

1 **Tradeoffs between revenue and emissions in energy storage operation**

2 Laura M. Arciniegas, Rochester Institute of Technology, lma9306@rit.edu

3 Eric Hittinger, Rochester Institute of Technology, eshgpt@rit.edu

4

5

6 ***Abstract***

7 Grid-level energy storage is an emerging technology that provides operational flexibility
8 for managing electricity demand, integrating renewable energy, and improving system
9 reliability. However, it has been established that revenue-maximizing grid-level energy
10 storage tends to increase system emissions in current US electricity grids. In this work,
11 we consider storage operational strategies that value both revenue and CO₂ emissions to
12 understand the tradeoffs between these two criteria. We use actual electricity prices and
13 marginal emissions factors in a linear programming model that optimizes operation
14 between annual revenue and CO₂ emissions to find the Pareto Frontier for 22 eGRID sub-
15 regions. We find that, in many US regions, marginal storage-induced CO₂ emissions can
16 be decreased significantly (25-50%) with little effect on revenue (1-5%). Electricity grids
17 with larger flexibility in daily electricity prices and in marginal emissions factors have
18 more potential to reduce annual storage CO₂ emissions at low cost to storage operators.
19 These results show that negative environmental effects of storage operation can be
20 reduced or eliminated at low cost through voluntary or regulatory shifts in operational
21 patterns.

22 ***Key words: energy storage, marginal emissions, electricity system, CO₂***

23 ***Highlights:***

24 -Existing literature agrees that revenue- or value-maximizing energy storage increases
25 electricity system emissions

26 -We use a linear programming model of storage operation that values both revenue and
27 CO₂ emissions

28 -Marginal storage-induced emissions can be drastically reduced (~50%) with little loss of
29 revenue

30 -Increasing the round-trip efficiency of storage provides more capability to reduce
31 storage-related emissions at low cost

32

33 ***Introduction:***

34 Energy storage refers to various technologies, such as pumped hydro, compressed air
35 energy storage (CAES), and batteries, used to store electrical energy. Grid-level energy
36 storage can provide a variety of benefits to electricity systems, from renewable energy
37 integration to frequency regulation, but can generally be considered a tool for increasing
38 operational flexibility of the grid [1], [2]. While still an emerging technology, grid-level
39 energy storage is a promising solution for modernizing the electricity grid and integrating
40 cleaner energy sources such as wind and solar power.

41 Governments globally and in the US are considering support for energy storage as an
42 important element of grid decarbonization. In the US, state governments have passed
43 laws with the goal of boosting renewable energy integration through bulk energy storage,
44 often defining an adoption target for storage in terms of either power (MW) or energy
45 (MWh) capacities [3], [4], [5], [6]. In 2010, California passed AB 2514 requesting the
46 California Public Utilities Commission (CPUC) to determine an advantageous amount of
47 grid energy storage. In 2013, they arranged a mandate of 1.325 GW of energy storage by
48 2020 [7]. Likewise, in 2015, Oregon passed HB 2193, mandating 5 MWh of energy
49 storage by 2020 [8]. Massachusetts also approved an energy storage mandate in the 2016
50 Act Relative to Energy Diversity, demanding 100 MWh of energy storage by 2020 [9].
51 Nevada passed a renewable portfolio standard which allows up to 10% of energy to come
52 through energy storage [10]. Maryland passed a tax incentive to help stimulate the
53 distributed energy storage industry [11]. These government policies complement the
54 growing private sector market, and their collaboration is expected to lead to rapid growth
55 of the industry over the next decade. In 2015 and 2016 alone, approximately 400 MW of
56 energy storage was deployed onto the US electricity grid [12]. As more states and utilities
57 attempt to innovate creative ways to utilize energy storage on the electricity grid, we will
58 learn much more about the costs and benefits of the technology and about which policy
59 strategy is the most effective.

60 Energy storage offers many benefits to electricity systems, often providing several
61 services at once [13]. Storage can reduce the need for peaker plants, optimize congested
62 transmission, provide frequency regulation service, and manage electricity demand. In
63 the case of a natural disaster, distributed energy storage can provide power while system
64 operations are restored. Finally, and perhaps most prominent in the popular imagination,
65 a broad literature describes the ability of bulk energy storage to integrate renewable
66 energy into any grid [14]–[20]. An often-overlooked advantage of storage is that it
67 provides a "no regrets" complement to almost any energy future, whether that be massive
68 renewable deployment, smart grid development, nuclear power, or continuation of the
69 status quo.

70 With its many advantages, energy storage is attracting the attention of policy-makers and
71 flourishing within the energy market. However, recent research warns that assimilation of
72 energy storage could result in an unintentional increase of grid emissions. In 2015,
73 Hittinger and Azevedo [21] found that bulk energy storage would consistently increase
74 electricity system emissions if operated to maximize revenue. Due to inefficiency losses
75 in the energy storage (due to round-trip efficiency less than 100%), the generation from
76 less expensive fuels would increase to displace a small amount of energy during peak
77 demand, thereby increasing baseload emissions. A study done on the PJM interconnect,
78 developed by Lueken and Apt, found that integrating 20 GW of storage would have
79 broad welfare benefits, such as lowering the cost of residential electricity in the market
80 by 2.5 billion dollars annually [22]. However, when they analyzed the life cycle
81 emissions of storage options for the electricity grid, the authors found that adding storage
82 modestly increased greenhouse gas emissions. Similarly, in 2013 Carson and Novan [23]
83 found, when they were modeling the social benefits of storage technology in Texas, that
84 arbitrage will increase unregulated emissions, since renewables were not marginal
85 sources of energy. These effects hold because the emissions rates of peak generators are

86 not sufficiently higher than the emissions rates of generators used during off-peak periods
87 in the Texas energy market. Arbabzadeh et al. intensively investigated feasible storage
88 characteristics to make predictions about the storage factors which induce CO₂ emissions
89 [24]. The authors found that round-trip efficiency, heat rate of the charging technology,
90 and heat rate of the displaced technology had the strongest influence on CO₂ emissions
91 from highly utilized energy storage devices. In another recent study, Fares and Webber
92 found that sending solar energy back into the grid is more environmentally beneficial
93 than storing the energy in household storage devices [25]. The study concluded that
94 managing distributed storage under either the common interest or under the interests the
95 household owner would lead to increased grid emissions, mainly due to inefficiency
96 losses.

97 The three main factors that affect storage-related emissions are: the marginal emissions of
98 the generator that charged the device, the marginal emissions of the displaced generator
99 when storage discharges, and the roundtrip efficiency of the storage. Round-trip
100 efficiency refers to the ratio of energy into storage to the energy retrieved from storage,
101 which is always less than 100% due to internal resistance, friction, or other processes
102 depending on the technology. In many eGRID sub-regions, due to costs and emissions of
103 actual generators, energy arbitrage results in the displacement of cleaner peak fuels
104 (natural gas) with increasing production from dirty off-peak fuel (coal). Even in regions
105 where combined cycle natural gas provides baseload generation, the inefficiency of
106 storage tends to negate the efficiency advantage of the combined cycle plant. This theory
107 holds unless off-peak generation is sufficiently cleaner than the peak generation,
108 accounting for the energy losses that will occur from charging and discharging the device
109 (e.g. a 75% round-trip efficient storage device needs to charge with off-peak generation
110 that is at least 33% cleaner than peak generation to prevent adding emissions to the grid).
111 With the current US energy infrastructure, storage-induced CO₂ emissions are hard to
112 avoid as long as storage operates to maximize profits or minimize generation costs [21].

113 Alternative research investigates structures that limit the emissions resulting from the
114 application of storage, but the concept of emissions-free energy storage is very difficult to
115 achieve. Sioshansi [26] built a model to investigate the effects of competing bulk energy
116 storage companies in the Texas electricity grid, and found that storage produces the least
117 amount of emissions if owned by the renewables industry. The partnership of wind
118 energy producers and storage facilities was crucial to limiting the amount of emitted air
119 pollutants. In another wind energy study, Boer et al. [27] found that storage should only
120 be implemented in areas where wind speeds range from medium to high, because storage
121 systems could lose profit and create emissions if the renewable energy in the grid is
122 insufficient. In order to limit the amount of additional emissions from storage systems,
123 Lin et al. [28] developed a stochastic model which sets a coal emissions cap into a grid
124 simulator. The study found that, with the coal emissions cap, storage would be forced to
125 work excessively, increasing emissions from other fuels and from inefficiency losses.
126 Even without the coal emissions cap, storage still had the possibility of increasing
127 emissions due to “reserve capacity” - storage space that is not filled by renewable energy.

129 Previous research establishes that profit- or value-maximizing storage tends to increase
130 system emissions, at least for current grids in the US. However, changing the operational
131 strategies and patterns of storage operation has not been examined. In this work, we
132 directly address this concept, hypothesizing that the well-established increases in grid
133 emissions associated with new storage could be mitigated by alternative operational
134 strategies that reward emissions reductions. To test this, we use a linear programming
135 model of storage operation that optimizes the trade-offs between storage revenue and
136 increases in system CO₂ emissions, assigning varying weight to the two factors. Using
137 hourly marginal emissions factors and electricity prices as inputs, Pareto-optimal storage
138 schedules are calculated with objectives ranging from maximizing revenue (ignoring
139 emissions effects) to minimizing CO₂ emissions (ignoring revenue).

