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Tradeoffs between revenue and emissions in energy storage operation
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Abstract

Grid-level energy storage is an emerging technology that provides operational flexibility
for managing electricity demand, integrating renewable energy, and improving system
reliability. However, it has been established that revenue-maximizing grid-level energy
storage tends to increase system emissions in current US electricity grids. In this work,
we consider storage operational strategies that value both revenue and CO» emissions to
understand the tradeoffs between these two criteria. We use actual electricity prices and
marginal emissions factors in a linear programming model that optimizes operation
between annual revenue and CO2 emissions to find the Pareto Frontier for 22 eGRID sub-
regions. We find that, in many US regions, marginal storage-induced CO; emissions can
be decreased significantly (25-50%) with little effect on revenue (1-5%). Electricity grids
with larger flexibility in daily electricity prices and in marginal emissions factors have
more potential to reduce annual storage CO; emissions at low cost to storage operators.
These results show that negative environmental effects of storage operation can be
reduced or eliminated at low cost through voluntary or regulatory shifts in operational
patterns.

Key words: energy storage, marginal emissions, electricity system, CO;
Highlights:

-Existing literature agrees that revenue- or value-maximizing energy storage increases
electricity system emissions

-We use a linear programming model of storage operation that values both revenue and
CO; emissions

-Marginal storage-induced emissions can be drastically reduced (~50%) with little loss of
revenue

-Increasing the round-trip efficiency of storage provides more capability to reduce
storage-related emissions at low cost

Introduction:

Energy storage refers to various technologies, such as pumped hydro, compressed air
energy storage (CAES), and batteries, used to store electrical energy. Grid-level energy
storage can provide a variety of benefits to electricity systems, from renewable energy
integration to frequency regulation, but can generally be considered a tool for increasing
operational flexibility of the grid [1], [2]. While still an emerging technology, grid-level
energy storage is a promising solution for modernizing the electricity grid and integrating
cleaner energy sources such as wind and solar power.
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Governments globally and in the US are considering support for energy storage as an
important element of grid decarbonization. In the US, state governments have passed
laws with the goal of boosting renewable energy integration through bulk energy storage,
often defining an adoption target for storage in terms of either power (MW) or energy
(MWh) capacities [3], [4], [5], [6]. In 2010, California passed AB 2514 requesting the
California Public Utilities Commission (CPUC) to determine an advantageous amount of
grid energy storage. In 2013, they arranged a mandate of 1.325 GW of energy storage by
2020 [7]. Likewise, in 2015, Oregon passed HB 2193, mandating 5 MWh of energy
storage by 2020 [8]. Massachusetts also approved an energy storage mandate in the 2016
Act Relative to Energy Diversity, demanding 100 MWh of energy storage by 2020 [9].
Nevada passed a renewable portfolio standard which allows up to 10% of energy to come
through energy storage [10]. Maryland passed a tax incentive to help stimulate the
distributed energy storage industry [11]. These government policies complement the
growing private sector market, and their collaboration is expected to lead to rapid growth
of the industry over the next decade. In 2015 and 2016 alone, approximately 400 MW of
energy storage was deployed onto the US electricity grid [12]. As more states and utilities
attempt to innovate creative ways to utilize energy storage on the electricity grid, we will
learn much more about the costs and benefits of the technology and about which policy
strategy is the most effective.

Energy storage offers many benefits to electricity systems, often providing several
services at once [13]. Storage can reduce the need for peaker plants, optimize congested
transmission, provide frequency regulation service, and manage electricity demand. In
the case of a natural disaster, distributed energy storage can provide power while system
operations are restored. Finally, and perhaps most prominent in the popular imagination,
a broad literature describes the ability of bulk energy storage to integrate renewable
energy into any grid [14]—[20]. An often-overlooked advantage of storage is that it
provides a "no regrets" complement to almost any energy future, whether that be massive
renewable deployment, smart grid development, nuclear power, or continuation of the
status quo.

With its many advantages, energy storage is attracting the attention of policy-makers and
flourishing within the energy market. However, recent research warns that assimilation of
energy storage could result in an unintentional increase of grid emissions. In 2015,
Hittinger and Azevedo [21] found that bulk energy storage would consistently increase
electricity system emissions if operated to maximize revenue. Due to inefficiency losses
in the energy storage (due to round-trip efficiency less than 100%), the generation from
less expensive fuels would increase to displace a small amount of energy during peak
demand, thereby increasing baseload emissions. A study done on the PJM interconnect,
developed by Lueken and Apt, found that integrating 20 GW of storage would have
broad welfare benefits, such as lowering the cost of residential electricity in the market
by 2.5 billion dollars annually [22]. However, when they analyzed the life cycle
emissions of storage options for the electricity grid, the authors found that adding storage
modestly increased greenhouse gas emissions. Similarly, in 2013 Carson and Novan [23]
found, when they were modeling the social benefits of storage technology in Texas, that
arbitrage will increase unregulated emissions, since renewables were not marginal
sources of energy. These effects hold because the emissions rates of peak generators are
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not sufficiently higher than the emissions rates of generators used during off-peak periods
in the Texas energy market. Arbabzadeh et al. intensively investigated feasible storage
characteristics to make predictions about the storage factors which induce CO» emissions
[24]. The authors found that round-trip efficiency, heat rate of the charging technology,
and heat rate of the displaced technology had the strongest influence on CO» emissions
from highly utilized energy storage devices. In another recent study, Fares and Webber
found that sending solar energy back into the grid is more environmentally beneficial
than storing the energy in household storage devices [25]. The study concluded that
managing distributed storage under either the common interest or under the interests the
household owner would lead to increased grid emissions, mainly due to inefficiency
losses.

