. We denote the KG formed by the training triples as G, while denoting the whole
KG as G.

5. We generate K conjunctive graph query-answer pairs from G for each DAG structure shown in Figure 9 based
on the query-answer generation process described in Section 6.3. Q(¢) and Q(C),, denote the resulting query-
answer (QA) set, while Q,, (G) denotes the geographic QA set. For each query g; in the training QA set, we make
sure that each query is answerable based on Gy, (i.€., @(Gyrain,a;) # 9). As for query g; in the validation and testing
QA set, we make sure each query g; satisfies (Gi.ain, a;) = 4 and @(G,q;) # 0.

6. For each geographic entity e€V,;, we obtain its location/coordinates by extracting its geo:geometry triple
from DBpedia. We project the locations of geographic entities into the U.S. National Atlas Equal Area projection
coordinate system (epsg:2163) X Y. PT (e) = x indicates the location of e in X Y.

7. For each geographic entity eeV,, we get its spatial extent (bounding box) PN '(e) in XY by using the
ArcGIS Geocoding API (https://geocode.arcgis.com/arcgis/rest/services/World/GeocodeServer/find) and
OpenStreetMap API. We obtain 80.6% of geographic entities; we denote them by V.

8. Foreach entity e; € V, we obtain its types by using rd £: type triples. Note that there are entities having multiple
types. We look up the DBpedia Ontology (class hierachy) to get their level-1 superclass. We find out that every
entity in ¢ has only one level-1 superclass type. Table 1 shows statistics of entities in different types.

9. To build the training/validation/testing data sets for spatial semantic lifting, we obtain 7;,7, C T (see Section 6.4),
each triple of which is composed of geographic entities as its head or tail. We denote R = {r;ls; = (h;,r;,t;) €T.n T, ).

We denote Q?(¢), Q) (¢) as the general QA sets which respectively contain two and three basic graph patterns,
and similarly for Q(z) (Q), Q(3) (C). Table 2 shows the statistics of the constructed G, the generated QA sets, and the

geo geo

spatial semantic lifting data set in DBGeo. Figure 10 shows the spatial distribution of all geographic entities V), in G.

7.2 | Evaluation on the geographic logic query answering task
7.2.1 | Baselines

In order to quantitatively evaluate SE-KGE on the geographic QA task, we train SE—KGEg,, and multiple baselines
on G in DBGeo. Compared to previous work (Hamilton et al., 2018; Mai, Janowicz, et al., 2019), the most important
contribution of this work is the entity space encoder Enc(x)() which makes our model spatially explicit. So we care-
fully select four baselines to test the contribution of Enc(x)() on the geographic logic QA task. We have selected

four baselines:

TABLE 1 Number of entities of each entity type in DBGeo

Entity type Number of entities
dbo:Place 16,527
dbo:Agent 8,371

dbo:Work 594

dbo:Thing 179
dbo:TopicalConcept 134
dbo:MeanOfTransportation 104

dbo:Event 71


https://geocode.arcgis.com/arcgis/rest/services/World/GeocodeServer/find
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TABLE 2 Statistics for our data set in DBGeo (Section 7.1)

Knowledge Graph |7
|2
[Vl
[Vl
[Vonl
Geographic Question Answering 1Q2(g)|
1Q9(G)|
1Q2, ()l
QG0 (O
Spatial Semantic Lifting |TnT,]
[Resl

“X/QT" indicates the number of QA pairs per query type.

