

1 *Review*

2 Energy and Charge Transport in 2D Atomic Layer 3 Materials: Raman-based Characterization

4 Ridong Wang ^{1,†}, Tianyu Wang ^{2,†}, Hamidreza Zobeiri ³, Dachao Li ^{1,*} and Xinwei Wang ^{3,*}

5 ¹ State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin
6 300072, People's Republic of China.

7 ² Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, People's Republic of China.

8 ³ Department of Mechanical Engineering, Iowa State University, Ames, Iowa 50011, United States of
9 America.

10 * Correspondence: dchli@tju.edu.cn (D.L.), xwang3@iastate.edu (X.W.)

11 [†] Ridong Wang and Tianyu Wang contribute equally.

12 Received: date; Accepted: date; Published: date

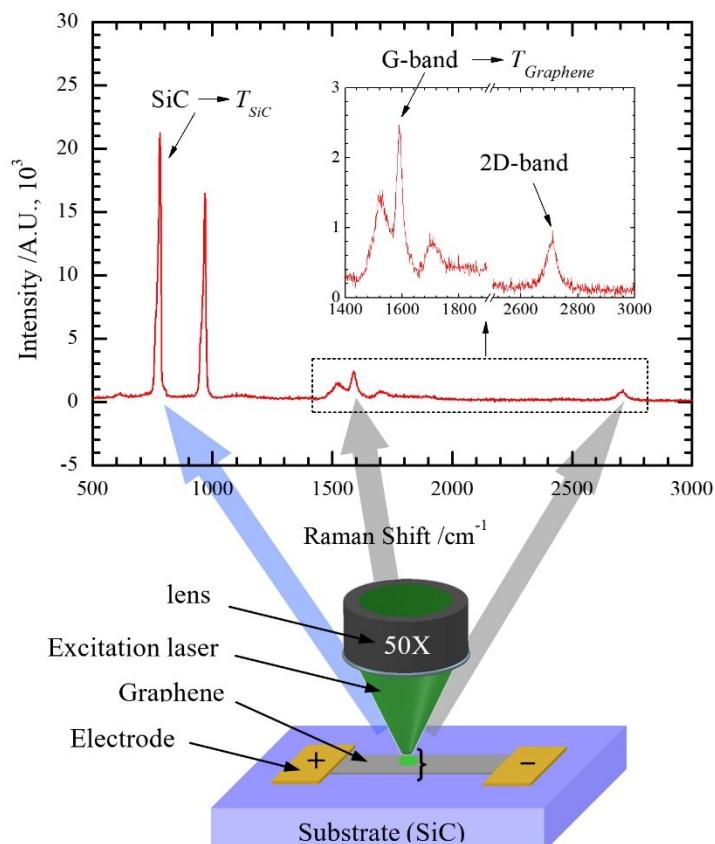
13 **Abstract:** As holding extraordinary mechanical and physical properties, two-dimensional (2D)
14 atomic layer materials, including graphene, transition metal dichalcogenides, and MXenes, have
15 attracted a great deal of attention. The characterization of energy and charge transport in these
16 materials is particularly crucial for their applications. As noncontact methods, Raman-based
17 techniques are widely used in exploring the energy and charge transport in 2D materials. In this
18 review, we **explain the principle** of Raman-based thermometry in detail. We critically review
19 different Raman-based techniques, which include steady state Raman, time-domain differential
20 Raman, frequency-resolved Raman, and energy transport state-resolved Raman techniques
21 constructed in frequency domain, space domain, and time domain. Detailed outlooks are provided
22 about Raman-based energy and charge transport in 2D materials and issues that need special
23 attention.

24 **Keywords:** 2D materials, energy transport, charge transport, Raman spectroscopy

25

26 1. Introduction

27 Owing to their extraordinary electrical, optical and mechanical properties, two-dimensional (2D)
28 materials, for instance, graphene, black phosphorus, hexagonal boron nitride, transition metal
29 dichalcogenides (TMDs), and MXenes, can be used in many different areas, for instance,
30 optoelectronic devices, biosensing, energy storage, etc. [1-7]. And the thermal transport, interface
31 thermal transport, electronic structures, physical structures, and hot carrier transport properties of
32 these 2D materials are of great importance in fundamental research, as well as in engineering
33 applications [8]. From the perspective of fundamental research, it is of great importance to explore
34 the physics behind thermal dissipation and thermal management at the micro/nanoscale. For the
35 application, with rapid increase in power density in modern electronics, the heat accumulation
36 becomes a bottleneck for further miniaturization. As the heat accumulation in electronic and
37 optoelectronic devices raises the operating temperature, the device performance and lifetime can be
38 influenced. Thus, it is in high demand to improve the heat conductance and reduce the interface
39 thermal resistance [8, 9].

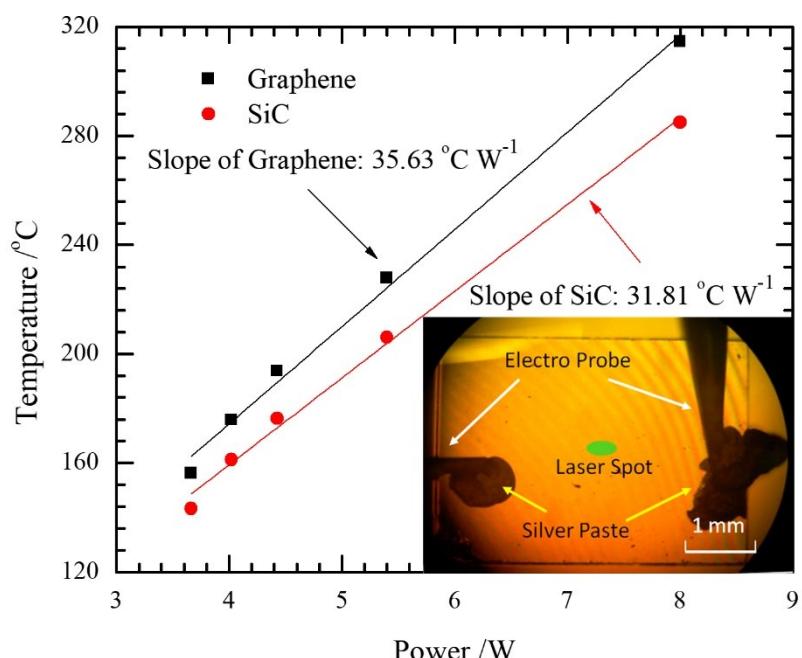

40 Over the last few years, many simulation-based methods have been reported to characterize the
41 thermal transport in 2D materials, such as molecular dynamics simulation, non-equilibrium Green
42 function method, Boltzmann transport equation, and first-principles-based multi-temperature model
43 [10-13]. Many experimental methods, like time-domain thermoreflectance (TDTR), microbridge
44 method, 3ω method, laser flash technique, and Raman spectroscopy, are employed to explore the

45 thermal properties of 2D materials [14-17]. For TDTR, it requires complicated setups and careful
 46 operation. The accuracy of microbridge method is affected by the thermal contact resistance between
 47 the sample and contact, and by the difficulty in evaluating the tiny heat flow sustained by very thin
 48 samples. The 3ω method is vulnerable to the harmonic noises in the current source. The laser flash
 49 technique will become extremely difficult to use for measuring very thin samples (a few μm) and for
 50 measurement at cryogenic temperatures. Raman spectroscopy, which carries signature information
 51 about materials regardless of their distance and size, provides a unique way to looking into the
 52 energy transport, hot carrier diffusion, and physical structure of 2D materials. As a noncontact optical
 53 method, Raman-based thermometry is able to realize precise (material specific) and specific thermal
 54 properties characterization of 2D materials with sub-micron size by focusing the excitation laser to a
 55 very small spot.

56 Currently, many novel and new Raman-based techniques have been developed to meet different
 57 requirements of 2D materials measurement. For instance, different energy transport states are
 58 constructed to study the thermal conductivity, hot carrier diffusion, and interface thermal resistance
 59 of suspended or supported 2D materials. In the following sections, a comprehensive critical review
 60 about various Raman-based techniques developed for energy and charge transport in 2D materials
 61 is presented to give a clear picture of the progress in this field. In addition, potential research
 62 perspectives in the field of 2D materials using these Raman-based techniques are also discussed.

63 2. Steady State Raman

64 For steady state Raman, an electrical current or a continuous-wave laser is applied to the 2D
 65 materials to realize steady state heating. Meanwhile, the sample is irradiated by an excitation laser
 66 and the corresponding Raman signal is collected. Based on the temperature-dependence
 67 characteristic Raman signal, the interface resistance between the sample and the substrate or the
 68 thermal conductivity of the sample can be determined.

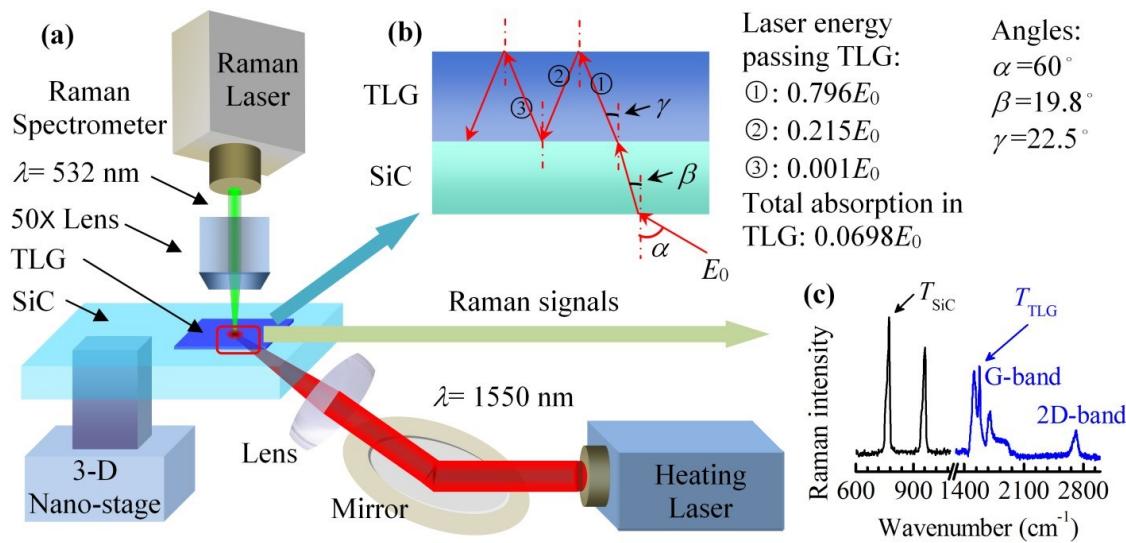


69
 70 **Figure 1.** Illustration of the sample under electrical heating for measuring interface thermal
 71 resistance. The top figure depicts the Raman spectrum of epitaxial graphene on 4H-SiC [18].