The three main factors that affect storage-related emissions are: the marginal emissions of
the generator that charged the device, the marginal emissions of the displaced generator
when storage discharges, and the roundtrip efficiency of the storage. Round-trip
efficiency refers to the ratio of energy into storage to the energy retrieved from storage,
which is always less than 100% due to internal resistance, friction, or other processes
depending on the technology. In many eGRID sub-regions, due to costs and emissions of
actual generators, energy arbitrage results in the displacement of cleaner peak fuels
(natural gas) with increasing production from dirty off-peak fuel (coal). Even in regions
where combined cycle natural gas provides baseload generation, the inefficiency of
storage tends to negate the efficiency advantage of the combined cycle plant. This theory
holds unless off-peak generation is sufficiently cleaner than the peak generation,
accounting for the energy losses that will occur from charging and discharging the device
(e.g. a 75% round-trip efficient storage device needs to charge with off-peak generation
that is at least 33% cleaner than peak generation to prevent adding emissions to the grid).
With the current US energy infrastructure, storage-induced CO> emissions are hard to
avoid as long as storage operates to maximize profits or minimize generation costs [21].

Alternative research investigates structures that limit the emissions resulting from the
application of storage, but the concept of emissions-free energy storage is very difficult to
achieve. Sioshansi [26] built a model to investigate the effects of competing bulk energy
storage companies in the Texas electricity grid, and found that storage produces the least
amount of emissions if owned by the renewables industry. The partnership of wind
energy producers and storage facilities was crucial to limiting the amount of emitted air
pollutants. In another wind energy study, Boer et al. [27] found that storage should only
be implemented in areas where wind speeds range from medium to high, because storage
systems could lose profit and create emissions if the renewable energy in the grid is
insufficient. In order to limit the amount of additional emissions from storage systems,
Lin et al. [28] developed a stochastic model which sets a coal emissions cap into a grid
simulator. The study found that, with the coal emissions cap, storage would be forced to
work excessively, increasing emissions from other fuels and from inefficiency losses.
Even without the coal emissions cap, storage still had the possibility of increasing
emissions due to “reserve capacity” - storage space that is not filled by renewable energy.
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Previous research establishes that profit- or value-maximizing storage tends to increase
system emissions, at least for current grids in the US. However, changing the operational
strategies and patterns of storage operation has not been examined. In this work, we
directly address this concept, hypothesizing that the well-established increases in grid
emissions associated with new storage could be mitigated by alternative operational
strategies that reward emissions reductions. To test this, we use a linear programming
model of storage operation that optimizes the trade-offs between storage revenue and
increases in system CO> emissions, assigning varying weight to the two factors. Using
hourly marginal emissions factors and electricity prices as inputs, Pareto-optimal storage
schedules are calculated with objectives ranging from maximizing revenue (ignoring
emissions effects) to minimizing CO> emissions (ignoring revenue).

Data and Methods:

We use a linear programming formulation to simulate an energy storage plant, calculating
optimal operating schedules at locations in 22 eGRID sub-regions. The charging and
discharging cycles are then used to further calculate annual revenue and the change in
system CO: emissions resulting from the storage operation. This linear programming
(LP) approach, with an objective function to maximize revenue, is a relatively standard
storage modeling procedure. Here, we extend the LP model to include an additional
objective, namely CO; emissions reductions.

In this work, bulk energy storage was modeled using attributes of existing technologies
such as pumped hydro, hydro reservoir above a dam, compressed air energy storage
(CAES), and battery technologies. The Sandia Laboratory National Energy Storage
Database [29] was used to gather technical information about US energy storage devices.
A summary of the information can be found in the Supplementary Information (SI).
Using technical specifications of commonly integrated bulk energy storage devices, we
chose a base-case storage plant with a capacity of 100 MWh, a 4-hour charging rate
(hence, 25 MW charge/discharge limit), and a roundtrip efficiency of 75%. Both the
storage round-trip efficiency and the charging rate are varied in the sensitivity analysis.

Pricing data for 22 eGRID sub-regions for the year 2014 originates from Horner et
al.[29], [30] which report actual hourly electricity system prices. While energy prices
vary by location, we calculate results for a single representative location in each eGRID
sub-region. To match state-linked price data to eGRID sub-regions, we use data from the
most populous state in the region. A table describing which price data was used for each
eGRID sub-region can be found in the SI. Electricity systems in Alaska and Hawaii were
omitted from this study, but all other eGRID sub-regions within continental US are
analyzed.