DBGeo

Training Validation Testing
214,064 2,378 21,406
318 - -

25,980 - -

18,323 - -

14,769 - -
1,000,000 - -
1,000,000 = =
1,000,000 1,000/QT 10,000/QT
1,000,000 1,000/QT 10,000/QT
138,193 1,884 17,152
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FIGURE 10 Spatial distribution of all geographic entities in ¢

1. GQEy,

discussed in detail in Section 5. The main difference between GQE

diag

vy

and GQE: two versions of the logic query answering model proposed by Hamilton et al. (2018),
and GQE is the projection operator
they use: PGQi) and PGB, respectively. Compared with SE—KGE;,, both GQE

diag and GQE only use

entity feature encoder Enc(c)() as the entity encoder and T9QF) as the intersection operator. Both methods

only use Lq, in Equation (14) as the training objective. Their two baselines are implemented based on
the original code repository (https://github.com/williamleif/graphgembed) of Hamilton et al. (2018).


https://github.com/williamleif/graphqembed
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2. CGA: alogic query answering model proposed by Mai, Janowicz, et al. (2019) (see Section 5 above). Compared
with SE—KGE;,, CGA uses a different entity encoder (Enc'©eA

spatial information of each geographic entity is not considered. This baseline is used to test whether designing a

" and projection operator (PS4) such that the

spatially-explicit logic query answering model can outperform general models on the geographic query answer-
ing task.

3. SE—KGEic: a simpler version of SE—KGE;,, which uses a single scale location encoder in the entity encoder
instead of the multi-scale periodic location encoder as shown in Equation (2) in Section 2.3. Instead of first
decomposing input x into a multi-scale periodic representation by using sinusoidal functions with different fre-
quencies (Mai et al., 2020), the location encoder of SE— KGE;,..; directly inputs x into a feed-forward network.
This single-scale location encoder is proposed in Mai et al. (2020) as one baseline model—direct. Moreover, its
entity space encoder does not consider the spatial extent of each geographic entity either and just uses its co-
ordinates to do location encoding. This baseline is used to test the effectiveness of using multi-scale periodical
representation learning in our SE-KGE framework.

4. SE—KGE,: a simpler version of SE—KGEg,, whose entity space encoder does not consider the spatial extents of
geographic entities. The only different between SE—KGE,; and SE—KGE g is that SE—KGE,,; uses Space2Vec
(Mai et al., 2020) as the location encoder while SE — KGE 4. utilizes the single scale direct model as the location
encoder. This baseline is used to test the necessity to consider the spatial extent of geographic entities in our
SE-KGE framework. In other words, it uses the following equation for its space encoder:

LocEnc™ (x;)wherex; = PT(e;) ife EV,

& = Z,h¥
= ife,eV\V
1Zh%1l 2 1€ VAV

(22)

5. SE—KGEp,.: a simpler version of SE—KGEg, whose entity encoder does not have the feature encoder compo-
nent. This baseline is used to understand how the space encoder Enc(x)() captures the connectivity information
of .

7.2.2 | Training details

We train our model SE—KGEg,; and six baselines on the DBGeo data set. GQE,,, and GQE are trained on the
general QA pairs and geographic QA pairs as in Hamilton et al. (2018). The other models are additionally trained
on the original KG structure. Gird search is used for hyperparameter tuning: d = [32, 64, 128], d9 = [16, 32, 64],
d¥ =1[16,32,64], S = [8, 16, 32, 64], A, = [10,50,200,1,000]. The best performance is obtained when d = 128,
d) = 64, d¥ =64, S = 16, A, = 50. 4. = 5,400,000 is determined by the study area .A. We also try differ-
ent activation functions (i.e., sigmoid, ReLU, LeakyReLU) for the full connected layers NN() of location encoder
LocEnc™(). We find that SE—KGEgp,c. Performs best with LeakyReLU as the activation function together with L2
normalization on the location embedding. SE—KGE yjets SE—KGE,; and SE —KGEg,, perform best with the sigmoid

min max

activation function without L2 normalization on the location embedding. We implement all models in PyTorch and
train/evaluate each model on an Ubuntu machine with two GeForce GTX Nvidia GPU cores, each of which has
10 GB memory. The DBGeo data set and related code are open-source (https://github.com/gengchenmai/se-kge).

