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Abstract 6 

Grid-level energy storage is an emerging technology that provides operational flexibility 7 
for managing electricity demand, integrating renewable energy, and improving system 8 
reliability. However, it has been established that revenue-maximizing grid-level energy 9 

storage tends to increase system emissions in current US electricity grids. In this work, 10 
we consider storage operational strategies that value both revenue and CO2 emissions to 11 

understand the tradeoffs between these two criteria. We use actual electricity prices and 12 

marginal emissions factors in a linear programming model that optimizes operation 13 
between annual revenue and CO2 emissions to find the Pareto Frontier for 22 eGRID sub-14 
regions. We find that, in many US regions, marginal storage-induced CO2 emissions can 15 

be decreased significantly (25-50%) with little effect on revenue (1-5%). Electricity grids 16 
with larger flexibility in daily electricity prices and in marginal emissions factors have 17 
more potential to reduce annual storage CO2 emissions at low cost to storage operators. 18 

These results show that negative environmental effects of storage operation can be 19 
reduced or eliminated at low cost through voluntary or regulatory shifts in operational 20 

patterns.   21 
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Highlights:  23 

-Existing literature agrees that revenue- or value-maximizing energy storage increases 24 

electricity system emissions  25 

-We use a linear programming model of storage operation that values both revenue and 26 
CO2 emissions 27 

-Marginal storage-induced emissions can be drastically reduced (~50%) with little loss of 28 
revenue  29 

-Increasing the round-trip efficiency of storage provides more capability to reduce 30 
storage-related emissions at low cost   31 

  32 

Introduction:  33 

Energy storage refers to various technologies, such as pumped hydro, compressed air 34 
energy storage (CAES), and batteries, used to store electrical energy. Grid-level energy 35 
storage can provide a variety of benefits to electricity systems, from renewable energy 36 

integration to frequency regulation, but can generally be considered a tool for increasing 37 
operational flexibility of the grid [1], [2]. While still an emerging technology, grid-level 38 
energy storage is a promising solution for modernizing the electricity grid and integrating 39 

cleaner energy sources such as wind and solar power.  40 
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Governments globally and in the US are considering support for energy storage as an 41 
important element of grid decarbonization.  In the US, state governments have passed 42 

laws with the goal of boosting renewable energy integration through bulk energy storage, 43 
often defining an adoption target for storage in terms of either power (MW) or energy 44 
(MWh) capacities [3], [4], [5], [6]. In 2010, California passed AB 2514 requesting the 45 
California Public Utilities Commission (CPUC) to determine an advantageous amount of 46 
grid energy storage. In 2013, they arranged a mandate of 1.325 GW of energy storage by 47 

2020 [7].  Likewise, in 2015, Oregon passed HB 2193, mandating 5 MWh of energy 48 
storage by 2020 [8]. Massachusetts also approved an energy storage mandate in the 2016 49 
Act Relative to Energy Diversity, demanding 100 MWh of energy storage by 2020 [9]. 50 
Nevada passed a renewable portfolio standard which allows up to 10% of energy to come 51 
through energy storage [10]. Maryland passed a tax incentive to help stimulate the 52 

distributed energy storage industry [11]. These government policies complement the 53 
growing private sector market, and their collaboration is expected to lead to rapid growth 54 
of the industry over the next decade.  In 2015 and 2016 alone, approximately 400 MW of 55 

energy storage was deployed onto the US electricity grid [12]. As more states and utilities 56 

attempt to innovate creative ways to utilize energy storage on the electricity grid, we will 57 
learn much more about the costs and benefits of the technology and about which policy 58 
strategy is the most effective.  59 

Energy storage offers many benefits to electricity systems, often providing several 60 

services at once [13]. Storage can reduce the need for peaker plants, optimize congested 61 
transmission, provide frequency regulation service, and manage electricity demand. In 62 

the case of a natural disaster, distributed energy storage can provide power while system 63 
operations are restored. Finally, and perhaps most prominent in the popular imagination, 64 

a broad literature describes the ability of bulk energy storage to integrate renewable 65 
energy into any grid [14]–[20]. An often-overlooked advantage of storage is that it 66 

provides a "no regrets" complement to almost any energy future, whether that be massive 67 
renewable deployment, smart grid development, nuclear power, or continuation of the 68 
status quo. 69 

With its many advantages, energy storage is attracting the attention of policy-makers and 70 
flourishing within the energy market. However, recent research warns that assimilation of 71 
energy storage could result in an unintentional increase of grid emissions. In 2015, 72 
Hittinger and Azevedo [21] found that bulk energy storage would consistently increase 73 
electricity system emissions if operated to maximize revenue. Due to inefficiency losses 74 

in the energy storage (due to round-trip efficiency less than 100%), the generation from 75 

less expensive fuels would increase to displace a small amount of energy during peak 76 

demand, thereby increasing baseload emissions.  A study done on the PJM interconnect, 77 
developed by Lueken and Apt, found that integrating 20 GW of storage would have 78 
broad welfare benefits, such as lowering the cost of residential electricity in the market 79 
by 2.5 billion dollars annually [22]. However, when they analyzed the life cycle 80 
emissions of storage options for the electricity grid, the authors found that adding storage 81 

modestly increased greenhouse gas emissions. Similarly, in 2013 Carson and Novan [23] 82 
found, when they were modeling the social benefits of storage technology in Texas, that 83 
arbitrage will increase unregulated emissions, since renewables were not marginal 84 

sources of energy. These effects hold because the emissions rates of peak generators are 85 



not sufficiently higher than the emissions rates of generators used during off-peak periods 86 
in the Texas energy market. Arbabzadeh et al. intensively investigated feasible storage 87 

characteristics to make predictions about the storage factors which induce CO2 emissions 88 
[24]. The authors found that round-trip efficiency, heat rate of the charging technology, 89 
and heat rate of the displaced technology had the strongest influence on CO2 emissions 90 
from highly utilized energy storage devices. In another recent study, Fares and Webber 91 
found that sending solar energy back into the grid is more environmentally beneficial 92 

than storing the energy in household storage devices [25]. The study concluded that 93 
managing distributed storage under either the common interest or under the interests the 94 
household owner would lead to increased grid emissions, mainly due to inefficiency 95 
losses.  96 