Marginal emissions factors (MEFs) used in this work have been derived from the
EPA’s Continuous Emissions Monitoring System (CEMS) using the same framework as
Siler-Evans et al.[32] and are taken from: https://cedm.shinyapps.io/MarginalFactors/.
CEMS provides raw mass pollution data for every fossil fuel plant with a capacity of 25
MW or larger within the United States. Hourly emissions for each eGRID sub-region is
found using a summation of all of emissions in that hour from every plant that lies within
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the territory. Then, every hourly mass total is paired with the respective hourly electricity
production total and the entire set is linearly regressed. The slope of the regression is the
marginal emissions factor (MEF), representing the change in emissions that results from
a change in production. MEFs embody the emissions rate from the last (marginal)
generator used to meet demand. Siler-Evans et al.[32] calculate MEFs for each hour over
a 24-hour cycle in each of three different seasons (summer, winter, intermediate). MEFs
represent a valuable tool for accurately assessing the emissions effects of small changes
to the grid and are more accurate than average emissions factors [33]. The MEFs methods
and data are described in greater detail in the SI, but for a complete accounting the reader
should refer to the two Siler-Evans research articles[32], [33].

Storage operation is calculated using a linear programming approach to determine the
optimal storage operational schedules as a function of time-varying electricity prices and
marginal emissions factors (MEFs). Both of these real-world data sets were integrated
into a single objective function by assigning a “carbon value” to storage-induced grid
emissions. Storage operation is recalculated using different “carbon values”, ranging
from $0/tonne to $1M/tonne (effectively infinite) to represent different relative weights
between revenue and emissions in the multi-criteria optimization. This approach sketches
out a Pareto frontier between the two objectives, giving a set of optimal solutions as the
relative weights of revenue and emissions are varied. Each optimal operational schedule
is then analyzed and the results represent the maximum annual revenue that the storage
device could earn at a given level of CO2 emissions or, alternately, the minimum CO>
emissions possible for a given amount of annual revenue. Since the electricity prices and
ME-Fs are taken from actual 2014 data, in markets that have various policy and regulatory
constraints but no significant carbon prices, changing the carbon value (CV) does not
indicate the outcomes of revenue and emissions effects if a carbon price were actually
applied in the market. This is because an actual carbon price would change generator
dispatch patterns and alter both price trends and marginal emissions. Rather, the results
that we calculate indicate the revenue and emissions effects that result from intentional or
regulatory changes to storage operational patterns in current electricity systems. Put
simply, the “carbon value” is a tool for the internal decision-making of storage; it is not
broadly applied to the market itself.

The main objective function (Equation 1) is to maximize economic value from storage,
while CO; emissions are integrated with revenue through the "carbon value". The
decision variable, E¢, is positive if the unit is discharging and selling electricity, and
negative if the unit is charging and buying electricity. The system is unable to charge and
discharge at the same time. The revenue calculation uses Pt, electricity prices, and Et, the
displaced energy from bulk energy storage, to find the maximum income. Emissions
reduction is included using MEF:, marginal emissions factors in units of tonnes of CO:
per megawatt-hour, and Vi, the carbon value in units of USD per tonne of CO>. Together
the two objectives form a single objective function:

t

max ) [[P,— (MEF; x V;)] x E,
2
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V;€0,1,2,5,10,20,36,50,100,200,500,1000,2000,5000,
10000,20000,50000,100000,200000,500000,1000000.
Objective Function (Equation 1)

For every eGRID sub-region, various optimal solutions are calculated, each using a single
carbon value. Collectively, these produce a Patero Frontier. The constraints that bound
the feasible region are the same for each iteration, except in sensitivity analysis
(discussed below). Equations 2 through 7 describe the capabilities of the storage unit in
the form of optimization constraints. The state of charge of the storage unit is initially set
to zero and naturally returns there at the end of the year because any residual energy
would represent lost revenue/emissions displacement. Equations 2 and 3 track the state of
charge of the battery after inefficiency losses, where nrt is the round-trip efficiency set at
75% for the base-case, which is divided between the charge and discharge portions of the
cycle. All storage technologies have inefficiency losses, which vary due to the
technology and conditions under which they are operated. For storage technologies that
can be deployed at large scale (pumped hydro, compressed air, lithium-ion, etc.), round-
trip efficiency is normally in the 70-90% range [29], [34].

Ei_q

e
Efficiency losses during charging (Equation 2)

St: St—l_ if—lZO

S¢=St-1 =Mt * E—q if 1< 0

Efficiency losses during discharging (Equation 3)

The state of charge is constrained between zero (Equation 4) and the maximum capacity
of the device (Equation 5). The base-case storage capacity used was 100 MWh.