140

141 ***Data and Methods:***

142 We use a linear programming formulation to simulate an energy storage plant, calculating
143 optimal operating schedules at locations in 22 eGRID sub-regions. The charging and
144 discharging cycles are then used to further calculate annual revenue and the change in
145 system CO₂ emissions resulting from the storage operation. This linear programming
146 (LP) approach, with an objective function to maximize revenue, is a relatively standard
147 storage modeling procedure. Here, we extend the LP model to include an additional
148 objective, namely CO₂ emissions reductions.

149 In this work, bulk energy storage was modeled using attributes of existing technologies
150 such as pumped hydro, hydro reservoir above a dam, compressed air energy storage
151 (CAES), and battery technologies. The Sandia Laboratory National Energy Storage
152 Database [29] was used to gather technical information about US energy storage devices.
153 A summary of the information can be found in the Supplementary Information (SI).
154 Using technical specifications of commonly integrated bulk energy storage devices, we
155 chose a base-case storage plant with a capacity of 100 MWh, a 4-hour charging rate
156 (hence, 25 MW charge/discharge limit), and a roundtrip efficiency of 75%. Both the
157 storage round-trip efficiency and the charging rate are varied in the sensitivity analysis.

158 **Pricing data** for 22 eGRID sub-regions for the year 2014 originates from Horner et
159 al.[29] , [30] which report actual hourly electricity system prices. While energy prices
160 vary by location, we calculate results for a single representative location in each eGRID
161 sub-region. To match state-linked price data to eGRID sub-regions, we use data from the
162 most populous state in the region. A table describing which price data was used for each
163 eGRID sub-region can be found in the SI. Electricity systems in Alaska and Hawaii were
164 omitted from this study, but all other eGRID sub-regions within continental US are
165 analyzed.

166 **Marginal emissions factors (MEFs)** used in this work have been derived from the
167 EPA's Continuous Emissions Monitoring System (CEMS) using the same framework as
168 Siler-Evans et al.[32] and are taken from: <https://cedm.shinyapps.io/MarginalFactors/>.
169 CEMS provides raw mass pollution data for every fossil fuel plant with a capacity of 25
170 MW or larger within the United States. Hourly emissions for each eGRID sub-region is
171 found using a summation of all of emissions in that hour from every plant that lies within

172 the territory. Then, every hourly mass total is paired with the respective hourly electricity
173 production total and the entire set is linearly regressed. The slope of the regression is the
174 marginal emissions factor (MEF), representing the change in emissions that results from
175 a change in production. MEFs embody the emissions rate from the last (marginal)
176 generator used to meet demand. Siler-Evans et al.[32] calculate MEFs for each hour over
177 a 24-hour cycle in each of three different seasons (summer, winter, intermediate). MEFs
178 represent a valuable tool for accurately assessing the emissions effects of small changes
179 to the grid and are more accurate than average emissions factors [33]. The MEFs methods
180 and data are described in greater detail in the SI, but for a complete accounting the reader
181 should refer to the two Siler-Evans research articles[32], [33].

182 **Storage operation** is calculated using a linear programming approach to determine the
183 optimal storage operational schedules as a function of time-varying electricity prices and
184 marginal emissions factors (MEFs). Both of these real-world data sets were integrated
185 into a single objective function by assigning a “carbon value” to storage-induced grid
186 emissions. Storage operation is recalculated using different “carbon values”, ranging
187 from \$0/tonne to \$1M/tonne (effectively infinite) to represent different relative weights
188 between revenue and emissions in the multi-criteria optimization. This approach sketches
189 out a Pareto frontier between the two objectives, giving a set of optimal solutions as the
190 relative weights of revenue and emissions are varied. Each optimal operational schedule
191 is then analyzed and the results represent the maximum annual revenue that the storage
192 device could earn at a given level of CO₂ emissions or, alternately, the minimum CO₂
193 emissions possible for a given amount of annual revenue. Since the electricity prices and
194 MEFs are taken from actual 2014 data, in markets that have various policy and regulatory
195 constraints but no significant carbon prices, changing the carbon value (CV) does not
196 indicate the outcomes of revenue and emissions effects if a carbon price were actually
197 applied in the market. This is because an actual carbon price would change generator
198 dispatch patterns and alter both price trends and marginal emissions. Rather, the results
199 that we calculate indicate the revenue and emissions effects that result from intentional or
200 regulatory changes to storage operational patterns in current electricity systems. Put
201 simply, the “carbon value” is a tool for the internal decision-making of storage; it is not
202 broadly applied to the market itself.

203 The main objective function (Equation 1) is to maximize economic value from storage,
204 while CO₂ emissions are integrated with revenue through the “carbon value”. The
205 decision variable, E_t , is positive if the unit is discharging and selling electricity, and
206 negative if the unit is charging and buying electricity. The system is unable to charge and
207 discharge at the same time. The revenue calculation uses P_t , electricity prices, and E_t , the
208 displaced energy from bulk energy storage, to find the maximum income. Emissions
209 reduction is included using MEF_t , marginal emissions factors in units of tonnes of CO₂
210 per megawatt-hour, and V_i , the carbon value in units of USD per tonne of CO₂. Together
211 the two objectives form a single objective function:

212

213

$$\max \sum_0^t [[P_t - (MEF_t * V_i)] * E_t]$$

214 $V_i \in \{0, 1, 2, 5, 10, 20, 36, 50, 100, 200, 500, 1000, 2000, 5000,$
 215 $10000, 20000, 50000, 100000, 200000, 500000, 1000000\}$.

216 **Objective Function (Equation 1)**

217

218 For every eGRID sub-region, various optimal solutions are calculated, each using a single
 219 carbon value. Collectively, these produce a Patero Frontier. The constraints that bound
 220 the feasible region are the same for each iteration, except in sensitivity analysis
 221 (discussed below). Equations 2 through 7 describe the capabilities of the storage unit in
 222 the form of optimization constraints. The state of charge of the storage unit is initially set
 223 to zero and naturally returns there at the end of the year because any residual energy
 224 would represent lost revenue/emissions displacement. Equations 2 and 3 track the state of
 225 charge of the battery after inefficiency losses, where η_{rt} is the round-trip efficiency set at
 226 75% for the base-case, which is divided between the charge and discharge portions of the
 227 cycle. All storage technologies have inefficiency losses, which vary due to the
 228 technology and conditions under which they are operated. For storage technologies that
 229 can be deployed at large scale (pumped hydro, compressed air, lithium-ion, etc.), round-
 230 trip efficiency is normally in the 70-90% range [29], [34].

231 $S_t = S_{t-1} - \frac{E_{t-1}}{\sqrt{\eta_{rt}}} \quad \text{if } -1 \geq 0$

232 **Efficiency losses during charging (Equation 2)**

233

234 $S_t = S_{t-1} - \sqrt{\eta_{rt}} * E_{t-1} \quad \text{if } -1 < 0$

235 **Efficiency losses during discharging (Equation 3)**

236

237 The state of charge is constrained between zero (Equation 4) and the maximum capacity
 238 of the device (Equation 5). The base-case storage capacity used was 100 MWh.

239

240 $\forall t, S_t \geq 0$

241 **Lower Capacity Constraint (Equation 4)**

242

243 $\forall t, S_t \leq S_{max}$

244 **Upper Capacity Constraint (Equation 5)**

245

246 Lastly, the charging rates of the storage unit are set within the feasible rates of the device
 247 (Equations 6 and 7). Maximum allowable charge/discharge rates for the base-case

248 operation are 25 MW (a 4-hour rate). The charge rate is the rate at which energy can be
249 added to or removed from the device, in units of power (MW).

250
$$\forall t, E_t \leq R_{max}$$

251

252 **Charging Rate Constraint (Equation 6)**

253

254
$$\forall t, E_t \geq -R_{max}$$

255 **Discharging Rate Constraint (Equation 7)**

256

257 Using an array of carbon values, the LP model calculates various optimal charging
258 patterns for every eGRID sub-region. Excluding sensitivity analysis, 462 schedule
259 configurations were found: 21 carbon values for each of the 22 eGRID sub-regions. Each
260 one of these configurations yields different optimum charging schedules, which result in
261 a unique combination of annual revenue and changes in grid CO₂ emissions. After
262 acquiring the optimal operational patterns, calculating annual revenue and storage-
263 induced emissions is straightforward. Annual revenue (Equation 8) is the summation of
264 electricity sold or purchased times the sales price in each hour (during purchases of
265 electricity E_t is negative). It is important to note that the annual revenue calculation
266 assumes that the storage owner is never required to pay for storage-induced emissions,
267 even though the objective function includes a "carbon value". That carbon value is used
268 *only* to determine an optimal storage operation that values emissions reductions, and *is not*
269 actually charged to any entity in the market.

270

271

272
$$\sum_0^t [E_t \times P_t]$$

273 **Annual Revenue (Equation 8)**

274

275 Annual storage-induced CO₂ emissions (Equation 9) were calculated in the same way,
276 using the displaced energy and MEFs for CO₂ for the given hour. The negative sign is
277 needed because selling electricity (E_t is positive) back into the grid reduces marginal
278 emissions (while increasing revenue) and vice versa. Because the electricity prices and
279 marginal emissions factors we use are exogenous to the storage model, the effects of
280 storage operation do not result in changes to either input. Hence, our results apply to a
281 "marginal" addition of energy storage – an amount that is small enough to have a
282 negligible effect on prices and generation dispatch patterns. As storage deployment
283 increases, results could diverge from those we show below.