7.2.3 | Evaluation results

We evaluate SE — KGEy,, and six baselines on the validation and testing QA data sets of DBGeo. Each model pro-
duces a cosine similarity score between the predicted query embedding g and the correct answer embedding a


https://github.com/gengchenmai/se-kge
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(as well as the embedding of negative answers). The objective is to rank the correct answer top 1 among itself and
all negative answers given their cosine similarity to q. Two evaluation metrics are computed: the area under the
receiver operating characteristic (ROC) curve (AUC) and the average percentile rank (APR). AUC compares the
correct answer with one randomly sampled negative answer for each query. An ROC curve is computed based on
model performance on all queries and the area under this curve is obtained. As for the APR, the percentile rank
of the correct answer among all negative answers is obtained for each query based on the prediction of a QA
model. Then the APR is computed as the average of the percentile ranks of all queries. Since AUC only uses one
negative sample per query while APR uses all negative samples for each query, we consider APR as a more robust
evaluation metric.

Table 3 shows the evaluation results of SE—KGEy,, as well as six baselines on the validation and testing QA
data set of DBGeo. We split each data set into different categories based on their DAG structures (see Figure 9).
Note that logic query answering is a very challenging task. As for the two works which share a similar setup to
ours, Hamilton et al. (2018) show that their GQE model outperforms the TransE baseline by 1.6% of APR on the
Bio data set. Similarly, Mai, Janowicz, et al. (2019) demonstrate that their CGA model outperforms the GQE model
by 1.39% and 1.65% of APR on the DB18 and WikiGeol19 data sets. In this work we show that our SE—KGEg,
model outperforms the current state-of-the-art CGA model by 2.17% and 1.31% in terms of APR on the validation
and testing data set of DBGeo, respectively. We regard this as a sufficient signal to show the effectiveness of
SE —KGE;, on the geographic QA task. Some interesting conclusions can be drawn from Table 3:

1. CGA has a significant performance improvement over GQE and GQE on DBGeo. This result is con-

sistent with that of Mai, Janowicz, et al. (2019), which demonstrates the advantage of the self-attention

diag

mechanism in Z(CCA,

2. The performance of SE—KGE y;..; and CGA are similar, which shows that a simple single-scale location encoder
(SE — KGE 4i.ct) is Not sufficient to capture the spatial information of geographic entities.

3. SE—KGEg,, performs better than SE—KGE,,, which only considers the location information of geographic enti-
ties. This illustrates that the scale effect is beneficial for the geographic logic QA task.

4. The performance of SE—KGE,,. is the worst among all models. This indicates that it is not enough to only con-
sider spatial information as the input features for entity encoder Enc(). This makes sense because each entity in
G has alot of semantic information other than its spatial information, and only using spatial information for entity
embedding learning is insufficient. However, SE - KGE, . is a fully inductive learning model which enables us to
do spatial semantic lifting.

5. Comparing SE — KGEg,, with CGA, we can see that SE— KGE;, outperforms CGA for almost all DAG structures
on the testing data set except “Hard-3-chain_inter” (-0.58%), while the top 2 DAG structures with the largest
margin are “3-inter_chain” (2.15%) and “3-chain_inter” (2.08%). On the validation data set, SE— KGEg,, gets a
higher AAPR than CGA on “Hard-3-inter_chain” (7.42%) and “3-inter_chain” (6.08%). GQE
performance on the “Hard-3-chain_inter” query structure.

diag SHOWS the best

In order to demonstrate how the intersection operator I() helps to improve the model performance on the
geographic QA task, we show SE—KGEg,,’s predicted ranking list of entities on Query g as well as its three basic
graph patterns in Table 4. The 12 entities in this table represent the hard negative sampling set of Query qc.
dbr:0akland, California isthe correct answer for query g.. We can see that the four top ranked entities
of by: IsPartOf’l(AIameda County,?Place) are all subdivisions of Alameda County. The five top ranked entities of b,
: Assembly(Chevrolet Eagle,?Place) are all assembly places of Chevrolet Eagle. Similarly, the top ranked entities of
bs: NearestCity(San Francisco Bay, ?Place) are close to San Francisco Bay. The full query g yield the best rank of
the correct answer. This indicates that each basic graph pattern contributes to the query embedding prediction of
SE — KGE¢,,. Moreover, to compare the performance of different models on query qc, the percentile ranks given by