72 Figure reproduced with permission from John Wiley and Sons.

73 Yue *et al.* developed an electrical heating method for the interfacial thermal resistance
 74 **measurement** of epitaxial graphene on 4H-SiC [18]. As shown in Figure 1, the steady state heating of
 75 the sample is achieved with an electrical current passing through. And a confocal Raman system is
 76 used to obtain the Raman signal with an excitation laser irradiating the graphene. Then, the
 77 temperature of graphene and SiC can be differentiated based on the corresponding Raman signals.
 78 Finally, the interfacial thermal resistance between these two materials can be derived based on
 79 $R_{tc} = (T_{graphene} - T_{SiC}) \cdot A / (I^2 \cdot R)$, where A is the graphene area, R is the electrical resistance of graphene,
 80 and I is the applied current. Due to the large uncertainty originated from a single temperature point,
 81 a linear fitting of the relation between the temperature and input power of Joule heating is conducted.
 82 The equation for determining thermal resistance can be rewritten as $R_{tc} = (T'_{graphene} - T'_{SiC}) \cdot A$, where
 83 $T'_{graphene}$ and T'_{SiC} are the temperature against input power slopes shown in Figure 2.

84 Though the heating level can be controlled accurately by adjusting the electrical current, the
 85 results can be affected by the contact resistance between the electrode and the sample. **Additionally**,
 86 precise positioning of the laser is also important for Raman-based temperature measurement. To
 87 overcome these drawbacks, Tang *et al.* developed a dual laser Raman-based thermal probing method
 88 with a superior spatial resolution [19, 20]. In this method, two lasers are used, one is for thermal
 89 probing, and the other one is for heating. In this work, the interfacial energy coupling across
 90 graphene/substrate interfaces is characterized, and the experimental setup is shown in Figure 3. The
 91 sample is placed on a nanostage, which is controlled by a piezoelectric actuator. As the stability is
 92 improved dramatically and the positioning resolution could be down to as small as 5 nm, the noise
 93 level in Raman spectra is greatly reduced.



94

95 **Figure 2.** The relationship between temperature and heating power [18]. Figure reproduced
 96 with permission from John Wiley and Sons.

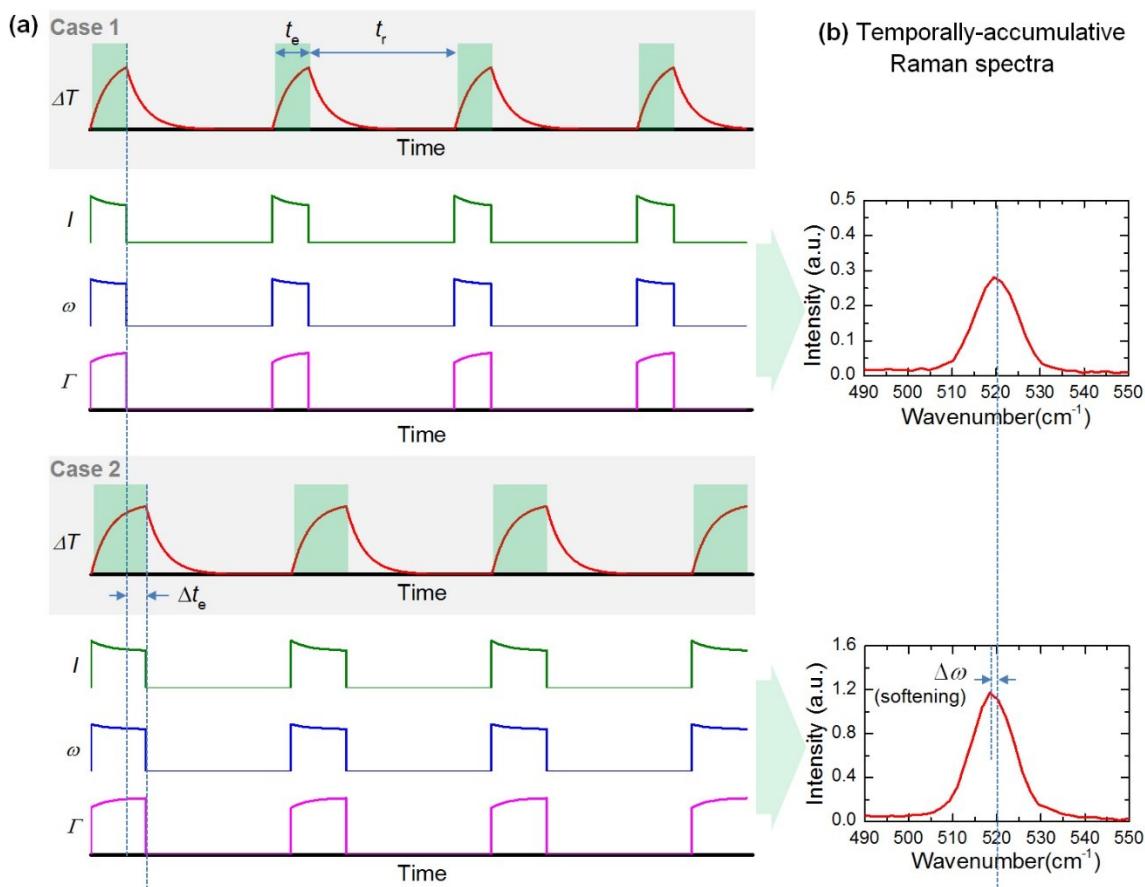
97 During calibration and real interface measurement, 2D materials experience different stress
 98 effect. In calibration, **the temperatures of the 2D material and the substrate are the same. However**,
 99 **the temperature of the 2D material is higher than the substrate in actual experiment**. Additionally,
 100 the 2D material has different thermal expansion coefficient from the substrate. Therefore, it does not
 101 mean the temperature is determined precisely in experiment even with high quality calibration. Also
 102 during experiment, the local spacing at the interface will significantly affect the laser absorption,

103 which could probably lead to very high error in laser absorption calculation. All these need to be
 104 resolved in order to obtain high-level understanding of the energy transport in 2D materials interface.
 105 Raman shift, which is related to temperature and stress, has a higher sensitivity to temperature than
 106 Raman linewidth. Based on this, for the first time, Tang *et al.* decoupled the thermal and mechanical
 107 behavior by looking into the difference in temperature determined by using Raman shift and
 108 linewidth [20]. That is, the local stress effect is extracted, and the interface spacing effect is also
 109 evaluated based on the corrugation-induced Raman enhancement.

111 **Figure 3.** Experimental system used for characterizing the tri-layered graphene/SiC
 112 interface. An infrared laser is used to heat the sample and a 532 nm laser is used to excite
 113 Raman signals. Reproduced from [20] with permission from The Royal Society of
 114 Chemistry.

115 Furthermore, Yuan *et al.* also studied the interface thermal conductance between few to tens-
 116 layered molybdenum disulfide (MoS₂) and crystalline silicon (c-Si) [21]. In this work, only one laser,
 117 which is for both thermal probing and heating, is used. And it is proved that there is a spacing
 118 between MoS₂ and c-Si, which can lead to a much lower interfacial thermal conductance. As the
 119 thermal expansion coefficients of MoS₂ and c-Si are different, the imperfect contact between MoS₂
 120 and c-Si could become much smoother after laser heating. In addition, with the increased sample
 121 thickness, the mechanical stiffness is improved and a better interface contact between MoS₂ and c-Si
 122 is obtained. Thus, the interface thermal conductance increases. In a short word, the interface spacing
 123 effect is a very crucial factor in studying the interfacial thermal conductance, and it is necessary to
 124 further investigate thermal expansion coefficients of the sample and substrate. Zobeiri *et al.* studied
 125 the thermal expansion coefficient of WS₂ in detail [22]. In this work, the in-plane and cross-plane
 126 linear thermal expansion coefficients of WS₂ were considered separately. And the in-plane linear
 127 thermal expansion coefficient, which plays a very important role in calculating the theoretical air gap
 128 thickness between WS₂ and Si substrate, was determined. The range is about 5×10^{-6} to 8×10^{-6} K⁻¹ with
 129 temperatures varying from 300 to 700 K, and agrees well with reference values.

130 3. Time-domain Differential and Frequency-resolved Raman


131 For steady-state Raman spectroscopy, a relationship between temperature and Raman signal is
 132 needed. Both temperature calibration and laser absorption measurement are required to ensure the
 133 accuracy of the measurement. However, the temperature calibration is really time-consuming and
 134 could bring in large errors. Due to unknown optical property variation of different samples, the laser
 135 absorption measurement can also introduce very large errors. To overcome these critical physics
 136 problems faced in steady-state Raman spectroscopy, techniques involving time resolving will be

137 more appreciated.