284
285

286

$$\sum_0^t [-E_t \times MEF_t]$$

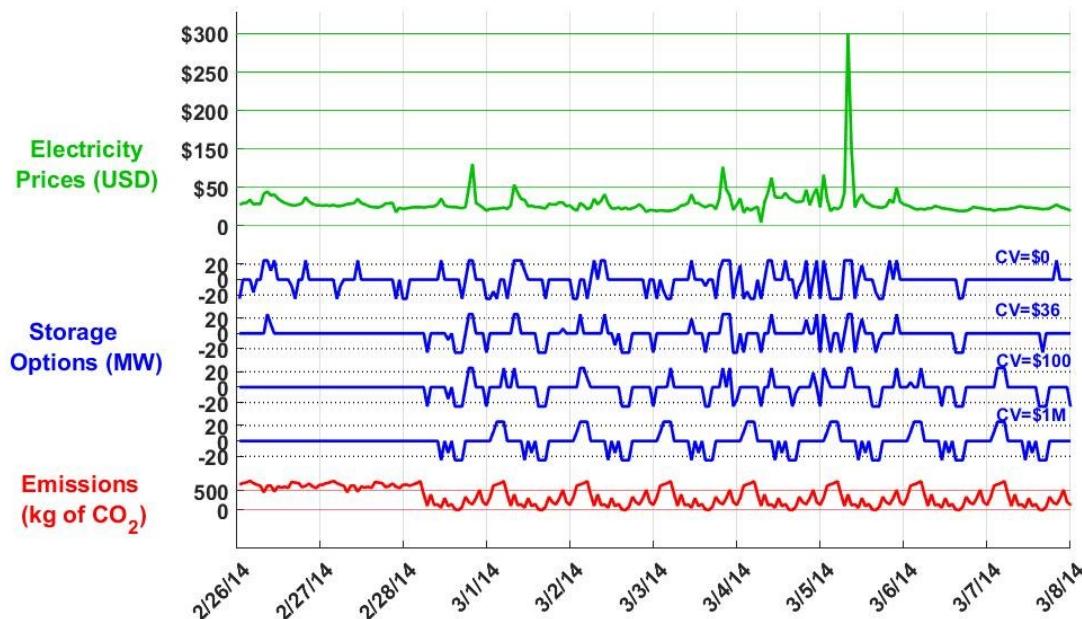
287

288 **Annual Emissions (Equation 9)**

289

290 As an example of the time-series output, Figure 1 displays four energy storage
291 operational solutions for the eGRID sub-region SPNO (Kansas) from late February to
292 early March. Figure 1 demonstrates the optimal storage schedules for carbon values of
293 \$0, \$36, \$100, and \$1M/tonne of CO₂. As the carbon value is increased, the optimization
294 gives solutions with lower emissions, focusing less on revenue from electricity prices.
295 For example, the observed spike of prices on March 5th becomes less influential in the
296 operations with higher carbon values. Conversely, when the carbon value is high and
297 marginal emissions are relatively flat (February 26-28), storage tends to cease operation
298 unless there are strong changes in energy prices that can produce sufficient revenue. As
299 the carbon value goes from zero to medium values, storage tends to give up cycling that
300 moves a lot of energy but makes little revenue, and shifts charging/discharging into
301 periods that make slightly less revenue but have a larger effect on emissions. As the
302 carbon value becomes very high, storage phases out any operation that does not reduce
303 emissions, eventually operating without regard for revenue.

304



305

306 **Figure 1.** Four optimal charging and discharging schedules (blue lines in center, positive

307 *indicates discharge) for bulk energy storage for SPNO (Kansas) during late February*
308 *and early March in 2014. Prices over the same period are shown on the top green line,*
309 *while MEFs over the period are on the bottom red line. As the carbon value (CV)*
310 *increases, storage is less willing to pursue high-cycling, low-value arbitrage*
311 *opportunities and will shift charging/discharging periods to those that have similar*
312 *revenue but lower emissions effects. Eventually, at high carbon values, storage becomes*
313 *primarily focused on reducing emissions and neglects all but the highest arbitrage*
314 *opportunities.*

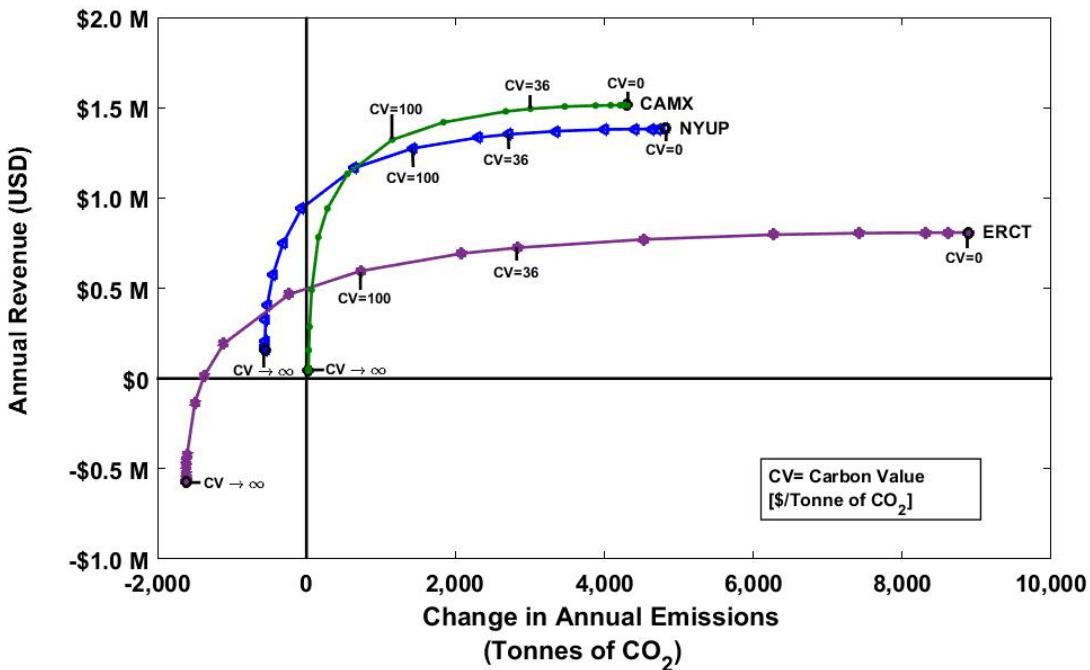
315

316

317 **Results**

318 Figure 2 shows the revenue and emissions results for three different eGRID sub-regions:
319 CAMX (California), NYUP (Upstate New York), and ERCT (Texas). Each point in the
320 figure represents a different carbon value used to calculate the annual revenue and annual
321 CO₂ emissions from a fixed-design storage plant (25MW/100 MWh, 75% round-trip
322 efficiency) in 2014. In particular, carbon values \$0, \$36, \$100, and \$1M per tonne of CO₂
323 have been highlighted to demonstrate the incremental progression of the Pareto curve, or
324 the representative set of efficient solutions that exist for each eGRID sub-region. As the
325 carbon value is increased, the optimization process prefers schedules that reduce
326 emissions and shifts the charging/discharging operation. But there is a trade-off because
327 these lower-emissions schedules reduce the possible revenue. For each of these regions,
328 using the EPA-derived social cost of carbon of \$36/tonne of CO₂ [35] decreases revenue
329 by a few percent, but it results in a larger reduction of emissions. Theoretically, under
330 these conditions (CV=36), the NYUP eGRID sub-region would have a 56% reduction in
331 storage-induced emissions at a cost to the storage owner of \$30,000/yr, the CAMX
332 eGRID sub-region would have a 70% reduction for \$20,000/yr, and ERCT would have a
333 30% reduction for \$85,000/yr. For eGRID sub-regions NYUP (Upstate NY) and CAMX
334 (California), where the modeled storage device is expected to make over a million dollars
335 annually, this is a small percent (<3%) of the annual revenue for a large fraction (56-
336 70%) of reduced storage emissions. For ERCT (Texas), it is equivalent to 11% of the
337 annual revenue. However, due to the large range of daily fluctuations in MEFs, more
338 than 2,500 tonnes of CO₂ emissions could be prevented.

339 When carbon values above \$100/tonne of CO₂ are used, the decrease in emissions slows
340 down, but there is a significant decrease in revenue. It is not surprising that these curves
341 are convex: opportunities for reducing storage-induced emissions can be thought of as a
342 supply curve, with many low-cost, high-benefit shifts that can be initially adopted.
343 Eventually, however, emissions elimination strategies become expensive and storage may
344 instead choose to cease operation entirely. For all three regions, a low to moderate carbon
345 value has a significant, positive effect on emissions with little effect on the economic
346 benefits of the storage unit.