The three main factors that affect storage-related emissions are: the marginal emissions of 97 

the generator that charged the device, the marginal emissions of the displaced generator 98 

when storage discharges, and the roundtrip efficiency of the storage. Round-trip 99 
efficiency refers to the ratio of energy into storage to the energy retrieved from storage, 100 
which is always less than 100% due to internal resistance, friction, or other processes 101 
depending on the technology. In many eGRID sub-regions, due to costs and emissions of 102 
actual generators, energy arbitrage results in the displacement of cleaner peak fuels 103 
(natural gas) with increasing production from dirty off-peak fuel (coal). Even in regions 104 
where combined cycle natural gas provides baseload generation, the inefficiency of 105 

storage tends to negate the efficiency advantage of the combined cycle plant. This theory 106 
holds unless off-peak generation is sufficiently cleaner than the peak generation, 107 

accounting for the energy losses that will occur from charging and discharging the device 108 
(e.g. a 75% round-trip efficient storage device needs to charge with off-peak generation 109 

that is at least 33% cleaner than peak generation to prevent adding emissions to the grid). 110 
With the current US energy infrastructure, storage-induced CO2 emissions are hard to 111 

avoid as long as storage operates to maximize profits or minimize generation costs [21].  112 

Alternative research investigates structures that limit the emissions resulting from the 113 
application of storage, but the concept of emissions-free energy storage is very difficult to 114 

achieve. Sioshansi [26] built a model to investigate the effects of competing bulk energy 115 
storage companies in the Texas electricity grid, and found that storage produces the least 116 
amount of emissions if owned by the renewables industry. The partnership of wind 117 
energy producers and storage facilities was crucial to limiting the amount of emitted air 118 
pollutants. In another wind energy study, Boer et al. [27] found that storage should only 119 

be implemented in areas where wind speeds range from medium to high, because storage 120 

systems could lose profit and create emissions if the renewable energy in the grid is 121 

insufficient. In order to limit the amount of additional emissions from storage systems, 122 
Lin et al. [28] developed a stochastic model which sets a coal emissions cap into a grid 123 
simulator. The study found that, with the coal emissions cap, storage would be forced to 124 
work excessively, increasing emissions from other fuels and from inefficiency losses. 125 
Even without the coal emissions cap, storage still had the possibility of increasing 126 

emissions due to “reserve capacity” - storage space that is not filled by renewable energy.  127 

 128 



Previous research establishes that profit- or value-maximizing storage tends to increase 129 
system emissions, at least for current grids in the US. However, changing the operational 130 

strategies and patterns of storage operation has not been examined. In this work, we 131 
directly address this concept, hypothesizing that the well-established increases in grid 132 
emissions associated with new storage could be mitigated by alternative operational 133 
strategies that reward emissions reductions. To test this, we use a linear programming 134 
model of storage operation that optimizes the trade-offs between storage revenue and 135 

increases in system CO2 emissions, assigning varying weight to the two factors. Using 136 
hourly marginal emissions factors and electricity prices as inputs, Pareto-optimal storage 137 
schedules are calculated with objectives ranging from maximizing revenue (ignoring 138 
emissions effects) to minimizing CO2 emissions (ignoring revenue).  139 

 140 

Data and Methods: 141 

We use a linear programming formulation to simulate an energy storage plant, calculating 142 

optimal operating schedules at locations in 22 eGRID sub-regions. The charging and 143 
discharging cycles are then used to further calculate annual revenue and the change in 144 

system CO2 emissions resulting from the storage operation. This linear programming 145 
(LP) approach, with an objective function to maximize revenue, is a relatively standard 146 
storage modeling procedure. Here, we extend the LP model to include an additional 147 

objective, namely CO2 emissions reductions.  148 

In this work, bulk energy storage was modeled using attributes of existing technologies 149 
such as pumped hydro, hydro reservoir above a dam, compressed air energy storage 150 

(CAES), and battery technologies. The Sandia Laboratory National Energy Storage 151 
Database [29] was used to gather technical information about US energy storage devices. 152 

A summary of the information can be found in the Supplementary Information (SI). 153 
Using technical specifications of commonly integrated bulk energy storage devices, we 154 

chose a base-case storage plant with a capacity of 100 MWh, a 4-hour charging rate 155 
(hence, 25 MW charge/discharge limit), and a roundtrip efficiency of 75%. Both the 156 
storage round-trip efficiency and the charging rate are varied in the sensitivity analysis.  157 

Pricing data for 22 eGRID sub-regions for the year 2014 originates from Horner et 158 
al.[29] , [30] which report actual hourly electricity system prices. While energy prices 159 
vary by location, we calculate results for a single representative location in each eGRID 160 
sub-region. To match state-linked price data to eGRID sub-regions, we use data from the 161 
most populous state in the region. A table describing which price data was used for each 162 

eGRID sub-region can be found in the SI. Electricity systems in Alaska and Hawaii were 163 
omitted from this study, but all other eGRID sub-regions within continental US are 164 

analyzed. 165 

Marginal emissions factors (MEFs) used in this work have been derived from the 166 