138 *3.1. Time-domain Differential Raman (TD-Raman)*

139 The TD-Raman technique is inspired by the transient electro-thermal (TET) technique, which is
 140 developed for effective thermal characterization of one-dimensional (1D) materials [23, 24]. In this
 141 technique, a single modulated laser beam is used for both sample heating and thermal probing. The
 142 concept of this technique is shown in Figure 4(a). Both transient and steady-state measurements are
 143 conducted for this technique. The transient measurement consisted of an excitation period (t_e) and a
 144 thermal relaxation period (t_r). And t_r is required to be long enough for the sample to completely cool
 145 down upon coming of next laser cycle. Multiple cycles are used to collect sufficient Raman signal.

146 As shown in Figure 4(a), during the excitation period, there is a temperature rise and Raman
 147 signal is also collected. With the increase of sample temperature, the Raman intensity decreases, the
 148 peak is redshifted and the linewidth broadens. During t_r , as the laser is turned off, no Raman signal
 149 is collected in this period. Comparing the two cases, the excitation period in Case 2 is a bit longer
 150 than Case 1, while the thermal relaxation periods are the same. Due to the longer excitation time, the
 151 temperature increases further, and the corresponding Raman spectrum also varies. Figure 4(b) shows
 152 the temporally accumulative Raman spectra in the two cases. It can be seen that the Raman intensity
 153 in Case 2 is higher than that in Case 1, and a Raman peak position softening is observed. By combining
 154 the above Raman signal variation and further physical data analysis, the temperature evolution of
 155 the sample can be obtained to determine the thermal diffusivity of the sample [23].

156
 157 **Figure 4.** (a) The temperature evolution of the sample, and corresponding variations of
 158 Raman peak intensity (I), peak shift (ω) and linewidth (Γ). (b) Temporally accumulative
 159 Raman spectra of one laser pulse cycle in Case 1 and Case 2. Reprinted with permission
 160 from [23] © The Optical Society.

161 In the work of TD-Raman development, the thermal diffusivity of a Si cantilever is measured. In

162 the experimental setup, one end is connected to bulk base and the other end is heated by a modulated
 163 laser. As the length of the sample is much larger than the diameter or thickness of the sample, a one-
 164 dimensional (1D) model is used for the heat conduction with the governing equation as:

165
$$\rho c_p \frac{\partial \Delta T}{\partial t} = \kappa \frac{\partial^2 \Delta T}{\partial x^2} + q_0, \quad (1)$$

166 where ρ is the density, c_p is the specific heat of the sample, ΔT is the temperature rise, κ is the
 167 thermal conductivity, x is the distance away from the heat sink, and q_0 is the heat generation per unit
 168 volume induced by the laser heating. The spatially averaged temperature rise can be obtained based
 169 on the following equation:

170
$$\overline{\Delta T}(t) = \frac{2q_0 L^3}{\kappa(x_2 - x_1)} \sum_{m=1}^{\infty} \frac{1}{m^4 \pi^4} \left[1 - \exp\left(-\frac{m^2 \pi^2 \alpha t}{L^2}\right) \right] \left(\cos \frac{m\pi}{L} x_1 - \cos \frac{m\pi}{L} x_2 \right)^2, \quad (2)$$

171 where α is the thermal diffusivity, and L is the sample length. The normalized temperature rise is
 172 then obtained as:

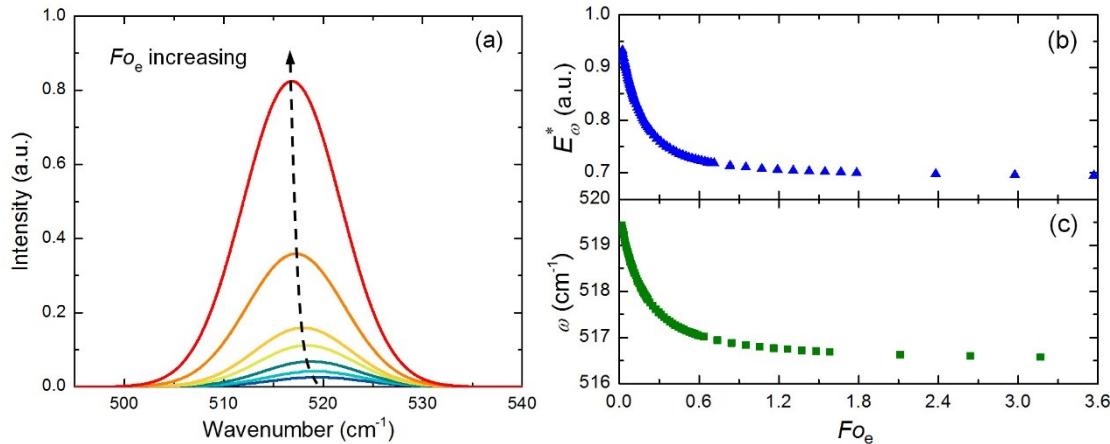
173
$$\overline{\Delta T}^* = \frac{\overline{\Delta T}(t)}{\overline{\Delta T}(t \rightarrow \infty)} = \frac{\sum_{m=1}^{\infty} \frac{1}{m^4 \pi^4} \left[1 - \exp\left(-\frac{m^2 \pi^2 \alpha t}{L^2}\right) \right] \left(\cos \frac{m\pi}{L} x_1 - \cos \frac{m\pi}{L} x_2 \right)^2}{\sum_{m=1}^{\infty} \frac{1}{m^4 \pi^4} \left(\cos \frac{m\pi}{L} x_1 - \cos \frac{m\pi}{L} x_2 \right)^2}. \quad (3)$$

174 As the variations of Raman signal are linearly related to temperature rise, the Raman spectra
 175 obtained in experiment are employed to determine the average temperature rise of the sample in the
 176 heated area. And the accumulative Raman emission for one excitation cycle (from 0 to t_e) is calculated
 177 based on the equation below:

178
$$E_{\omega}(\omega, t_e) = I_0 \int_0^{t_e} (1 - A \overline{\Delta T}^*) \exp \left[-\frac{4 \ln 2 \cdot (\omega - \omega_0 + B \overline{\Delta T}^*)^2}{(\Gamma_0 + C \overline{\Delta T}^*)^2} \right] dt, \quad (4)$$

179 where I_0 , ω_0 , Γ_0 are the corresponding Raman properties at the beginning of laser heating, A , B , C are
 180 the changing rate of Raman intensity, Raman shift, and linewidth against the normalized
 181 temperature. Then, a parameter named Fourier number Fo ($Fo = \alpha t_e / L^2$) is substituted into Equation (4)
 182 to get the following equation:

183
$$E_{\omega}(\omega, Fo_e) = I_0 \int_0^{Fo_e} (1 - A \overline{\Delta T}^*) \exp \left[-\frac{4 \ln 2 \cdot (\omega - \omega_0 + B \overline{\Delta T}^*)^2}{(\Gamma_0 + C \overline{\Delta T}^*)^2} \right] dFo, \quad (5)$$


184 where $Fo_e = \alpha t_e / L^2$. In order to eliminate the integration time's effect, a normalized intensity is used and
 185 the expression is:

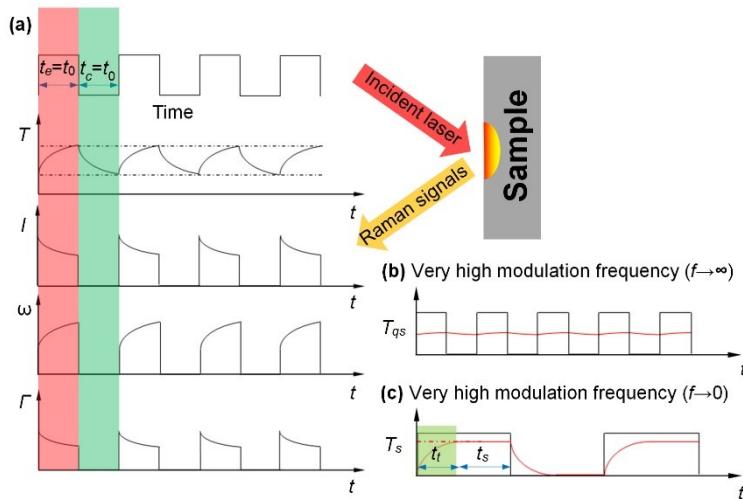
186
$$E_{\omega}^*(\omega, Fo_e) = \frac{I_0}{Fo_e} \int_0^{Fo_e} (1 - A \overline{\Delta T}^*) \exp \left[-\frac{4 \ln 2 \cdot (\omega - \omega_0 + B \overline{\Delta T}^*)^2}{(\Gamma_0 + C \overline{\Delta T}^*)^2} \right] dFo. \quad (6)$$

187 Based on Equation (5), the reconstructed Raman spectra per cycle at different Fo_e is shown in
 188 Figure 5(a). With the increase of Fo_e , the Raman peak is redshifted (softening), the linewidth becomes
 189 slightly broader, and the Raman intensity increases significantly. The variations of normalized
 190 Raman intensity and Raman shift against Fo_e are shown in Figure 5(b) and 5(c). As the temperature
 191 increases rapidly at the beginning of laser heating, the normalized Raman intensity and Raman shift
 192 decrease quickly correspondingly. With the increase of heating time, these two parameters will reach
 193 a constant when the sample reaches steady state. Based on Equation (6), different trial values of
 194 thermal diffusivity are used to find the best fitting curve for the experimental data. The thermal
 195 diffusivity of the silicon cantilever is determined at $9.17 \times 10^{-5} \text{ m}^2/\text{s}$, which is very close to the reference
 196 value of $8.66 \times 10^{-5} \text{ m}^2/\text{s}$ [23]. Similarly, the thermal diffusivity of carbon nanotube fiber is also
 197 determined, which is around $1.74 \times 10^{-5} \text{ m}^2/\text{s}$ [24]. Although this technique has only been used in 1D
 198 materials for concept design and testing, it can also be used to characterize the thermal diffusivity of