Vt,S, >0

Lower Capacity Constraint (Equation 4)

Vt,S: < Smax

Upper Capacity Constraint (Equation 5)

Lastly, the charging rates of the storage unit are set within the feasible rates of the device
(Equations 6 and 7). Maximum allowable charge/discharge rates for the base-case



248  operation are 25 MW (a 4-hour rate). The charge rate is the rate at which energy can be
249  added to or removed from the device, in units of power (MW).

250 Vt,E; < Ry

251

252 Charging Rate Constraint (Equation 6)
253

254 Vt,E; = —Rax

255 Discharging Rate Constraint (Equation 7)
256

257  Using an array of carbon values, the LP model calculates various optimal charging

258  patterns for every eGRID sub-region. Excluding sensitivity analysis, 462 schedule

259  configurations were found: 21 carbon values for each of the 22 eGRID sub-regions. Each
260  one of these configurations yields different optimum charging schedules, which result in
261  aunique combination of annual revenue and changes in grid CO> emissions. After

262  acquiring the optimal operational patterns, calculating annual revenue and storage-

263 induced emissions is straightforward. Annual revenue (Equation 8) is the summation of
264  electricity sold or purchased times the sales price in each hour (during purchases of

265  electricity E, is negative). It is important to note that the annual revenue calculation

266  assumes that the storage owner is never required to pay for storage-induced emissions,
267  even though the objective function includes a "carbon value". That carbon value is used
268  only to determine an optimal storage operation that values emissions reductions, and is
269  not actually charged to any entity in the market.

270
271
t
272 Z[Et X Pt]
0
273 Annual Revenue (Equation 8)
274

275  Annual storage-induced CO; emissions (Equation 9) were calculated in the same way,
276  using the displaced energy and MEFs for CO; for the given hour. The negative sign is
277  needed because selling electricity (E, is positive) back into the grid reduces marginal
278  emissions (while increasing revenue) and vice versa. Because the electricity prices and
279  marginal emissions factors we use are exogenous to the storage model, the effects of
280  storage operation do not result in changes to either input. Hence, our results apply to a
281  “marginal” addition of energy storage — an amount that is small enough to have a

282  negligible effect on prices and generation dispatch patterns. As storage deployment
283  increases, results could diverge from those we show below.



284
285

286

287

288

289

290
291
292
293
294
295
296
297
298
299
300
301
302
303

304

305
306

t
0

Annual Emissions (Equation 9)

As an example of the time-series output, Figure 1 displays four energy storage
operational solutions for the eGRID sub-region SPNO (Kansas) from late February to
early March. Figure 1 demonstrates the optimal storage schedules for carbon values of
$0, $36, $100, and $1M/tonne of CO,. As the carbon value is increased, the optimization
gives solutions with lower emissions, focusing less on revenue from electricity prices.
For example, the observed spike of prices on March 5" becomes less influential in the
operations with higher carbon values. Conversely, when the carbon value is high and
marginal emissions are relatively flat (February 26-28), storage tends to cease operation
unless there are strong changes in energy prices that can produce sufficient revenue. As
the carbon value goes from zero to medium values, storage tends to give up cycling that
moves a lot of energy but makes little revenue, and shifts charging/discharging into
periods that make slightly less revenue but have a larger effect on emissions. As the
carbon value becomes very high, storage phases out any operation that does not reduce
emissions, eventually operating without regard for revenue.

$300
$250
$200

Electricity  $150
Prices (USD) $50 ——

Storage
Options (MW)

Emissions
(kg of COZ)

™ > > > ™
) u g N
SO A

Figure 1. Four optimal charging and discharging schedules (blue lines in center, positive



307
308
309
310
311
312
313
314
315
316

317

318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338

339
340
341
342
343
344
345
346

indicates discharge) for bulk energy storage for SPNO (Kansas) during late February
and early March in 2014. Prices over the same period are shown on the top green line,
while MEFs over the period are on the bottom red line. As the carbon value (CV)
increases, storage is less willing to pursue high-cycling, low-value arbitrage
opportunities and will shift charging/discharging periods to those that have similar
revenue but lower emissions effects. Eventually, at high carbon values, storage becomes
primarily focused on reducing emissions and neglects all but the highest arbitrage
opportunities.

Results

Figure 2 shows the revenue and emissions results for three different eGRID sub-regions:
CAMX (California), NYUP (Upstate New York), and ERCT (Texas). Each point in the
figure represents a different carbon value used to calculate the annual revenue and annual
CO; emissions from a fixed-design storage plant (25MW/100 MWh, 75% round-trip
efficiency) in 2014. In particular, carbon values $0, $36, $100, and $1M per tonne of CO>
have been highlighted to demonstrate the incremental progression of the Pareto curve, or
the representative set of efficient solutions that exist for each eGRID sub-region. As the
carbon value is increased, the optimization process prefers schedules that reduce
emissions and shifts the charging/discharging operation. But there is a trade-off because
these lower-emissions schedules reduce the possible revenue. For each of these regions,
using the EPA-derived social cost of carbon of $36/tonne of CO; [35] decreases revenue
by a few percent, but it results in a larger reduction of emissions. Theoretically, under
these conditions (CV=36), the NYUP eGRID sub-region would have a 56% reduction in
storage-induced emissions at a cost to the storage owner of $30,000/yr, the CAMX
eGRID sub-region would have a 70% reduction for $20,000/yr, and ERCT would have a
30% reduction for $85,000/yr. For eGRID sub-regions NYUP (Upstate NY) and CAMX
(California), where the modeled storage device is expected to make over a million dollars
annually, this is a small percent (<3%) of the annual revenue for a large fraction (56-
70%) of reduced storage emissions. For ERCT (Texas), it is equivalent to 11% of the
annual revenue. However, due to the large range of daily fluctuations in MEFs, more
than 2,500 tonnes of CO; emissions could be prevented.