EPA’s Continuous Emissions Monitoring System (CEMS) using the same framework as 167 
Siler-Evans et al.[32] and are taken from: https://cedm.shinyapps.io/MarginalFactors/. 168 
CEMS provides raw mass pollution data for every fossil fuel plant with a capacity of 25 169 
MW or larger within the United States. Hourly emissions for each eGRID sub-region is 170 
found using a summation of all of emissions in that hour from every plant that lies within 171 

https://cedm.shinyapps.io/MarginalFactors/


the territory. Then, every hourly mass total is paired with the respective hourly electricity 172 
production total and the entire set is linearly regressed. The slope of the regression is the 173 

marginal emissions factor (MEF), representing the change in emissions that results from 174 
a change in production. MEFs embody the emissions rate from the last (marginal) 175 
generator used to meet demand. Siler-Evans et al.[32] calculate MEFs for each hour over 176 
a 24-hour cycle in each of three different seasons (summer, winter, intermediate). MEFs 177 
represent a valuable tool for accurately assessing the emissions effects of small changes 178 

to the grid and are more accurate than average emissions factors [33]. The MEFs methods 179 
and data are described in greater detail in the SI, but for a complete accounting the reader 180 
should refer to the two Siler-Evans research articles[32], [33]. 181 

Storage operation is calculated using a linear programming approach to determine the 182 

optimal storage operational schedules as a function of time-varying electricity prices and 183 

marginal emissions factors (MEFs). Both of these real-world data sets were integrated 184 

into a single objective function by assigning a “carbon value” to storage-induced grid 185 
emissions. Storage operation is recalculated using different “carbon values”, ranging 186 
from $0/tonne to $1M/tonne (effectively infinite) to represent different relative weights 187 
between revenue and emissions in the multi-criteria optimization. This approach sketches 188 
out a Pareto frontier between the two objectives, giving a set of optimal solutions as the 189 
relative weights of revenue and emissions are varied. Each optimal operational schedule 190 
is then analyzed and the results represent the maximum annual revenue that the storage 191 

device could earn at a given level of CO2 emissions or, alternately, the minimum CO2 192 
emissions possible for a given amount of annual revenue. Since the electricity prices and 193 

MEFs are taken from actual 2014 data, in markets that have various policy and regulatory 194 
constraints but no significant carbon prices, changing the carbon value (CV) does not 195 

indicate the outcomes of revenue and emissions effects if a carbon price were actually 196 
applied in the market. This is because an actual carbon price would change generator 197 

dispatch patterns and alter both price trends and marginal emissions. Rather, the results 198 
that we calculate indicate the revenue and emissions effects that result from intentional or 199 
regulatory changes to storage operational patterns in current electricity systems. Put 200 

simply, the “carbon value” is a tool for the internal decision-making of storage; it is not 201 
broadly applied to the market itself. 202 

The main objective function (Equation 1) is to maximize economic value from storage, 203 
while CO2 emissions are integrated with revenue through the "carbon value". The 204 

decision variable, 𝐸𝑡, is positive if the unit is discharging and selling electricity, and 205 
negative if the unit is charging and buying electricity. The system is unable to charge and 206 

discharge at the same time. The revenue calculation uses 𝑃𝑡, electricity prices, and 𝐸𝑡, the 207 
displaced energy from bulk energy storage, to find the maximum income. Emissions 208 

reduction is included using MEF𝑡, marginal emissions factors in units of tonnes of CO2 209 

per megawatt-hour, and Vi, the carbon value in units of USD per tonne of CO2. Together 210 
the two objectives form a single objective function: 211 

  212 

𝒎𝒂𝒙 ∑[[𝐏𝒕 − (𝐌𝐄𝐅𝒕 ∗ 𝑽𝒊)] ∗ 𝐄𝒕 

𝒕

𝟎

 213 



𝐕𝒊 ∈ 𝟎, 𝟏, 𝟐, 𝟓, 𝟏𝟎, 𝟐𝟎, 𝟑𝟔, 𝟓𝟎, 𝟏𝟎𝟎, 𝟐𝟎𝟎, 𝟓𝟎𝟎, 𝟏𝟎𝟎𝟎, 𝟐𝟎𝟎𝟎, 𝟓𝟎𝟎𝟎, 214 

𝟏𝟎𝟎𝟎𝟎, 𝟐𝟎𝟎𝟎𝟎, 𝟓𝟎𝟎𝟎𝟎, 𝟏𝟎𝟎𝟎𝟎𝟎, 𝟐𝟎𝟎𝟎𝟎𝟎, 𝟓𝟎𝟎𝟎𝟎𝟎, 𝟏𝟎𝟎𝟎𝟎𝟎𝟎. 215 

Objective Function (Equation 1) 216 

 217 

For every eGRID sub-region, various optimal solutions are calculated, each using a single 218 
carbon value. Collectively, these produce a Patero Frontier. The constraints that bound 219 
the feasible region are the same for each iteration, except in sensitivity analysis 220 
(discussed below). Equations 2 through 7 describe the capabilities of the storage unit in 221 
the form of optimization constraints. The state of charge of the storage unit is initially set 222 

to zero and naturally returns there at the end of the year because any residual energy 223 

would represent lost revenue/emissions displacement. Equations 2 and 3 track the state of 224 

charge of the battery after inefficiency losses, where 𝜂𝑟𝑡 is the round-trip efficiency set at 225 
75% for the base-case, which is divided between the charge and discharge portions of the 226 
cycle.  All storage technologies have inefficiency losses, which vary due to the 227 

technology and conditions under which they are operated.  For storage technologies that 228 
can be deployed at large scale (pumped hydro, compressed air, lithium-ion, etc.), round-229 
trip efficiency is normally in the 70-90% range [29], [34]. 230 