199 **2D materials, either supported and suspended.**

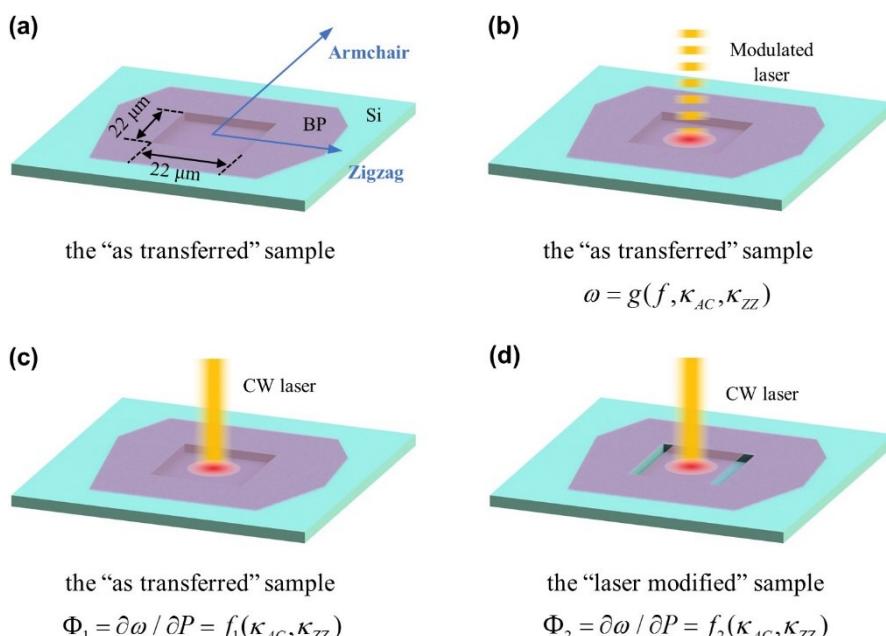
200 For the TD-Raman technique, both temperature rise and laser absorption information are not
 201 needed. Therefore, it provides higher level physics understanding. However, a technical issue faced
 202 in experiment is that: when the heating time is too short, the overall laser on time is very small, and
 203 it takes extremely long time to collect the Raman signal. Thus, stage shift or environment noise will
 204 increase the uncertainty, which indicates that it is extremely challenging to study very fast thermal
 205 transport phenomena. This issue can be resolved using the frequency-resolved Raman (FR-Raman)
 206 technique without sacrificing the measurement accuracy.

207


208 **Figure 5.** (a) The relationship between the reconstructed silicon Raman spectrum per cycle
 209 and the Fourier number. (b) The decreasing trend of the normalized Raman intensity
 210 against the Fourier number. (c) The decreasing trend of the Raman shift against the Fourier
 211 number. Reprinted with permission from [23] © The Optical Society.

212 3.2. Frequency-resolved Raman (FR-Raman)

213 For the FR-Raman technique, as shown in Figure 6, an amplitude-modulated square-wave laser
 214 with different frequencies is used for both sample heating and Raman signals collecting [25]. **Figure**
 215 **6(a) shows that durations of the laser excitation time and the thermal relaxation time are the same.**
 216 The temperatures at the beginning and end of the laser excitation time are frequency-dependent. At
 217 very high frequencies, shown in Figure 6(b), the temperature rise in the laser excitation time and the
 218 temperature fall in the thermal relaxation time are almost negligible. That is, the temperature of the
 219 sample can be assumed to be constant in the whole process. And this state is named as “quasi-steady
 220 state”. At very low frequencies, shown in Figure 6(c), the laser excitation time is long enough for the
 221 temperature rising to a steady-state temperature. Also, the rising period, which was much smaller
 222 than the heating period, can be neglected. As a result, the sample temperature can be seen as a
 223 constant during the excitation time. And this state is termed “steady state”. The temperature rise
 224 values at these two states are then taken as ΔT_{qs} and ΔT_s , where $\Delta T_{qs} = \Delta T_s/2$. As the heating effect
 225 increases with the decrease of frequency, Raman intensity decreases and Raman peak redshifts. The
 226 Gaussian distribution function is used to fit the Raman peaks to obtain precise Raman properties:
 227 intensity, Raman shift, and linewidth. The variation of these properties against the modulation
 228 frequency can be fitted to determine the thermal diffusivity of a sample. The determined thermal
 229 diffusivities of Si based on Raman intensity and Raman shift are $9.57 \times 10^{-5} \text{ m}^2/\text{s}$ and $11.00 \times 10^{-5} \text{ m}^2/\text{s}$,
 230 respectively, which agree well with literature value.


231 The FR-Raman technique not only provides a novel way to probe transient thermal transport
 232 with very high temporal resolution, but also can be used to characterize the anisotropic thermal
 233 conductivities of materials without the need of optical absorption and temperature coefficient [26].
 234 The example given here is for the measurement of black phosphorus (BP). As shown in Figure 7(a),
 235 the armchair and zigzag directions of the suspended BP are aligned along an edge of a square dent.
 236 Figure 7(b) shows that the sample is irradiated by a modulated laser beam and the corresponding
 237 Raman spectra are collected. Then, as shown in Figure 7(c) and 7(d), Raman spectra of the sample

238 before and after cutting are collected upon continuous wave (CW) laser irradiation with different
 239 laser powers. The power differential of the Raman shift Φ_1 and Φ_2 are determined. For these two
 240 parameters, Φ_1 depends on the armchair thermal conductivity κ_{AC} and the zigzag thermal
 241 conductivity κ_{ZZ} , while Φ_2 mainly depends on κ_{AC} . These two values are linearly related to the average
 242 temperature rise in the heating region ΔT_1 and ΔT_2 , which are obtained from the ANSYS simulation
 243 results shown in Figure 8(a) and 8(b). Afterwards, as shown in Figure 8(c), η (κ_{ZZ}/κ_{AC}) can be
 244 determined by interpolating Φ_2/Φ_1 to the simulated curve of $\Delta_2/\Delta T_1$ and η .

245
 246
 247
 248

Figure 6. (a) Mechanism of FR-Raman. (b) Temperature variation at quasi-steady state. (c)
 Temperature variation at very low frequency (close to steady-state). Reprinted with
 permission from [25] © The Optical Society.

249

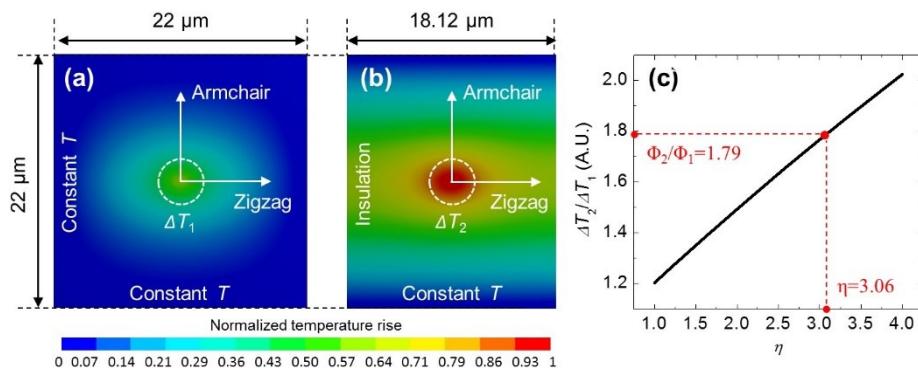
Figure 7. (a) Schematic of a suspended BP sample. (b) Sample irradiated by a modulated
 laser beam. (c) Sample irradiated by a CW laser beam before cutting. (d) Sample irradiated
 by a CW laser beam after cutting at two parallel boundaries. Reprinted from [26], with the
 permission of AIP Publishing.

250
 251
 252
 253

The determination of κ_{AC} is realized by comparing the experimental normalized average temperature rise $\Delta \bar{T}_{nor_e}$ with its simulated counterpart $\Delta \bar{T}_{nor_s}$. In the simulation, κ_{AC} is adjusted to

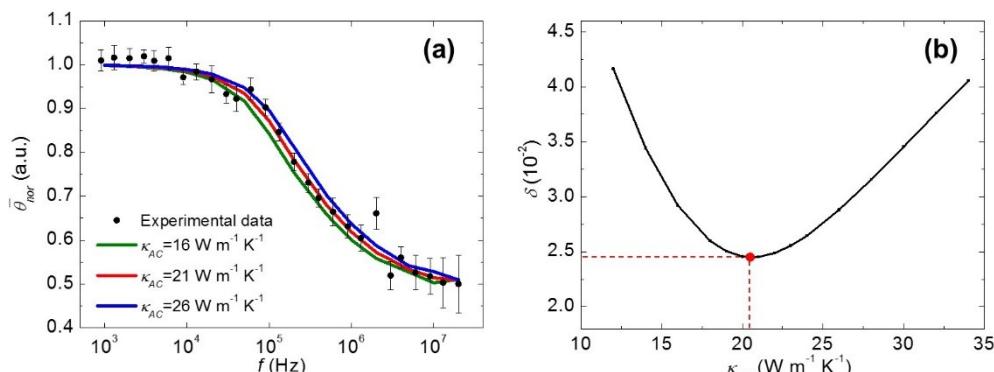
256 reach a minimum standard deviation between $\Delta\bar{T}_{nor_e}$ and $\Delta\bar{T}_{nor_s}$. And $\Delta\bar{T}_{nor_e}$ is calculated from $\omega(f)$
 257 using the equation below:

258


$$\Delta\bar{T}_{nor_e} = 1 + C \cdot [\omega(f) - \omega_s] / \Delta\omega, \quad (7)$$