When carbon values above $100/tonne of CO; are used, the decrease in emissions slows
down, but there is a significant decrease in revenue. It is not surprising that these curves
are convex: opportunities for reducing storage-induced emissions can be thought of as a
supply curve, with many low-cost, high-benefit shifts that can be initially adopted.
Eventually, however, emissions elimination strategies become expensive and storage may
instead choose to cease operation entirely. For all three regions, a low to moderate carbon
value has a significant, positive effect on emissions with little effect on the economic
benefits of the storage unit.
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Figure 2. Bulk energy storage revenue and CO; emissions over the year 2014 for three
eGRID sub-regions: CAMX (California), NYUP (Upstate New York), and ERCT (Texas).
The solid lines represent all the possible Pareto-efficient solutions, as the carbon value is
changed, if a 25 MW/100 MWh storage device had been integrated in each eGRID sub-
region. The upper right point on each line shows revenue and emissions when storage is
operated to maximize revenue, and the lower left point represents a scenario where it
operates solely to minimize emissions. In all cases, it is possible to find operational
schedules that significantly reduce storage emissions with little effect on revenue.

The results for all 22 of the examined eGRID sub-regions are shown in Figure 3. The
ideal quadrant is in the upper left of the figure, where revenue is high but storage induced
emissions are negative. Only a few regions, primarily AZMN (Arizona and New
Mexico), have solutions with high revenue and reduced emissions. Nevertheless, there
are desirable tradeoffs in many locations: although revenue can never be higher than the
case where storage optimizes only for revenue, it is clear that initial emissions reductions
can be achieved with little decrease from the maximum revenue. As expected, states with
similar electricity prices and energy resources tend to have similar results. For example,
NYUP (Upstate New York), NYCW (New York City), NYLI (New York Long Island),
NEWE (Massachusetts, New Hampshire, Vermont, Maine, Connecticut, and Rhode
Island) and RFCE (Pennsylvania, New Jersey, Maryland, and Delaware) have results that
cluster together. Likewise, SPSO (Oklahoma), SPNO (Kansas), SRVC (North Carolina,
South Carolina, and Virginia), as well as SRTV (Tennessee and Kentucky), all have
lower revenue possibilities but have a large capacity for emissions savings from storage.
The results in Figure 3 have been split into several different plots that allow easier
investigation of individual eGRID sub-regions; these can be found in the SI. While the
nature of the local energy grid plays a huge role in the specific shape and location of the
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curves, most eGRID sub-regions follow a similar trend. Solutions that reduce storage-
induced emissions for a low cost appear in all curves.
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Figure 3. Bulk energy storage annual revenue and emissions results for 2014 from
optimal charging and discharging cycles for 22 eGRID sub-regions. Each line represents
a set of possible Pareto solutions within an eGRID sub-region, starting with a carbon
value equal to zero (most revenue and highest emissions) and ending with near-infinite
carbon value (lowest emissions and least revenue). For all eGRID sub-regions, storage
emissions can initially be decreased at very little cost.

When including CO; emissions effects in the optimization of an operational schedule, the
response from storage can be reduced to two options: to shift charge/discharge periods or
to reduce overall operation (note that a storage device that never operates has zero effect
on system emissions). In our results, storage generally prefers the first option: rearranging
the scheduling to retain high revenue. This results in a steady decrease of emissions with
minimal shift in revenue as seen by the initially flat slopes in eGRID sub-regions like
RFCM (Michigan), SPNO (Kansas) and on most curves in Figure 3. Eventually, when the
carbon value has too high of a weight, storage finds that reducing operation is the only
path to further emissions reductions. Initially this occurs partially within a season, but
environmental costs could become so high that the bulk energy storage shuts off
completely for a whole season, operating only in periods with high price variability
(normally summer). As seen in Figure 3, eGRID sub-regions like CAMX (California),
RFCE (Pennsylvania, New Jersey, Maryland, and Delaware), and SRMW (Missouri and
Illinois) have a steep drop in potential revenue when the carbon value passes a given
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amount. Evidently, the cost of increasing pollution becomes too expensive compared to
the device's ability to earn revenue. However, this is not the case for all locations: some
eGRID sub-regions, like AZMN (Arizona), ERCT (Texas), and RFCM (Michigan), are
able to make money while causing a net reduction in CO> emissions. Unfortunately, in
most cases, bulk energy storage would make little (or negative) revenue by charging with
cleaner energy and displacing dirty generation.