𝑺𝒕 =  𝑺𝒕−𝟏 − 
𝑬𝒕−𝟏

√𝜼𝒓𝒕
     if  −1  ≥  0 231 

Efficiency losses during charging (Equation 2) 232 

 233 

𝑺𝒕 =  𝑺𝒕−𝟏 − √𝜼𝒓𝒕 ∗  𝑬𝒕−𝟏  if  −1  <  0 234 

Efficiency losses during discharging (Equation 3) 235 

 236 

The state of charge is constrained between zero (Equation 4) and the maximum capacity 237 
of the device (Equation 5). The base-case storage capacity used was 100 MWh. 238 

 239 

∀𝒕, 𝑺𝒕  ≥ 𝟎 240 

Lower Capacity Constraint (Equation 4) 241 

 242 

∀𝒕, 𝑺𝒕  ≤  𝑺𝒎𝒂𝒙  243 

Upper Capacity Constraint (Equation 5) 244 

 245 

Lastly, the charging rates of the storage unit are set within the feasible rates of the device 246 
(Equations 6 and 7). Maximum allowable charge/discharge rates for the base-case 247 



operation are 25 MW (a 4-hour rate). The charge rate is the rate at which energy can be 248 
added to or removed from the device, in units of power (MW). 249 

∀𝒕, 𝑬𝒕  ≤  𝑹𝒎𝒂𝒙  250 

 251 

Charging Rate Constraint (Equation 6) 252 

 253 

∀𝒕, 𝑬𝒕  ≥  −𝑹𝒎𝒂𝒙 254 

Discharging Rate Constraint (Equation 7) 255 

 256 

Using an array of carbon values, the LP model calculates various optimal charging 257 

patterns for every eGRID sub-region. Excluding sensitivity analysis, 462 schedule 258 

configurations were found: 21 carbon values for each of the 22 eGRID sub-regions. Each 259 
one of these configurations yields different optimum charging schedules, which result in 260 

a unique combination of annual revenue and changes in grid CO2 emissions. After 261 
acquiring the optimal operational patterns, calculating annual revenue and storage-262 
induced emissions is straightforward. Annual revenue (Equation 8) is the summation of 263 

electricity sold or purchased times the sales price in each hour (during purchases of 264 

electricity 𝑬𝒕 is negative). It is important to note that the annual revenue calculation 265 

assumes that the storage owner is never required to pay for storage-induced emissions, 266 
even though the objective function includes a "carbon value". That carbon value is used 267 

only to determine an optimal storage operation that values emissions reductions, and is 268 
not actually charged to any entity in the market. 269 

 270 

 271 

∑[𝐄𝐭 × 𝐏𝐭]

𝐭

𝟎

 272 

Annual Revenue (Equation 8) 273 

 274 

Annual storage-induced CO2 emissions (Equation 9) were calculated in the same way, 275 
using the displaced energy and MEFs for CO2 for the given hour. The negative sign is 276 

needed because selling electricity (𝑬𝒕 is positive) back into the grid reduces marginal 277 

emissions (while increasing revenue) and vice versa. Because the electricity prices and 278 
marginal emissions factors we use are exogenous to the storage model, the effects of 279 
storage operation do not result in changes to either input.  Hence, our results apply to a 280 
“marginal” addition of energy storage – an amount that is small enough to have a 281 

negligible effect on prices and generation dispatch patterns. As storage deployment 282 
increases, results could diverge from those we show below.  283 



 284 

 285 

∑[−𝐄𝐭 × 𝐌𝐄𝐅𝐭]

𝐭

𝟎

 286 

 287 

Annual Emissions (Equation 9) 288 

 289 

As an example of the time-series output, Figure 1 displays four energy storage 290 

operational solutions for the eGRID sub-region SPNO (Kansas) from late February to 291 

early March. Figure 1 demonstrates the optimal storage schedules for carbon values of 292 
$0, $36, $100, and $1M/tonne of CO2. As the carbon value is increased, the optimization 293 

gives solutions with lower emissions, focusing less on revenue from electricity prices. 294 
For example, the observed spike of prices on March 5th becomes less influential in the 295 
operations with higher carbon values. Conversely, when the carbon value is high and 296 

marginal emissions are relatively flat (February 26-28), storage tends to cease operation 297 
unless there are strong changes in energy prices that can produce sufficient revenue. As 298 
the carbon value goes from zero to medium values, storage tends to give up cycling that 299 

moves a lot of energy but makes little revenue, and shifts charging/discharging into 300 
periods that make slightly less revenue but have a larger effect on emissions. As the 301 

carbon value becomes very high, storage phases out any operation that does not reduce 302 
emissions, eventually operating without regard for revenue. 303 

 304 

 305 

Figure 1. Four optimal charging and discharging schedules (blue lines in center, positive 306 



indicates discharge) for bulk energy storage for SPNO (Kansas) during late February 307 
and early March in 2014. Prices over the same period are shown on the top green line, 308 

while MEFs over the period are on the bottom red line. As the carbon value (CV) 309 
increases, storage is less willing to pursue high-cycling, low-value arbitrage 310 
opportunities and will shift charging/discharging periods to those that have similar 311 
revenue but lower emissions effects. Eventually, at high carbon values, storage becomes 312 
primarily focused on reducing emissions and neglects all but the highest arbitrage 313 

opportunities.  314 
 315 
 316 

Results 317 

Figure 2 shows the revenue and emissions results for three different eGRID sub-regions: 318 