CGA, SE—-KGE,, and SE —KGEy, are 53.9%, 61.5%, and 77.0%, respectively.
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FIGURE 11 (a) Clustering result of location embeddings produced by the location encoder LocEnc™()in
SE—KGEspace. It illustrates spatial coherence and semantics; (b) Census Bureau-designated regions of the U.S;
and (c) the community detection (shuffled Louvain) results of knowledge graph ¢ by treating ¢ as a undirected
unlabeled multi-graph. It lacks spatial coherence

We also test how well the location encoder LocEnc(X)() in SE-KGE can capture the global position informa-
tion and how LocEnc(x)() interacts with other components of SE-KGE. We use SE —KGE,
LocEnc(X)() is an inductive learning model, we divide the study area A into 20 km by 20 km grids and take the

space @S an example. Since
location of each grid center as the input of LocEnc™(). Each grid will get a d®-dimensional location embedding
after location encoding. We apply hierarchical clustering on these embeddings. Figure 11a shows the clustering
result. We compare it with the widely used US Census Bureau-designated regions (https://en.wikipedia.org/wiki/
List_of_regions_of_the_United_States) (see Figure 11b). We can see that Figure 11a and b look very similar to
each other. We use two clustering evaluation metrics—normalized mutual information (NMI) and Rand index—to
measure the degree of similarity, yielding .62 on NMl and .63 on the Rand index. Taking a closer look at Figure 11a,
we can also see that the clusters are divided on the state borders. We hypothesize that this is because LocEnc(X)()
is informed of the connectivity of different geographic entities in ¢ during model training, resulting in locations
which are connected in the original ¢ also being clustered after training.

To validate this hypothesis, we apply the Louvain community detection algorithm with a shuffled node se-
quence (https://github.com/tsakim/Shuffled_Louvain) on the original G by treating G as an undirected and unla-
beled graph. Figure 11c shows the community structure with the best modularity, which contains 32 communities.

Some interesting observations can be made by comparing these three figures:

1. Most communities in Figure 11c are separated at state borders, which is evidence for our hypothesis.
2. Some communities contain locations in different states, which are far away from each other. For example, the
red community contains locations in Utah, Colorado, and Alabama. This indicates that some locations are very


https://en.wikipedia.org/wiki/List_of_regions_of_the_United_States
https://en.wikipedia.org/wiki/List_of_regions_of_the_United_States
https://github.com/tsakim/Shuffled_Louvain
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similar purely based on the graph structure of G. As LocEnc(X)() imposes spatial constraints on entities, spatially

coherent clusters in Figure 11a are presented.

One hypothesis why Figure 11a and b look similar is that in the KG, the number of connections between en-
tities within one Bureau-designated region is more than the number of connections among entities in different
regions. This may be due to the fact that DBpedia uses census data as one of the data sources while census data
are organized in a way which reflects Bureau-designated regions of the U.S. More research is needed to validate
this hypothesis in the future.

7.3 | Evaluation on spatial semantic lifting task
7.3.1 | Baselines

The spatial semantic lifting model is composed of Enc(), 7*©)() and P%®(), and is denoted by SE—KGE,,. In order
to study the contribution of the feature and location encoders, we create a baseline SE—KGE;Nce whose entity
encoder does not have the feature encoder component, similar to SE—KGEj,,.. The difference is that they are
trained on different objectives. These are the only two models that can perform the spatial semantic lifting task,

since they are fully inductive learning models directly using locations as the only input features.