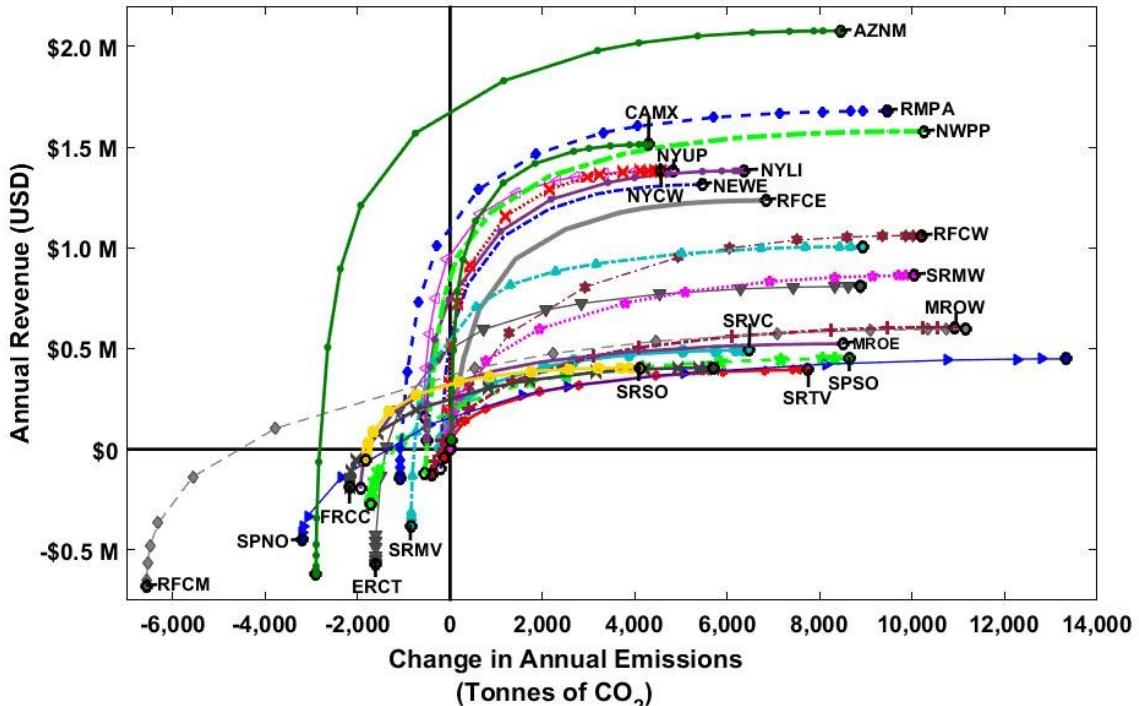
347

348 **Figure 2.** Bulk energy storage revenue and CO₂ emissions over the year 2014 for three
 349 eGRID sub-regions: CAMX (California), NYUP (Upstate New York), and ERCT (Texas).
 350 The solid lines represent all the possible Pareto-efficient solutions, as the carbon value is
 351 changed, if a 25 MW/100 MWh storage device had been integrated in each eGRID sub-
 352 region. The upper right point on each line shows revenue and emissions when storage is
 353 operated to maximize revenue, and the lower left point represents a scenario where it
 354 operates solely to minimize emissions. In all cases, it is possible to find operational
 355 schedules that significantly reduce storage emissions with little effect on revenue.
 356

357 The results for all 22 of the examined eGRID sub-regions are shown in Figure 3. The
 358 ideal quadrant is in the upper left of the figure, where revenue is high but storage induced
 359 emissions are negative. Only a few regions, primarily AZMN (Arizona and New
 360 Mexico), have solutions with high revenue and reduced emissions. Nevertheless, there
 361 are desirable tradeoffs in many locations: although revenue can never be higher than the
 362 case where storage optimizes only for revenue, it is clear that initial emissions reductions
 363 can be achieved with little decrease from the maximum revenue. As expected, states with
 364 similar electricity prices and energy resources tend to have similar results. For example,
 365 NYUP (Upstate New York), NYCW (New York City), NYLI (New York Long Island),
 366 NEWE (Massachusetts, New Hampshire, Vermont, Maine, Connecticut, and Rhode
 367 Island) and RFCE (Pennsylvania, New Jersey, Maryland, and Delaware) have results that
 368 cluster together. Likewise, SPSO (Oklahoma), SPNO (Kansas), SRVC (North Carolina,
 369 South Carolina, and Virginia), as well as SRTV (Tennessee and Kentucky), all have
 370 lower revenue possibilities but have a large capacity for emissions savings from storage.
 371 The results in Figure 3 have been split into several different plots that allow easier
 372 investigation of individual eGRID sub-regions; these can be found in the SI. While the
 373 nature of the local energy grid plays a huge role in the specific shape and location of the

374 curves, most eGRID sub-regions follow a similar trend. Solutions that reduce storage-
375 induced emissions for a low cost appear in all curves.

376



377 **Figure 3.** Bulk energy storage annual revenue and emissions results for 2014 from
 378 optimal charging and discharging cycles for 22 eGRID sub-regions. Each line represents
 379 a set of possible Pareto solutions within an eGRID sub-region, starting with a carbon
 380 value equal to zero (most revenue and highest emissions) and ending with near-infinite
 381 carbon value (lowest emissions and least revenue). For all eGRID sub-regions, storage
 382 emissions can initially be decreased at very little cost.
 383

384

When including CO₂ emissions effects in the optimization of an operational schedule, the response from storage can be reduced to two options: to shift charge/discharge periods or to reduce overall operation (note that a storage device that never operates has zero effect on system emissions). In our results, storage generally prefers the first option: rearranging the scheduling to retain high revenue. This results in a steady decrease of emissions with minimal shift in revenue as seen by the initially flat slopes in eGRID sub-regions like RFCM (Michigan), SPNO (Kansas) and on most curves in Figure 3. Eventually, when the carbon value has too high of a weight, storage finds that reducing operation is the only path to further emissions reductions. Initially this occurs partially within a season, but environmental costs could become so high that the bulk energy storage shuts off completely for a whole season, operating only in periods with high price variability (normally summer). As seen in Figure 3, eGRID sub-regions like CAMX (California), RFCE (Pennsylvania, New Jersey, Maryland, and Delaware), and SRMW (Missouri and Illinois) have a steep drop in potential revenue when the carbon value passes a given

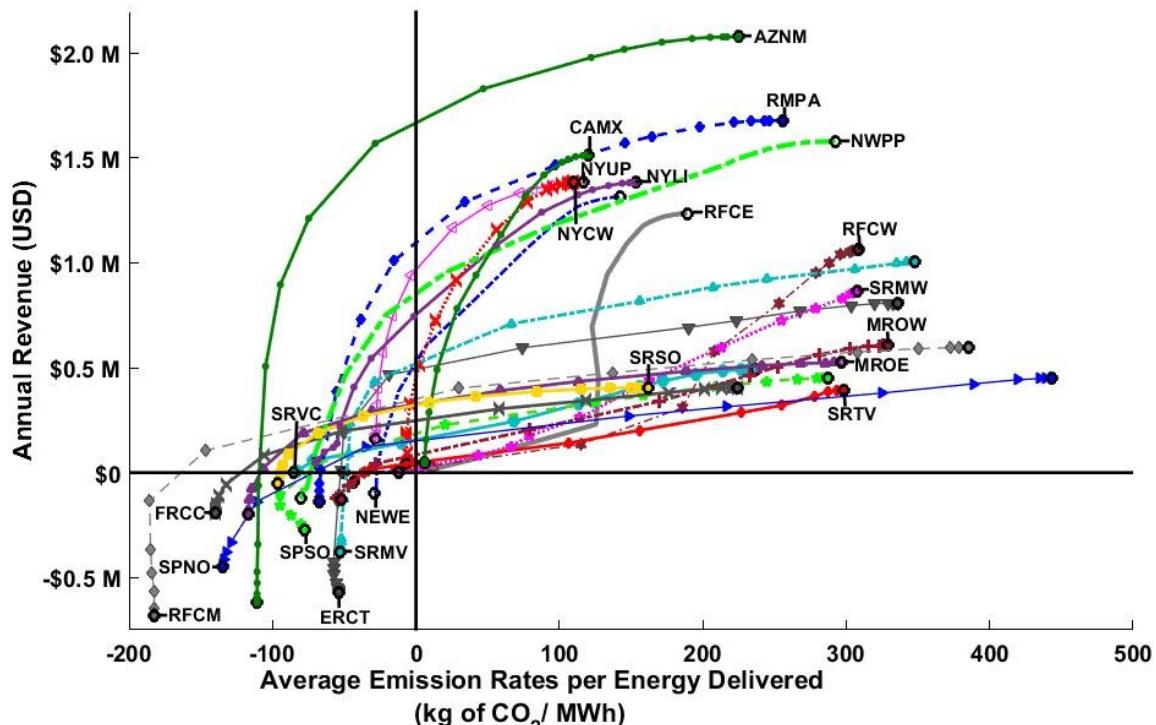
amount. Evidently, the cost of increasing pollution becomes too expensive compared to the device's ability to earn revenue. However, this is not the case for all locations: some eGRID sub-regions, like AZMN (Arizona), ERCT (Texas), and RFCM (Michigan), are able to make money while causing a net reduction in CO₂ emissions. Unfortunately, in most cases, bulk energy storage would make little (or negative) revenue by charging with cleaner energy and displacing dirty generation.