CAMX (California), NYUP (Upstate New York), and ERCT (Texas). Each point in the 319 
figure represents a different carbon value used to calculate the annual revenue and annual 320 
CO2 emissions from a fixed-design storage plant (25MW/100 MWh, 75% round-trip 321 

efficiency) in 2014. In particular, carbon values $0, $36, $100, and $1M per tonne of CO2 322 
have been highlighted to demonstrate the incremental progression of the Pareto curve, or 323 
the representative set of efficient solutions that exist for each eGRID sub-region. As the 324 

carbon value is increased, the optimization process prefers schedules that reduce 325 
emissions and shifts the charging/discharging operation. But there is a trade-off because 326 

these lower-emissions schedules reduce the possible revenue. For each of these regions, 327 
using the EPA-derived social cost of carbon of $36/tonne of CO2 [35] decreases revenue 328 
by a few percent, but it results in a larger reduction of emissions. Theoretically, under 329 

these conditions (CV=36), the NYUP eGRID sub-region would have a 56% reduction in 330 

storage-induced emissions at a cost to the storage owner of $30,000/yr, the CAMX 331 
eGRID sub-region would have a 70% reduction for $20,000/yr, and ERCT would have a 332 
30% reduction for $85,000/yr. For eGRID sub-regions NYUP (Upstate NY) and CAMX 333 

(California), where the modeled storage device is expected to make over a million dollars 334 
annually, this is a small percent (<3%) of the annual revenue for a large fraction (56-335 

70%) of reduced storage emissions. For ERCT (Texas), it is equivalent to 11% of the 336 
annual revenue.  However, due to the large range of daily fluctuations in MEFs, more 337 
than 2,500 tonnes of CO2 emissions could be prevented.  338 

When carbon values above $100/tonne of CO2 are used, the decrease in emissions slows 339 
down, but there is a significant decrease in revenue. It is not surprising that these curves 340 
are convex: opportunities for reducing storage-induced emissions can be thought of as a 341 

supply curve, with many low-cost, high-benefit shifts that can be initially adopted. 342 
Eventually, however, emissions elimination strategies become expensive and storage may 343 
instead choose to cease operation entirely. For all three regions, a low to moderate carbon 344 

value has a significant, positive effect on emissions with little effect on the economic 345 
benefits of the storage unit.  346 



  347 

Figure 2. Bulk energy storage revenue and CO2 emissions over the year 2014 for three 348 
eGRID sub-regions: CAMX (California), NYUP (Upstate New York), and ERCT (Texas). 349 

The solid lines represent all the possible Pareto-efficient solutions, as the carbon value is 350 
changed, if a 25 MW/100 MWh storage device had been integrated in each eGRID sub-351 

region. The upper right point on each line shows revenue and emissions when storage is 352 

operated to maximize revenue, and the lower left point represents a scenario where it 353 

operates solely to minimize emissions. In all cases, it is possible to find operational 354 
schedules that significantly reduce storage emissions with little effect on revenue. 355 
 356 

The results for all 22 of the examined eGRID sub-regions are shown in Figure 3. The 357 
ideal quadrant is in the upper left of the figure, where revenue is high but storage induced 358 
emissions are negative. Only a few regions, primarily AZMN (Arizona and New 359 
Mexico), have solutions with high revenue and reduced emissions. Nevertheless, there 360 

are desirable tradeoffs in many locations: although revenue can never be higher than the 361 
case where storage optimizes only for revenue, it is clear that initial emissions reductions 362 
can be achieved with little decrease from the maximum revenue. As expected, states with 363 

similar electricity prices and energy resources tend to have similar results. For example, 364 
NYUP (Upstate New York), NYCW (New York City), NYLI (New York Long Island), 365 
NEWE (Massachusetts, New Hampshire, Vermont, Maine, Connecticut, and Rhode 366 
Island) and RFCE (Pennsylvania, New Jersey, Maryland, and Delaware) have results that 367 

cluster together. Likewise, SPSO (Oklahoma), SPNO (Kansas), SRVC (North Carolina, 368 
South Carolina, and Virginia), as well as SRTV (Tennessee and Kentucky), all have 369 
lower revenue possibilities but have a large capacity for emissions savings from storage. 370 
The results in Figure 3 have been split into several different plots that allow easier 371 
investigation of individual eGRID sub-regions; these can be found in the SI. While the 372 
nature of the local energy grid plays a huge role in the specific shape and location of the 373 



curves, most eGRID sub-regions follow a similar trend. Solutions that reduce storage-374 
induced emissions for a low cost appear in all curves.   375 

 376 

377 
Figure 3. Bulk energy storage annual revenue and emissions results for 2014 from 378 

optimal charging and discharging cycles for 22 eGRID sub-regions. Each line represents 379 
a set of possible Pareto solutions within an eGRID sub-region, starting with a carbon 380 

value equal to zero (most revenue and highest emissions) and ending with near-infinite 381 
carbon value (lowest emissions and least revenue). For all eGRID sub-regions, storage 382 
emissions can initially be decreased at very little cost. 383 

 384 

When including CO2 emissions effects in the optimization of an operational schedule, the 385 
response from storage can be reduced to two options: to shift charge/discharge periods or 386 
to reduce overall operation (note that a storage device that never operates has zero effect 387 
on system emissions). In our results, storage generally prefers the first option: rearranging 388 

the scheduling to retain high revenue. This results in a steady decrease of emissions with 389 
minimal shift in revenue as seen by the initially flat slopes in eGRID sub-regions like 390 
RFCM (Michigan), SPNO (Kansas) and on most curves in Figure 3. Eventually, when the 391 

carbon value has too high of a weight, storage finds that reducing operation is the only 392 
path to further emissions reductions. Initially this occurs partially within a season, but 393 
environmental costs could become so high that the bulk energy storage shuts off 394 
completely for a whole season, operating only in periods with high price variability 395 
(normally summer). As seen in Figure 3, eGRID sub-regions like CAMX (California), 396 
RFCE (Pennsylvania, New Jersey, Maryland, and Delaware), and SRMW (Missouri and 397 
Illinois) have a steep drop in potential revenue when the carbon value passes a given 398 



amount. Evidently, the cost of increasing pollution becomes too expensive compared to 399 
the device's ability to earn revenue. However, this is not the case for all locations: some 400 

eGRID sub-regions, like AZMN (Arizona), ERCT (Texas), and RFCM (Michigan), are 401 
able to make money while causing a net reduction in CO2 emissions. Unfortunately, in 402 
most cases, bulk energy storage would make little (or negative) revenue by charging with 403 
cleaner energy and displacing dirty generation.  404 