259 where $\Delta\omega$ and ω_s are obtained from steady state, C is a correction coefficient. Theoretically, $\Delta\bar{T}_{nor_e}$
 260 decreases from 1 (steady state) to 0.5 (quasi-steady state), and the experimental data are shown in
 261 Figure 9(a). ANSYS is also used to simulate the thermal response to determine $\Delta\bar{T}_{nor_e}$, which is equal
 262 to:

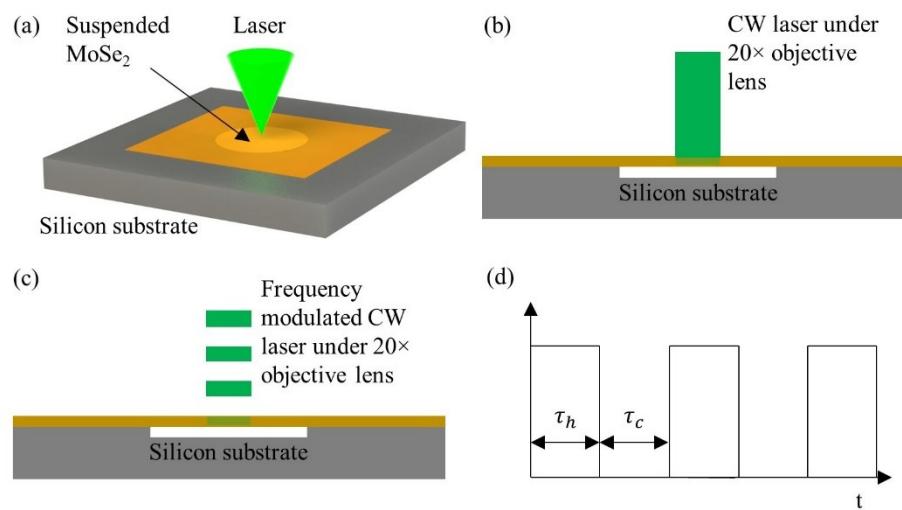
263


$$\Delta\bar{T}_{nor_s} = \frac{\int_0^{1/2f} \sum_{n=0}^{\infty} (-1)^n \cdot \Delta T_s(t_p + n/(2f)) dt}{(1/2f) \cdot \Delta\bar{T}_{\infty}}, \quad (8)$$

264 where $\Delta T_s(t)$ represents the temperature rise as a function of time, $\Delta\bar{T}_{\infty}$ is the average temperature
 265 rise in the steady state. Since η is already known, $\Delta\bar{T}_{nor_s}$ is a function of f and κ_{AC} . Thus, the variation
 266 of $\Delta\bar{T}_{nor_s}$ against f is only determined by κ_{AC} . Figure 9(a) shows three fitting curves by adjusting the
 267 κ_{AC} values. Based on the curve between κ_{AC} and standard deviation δ , shown in Fig. 9(b), the best
 268 fitting value is obtained.

269

270 **Figure 8.** (a) and (b) Simulated normalized temperature rise distribution in the 157.6-nm
 271 thick sample before cutting and after cutting. (c) The theoretical curve of $\Delta T_2 / \Delta T_1$ as a
 272 function of η . Reprinted from [26], with the permission of AIP Publishing.

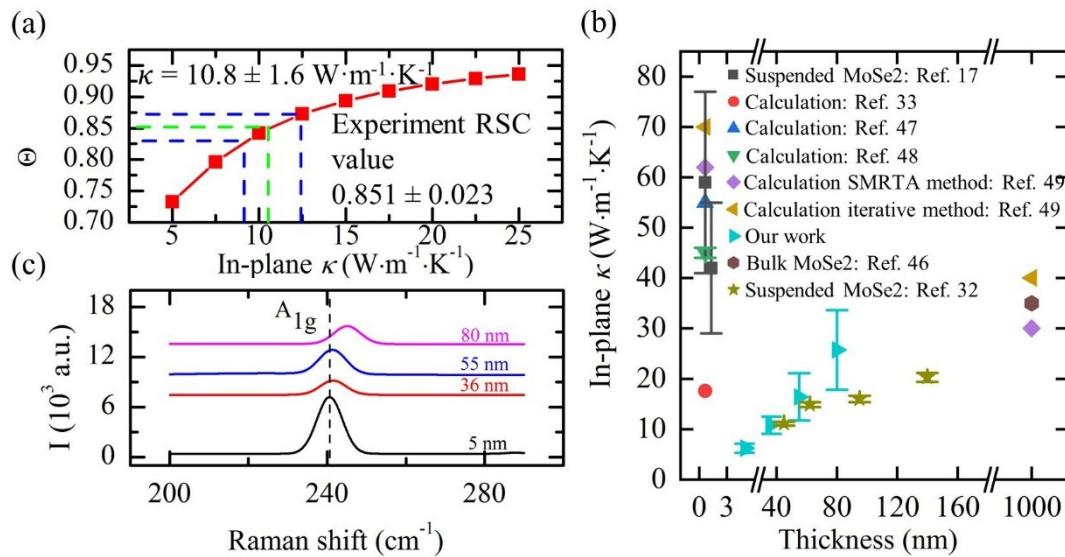

273

274 **Figure 9.** (a) The various theoretical fitting curves of experimental data. (b) The standard
 275 deviation δ of experimental data to theoretical curves as a function of κ_{AC} . Reprinted from
 276 [26], with the permission of AIP Publishing.

277 **3.3. Frequency-domain Energy Transport State-resolved Raman (FET-Raman)**

278 For FR-Raman, the data fitting is for the Raman shift against the modulation frequency, and it

takes quite tremendous measurements. An alternative, named FET-Raman, is to fix the frequency, but vary the laser power and study the Raman shift change against laser power [27, 28]. Here we take the work on MoSe₂ to introduce this technique. The physical principle of this technique is shown in Figure 10. During each heating period, since the thermal diffusion length of MoSe₂ in the cross-plane direction is much longer than the sample thickness, the thermal transport in the cross-plane direction can be neglected. The first energy transport state is the steady state heating constructed by a CW laser, shown in Figure 10(b). By using different laser powers (P), a parameter named Raman shift power coefficient (RSC) is obtained: $\psi_{\text{CW}} = \partial\omega/\partial P = \alpha \cdot (\partial\omega/\partial T) \cdot f_1(\kappa)$, where α is laser absorption coefficient, $\partial\omega/\partial T$ is Raman shift temperature coefficient, and κ is in-plane thermal conductivity of MoSe₂. The second energy transport state is a transient state heating constructed by a square wave modulated CW laser, shown in Figure 10(c) and 10(d). After a sufficient number of heating cycles, the sample temperature will vary periodically with time. As illustrated in Section 3.2, the energy transport state changes from quasi-steady state to steady state with the decrease of frequency. Therefore, an appropriate frequency should be selected to construct a transient state with good sensitivity. Based on the curves shown in Figure 9(a), this frequency should be around the middle of quasi-steady state to steady state range. Then, a similar RSC value is also obtained: $\psi_{\text{FR}} = \partial\omega/\partial P = \alpha \cdot (\partial\omega/\partial T) \cdot f_2(\kappa, \rho c_p)$, where ρc_p is volumetric heat capacity of the sample.



296

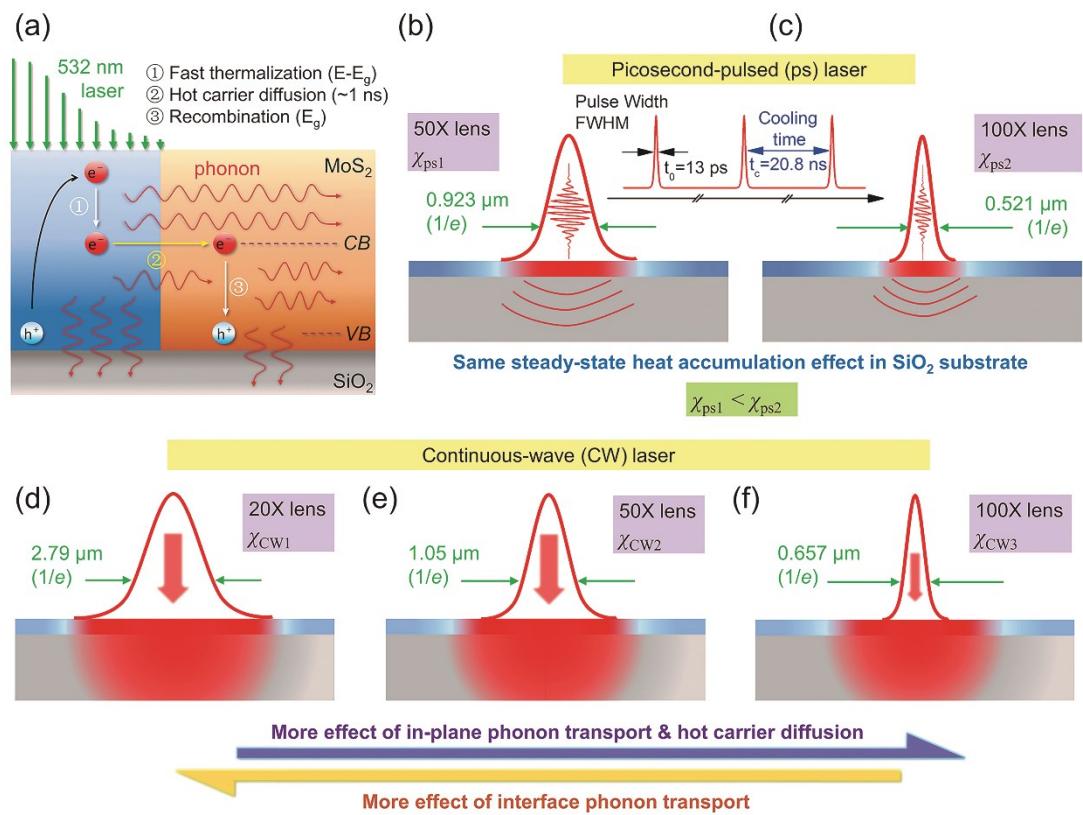
297 **Figure 10.** (a) Schematic of suspended MoSe₂ nanosheet. (b) Suspended MoSe₂ sample
298 under CW laser and (c) under frequency-modulated CW laser heating and Raman
299 excitation. (d) Square wave used to modulate the CW laser. Reprinted from [27], Copyright
300 (2019), with permission from Elsevier.