405

406 Figure 4 shows the same results as Figure 3, except now expressed against emissions
 407 rates of energy delivered from storage in kg of CO₂/MWh (rather than total emissions).
 408 Similar to Figure 3, Figure 4 shows a steep decrease in pollution rates and a moderate
 409 revenue decrease using lower carbon values for most regions. However, there are some
 410 eGRID sub-regions that experience large decreases in revenue, like NYCW (New York
 411 City), RFCE (Pennsylvania, Maryland, New Jersey, and Delaware), and CAMX
 412 (California). As previously explained, this large drop in revenue is driven by the inability
 413 of the optimization to shift to "clean" charging schedules. Figure 4 provides a better
 414 representation of the total rate of CO₂ emissions for the energy that is being delivered in
 415 the units of pollution per MWh by the bulk energy storage.

416

417



418

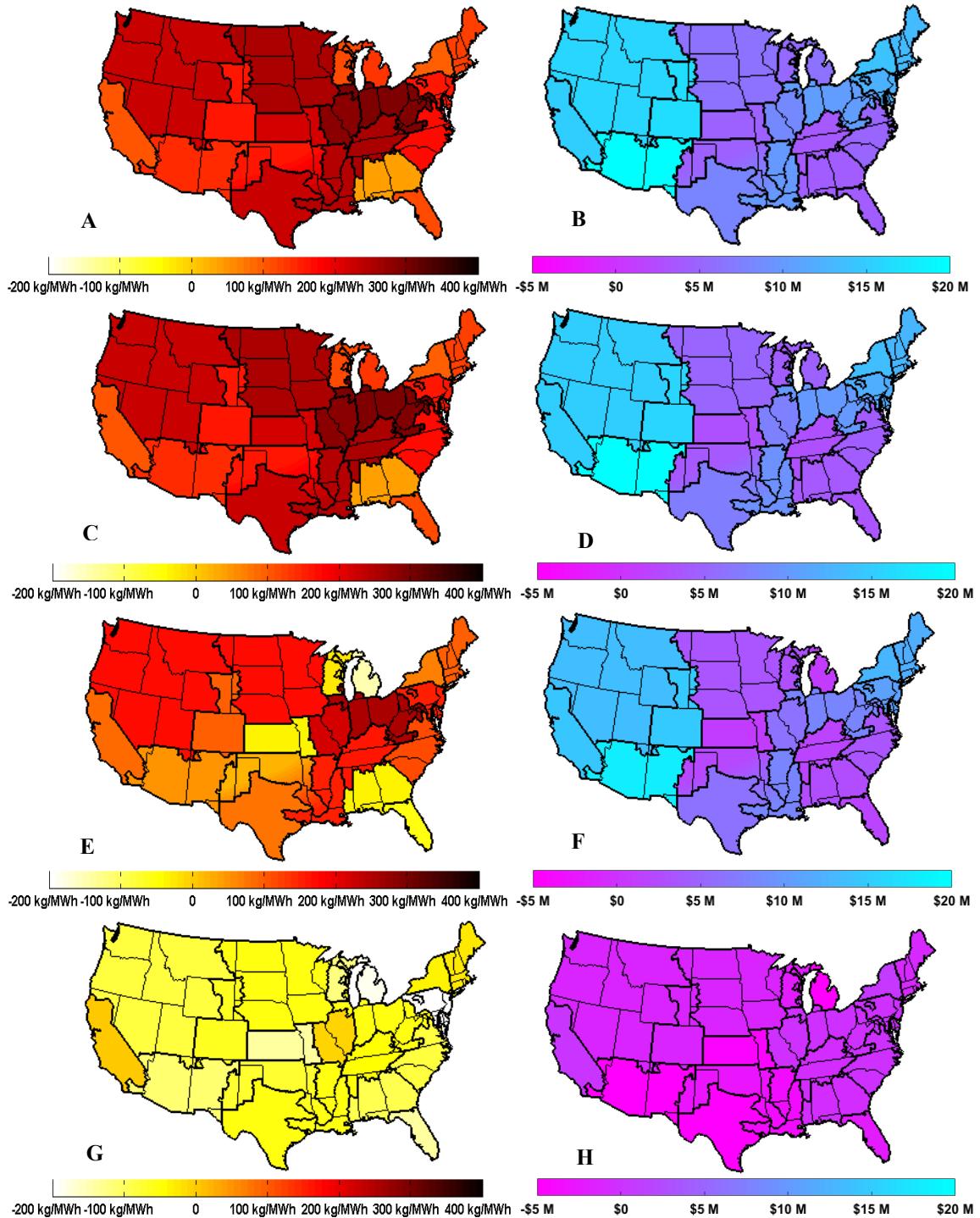
419 **Figure 4.** Bulk energy storage annual revenue and normalized emissions results for 2014
 420 from optimal charging and discharging cycles for 22 eGRID sub-regions. Each line
 421 represents a set of possible Pareto solutions within an eGRID sub-region, starting with a
 422 carbon value equal to zero (most revenue and highest emissions) and ending with near-

423 *infinite carbon value (lowest emissions and least revenue). The number of charging*
424 *cycles varies across eGRID sub-regions and this figure demonstrates the cleanliness of*
425 *the energy delivered from bulk energy storage. As carbon values are weighted more*
426 *strongly within the optimization, regions with larger ranges of MEFs lose revenue*
427 *gradually while regions with small ranges of MEFs tend to drop rapidly.*

428

429

430 Figure 5 displays the same information about CO₂ emissions rates and revenue as Figure
431 4, but in a different manner, using a map of eGRID sub-regions within the United States.
432 Each eGRID sub-region was independently shaded to represent either the rate of CO₂
433 emissions per energy delivered (left), or the annual revenue (right). Only four sets of the
434 previous optimal results are shown. The studied carbon values presented in Figure 5 are
435 \$0, \$36, \$100, and \$1M per tonne of CO₂. Although not all of the Pareto solutions are
436 displayed in Figure 5, similar trends appear on the maps. Some eGRID sub-regions, like
437 AZNM (Arizona and New Mexico) and CAMX (California), continue to make significant
438 revenue while simultaneously decreasing their emissions. Other eGRID sub-regions, like
439 SPNO (Kansas), FRCC (Florida), and SRSO (Georgia and Alabama), have low storage
440 revenue but a high ability to reduce grid emissions as carbon values are increased.
441 Contour maps of the eGRID sub-regions within the United States which display similar
442 information for total annual emissions (rather than normalized) can be found in the SI.

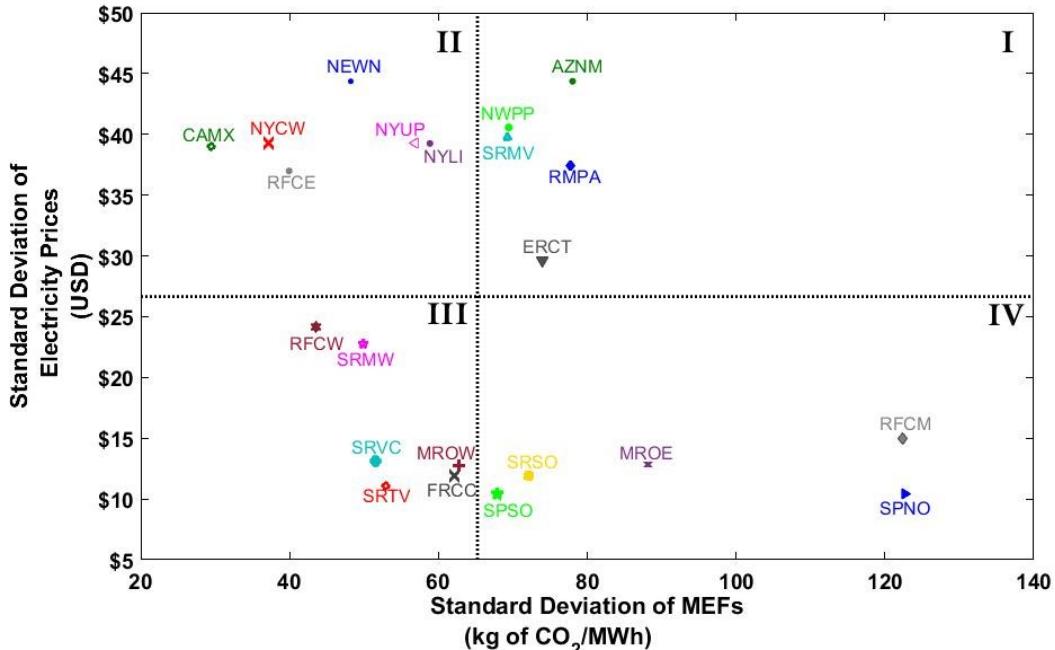


443

444 **Figure 5.** US map of emission rates (left) in kilograms of CO₂ per megawatt-hour and
445 annual revenue (right) in USD with increasing carbon values. Maps A & B have a
446 carbon value of \$0 per tonne of CO₂ (maximize revenue). Maps C & D have a carbon
447 value of \$36 per tonne of CO₂. Maps E & F have a carbon value of \$100 per tonne of
448 CO₂. Maps G & H have a carbon value of \$1M per tonne of CO₂ (minimize emissions).
449

450 Bulk energy storage operational decisions originate from two factors: fluctuations in
 451 electricity prices and in MEFs. Without changes in prices, storage cannot earn revenue.
 452 Likewise, the emissions effect of storage operation is a result of the variability in MEFs.
 453 In reality, these factors are complicated by their correlation as well as inefficiency losses,
 454 but they represent the primary variables that drive storage revenue and emissions, since
 455 inefficiency losses are constant. Both of the inputs used in the objective function
 456 (Equation 1) are real-world data sets and therefore generate results that vary by location.
 457 But there are useful and logical trends that we observe: the more flexibility a region has
 458 in electricity prices or in marginal emissions rates, the more options exist for the bulk
 459 energy storage to rearrange schedules in beneficial ways. Figure 6 shows the standard
 460 deviation of electricity prices versus the standard deviation of MEFs for the 22 eGRID
 461 sub-regions. The graph has been broken up into four quadrants using the mean of each
 462 measurement to divide the lower half from the upper half. Roughly speaking, regions that
 463 show the greatest capability to reduce storage-induced CO₂ emissions at low cost are
 464 located in the upper-right (quadrant I) of the graph, where there is variability in both
 465 electricity prices and MEFs. In these locations, the optimization algorithm is able to shift
 466 charge/discharge periods to those that have similar revenue but lower emissions. Regions
 467 in quadrant III tend to have trouble reducing CO₂ emissions at low cost because there is
 468 not much play in either electricity prices or MEFs. In these locations, the algorithm
 469 responds to higher carbon values by reducing overall operation, which reduces both
 470 revenue and emissions.