 405 

Figure 4 shows the same results as Figure 3, except now expressed against emissions 406 
rates of energy delivered from storage in kg of CO2/MWh (rather than total emissions). 407 

Similar to Figure 3, Figure 4 shows a steep decrease in pollution rates and a moderate 408 
revenue decrease using lower carbon values for most regions. However, there are some 409 

eGRID sub-regions that experience large decreases in revenue, like NYCW (New York 410 

City), RFCE (Pennsylvania, Maryland, New Jersey, and Delaware), and CAMX 411 
(California). As previously explained, this large drop in revenue is driven by the inability 412 
of the optimization to shift to "clean" charging schedules. Figure 4 provides a better 413 

representation of the total rate of CO2 emissions for the energy that is being delivered in 414 
the units of pollution per MWh by the bulk energy storage. 415 

 416 

 417 

 418 

Figure 4. Bulk energy storage annual revenue and normalized emissions results for 2014 419 
from optimal charging and discharging cycles for 22 eGRID sub-regions. Each line 420 
represents a set of possible Pareto solutions within an eGRID sub-region, starting with a 421 
carbon value equal to zero (most revenue and highest emissions) and ending with near-422 



infinite carbon value (lowest emissions and least revenue). The number of charging 423 
cycles varies across eGRID sub-regions and this figure demonstrates the cleanliness of 424 

the energy delivered from bulk energy storage. As carbon values are weighted more 425 
strongly within the optimization, regions with larger ranges of MEFs lose revenue 426 
gradually while regions with small ranges of MEFs tend to drop rapidly.  427 
 428 

 429 

Figure 5 displays the same information about CO2 emissions rates and revenue as Figure 430 
4, but in a different manner, using a map of eGRID sub-regions within the United States. 431 

Each eGRID sub-region was independently shaded to represent either the rate of CO2 432 
emissions per energy delivered (left), or the annual revenue (right). Only four sets of the 433 

previous optimal results are shown. The studied carbon values presented in Figure 5 are 434 

$0, $36, $100, and $1M per tonne of CO2. Although not all of the Pareto solutions are 435 
displayed in Figure 5, similar trends appear on the maps. Some eGRID sub-regions, like 436 
AZNM (Arizona and New Mexico) and CAMX (California), continue to make significant 437 

revenue while simultaneously decreasing their emissions. Other eGRID sub-regions, like 438 
SPNO (Kansas), FRCC (Florida), and SRSO (Georgia and Alabama), have low storage 439 
revenue but a high ability to reduce grid emissions as carbon values are increased. 440 

Contour maps of the eGRID sub-regions within the United States which display similar 441 
information for total annual emissions (rather than normalized) can be found in the SI. 442 



  443 

Figure 5. US map of emission rates (left) in kilograms of CO2 per megawatt-hour and 444 
annual revenue (right) in USD with increasing carbon values. Maps A & B have a 445 

carbon value of $0 per tonne of CO2 (maximize revenue). Maps C & D have a carbon 446 
value of $36 per tonne of CO2. Maps E & F have a carbon value of $100 per tonne of 447 
CO2. Maps G & H have a carbon value of $1M per tonne of CO2 (minimize emissions). 448 
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Bulk energy storage operational decisions originate from two factors: fluctuations in 450 
electricity prices and in MEFs. Without changes in prices, storage cannot earn revenue.  451 

Likewise, the emissions effect of storage operation is a result of the variability in MEFs.  452 
In reality, these factors are complicated by their correlation as well as inefficiency losses, 453 
but they represent the primary variables that drive storage revenue and emissions, since 454 
inefficiency losses are constant.  Both of the inputs used in the objective function 455 
(Equation 1) are real-world data sets and therefore generate results that vary by location. 456 

But there are useful and logical trends that we observe: the more flexibility a region has 457 
in electricity prices or in marginal emissions rates, the more options exist for the bulk 458 
energy storage to rearrange schedules in beneficial ways. Figure 6 shows the standard 459 
deviation of electricity prices versus the standard deviation of MEFs for the 22 eGRID 460 
sub-regions. The graph has been broken up into four quadrants using the mean of each 461 

measurement to divide the lower half from the upper half. Roughly speaking, regions that 462 
show the greatest capability to reduce storage-induced CO2 emissions at low cost are 463 
located in the upper-right (quadrant I) of the graph, where there is variability in both 464 

electricity prices and MEFs. In these locations, the optimization algorithm is able to shift 465 

charge/discharge periods to those that have similar revenue but lower emissions. Regions 466 
in quadrant III tend to have trouble reducing CO2 emissions at low cost because there is 467 
not much play in either electricity prices or MEFs. In these locations, the algorithm 468 

responds to higher carbon values by reducing overall operation, which reduces both 469 
revenue and emissions.   470 

 471 

 472 

Figure 6. A scatter plot of the standard deviation of the two inputs used in the 473 

optimization objective function: electricity prices and marginal emissions factors for 474 
each eGRID sub-region. The quadrants represent the upper and lower halves 475 
using the mean of each measurement. The greater the standard deviation in either data 476 



set, the more flexibility for the storage device to make higher revenue and emit less CO2 477 
emissions. Locations in quadrant I tend to have the most operational flexibility and can 478 

reduce emissions at low cost, while locations in quadrant III have the most difficulty. 479 
 480 