301 As the thermal diffusion lengths in the two states are different, a dimensionless normalized RSC
302 $\Theta = \psi_{\text{FR}} / \psi_{\text{CW}} = f_3(\kappa, \rho c_p)$ is used to completely eliminate the effects of α and $\partial\omega/\partial T$. In the
303 experiment, very low laser powers are employed to ensure a moderate temperature rise of the
304 sample. This ensures the effect of volumetric heat capacity change with temperature can also be
305 ignored. That is, the normalized RSC is only related to the in-plane thermal conductivity of MoSe₂. A
306 3D numerical modeling is then conducted to characterize the temperature profile under these two
307 states. A theoretical relation between the ratio of temperature rises in the two states and in-plane
308 thermal conductivity is obtained. The in-plane thermal conductivity of the sample can be determined
309 by interpolating the experimental data into the curve. As shown in Figure 11(a), κ of a 36 nm-thick
310 MoSe₂ is determined as $10.8 \pm 1.6 \text{ W} \cdot \text{m}^{-1} \cdot \text{K}^{-1}$. Figure 11(b) shows the κ values of MoSe₂ with different
311 thickness from different studies, and the feasibility of FET-Raman technique firmly verified. **Figure**
312 **11(c) shows the blue shift of Raman spectra with the increased thickness, which means the interlayer**
313 **Van der Waals force in MoSe₂ is increasing.** Additionally, combining with the TET technique, the
314 FET-Raman can also be used to characterize the anisotropic thermal conductivity of carbon fibers

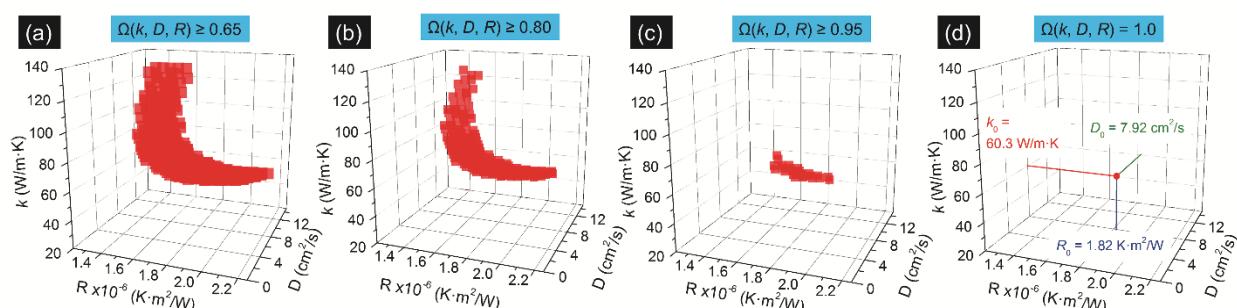
315 [28].

316

317 **Figure 11.** (a) 3D numerical simulation of a 36 nm-thick MoSe₂ sample. (b) Comparison of
 318 in-plane κ values of MoSe₂ nanosheets from different studies. (c) The blue shift of Raman
 319 peak with the increase of sample thickness. Reprinted from [27], Copyright (2019), with
 320 permission from Elsevier.


321 4. Energy Transport State-resolved Raman

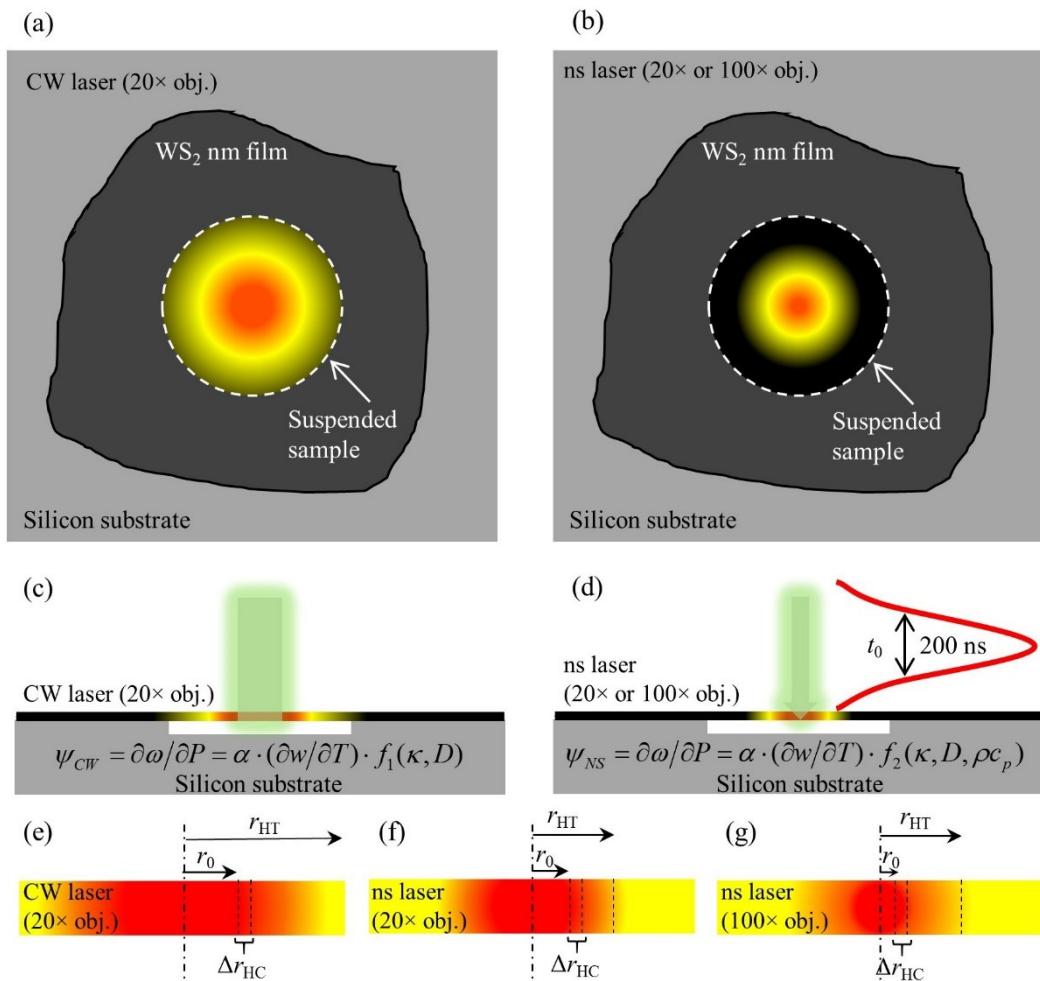
322 Similar to the modulation of laser in TD-Raman technique, the CW laser used in FET-Raman
 323 technique is also modulated with a square wave. In addition to the modulation in time domain, this
 324 energy transport design can also be extended to spatial domain to control the energy transport states.
 325 Yuan *et al.* reports a novel technique for non-contact simultaneous determination of interface thermal
 326 resistance (R) and hot carrier diffusion coefficient (D) of MoS₂ nanosheets on c-Si by varying the laser
 327 heating area [29]. In this work, the constructed two energy transport states are in spatial domain. **To**
 328 **be fully free from the large errors of laser absorption evaluation and temperature coefficient**
 329 **calibration, a further developed technique named energy transport state-resolved Raman (ET-**
 330 **Raman) is developed to determine R and D** [30, 31]. In this technique, three distinct energy transport
 331 states in both spatial and time domains are constructed to probe materials' thermal response.
 332 Furthermore, a five-state ET-Raman technique is proposed to measure κ of MoS₂, and the effects of
 333 R and D are taken into consideration, and all these properties are determined simultaneously [32].


334 Figure 12 (a) shows the physical principles of this technique. A laser with 532 nm wavelength is
 335 used to irradiate the sample for both laser heating and Raman probing. As the excitation energy is
 336 higher than the band gap of MoS₂, three physical processes take place. First, hot carriers are
 337 generated, and then diffuse in space before the electron-hole recombination. Subsequently, phonons,
 338 which receive energy from the hot carriers or electron-hole recombination, transports the energy by
 339 heat conduction. This process mainly depends on κ of the sample. The third process, which is
 340 determined by R , is the heat conduction from MoS₂ to the substrate. As shown in Figure 12 (d) - (f),
 341 combined with three different objective lenses (20 \times , 50 \times , and 100 \times), a CW laser is used to construct
 342 three steady states. Similar to FET-Raman, three RSCs (χ_{CW_1} , χ_{CW_2} , χ_{CW_3}) can be obtained, and we
 343 have $\chi_{\text{CW}_3} > \chi_{\text{CW}_2} > \chi_{\text{CW}_1}$. With the decrease of laser spot size, D and κ play a much more important
 344 role in determining the temperature of the sample. Based on this, the effects of R , κ , and D can be
 345 differentiated.