471



472

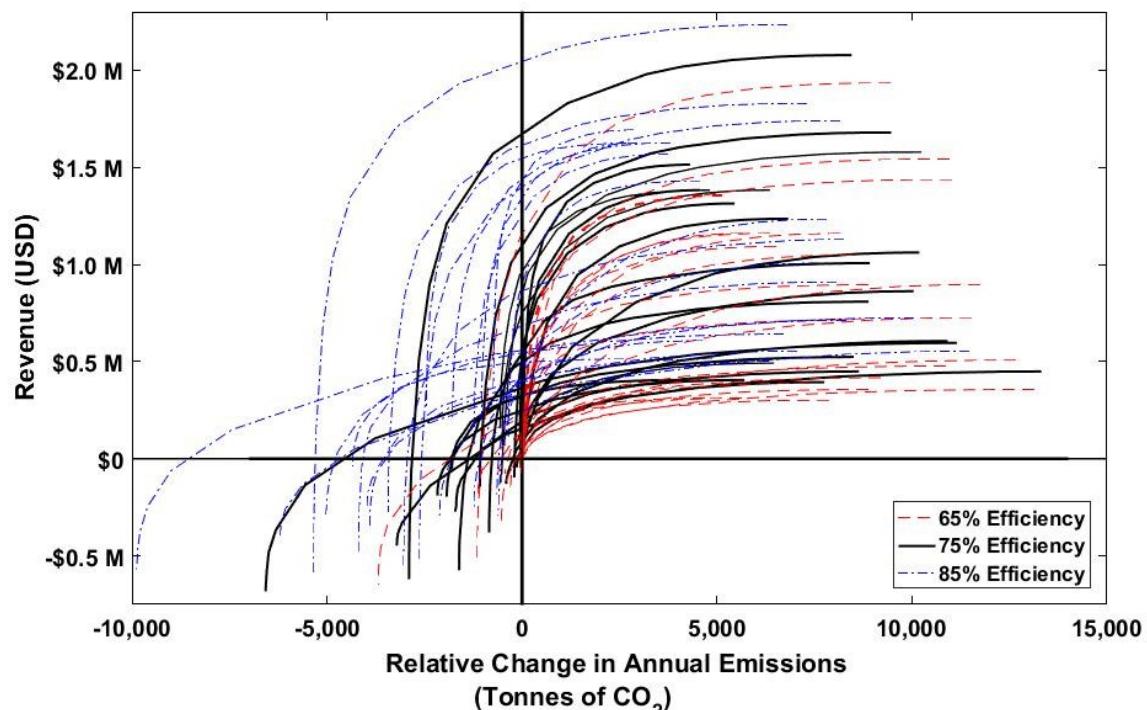
473 **Figure 6.** A scatter plot of the standard deviation of the two inputs used in the
 474 optimization objective function: electricity prices and marginal emissions factors for
 475 each eGRID sub-region. The quadrants represent the upper and lower halves
 476 using the mean of each measurement. The greater the standard deviation in either data

477 set, the more flexibility for the storage device to make higher revenue and emit less CO₂
478 emissions. Locations in quadrant I tend to have the most operational flexibility and can
479 reduce emissions at low cost, while locations in quadrant III have the most difficulty.
480

481 We performed sensitivity analysis on both the efficiency and the charging rate of the bulk
482 energy storage. The round-trip efficiency (i.e., the ratio between the input energy and the
483 output energy) was varied between 65% and 85%, relative to the base-case value of 75%.
484 Efficiency has a direct effect on both the ability of the system to cause pollution and earn
485 revenue. Figure 7 shows the sensitivity analysis for bulk energy storage with a 75%
486 efficiency, as well as the cases where the efficiency is low (65%) and high (85%).
487 Operating under a low storage efficiency (65%, red dashed lines) reduces the revenue,
488 but tends to slightly increase emissions when compared to the base-case results. On the
489 other hand, working with a high storage efficiency (85%, blue dotted-dash lines)
490 produces an increase in revenue. However, operating with an efficiency rate of 85% is
491 quite influential in reducing emissions. The reductions in the relative emissions when
492 shifting from 75% to 85% efficiency is more than double than when switching from 65%
493 to 75% efficiency. More importantly, with an 85% round-trip efficiency, the Pareto
494 curves for many eGRID sub-regions include points that are both profitable and
495 emissions-reducing, as shown by the many blue dotted curves that lie in the upper left
496 quadrant. Increasing the efficiency of the system positively impacts revenue but it results
497 in significant CO₂ emissions reductions across every eGRID sub-region.

498

499



500

501 **Figure 7.** Sensitivity analysis on the efficiency of the bulk energy storage device. The
502 base-case round-trip efficiency was 75% (solid black lines). A lower efficiency of 65%
503 (red dashed lines), and a high efficiency of 85% (blue dotted lines) are displayed for
504 comparison. Increasing efficiency to 85% increases storage revenue, but shifts the curves
505 significantly to the left, allowing for more solutions that retain revenue while greatly
506 reducing emissions.

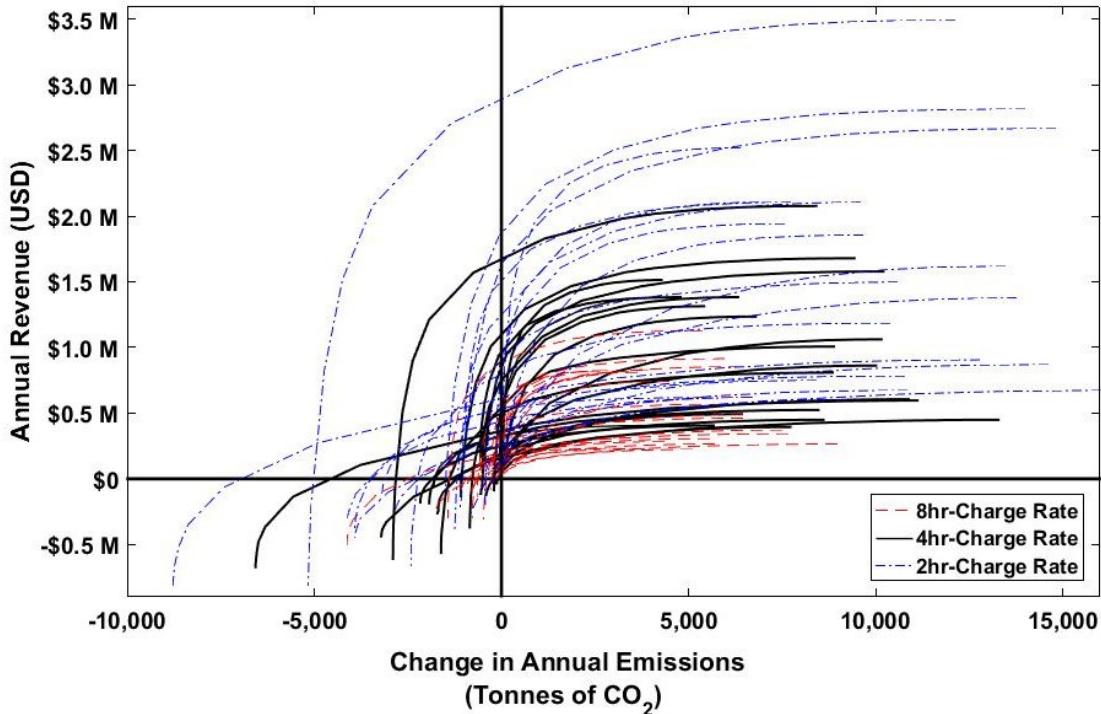
507

508 The charge rate for the bulk energy storage device (i.e., the amount of time it takes for the
509 system to charge) is another parameter that varies between storage technologies. A faster
510 charge rate enables the system to act more rapidly during price and emissions
511 fluctuations. This work used an initial 100 MWh storage device and a four hours charge
512 rate as the base-case assumption. Figure 8 shows the sensitivity analysis for charging
513 rates of two hours and eight hours as well as the base-case. When the device operates at a
514 lower charging rate (eight hours, red dashed lines), there is a significant reduction in
515 revenue, and this reduction is accompanied by a reduction in emissions when compared
516 to the base-case. The inability of the slow charging rate to move energy fast enough
517 reduces the total energy processed by the storage device, resulting in lower revenue and
518 emissions. Figure 8 also shows a drastic revenue increase when a device with a fast
519 charging rate (two hours) is used. In this case, the change in emissions tends to
520 exaggerate the existing trend: if emissions were reduced, a faster charging rate reduces
521 them more, and vice versa. The sensible explanation is that a faster charge rate allows
522 storage to simply do more movement of energy under similar patterns, amplifying the
523 current trends in both revenue and emissions.