Figure 4 shows the same results as Figure 3, except now expressed against emissions
rates of energy delivered from storage in kg of CO2/MWh (rather than total emissions).
Similar to Figure 3, Figure 4 shows a steep decrease in pollution rates and a moderate
revenue decrease using lower carbon values for most regions. However, there are some
eGRID sub-regions that experience large decreases in revenue, like NYCW (New York
City), RFCE (Pennsylvania, Maryland, New Jersey, and Delaware), and CAMX
(California). As previously explained, this large drop in revenue is driven by the inability
of the optimization to shift to "clean" charging schedules. Figure 4 provides a better
representation of the total rate of CO2 emissions for the energy that is being delivered in
the units of pollution per MWh by the bulk energy storage.

$20M

$1.5M

$1.0M

$0.5M

Annual Revenue (USD)

$0

-$0.5M [ 1
RFCM ERCT

| 1 1 1 1 1
-200 -100 0 100 200 300 400 500
Average Emission Rates per Energy Delivered

(kg of CO,/ MWh)

Figure 4. Bulk energy storage annual revenue and normalized emissions results for 2014
from optimal charging and discharging cycles for 22 eGRID sub-regions. Each line
represents a set of possible Pareto solutions within an eGRID sub-region, starting with a
carbon value equal to zero (most revenue and highest emissions) and ending with near-
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infinite carbon value (lowest emissions and least revenue). The number of charging
cycles varies across eGRID sub-regions and this figure demonstrates the cleanliness of
the energy delivered from bulk energy storage. As carbon values are weighted more
strongly within the optimization, regions with larger ranges of MEF's lose revenue
gradually while regions with small ranges of MEFs tend to drop rapidly.

Figure 5 displays the same information about CO emissions rates and revenue as Figure
4, but in a different manner, using a map of eGRID sub-regions within the United States.
Each eGRID sub-region was independently shaded to represent either the rate of CO;
emissions per energy delivered (left), or the annual revenue (right). Only four sets of the
previous optimal results are shown. The studied carbon values presented in Figure 5 are
$0, $36, $100, and $1M per tonne of CO». Although not all of the Pareto solutions are
displayed in Figure 5, similar trends appear on the maps. Some eGRID sub-regions, like
AZNM (Arizona and New Mexico) and CAMX (California), continue to make significant
revenue while simultaneously decreasing their emissions. Other eGRID sub-regions, like
SPNO (Kansas), FRCC (Florida), and SRSO (Georgia and Alabama), have low storage
revenue but a high ability to reduce grid emissions as carbon values are increased.
Contour maps of the eGRID sub-regions within the United States which display similar
information for total annual emissions (rather than normalized) can be found in the SI.
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Figure 5. US map of emission rates (left) in kilograms of CO: per megawatt-hour and
annual revenue (right) in USD with increasing carbon values. Maps A & B have a

carbon value of 80 per tonne of CO: (maximize revenue). Maps C & D have a carbon
value of $36 per tonne of CO,. Maps E & F have a carbon value of 8100 per tonne of
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Bulk energy storage operational decisions originate from two factors: fluctuations in
electricity prices and in MEFs. Without changes in prices, storage cannot earn revenue.
Likewise, the emissions effect of storage operation is a result of the variability in MEFs.
In reality, these factors are complicated by their correlation as well as inefficiency losses,
but they represent the primary variables that drive storage revenue and emissions, since
inefficiency losses are constant. Both of the inputs used in the objective function
(Equation 1) are real-world data sets and therefore generate results that vary by location.
But there are useful and logical trends that we observe: the more flexibility a region has
in electricity prices or in marginal emissions rates, the more options exist for the bulk
energy storage to rearrange schedules in beneficial ways. Figure 6 shows the standard
deviation of electricity prices versus the standard deviation of MEFs for the 22 eGRID
sub-regions. The graph has been broken up into four quadrants using the mean of each
measurement to divide the lower half from the upper half. Roughly speaking, regions that
show the greatest capability to reduce storage-induced CO; emissions at low cost are
located in the upper-right (quadrant I) of the graph, where there is variability in both
electricity prices and MEFs. In these locations, the optimization algorithm is able to shift
charge/discharge periods to those that have similar revenue but lower emissions. Regions
in quadrant III tend to have trouble reducing CO; emissions at low cost because there is
not much play in either electricity prices or MEFs. In these locations, the algorithm
responds to higher carbon values by reducing overall operation, which reduces both
revenue and emissions.
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Figure 6. A scatter plot of the standard deviation of the two inputs used in the
optimization objective function: electricity prices and marginal emissions factors for
each eGRID sub-region. The quadrants represent the upper and lower halves

using the mean of each measurement. The greater the standard deviation in either data
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set, the more flexibility for the storage device to make higher revenue and emit less CO;
emissions. Locations in quadrant I tend to have the most operational flexibility and can
reduce emissions at low cost, while locations in quadrant Il have the most difficulty.