346 In this technique, two transient states are designed by using a picosecond-pulsed laser with two
 347 objective lenses (50 \times and 100 \times), shown in Figure 12 (b) and (c), to rule out the large errors introduced
 348 by laser absorption evaluation and temperature coefficient calibration. Similarly, two RSCs under the

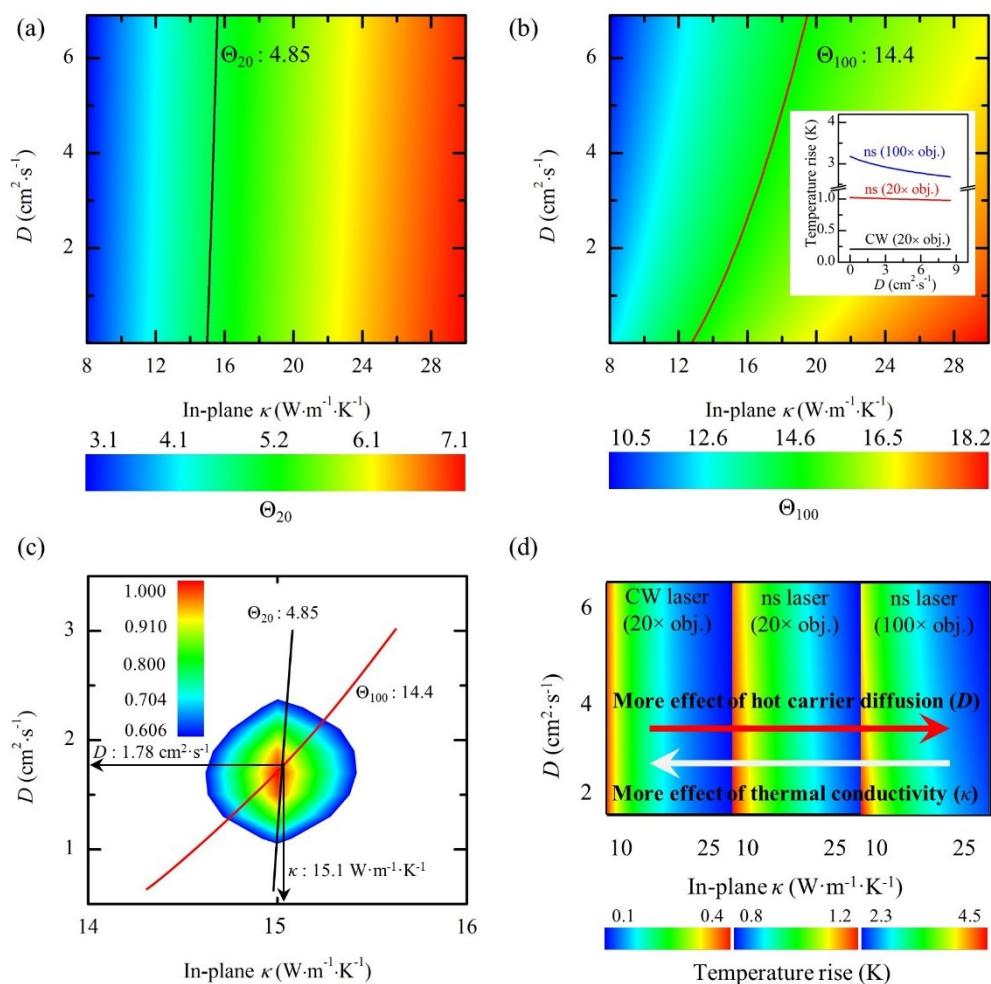
349 two lenses are obtained as χ_{ps_1} and χ_{ps_2} , respectively. And the heat accumulation effect can be
 350 ruled out by taking the difference of these two RSCs as $\chi_{ps_2} - \chi_{ps_1}$. Based on the five measured RSCs,
 351 three dimensionless normalized RSCs $\Theta_1 = \chi_{CW_1}/(\chi_{ps_2} - \chi_{ps_1})$, $\Theta_2 = \chi_{CW_2}/(\chi_{ps_2} - \chi_{ps_1})$, and
 352 $\Theta_3 = \chi_{CW_3}/(\chi_{ps_2} - \chi_{ps_1})$ are obtained. And all these coefficients, which are related to the temperature
 353 rise of the sample, are functions of ρc_p , R , D , and κ .

354
 355 **Figure 12.** The mechanism of five-state ET-Raman technique. (a) Physical processes
 356 happening in MoS₂ upon laser irradiating. (b) and (c) Two transient states in picosecond
 357 laser heating under 50 \times and 100 \times objective lenses. (d) – (f) Three steady states under a CW
 358 laser with 20 \times , 50 \times , and 100 \times objective lenses [32]. Reproduced by permission of the PCCP
 359 Owner Societies.



360
 361 **Figure 13.** The normalized probability distribution function $\Omega(\kappa, D, R)$ with the
 362 probability of 0.65 in (a), 0.80 in (b), 0.95 in (c), and 1.0 in (d) [32]. Reproduced by permission
 363 of the PCCP Owner Societies.

364 A 3D numerical modeling is employed to calculate the temperature rise to determine R , D , and
 365 κ simultaneously. To normalize the (κ, D, R) space data, a normalized probability distribution

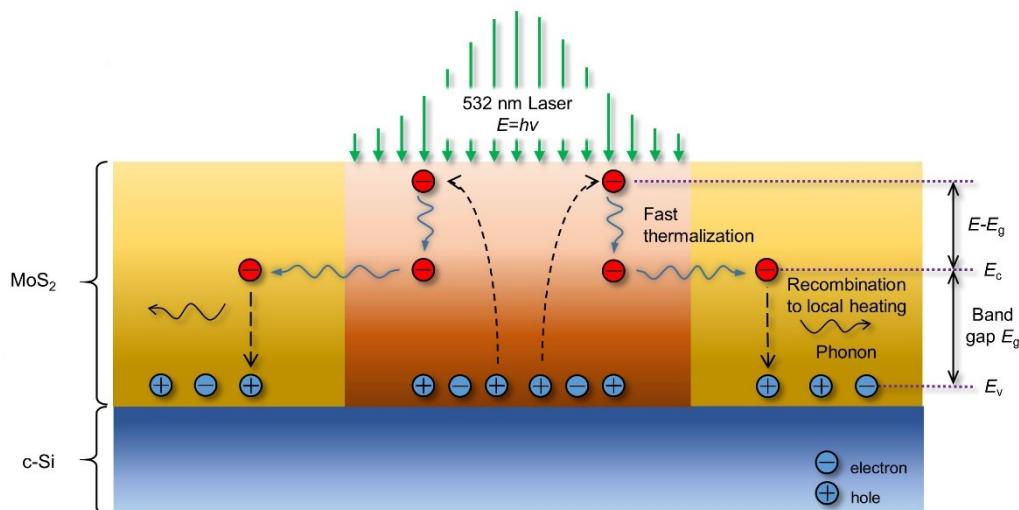

366 function $\Omega_i = \exp\left[-(\Theta_i - \Theta_{\exp_i})^2 / (2\sigma_i^2)\right]$ ($i = 1, 2$, and 3) is employed. Θ_i and Θ_{\exp_i} are
 367 normalized RSCs from 3D modeling and experiment, respectively. σ_i is the experimental
 368 uncertainty. Then, (κ, D, R) of the sample can be determined when a composite probability
 369 distribution function $\Omega(\kappa, D, R) = \Omega_1 \cdot \Omega_2 \cdot \Omega_3$ is equal to 1. Figure 13 shows the determination of the
 370 three parameters for 2.4 nm-thick MoS₂. With the increase of probability level from 0.65 to 1.0, the (κ, D, R)
 371 space range is decreased to have only one point in the space that could give $\Omega(\kappa, D, R) = 1$. Based on this,
 372 there three parameters can be obtained as $\kappa_0 = 60.3 \text{ W} \cdot \text{m}^{-1} \cdot \text{K}^{-1}$, $D_0 = 7.92 \text{ cm}^2 \cdot \text{s}^{-1}$,
 373 and $R_0 = 1.82 \times 10^{-6} \text{ K} \cdot \text{m}^2 \cdot \text{K}^{-1}$, respectively.

374 In addition to supported 2D materials, the ET-Raman technique can also be used for suspended
 375 2D materials. However, a strong heat accumulation will happen in suspended samples because of
 376 the very short pulse interval for the picosecond laser, a nanosecond laser is used instead [33, 34].
 377 Wang *et al.* used one CW laser and one nanosecond laser with the same wavelength to construct the
 378 steady state heating and transient state heating [33]. The in-plane thermal conductivities of
 379 suspended MoS₂ and MoSe₂ with different thickness are measured. However, the hot carrier effect
 380 is not considered in this work. Zobeiri *et al.* developed a 3-state nanosecond ET-Raman technique to
 381 measure κ and D of nm-thick suspended WS₂ films [34].

382
 383 **Figure 14.** (a) and (b) Heat conduction of suspended WS₂ nanosheets irradiated by a CW
 384 and a nanosecond laser. (c) and (d) Steady state and transient state constructed using the
 385 two lasers. (e-g) Heat diffusion length, laser spot radius, and hot carrier diffusion length
 386 under the three states. Reprinted from [34], Copyright (2019), with permission from
 387 Elsevier.

388 In the 3-state nanosecond ET-Raman technique, the three heat transport states are constructed
 389 with two lasers and two objective lenses. As shown in Figure 14 (a), a CW laser with a $20\times$ objective
 390 lens is used to construct the steady state. Figure 14 (b) shows that two transient states are constructed
 391 using a nanosecond pulsed laser and two different objective lenses ($20\times$ and $100\times$). Since the
 392 thickness is very thin, the temperature distribution in the thickness direction is assumed to be
 393 uniform. Similarly, three RSCs under the three states are obtained as ψ_{CW} , ψ_{ns20} , ψ_{ns100} . As shown in
 394 Figure 14 (c), ψ_{CW} is a function of α , κ , D , and Raman temperature coefficient ($\partial\omega/\partial T$). While, both
 395 ψ_{ns20} and ψ_{ns100} are a function of α , κ , D , ρc_p , and $\partial\omega/\partial T$, shown in Figure 14 (d). And the effects of
 396 κ and D can be distinguished by using the two objective lenses to vary the local heating size.
 397 Considering the moderate temperature rise in the experiment, ρc_p can be taken as a constant.