524

525

526



527

528 **Figure 8.** Sensitivity analysis of the charge rate of energy storage operation optimization.
 529 The base-case computation assumes a four-hour rate (solid black lines). This is
 530 compared to a slower charge rate of eight hours (red dashed lines), and a faster charge
 531 rate of two hours (blue dotted lines). Using a faster charge rate allows storage to move
 532 more energy when cycling, tending to amplify existing revenue and emissions results.

533

534

535

536 **Discussion**

537 Profit-maximizing bulk energy storage systems tend to increase overall electricity grid
 538 CO₂ emissions. Currently, real world storage technologies are not subjected to carbon
 539 costs, and they are not held accountable for any emissions they generate or induce.
 540 Without any intervention, bulk energy storage will continue to cycle large amounts of
 541 energy in pursuit of small changes in prices, resulting in increased emissions. In this
 542 work, we demonstrate that including a small consideration for CO₂ emissions in the
 543 objective function results in storage-related emissions that are greatly reduced at a
 544 minimal expense to the owner. And, depending on the social costs of CO₂ pollution, this
 545 shift can be a net benefit to society.

546

547 Figure 9 uses the change in revenue and storage induced emissions from Figure 3 to
 548 calculate an effective cost of CO₂ emissions reductions. The graph shows the cost of CO₂
 549 emissions reductions of storage operation by cumulative percentage intervals for all 22
 550 eGRID sub-regions. The percentages in Figure 9 are relative to a storage device with
 551 zero net emissions (ie, 100% emissions reduction refers to the point on the y-axis of

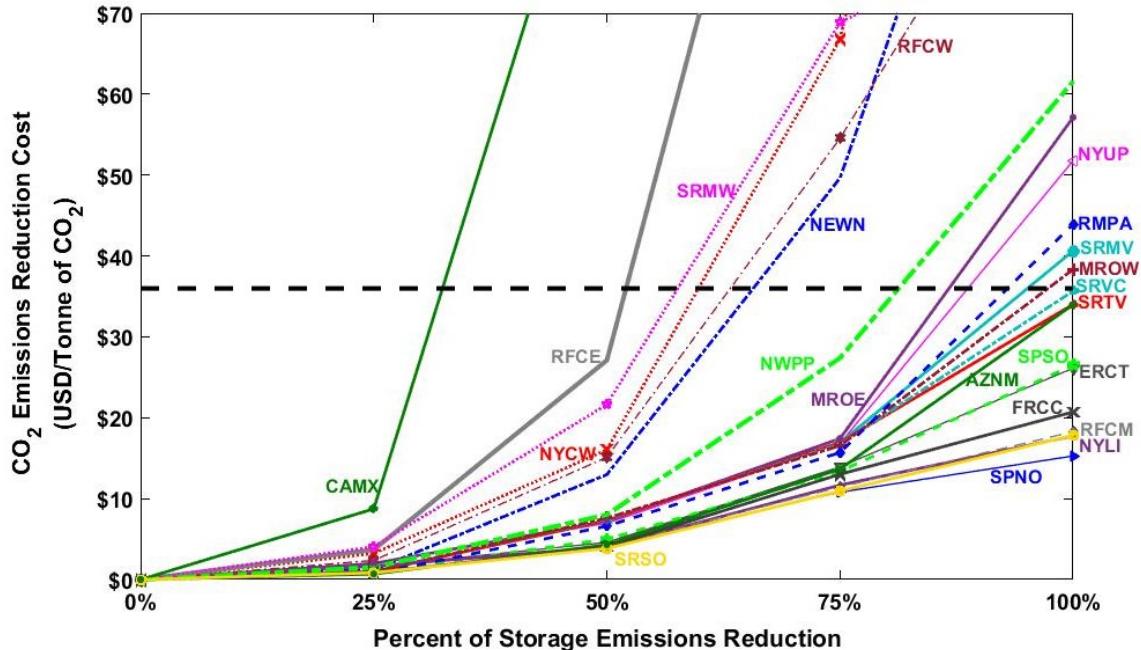
552 Figure 3). We estimate that reducing the storage-induced emissions by 25% costs less
553 than \$10/tonne of CO₂ in all regions; the cost of reducing the storage-induced emissions
554 by 50% is less than \$30/tonne of CO₂ in all but one region; the cost of reducing the
555 storage-induced emissions by 75% is less than \$30/tonne of CO₂ for sixteen regions; and
556 the cost of reducing the storage-induced emissions by 100% is less than \$60/tonne of CO₂
557 for sixteen regions. In other words, using the EPA-derived social cost of \$36/tonne of
558 CO₂ [35] would justify an operational schedule that removes between 30% and 100% of
559 storage-induced emissions, depending upon location.

560 Only six eGRID sub-regions have 75% carbon mitigation costs that exceed the \$36/tonne
561 of CO₂ social cost of carbon: CAMX (California), RFCE (Pennsylvania, New Jersey,
562 Maryland, and Delaware), NYCW (New York City), SRMW (Missouri and Illinois),
563 RFCW (Indiana, Ohio, and West Virginia), and NEWE (Massachusetts, New Hampshire,
564 Vermont, Maine, Connecticut, and Rhode Island). In most of these six locations, this is
565 because the grid is already quite clean and the optimization has trouble further decreasing
566 storage-related emissions. In most of these regions, there is an existing carbon price in a
567 cap and trade system. In California, the cap and trade system has had a carbon price
568 around \$12/tonne for several years [36] and the RGGI system (covering New England,
569 New York, and Maryland) prices vary between \$2 and \$5 per tonne [37]. In these
570 locations, a carbon price is already affecting the dispatch of generation in a direction that
571 reduces the emissions associated with storage operation, which may partly explain the
572 difficulty in those areas to further decrease emissions through changes to storage
573 operational patterns. Overall, for almost half of the eGRID sub-regions, using a carbon
574 value of \$36/tonne of CO₂ results in operational patterns in which storage actually
575 reduces a majority of emissions. Figure 9 shows that the costs of reducing emissions
576 through shifting of storage charge/discharge patterns is quite low in most of the US,
577 indicating an opportunity for intervention.

578

579

580



581

582 **Figure 9.** *CO₂ emissions reduction cost for a marginal energy storage device in 22*
 583 *eGRID sub-regions. Reducing emissions is initially inexpensive, but costs increase*
 584 *rapidly after 50% reduction. However, even a 100% reduction in emissions (a storage*
 585 *device with net zero emissions) can be achieved at less than \$36/tonne in about half of*
 586 *the examined locations.*

587

588 While we identify operational strategies that reduce emissions at low cost, it is not
 589 obvious how such considerations would be translated into policy or market rules. In a
 590 profit-driven industry, it is unlikely that storage would voluntarily operate according to
 591 our results because they are not unequivocally free of cost. Conceptually, policy could
 592 direct storage operation to reduce emissions, but this type of policy would be quite
 593 challenging to write, potentially arbitrary, and overly interventionist. For example, a
 594 carbon tax that applies only to storage-induced emissions (and not directly to emissions
 595 from generators themselves) would motivate operators to behave according to our results.
 596 Likewise, carbon prices on energy storage could be identified individually by region
 597 using a percentage of emissions reductions (Figure 9) or a percentage of annual profit.
 598 However, such policies are not practical and run contrary to the goal of developing this
 599 emerging technology. Additional regulations and auditing may be complex and expensive
 600 especially if each region sets its own method for controlling energy storage-induced
 601 emissions.

602 A far more realistic plan would apply a carbon price to power plant emissions, which
 603 would change both the distribution and dispatch order of plants in a direction that would
 604 inherently make storage operation much cleaner by internalizing the externality. For
 605 example, a sufficient carbon price will begin pushing coal generation up the dispatch
 606 stack, making it more likely to be displaced by storage operation rather than being used
 607 as a charging source for storage. Furthermore, if an emissions fee exists and is set at a

608 level equal to the damages from those emissions, then no alternative operational strategy
609 is needed for storage: because the observed energy prices now include the emissions
610 damages, storage can optimize in a traditional “price-only” strategy. In the absence of a
611 sufficient carbon price, the development of a market rule that encourages or requires a
612 high round-trip efficiency for storage may be a feasible solution. The sensitivity analysis
613 performed in this investigation found that higher efficiencies would greatly reduce
614 emissions in every eGRID sub-region (Figure 7). However, higher efficiencies did not
615 yield significantly higher revenues, implying that companies may hesitate to purchase
616 more efficient technology unless required to do so. This means that the social benefit of
617 higher efficiencies for energy storage may outweigh the private benefit, making an
618 argument in favor of support or regulation for storage efficiency.