7.3.2 | Training details

We train SE-KGE,, and SE—KGE;pace based on £55), To quantitatively evaluate them on the spatial semantic lift-
ing task, we use 7,n7, in the validation and testing data set with different relations (see Table 2). For each triple
s; = (huri,t) €T, given the head entity’s location and r;, we use P¥(X(h;),r;) (see Equation 21) to predict the tail en-
tity embedding. A similar process can be carried out for s; = (h;r;,t) € T, but from the reverse direction. We also use
AUC and APR as the evaluation metrics. Note that since X(h;) = x,w ~1/'(x,f“i”,x,f"ax), PN(h) = [xlf“i”;x,f"ax] ifh,ev,,
the location of head entity is randomly generated, which can be treated as unseen in the training process. We use

the same hyperparameter configuration as SE— KGE;.

7.3.3 | Evaluation results

Table 5 shows the overall evaluation results. We can see that SE — KGE, outperforms SE—KGE;pace by a significant
margin (AAUC = 9.86% and AAPR = 9.59% on the testing data set), which clearly shows the strength of considering

both feature embedding and space embedding in the spatial semantic lifting task.

TABLE 5 Evaluation of spatial semantic lifting on DBGeo over all validation/testing triples

SE—KGE,
SE— KGE,pace SE—KGE,, - SE—KGE,pyce
AUC APR AUC APR AAUC AAPR
Valid 72.85 75.49 82.74 85.51 9.89 10.02
Test 73.41 75.77 83.27 85.36 9.86 9.59

Note: The bold is used to highlight the difference.
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Next, among all validation and testing triples with different relations, we select a few relations and report the
APR of two models on these triples with specific relations. The results are shown in Table 6. These relations are
selected since they are interesting from a spatial reasoning perspective. We can see that SE—-KGE, outperforms
SE-— KGE;Dace on all these triple sets with different relations.

In order to know how well SE—KGE, understands the semantics of different types of (spatial) relations, we
visualize the spatial semantic lifting results in Figure 12 for four spatial relations: dbo:state, dbo:nearestC-
ity,dbo:broadcastArea-1and dbo:isPartOf.dbo:state,dbo:isPartOf anddbo:broadcastArea-1are
about partonomy relations, while dbo:nearestCity is an example of pointwise metric spatial relations. Some

interesting observations can be made:

1. SE—KGE,, is capable of capturing the spatial proximity such that the top ranked geographic entity (yellow
point) in each case is the closest to location x (red triangle). We also treat this as an indicator of the
capability of SE—KGE,, to handle partonomy relations and pointwise metric spatial relations.

2. SE-KGE,, can capture the semantics of relations (e.g., the domain and range of each relation/predicate). All
top-ranked entities are within the range of the corresponding relation. For example, in Figure 12a with Query
state(x,?e), the top three entities are all states spatially close to x. In Figure 12b with Query broadcastArea_i(x, 2e),
all top three entities are nearby radio stations. In Figure 12d with Query isPartOf(x, ?e), all top three entities are
states (dbo:Indiana) and counties.

3. We notice that the result of query nearestCity(x, ?e) in Figure 12b is not good enough since the sec-
ond result, dbo:Cheboygan, Michigan, is outside of Wisconsin. After investigating the triples with
dbo:nearestCity as the relation, we find that dbo:nearestCity usually links a natural resource entity (e.g.,
lakes, national parks) to a city. These natural resource entities usually cover large areas and complex geom-
etries. So dbo:nearestCity is not a purely pointwise distance-based relation but a complex distance-based
relation based on real geometries. Since our model only takes the bounding box of each entity and there are
usually no subdivisions of these nature resource entities, it is hard for our model to learn the semantics of

dbo:nearestCity.