We performed sensitivity analysis on both the efficiency and the charging rate of the bulk 481 
energy storage. The round-trip efficiency (i.e., the ratio between the input energy and the 482 

output energy) was varied between 65% and 85%, relative to the base-case value of 75%. 483 
Efficiency has a direct effect on both the ability of the system to cause pollution and earn 484 
revenue. Figure 7 shows the sensitivity analysis for bulk energy storage with a 75% 485 
efficiency, as well as the cases where the efficiency is low (65%) and high (85%). 486 
Operating under a low storage efficiency (65%, red dashed lines) reduces the revenue, 487 

but tends to slightly increase emissions when compared to the base-case results. On the 488 

other hand, working with a high storage efficiency (85%, blue dotted-dash lines) 489 

produces an increase in revenue. However, operating with an efficiency rate of 85% is 490 
quite influential in reducing emissions. The reductions in the relative emissions when 491 
shifting from 75% to 85% efficiency is more than double than when switching from 65% 492 
to 75% efficiency. More importantly, with an 85% round-trip efficiency, the Pareto 493 
curves for many eGRID sub-regions include points that are both profitable and 494 
emissions-reducing, as shown by the many blue dotted curves that lie in the upper left 495 
quadrant. Increasing the efficiency of the system positively impacts revenue but it results 496 

in significant CO2 emissions reductions across every eGRID sub-region.   497 

 498 

 499 

 500 



Figure 7. Sensitivity analysis on the efficiency of the bulk energy storage device. The 501 
base-case round-trip efficiency was 75% (solid black lines). A lower efficiency of 65% 502 

(red dashed lines), and a high efficiency of 85% (blue dotted lines) are displayed for 503 
comparison. Increasing efficiency to 85% increases storage revenue, but shifts the curves 504 
significantly to the left, allowing for more solutions that retain revenue while greatly 505 
reducing emissions. 506 

 507 

The charge rate for the bulk energy storage device (i.e., the amount of time it takes for the 508 
system to charge) is another parameter that varies between storage technologies. A faster 509 

charge rate enables the system to act more rapidly during price and emissions 510 
fluctuations. This work used an initial 100 MWh storage device and a four hours charge 511 

rate as the base-case assumption. Figure 8 shows the sensitivity analysis for charging 512 

rates of two hours and eight hours as well as the base-case. When the device operates at a 513 
lower charging rate (eight hours, red dashed lines), there is a significant reduction in 514 
revenue, and this reduction is accompanied by a reduction in emissions when compared 515 

to the base-case. The inability of the slow charging rate to move energy fast enough 516 
reduces the total energy processed by the storage device, resulting in lower revenue and 517 
emissions. Figure 8 also shows a drastic revenue increase when a device with a fast 518 

charging rate (two hours) is used. In this case, the change in emissions tends to 519 
exaggerate the existing trend: if emissions were reduced, a faster charging rate reduces 520 

them more, and vice versa. The sensible explanation is that a faster charge rate allows 521 
storage to simply do more movement of energy under similar patterns, amplifying the 522 
current trends in both revenue and emissions.  523 

 524 

 525 

 526 



 527 

Figure 8. Sensitivity analysis of the charge rate of energy storage operation optimization. 528 
The base-case computation assumes a four-hour rate (solid black lines). This is 529 

compared to a slower charge rate of eight hours (red dashed lines), and a faster charge 530 
rate of two hours (blue dotted lines). Using a faster charge rate allows storage to move 531 

more energy when cycling, tending to amplify existing revenue and emissions results. 532 
 533 

 534 
 535 
Discussion 536 

Profit-maximizing bulk energy storage systems tend to increase overall electricity grid 537 
CO2 emissions. Currently, real world storage technologies are not subjected to carbon 538 
costs, and they are not held accountable for any emissions they generate or induce. 539 
Without any intervention, bulk energy storage will continue to cycle large amounts of 540 

energy in pursuit of small changes in prices, resulting in increased emissions. In this 541 
work, we demonstrate that including a small consideration for CO2 emissions in the 542 

objective function results in storage-related emissions that are greatly reduced at a 543 
minimal expense to the owner. And, depending on the social costs of CO2 pollution, this 544 
shift can be a net benefit to society. 545 

 546 

Figure 9 uses the change in revenue and storage induced emissions from Figure 3 to 547 
calculate an effective cost of CO2 emissions reductions. The graph shows the cost of CO2 548 
emissions reductions of storage operation by cumulative percentage intervals for all 22 549 
eGRID sub-regions.  The percentages in Figure 9 are relative to a storage device with 550 
zero net emissions (ie, 100% emissions reduction refers to the point on the y-axis of 551 



Figure 3). We estimate that reducing the storage-induced emissions by 25% costs less 552 
than $10/tonne of CO2 in all regions; the cost of reducing the storage-induced emissions 553 

by 50% is less than $30/tonne of CO2 in all but one region; the cost of reducing the 554 
storage-induced emissions by 75% is less than $30/tonne of CO2 for sixteen regions; and 555 
the cost of reducing the storage-induced emissions by 100% is less than $60/tonne of CO2 556 
for sixteen regions. In other words, using the EPA-derived social cost of $36/tonne of 557 
CO2 [35] would justify an operational schedule that removes between 30% and 100% of 558 

storage-induced emissions, depending upon location.  559 

Only six eGRID sub-regions have 75% carbon mitigation costs that exceed the $36/tonne 560 
of CO2 social cost of carbon: CAMX (California), RFCE (Pennsylvania, New Jersey, 561 
Maryland, and Delaware), NYCW (New York City), SRMW (Missouri and Illinois), 562 