619

620 Our results represent annual outcomes of introducing a storage device on actual
621 electricity grids in the year 2014. However, as the structure of electricity systems and
622 associated regulations develop, energy storage results will likely vary from the findings
623 of this work. As average emissions rates of electricity generators decrease, storage-
624 induced emissions may be reduced by giving storage devices cleaner fuels from which to
625 charge. This is especially true if coal is phased out. Having vast amounts of renewable
626 power on the grid would also shift the results, as storage would more frequently charge
627 from completely clean energy sources that would otherwise be wasted [38]. Alternately, if
628 electricity price patterns become more favorable for energy storage (by having greater
629 short-term variability), storage is likely to cycle more frequently. The emissions effect of
630 this increased cycling depends on the marginal emissions trends in the region: if
631 operating storage results in significant emissions, then increased cycling will be
632 problematic, but the opposite is true in areas where storage-induced emissions are small
633 or negative. Modernization of the electricity grid will alter the results produced by this
634 mathematical model, but it will remain socially advantageous to select operational
635 strategies which consider storage-induced emissions while maximizing revenue.

636

637 ***Conclusion***

638 This research has highlighted the trade-offs between storage revenue and CO₂ emissions
639 that can be achieved simply through changes in storage operational patterns. We have
640 shown that a multi-attribute objective function that applies a value to emissions can
641 identify operational patterns that reduce CO₂ emissions at low cost. In most locations,
642 storage could reduce CO₂ emissions by 25% for less than \$4 per tonne of CO₂, and half of
643 the locations can eliminate storage-related emissions completely at the EPA-derived
644 social cost of carbon of \$36 per tonne of CO₂ [35]. While the policy implications of these
645 results are complex, they demonstrate that the problematic emissions effects of storage
646 identified in the literature are not an inherent feature of the technology, but rather an
647 outcome of operational strategy and electricity system structure.

648

649 ***Acknowledgements***

650 This material is based upon work supported by the Environmental Sustainability program
651 of the National Science Foundation under award number 1706228.

652

653 **Works Cited**

654

655 [1] T. M. I. Mahlia, T. J. Saktisahdan, A. Jannifar, M. H. Hasan, and H. S. C. Matseelar, "A review
656 of available methods and development on energy storage; technology update," *Renew.
657 Sustain. Energy Rev.*, vol. 33, pp. 532–545, 2014.

658 [2] S. R. Ferreira *et al.*, "Protocol for Uniformly Measuring and Expressing the Performance of
659 Energy Storage Systems," *Sandia Natl. Lab. Tech. Rep. SAND2013-7084*, 2013.

660 [3] *Connecticut AFFORDABLE AND RELIABLE ENERGY*. 2015.

661 [4] *Vermont Renewable Energy Standard*. 2015.

662 [5] *Washington ENGROSSED SUBSTITUTE*. 2015.

663 [6] *Massachusetts Energy Diversity*. .

664 [7] A. B. No, "2514 (AB-2514)(State of California, US). 29 September 2010.," *AB-2514 Energy
665 Storage Syst. Legis. Couns. Dig. Retrieved*, vol. 12, 2014.

666 [8] *OREGON House Bill 2193*. 2015.

667 [9] Governor Baker, *A Massachusetts Act Relative to Energy Diversity*. 2016.

668 [10] CANCEL, Parks, and Spearman, *Nevada Renewable Energy and Renewable Portfolio
669 Standard*. 2017.

670 [11] Senator Guzzone, *Maryland Income Tax Credit – Energy Storage Systems*. 2017.

671 [12] Energy Storage Association, "US ENERGY STORAGE MONITOR Q2 2017 Executive Summary."
672 gtm research/ESA, Jun-2017.

673 [13] M. Arbabbzadeh, J. X. Johnson, G. A. Keoleian, P. G. Rasmussen, and L. T. Thompson, "Twelve
674 Principles for Green Energy Storage in Grid Applications," *Environ. Sci. Technol.*, vol. 50, no.
675 2, pp. 1046–1055, 2015.

676 [14] Z. Wang, A. Negash, and D. Kirschen, "Assessing the financial impacts of distributed energy
677 on load serving entities," *Energy Policy*, vol. 86, pp. 380–392, Nov. 2015.

678 [15] P. Denholm, J. C. King, C. F. Kucher, and P. P. H. Wilson, "Decarbonizing the electric sector:
679 Combining renewable and nuclear energy using thermal storage," *Energy Policy*, vol. 44, pp.
680 301–311, May 2012.

681 [16] E. Fertig and J. Apt, "Economics of compressed air energy storage to integrate wind power:
682 A case study in ERCOT," *Energy Policy*, vol. 39, no. 5, pp. 2330–2342, May 2011.

683 [17] R. Sioshansi, P. Denholm, T. Jenkin, and J. Weiss, "Estimating the value of electricity storage
684 in PJM: Arbitrage and some welfare effects," *Energy Econ.*, vol. 31, no. 2, pp. 269–277, Mar.
685 2009.

686 [18] P. Denholm and R. M. Margolis, "Evaluating the limits of solar photovoltaics (PV) in electric
687 power systems utilizing energy storage and other enabling technologies," *Energy Policy*, vol.
688 35, no. 9, pp. 4424–4433, Sep. 2007.

689 [19] E. Hittinger and R. Lueken, "Is inexpensive natural gas hindering the grid energy storage
690 industry?," *Energy Policy*, vol. 87, pp. 140–152, Dec. 2015.

691 [20] P. Denholm and M. Hand, "Grid flexibility and storage required to achieve very high
692 penetration of variable renewable electricity," *Energy Policy*, vol. 39, no. 3, pp. 1817–1830,
693 Mar. 2011.

694 [21] E. S. Hittinger and I. M. Azevedo, "Bulk energy storage increases United States electricity
695 system emissions," *Environ. Sci. Technol.*, vol. 49, no. 5, pp. 3203–3210, 2015.

696 [22] R. Lueken and J. Apt, "The effects of bulk electricity storage on the PJM market," *Energy
697 Syst.*, vol. 5, no. 4, pp. 677–704, 2014.

698 [23] R. T. Carson and K. Novan, "The private and social economics of bulk electricity storage," *J.
699 Environ. Econ. Manag.*, vol. 66, no. 3, pp. 404–423, 2013.

700 [24] M. Arbabzadeh, J. X. Johnson, and G. A. Keoleian, "Parameters driving environmental
701 performance of energy storage systems across grid applications," *J. Energy Storage*, vol. 12,
702 pp. 11–28, 2017.

703 [25] R. L. Fares and M. E. Webber, "The impacts of storing solar energy in the home to reduce
704 reliance on the utility," *Nat. Energy*, vol. 2, p. 17001, 2017.

705 [26] R. Sioshansi, "Emissions impacts of wind and energy storage in a market environment,"
706 *Environ. Sci. Technol.*, vol. 45, no. 24, pp. 10728–10735, 2011.

707 [27] H. S. de Boer, L. Grond, H. Moll, and R. Benders, "The application of power-to-gas, pumped
708 hydro storage and compressed air energy storage in an electricity system at different wind
709 power penetration levels," *Energy*, vol. 72, pp. 360–370, 2014.

710 [28] Y. Lin, J. X. Johnson, and J. L. Mathieu, "Emissions impacts of using energy storage for power
711 system reserves," *Appl. Energy*, vol. 168, pp. 444–456, 2016.

712 [29] "DOE Global Energy Storage Database." Sandia Corporation, Strategen Consulting , LLC, 16-
713 Aug-2016.

714 [30] N. C. Horner, "Powering the Information Age: Metrics, Social Cost Optimization Strategies,
715 and Indirect Effects Related to Data Center Energy Use," Carnegie Mellon University, 2016.

716 [31] N. Horner, I. Azevedo, D. Sicker, and Y. Agarwal, "Dynamic data center load response to
717 variability in private and public electricity costs," in *Smart Grid Communications
718 (SmartGridComm), 2016 IEEE International Conference on*, 2016, pp. 80–85.

719 [32] K. Siler-Evans, I. L. Azevedo, and M. G. Morgan, "Marginal emissions factors for the US
720 electricity system," *Environ. Sci. Technol.*, vol. 46, no. 9, pp. 4742–4748, 2012.

721 [33] K. Siler-Evans, I. L. Azevedo, M. G. Morgan, and J. Apt, "Regional variations in the health,
722 environmental, and climate benefits of wind and solar generation," *Proc. Natl. Acad. Sci.*,
723 vol. 110, no. 29, pp. 11768–11773, 2013.

724 [34] J. Eyer and G. Corey, "Energy storage for the electricity grid: Benefits and market potential
725 assessment guide," *Sandia Natl. Lab.*, vol. 20, no. 10, p. 5, 2010.

726 [35] Interagency Working Group on, Social Cost of Carbon 2010, and EPA, "Technical Support
727 Document: - Technical Update of the Social Cost of Carbon for Regulatory Impact Analysis -
728 Under Executive Order 12866 -," Aug. 2016.

729 [36] Climate Policy Initiative, "California Carbon Dashboard." <http://calcarbondash.org/>.
730 Accessed October 2017.

731 [37] "Regional Greenhouse Gas Initiative (RGGI) CO2 Budget Trading." Sep-2017.
732 https://www.rggi.org/market/co2_auctions/results. Accessed October 2017.

733 [38] M. Lott, "Technology Roadmap: Energy Storage," International Energy Agency, France, Mar.
734 2014.

735

736