We performed sensitivity analysis on both the efficiency and the charging rate of the bulk
energy storage. The round-trip efficiency (i.e., the ratio between the input energy and the
output energy) was varied between 65% and 85%, relative to the base-case value of 75%.
Efficiency has a direct effect on both the ability of the system to cause pollution and earn
revenue. Figure 7 shows the sensitivity analysis for bulk energy storage with a 75%
efficiency, as well as the cases where the efficiency is low (65%) and high (85%).
Operating under a low storage efficiency (65%, red dashed lines) reduces the revenue,
but tends to slightly increase emissions when compared to the base-case results. On the
other hand, working with a high storage efficiency (85%, blue dotted-dash lines)
produces an increase in revenue. However, operating with an efficiency rate of 85% is
quite influential in reducing emissions. The reductions in the relative emissions when
shifting from 75% to 85% efficiency is more than double than when switching from 65%
to 75% efficiency. More importantly, with an 85% round-trip efficiency, the Pareto
curves for many eGRID sub-regions include points that are both profitable and
emissions-reducing, as shown by the many blue dotted curves that lie in the upper left
quadrant. Increasing the efficiency of the system positively impacts revenue but it results
in significant CO; emissions reductions across every eGRID sub-region.
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Figure 7. Sensitivity analysis on the efficiency of the bulk energy storage device. The
base-case round-trip efficiency was 75% (solid black lines). A lower efficiency of 65%
(red dashed lines), and a high efficiency of 85% (blue dotted lines) are displayed for
comparison. Increasing efficiency to 85% increases storage revenue, but shifts the curves
significantly to the left, allowing for more solutions that retain revenue while greatly
reducing emissions.

The charge rate for the bulk energy storage device (i.e., the amount of time it takes for the
system to charge) is another parameter that varies between storage technologies. A faster
charge rate enables the system to act more rapidly during price and emissions
fluctuations. This work used an initial 100 MWh storage device and a four hours charge
rate as the base-case assumption. Figure 8 shows the sensitivity analysis for charging
rates of two hours and eight hours as well as the base-case. When the device operates at a
lower charging rate (eight hours, red dashed lines), there is a significant reduction in
revenue, and this reduction is accompanied by a reduction in emissions when compared
to the base-case. The inability of the slow charging rate to move energy fast enough
reduces the total energy processed by the storage device, resulting in lower revenue and
emissions. Figure 8 also shows a drastic revenue increase when a device with a fast
charging rate (two hours) is used. In this case, the change in emissions tends to
exaggerate the existing trend: if emissions were reduced, a faster charging rate reduces
them more, and vice versa. The sensible explanation is that a faster charge rate allows
storage to simply do more movement of energy under similar patterns, amplifying the
current trends in both revenue and emissions.
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Figure 8. Sensitivity analysis of the charge rate of energy storage operation optimization.
The base-case computation assumes a four-hour rate (solid black lines). This is
compared to a slower charge rate of eight hours (red dashed lines), and a faster charge
rate of two hours (blue dotted lines). Using a faster charge rate allows storage to move
more energy when cycling, tending to amplify existing revenue and emissions results.

Discussion

Profit-maximizing bulk energy storage systems tend to increase overall electricity grid
CO» emissions. Currently, real world storage technologies are not subjected to carbon
costs, and they are not held accountable for any emissions they generate or induce.
Without any intervention, bulk energy storage will continue to cycle large amounts of
energy in pursuit of small changes in prices, resulting in increased emissions. In this
work, we demonstrate that including a small consideration for CO> emissions in the
objective function results in storage-related emissions that are greatly reduced at a
minimal expense to the owner. And, depending on the social costs of CO» pollution, this
shift can be a net benefit to society.

Figure 9 uses the change in revenue and storage induced emissions from Figure 3 to
calculate an effective cost of CO; emissions reductions. The graph shows the cost of CO»
emissions reductions of storage operation by cumulative percentage intervals for all 22
eGRID sub-regions. The percentages in Figure 9 are relative to a storage device with
zero net emissions (ie, 100% emissions reduction refers to the point on the y-axis of
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Figure 3). We estimate that reducing the storage-induced emissions by 25% costs less
than $10/tonne of CO» in all regions; the cost of reducing the storage-induced emissions
by 50% is less than $30/tonne of CO»> in all but one region; the cost of reducing the
storage-induced emissions by 75% is less than $30/tonne of CO; for sixteen regions; and
the cost of reducing the storage-induced emissions by 100% is less than $60/tonne of CO>
for sixteen regions. In other words, using the EPA-derived social cost of $36/tonne of
CO2[35] would justify an operational schedule that removes between 30% and 100% of
storage-induced emissions, depending upon location.