RFCW (Indiana, Ohio, and West Virginia), and NEWE (Massachusetts, New Hampshire, 563 

Vermont, Maine, Connecticut, and Rhode Island). In most of these six locations, this is 564 

because the grid is already quite clean and the optimization has trouble further decreasing 565 
storage-related emissions. In most of these regions, there is an existing carbon price in a 566 
cap and trade system.  In California, the cap and trade system has had a carbon price 567 
around $12/tonne for several years [36] and the RGGI system (covering New England, 568 
New York, and Maryland) prices vary between $2 and $5 per tonne [37].  In these 569 
locations, a carbon price is already affecting the dispatch of generation in a direction that 570 
reduces the emissions associated with storage operation, which may partly explain the 571 

difficulty in those areas to further decrease emissions through changes to storage 572 
operational patterns. Overall, for almost half of the eGRID sub-regions, using a carbon 573 

value of $36/tonne of CO2 results in operational patterns in which storage actually 574 
reduces a majority of emissions.Figure 9 shows that the costs of reducing emissions 575 

through shifting of storage charge/discharge patterns is quite low in most of the US, 576 
indicating an opportunity for intervention.  577 

 578 

 579 

 580 



 581 

Figure 9. CO2 emissions reduction cost for a marginal energy storage device in 22 582 
eGRID sub-regions. Reducing emissions is initially inexpensive, but costs increase 583 

rapidly after 50% reduction.  However, even a 100% reduction in emissions (a storage 584 
device with net zero emissions) can be achieved at less than $36/tonne in about half of 585 

the examined locations. 586 

 587 

While we identify operational strategies that reduce emissions at low cost, it is not 588 

obvious how such considerations would be translated into policy or market rules. In a 589 
profit-driven industry, it is unlikely that storage would voluntarily operate according to 590 

our results because they are not unequivocally free of cost. Conceptually, policy could 591 
direct storage operation to reduce emissions, but this type of policy would be quite 592 
challenging to write, potentially arbitrary, and overly interventionist.  For example, a 593 

carbon tax that applies only to storage-induced emissions (and not directly to emissions 594 
from generators themselves) would motivate operators to behave according to our results. 595 

Likewise, carbon prices on energy storage could be identified individually by region 596 
using a percentage of emissions reductions (Figure 9) or a percentage of annual profit.  597 
However, such  policies are not practical and run contrary to the goal of developing this 598 

emerging technology. Additional regulations and auditing may be complex and expensive 599 
especially if each region sets its own method for controlling energy storage-induced 600 
emissions.  601 

A far more realistic plan would apply a carbon price to power plant emissions, which 602 
would change both the distribution and dispatch order of plants in a direction that would 603 
inherently make storage operation much cleaner by internalizing the externality. For 604 

example, a sufficient carbon price will begin pushing coal generation up the dispatch 605 
stack, making it more likely to be displaced by storage operation rather than being used 606 
as a charging source for storage. Furthermore, if an emissions fee exists and is set at a 607 



level equal to the damages from those emissions, then no alternative operational strategy 608 
is needed for storage: because the observed energy prices now include the emissions 609 

damages, storage can optimize in a traditional “price-only” strategy. In the absence of a 610 
sufficient carbon price, the development of a market rule that encourages or requires a 611 
high round-trip efficiency for storage may be a feasible solution. The sensitivity analysis 612 
performed in this investigation found that higher efficiencies would greatly reduce 613 
emissions in every eGRID sub-region (Figure 7). However, higher efficiencies did not 614 

yield significantly higher revenues, implying that companies may hesitate to purchase 615 
more efficient technology unless required to do so. This means that the social benefit of 616 
higher efficiencies for energy storage may outweigh the private benefit, making an 617 
argument in favor of support or regulation for storage efficiency. 618 

 619 

Our results represent annual outcomes of introducing a storage device on actual 620 
electricity grids in the year 2014. However, as the structure of electricity systems and 621 
associated regulations develop, energy storage results will likely vary from the findings 622 

of this work. As average emissions rates of electricity generators decrease, storage-623 
induced emissions may be reduced by giving storage devices cleaner fuels from which to 624 
charge. This is especially true if coal is phased out. Having vast amounts of renewable 625 

power on the grid would also shift the results, as storage would more frequently charge 626 
from completely clean energy sources that would otherwise be wasted [38]. Alternately, if 627 

electricity price patterns become more favorable for energy storage (by having greater 628 
short-term variability), storage is likely to cycle more frequently.  The emissions effect of 629 

this increased cycling depends on the marginal emissions trends in the region: if 630 

operating storage results in significant emissions, then increased cycling will be 631 
problematic, but the opposite is true in areas where storage-induced emissions are small 632 
or negative. Modernization of the electricity grid will alter the results produced by this 633 

mathematical model, but it will remain socially advantageous to select operational 634 
strategies which consider storage-induced emissions while maximizing revenue.  635 

 636 

Conclusion 637 

This research has highlighted the trade-offs between storage revenue and CO2 emissions 638 
that can be achieved simply through changes in storage operational patterns.  We have 639 

shown that a multi-attribute objective function that applies a value to emissions can 640 
identify operational patterns that reduce CO2 emissions at low cost. In most locations, 641 

storage could reduce CO2 emissions by 25% for less than $4 per tonne of CO2, and half of 642 
the locations can eliminate storage-related emissions completely at the EPA-derived 643 
social cost of carbon of $36 per tonne of CO2 [35]. While the policy implications of these 644 
results are complex, they demonstrate that the problematic emissions effects of storage 645 
identified in the literature are not an inherent feature of the technology, but rather an 646 

outcome of operational strategy and electricity system structure. 647 
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