TABLE 6 Evaluation of SE—KGE,, and SE— KGE;pace on DBGeo for a few selected relations r, using APR (%) as
the evaluation metric

Query type SE—KGE[,.. SE-KGE,  AAPR
Valid state(x,?e) 92.00 99.94 7.94
nearestCity(x,?e) 84.00 94.00 10.00
broadcastArea=1(x,?e) 91.60 95.60 4.00
isPartOf(x,?e) 88.56 98.88 10.32
locationCity(x,?e) 83.50 99.00 15.50
residence=1(x,?e) 90.50 93.50 3.00
hometown=1(x,?e) 61.14 74.86 13.71
Test state(x,?e) 89.06 99.97 10.91
nearestCity(x,?e) 87.60 99.80 12.20
broadcastArea=1(x,?e) 90.81 96.63 5.82
isPartOf(x,?e) 87.66 98.87 11.21
locationCity(x,?e) 84.80 99.10 14.30
residence=1(x,?e) 61.21 77.68 16.47
hometown=1(x,?e) 61.44 76.83 15.39

Note: The bold is used to highlight the difference.
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FIGURE 12 Visualization of spatial semantic lifting of SE—KGE. (a)-(d) show the top three geographic
entities which can answer query r(x, ?e) where r is the relation we pick. Red triangle: the selected location x.
Circles: top three geographic entities ranked by our model, their colors indicating cosine similarity between the
geographic entities and the predicted query embedding

Based on the evaluation results and model analysis, we can see that, given a relation r, SE— KGE_ is able to link

a location x to an entity e in ¢ by considering the semantics of r and spatial proximity.

8 | CONCLUSIONS

In this work we propose a location-aware knowledge graph embedding model called SE-KGE which enables spatial
reasoning in the embedding space for its three major components: the entity embedding encoder Enc(), the pro-
jection operator P(), and the intersection operator I(). We demonstrate how to incorporate spatial information of
geographic entities such as locations and spatial extents into Enc() such that SE-KGE can handle different types of
spatial relations such as pointwise metric spatial relations and partonomy relations. To the best of our knowledge,
this is the first KG embedding model which incorporates location encoding into the model architecture instead of
relying on some form of distance measure among entities while capturing the scale effect of different geographic
entities. Two tasks have been used to evaluate the performance of SE-KGE: geographic logic query answering
and spatial semantic lifting. Results show that SE—KGE, can outperform multiple baselines on the geographic
logic query answering task, which indicates the effectiveness of spatially-explicit models. It also demonstrates
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the importance of considering the scale effect in location encoding. We also proposed a new task, spatial seman-
tic lifting, with the aim of linking a randomly selected location to entities in the existing KG with some relation.
None of the existing KG embedding models can solve this task except our model. We have shown that SE — KGE,
(AAUC = 9.86% and AAPR = 9.59% on the testing data
set). Visualizations show that SE—KGE, can successfully capture the spatial proximity information as well as the

can significantly outperform the baseline SE—KGE;pace

semantics of relations. In the future, we hope to explore a more concise way to encode the spatial footprints of

geographic entities in a KG. Moreover, we want to explore more varieties of the spatial semantic lifting task.
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ENDNOTES

1 Note that, in many KGs (e.g., DBpedia, Wikidata), an entity can belong to multiple types. We use this definition to be
in line with many existing works (Hamilton et al., 2018; Mai, Janowicz, et al., 2019) so that we can compare our results.
It is easy to relax this requirement, which we will discuss in Section 6.1.

2 Itis worth mentioning that most KGs to date merely store point geometries even for features such as the U.S.
3 For a detailed comparison between CGQs and SPARQL 1.1 queries, see Section 2.1 of Mai, Janowicz, et al. (2019).

4 dbo:nearestCity triples in DBpedia are triplified from the “nearest major city” row of the info box in each entity’s
corresponding Wikipedia page which may contain several cities. See http://dbpedia.org/resource/San_Francisco_Bay.

5 We treat an entity as a geographic entity if its has a geo:geometry triple in DBpedia.
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