Only six eGRID sub-regions have 75% carbon mitigation costs that exceed the $36/tonne
of CO» social cost of carbon: CAMX (California), RFCE (Pennsylvania, New Jersey,
Maryland, and Delaware), NYCW (New York City), SRMW (Missouri and Illinois),
RFCW (Indiana, Ohio, and West Virginia), and NEWE (Massachusetts, New Hampshire,
Vermont, Maine, Connecticut, and Rhode Island). In most of these six locations, this is
because the grid is already quite clean and the optimization has trouble further decreasing
storage-related emissions. In most of these regions, there is an existing carbon price in a
cap and trade system. In California, the cap and trade system has had a carbon price
around $12/tonne for several years [36] and the RGGI system (covering New England,
New York, and Maryland) prices vary between $2 and $5 per tonne [37]. In these
locations, a carbon price is already affecting the dispatch of generation in a direction that
reduces the emissions associated with storage operation, which may partly explain the
difficulty in those areas to further decrease emissions through changes to storage
operational patterns. Overall, for almost half of the eGRID sub-regions, using a carbon
value of $36/tonne of CO> results in operational patterns in which storage actually
reduces a majority of emissions.Figure 9 shows that the costs of reducing emissions
through shifting of storage charge/discharge patterns is quite low in most of the US,
indicating an opportunity for intervention.
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Figure 9. CO; emissions reduction cost for a marginal energy storage device in 22
eGRID sub-regions. Reducing emissions is initially inexpensive, but costs increase
rapidly after 50% reduction. However, even a 100% reduction in emissions (a storage
device with net zero emissions) can be achieved at less than $36/tonne in about half of
the examined locations.

While we identify operational strategies that reduce emissions at low cost, it is not
obvious how such considerations would be translated into policy or market rules. In a
profit-driven industry, it is unlikely that storage would voluntarily operate according to
our results because they are not unequivocally free of cost. Conceptually, policy could
direct storage operation to reduce emissions, but this type of policy would be quite
challenging to write, potentially arbitrary, and overly interventionist. For example, a
carbon tax that applies only to storage-induced emissions (and not directly to emissions
from generators themselves) would motivate operators to behave according to our results.
Likewise, carbon prices on energy storage could be identified individually by region
using a percentage of emissions reductions (Figure 9) or a percentage of annual profit.
However, such policies are not practical and run contrary to the goal of developing this
emerging technology. Additional regulations and auditing may be complex and expensive
especially if each region sets its own method for controlling energy storage-induced
emissions.

A far more realistic plan would apply a carbon price to power plant emissions, which
would change both the distribution and dispatch order of plants in a direction that would
inherently make storage operation much cleaner by internalizing the externality. For
example, a sufficient carbon price will begin pushing coal generation up the dispatch
stack, making it more likely to be displaced by storage operation rather than being used
as a charging source for storage. Furthermore, if an emissions fee exists and is set at a
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level equal to the damages from those emissions, then no alternative operational strategy
is needed for storage: because the observed energy prices now include the emissions
damages, storage can optimize in a traditional “price-only” strategy. In the absence of a
sufficient carbon price, the development of a market rule that encourages or requires a
high round-trip efficiency for storage may be a feasible solution. The sensitivity analysis
performed in this investigation found that higher efficiencies would greatly reduce
emissions in every eGRID sub-region (Figure 7). However, higher efficiencies did not
yield significantly higher revenues, implying that companies may hesitate to purchase
more efficient technology unless required to do so. This means that the social benefit of
higher efficiencies for energy storage may outweigh the private benefit, making an
argument in favor of support or regulation for storage efficiency.

Our results represent annual outcomes of introducing a storage device on actual
electricity grids in the year 2014. However, as the structure of electricity systems and
associated regulations develop, energy storage results will likely vary from the findings
of this work. As average emissions rates of electricity generators decrease, storage-
induced emissions may be reduced by giving storage devices cleaner fuels from which to
charge. This is especially true if coal is phased out. Having vast amounts of renewable
power on the grid would also shift the results, as storage would more frequently charge
from completely clean energy sources that would otherwise be wasted [38]. Alternately, if
electricity price patterns become more favorable for energy storage (by having greater
short-term variability), storage is likely to cycle more frequently. The emissions effect of
this increased cycling depends on the marginal emissions trends in the region: if
operating storage results in significant emissions, then increased cycling will be
problematic, but the opposite is true in areas where storage-induced emissions are small
or negative. Modernization of the electricity grid will alter the results produced by this
mathematical model, but it will remain socially advantageous to select operational
strategies which consider storage-induced emissions while maximizing revenue.

Conclusion

This research has highlighted the trade-offs between storage revenue and CO> emissions
that can be achieved simply through changes in storage operational patterns. We have
shown that a multi-attribute objective function that applies a value to emissions can
identify operational patterns that reduce CO; emissions at low cost. In most locations,
storage could reduce CO; emissions by 25% for less than $4 per tonne of CO», and half of
the locations can eliminate storage-related emissions completely at the EPA-derived
social cost of carbon of $36 per tonne of CO; [35]. While the policy implications of these
results are complex, they demonstrate that the problematic emissions effects of storage
identified in the literature are not an inherent feature of the technology, but rather an
outcome of operational strategy and electricity system structure.
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