398
 399 **Figure 15.** (a) and (b) Θ for different κ and D values obtained from simulation and
 400 experiments of the 13 nm-thick sample under (a) $20\times$ and (b) $100\times$ objective lenses. (c) Measured κ and D . (d) The sensitivity variation of temperature rise to κ and D under different energy transport states. Reprinted from [34], Copyright (2019), with permission from Elsevier.


404 Based on the three RSCs, two normalized RSCs are defined as $\Theta_{20} = \psi_{ns20}/\psi_{CW}$ and
 405 $\Theta_{100} = \psi_{ns100}/\psi_{CW}$. Then, the effects of α and $\partial\omega/\partial T$ are ruled out. Figure 14 (e-g) shows the heat and
 406 hot carrier diffusion lengths in the in-plane direction of suspended sample. Under steady state, the
 407 heat can transfer to the boundaries of the sample. While under the two transient states, the thermal
 408 transport is nearly confined in the laser spot area. That is, the effect of κ on thermal transport is more
 409 significant under steady state. As shown in Figure 15 (d), the effect of κ becomes less significant with
 410 the decrease of local heating size, while the effect of D becomes more prominent with the decrease of

411 local heating size. The temperature rise under the three states are simulated to obtain the theoretical
 412 Θ values under different κ and D trial values, shown in Figure 15 (a) and (b). The solid lines indicate
 413 that several (κ, D) combinations can match the experimental values. As shown in Figure 15 (c), by
 414 using the two solid lines to locate the cross-point, κ and D values are determined as $15.1 \text{ W}\cdot\text{m}^{-1}\cdot\text{K}^{-1}$
 415 and $1.78 \text{ cm}^2\cdot\text{s}^{-1}$, respectively.

416 In summary, different energy transport states are constructed in both time and space domains
 417 to characterize the thermal properties of supported or suspended samples. Either a picosecond or a
 418 nanosecond laser is used to realize the differential in time domain. Similarly, TDTR technique
 419 measures thermal properties by heating the surface of the sample with a train of laser pulses and
 420 detecting the resulting temperature variation through the reflectivity of the surface with a time-
 421 delayed laser. This technique is able to detect temperature evolution at micrometer-scale and
 422 picosecond-scale resolutions, which indicates that it can be used to explore non-equilibrium thermal
 423 phenomena [14]. The ET-Raman technique in fact measures a material's thermal response within a
 424 pulse in an integral way. It gives an average temperature within a very short time domain (ns or ps),
 425 and provides a completely new way to characterize nanoscale energy transport.

426 5. Probing of Conjugated Hot Carrier Transport

427 In most of the work on Raman study of energy transport in 2D materials, hot carrier diffusion is
 428 not considered, although this effect could be critically important, especially for tightly focused laser
 429 spot ($<0.5 \mu\text{m}$ diameter). Figure 16 shows the physics of hot carrier diffusion. The sample is irradiated
 430 by a laser, the energy of which is higher than the bandgap of MoS_2 . Thus, electrons are excited to the
 431 conduction band while leaving holes in the valence band. Then a fast thermalization process (about
 432 10^{-12} s) happens, and hot carriers dissipate part of the energy to other electrons and lattice. This
 433 process is neglected due to the very short time. The second process is hot carrier diffusion, in which
 434 the remaining photon energy carried by electrons is diffused out of the laser spot area before
 435 recombining with holes. As this process is typically in nanoseconds, it should be taken into
 436 consideration. Afterwards, electrons and holes recombine because of Coulomb attraction, the energy
 437 is released by exciting phonons at the same time. The phonons then dissipate the energy with the
 438 sample and through layers down to the substrate.

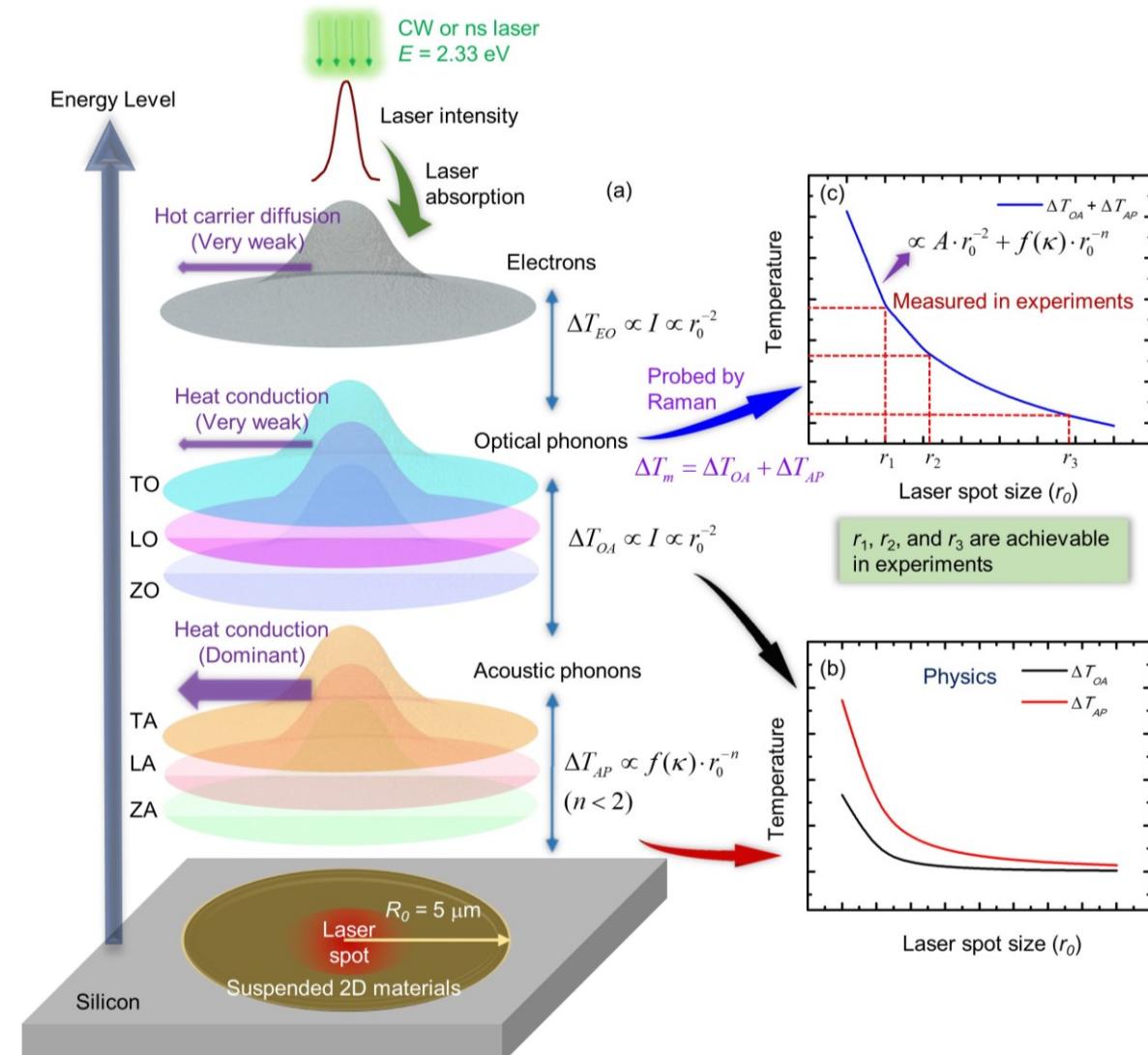
439
 440 **Figure 16.** The physical process of hot carrier diffusion. Reproduced from [29] with
 441 permission from The Royal Society of Chemistry.

442 For steady state, the generation and diffusion of heat and hot carriers are governed by two partial
 443 differential equations. The first one is the carrier diffusion equation to determine the hot carrier
 444 concentration $\Delta N(r, t)$ (cm^{-3}):

445 $D\nabla^2\Delta N - \frac{\Delta N}{\tau} + \frac{\partial n_0}{\partial T_{\text{CW}}} \frac{\Delta T_{\text{CW}}}{\tau} + \Phi\alpha = 0, \quad (9)$

446 where D ($\text{cm}^2\cdot\text{s}^{-1}$) is carrier diffusion coefficient, τ (s) is electron-hole recombination time of the
 447 sample, Φ (photons per cm^3 per s) is incident photon flux of the laser source, n_0 (cm^{-3}) is the
 448 equilibrium free-carrier density at temperature T . The second equation is the thermal diffusion
 449 equation which involves the free carrier density:

450 $\kappa\nabla^2\Delta T_{\text{CW}} + (h\nu - E_g)\Phi\alpha + \frac{E_g\Delta N}{\tau} = 0, \quad (10)$


451 where $\Delta T(r,t)$ (K) and E_g (eV) are temperature rise and bandgap energy of the sample, $h\nu$ is photon
 452 energy of the laser source. Due to the hot carrier diffusion effect, the real heating area will be larger
 453 than the laser irradiating area, and is highly related to the hot carrier diffusion length ($L_D = \sqrt{\tau D}$).
 454 As a result, when the laser spot size is large enough, the hot carrier diffusion will have negligible
 455 effect on the heating area.

456 For transient state, Yuan *et al.* used a picosecond laser to characterize the thermal transport for
 457 supported samples [32]. The laser pulse (13 ps) is so short that the heat conduction becomes very
 458 weak. Then, five transport states in both time and space domains are constructed. κ and R values are
 459 determined by taking D into consideration. Zobeiri *et al.* used a nanosecond laser to study the thermal
 460 transport for suspended samples [34]. Three transport states in both time and space domains are
 461 constructed. κ of the suspended sample is determined by taking D into consideration. As shown in
 462 Figure 15 (a), due to the large laser spot size under $20\times$ objective lens, the effect of D on κ of the
 463 sample is very tiny. While under $100\times$ objective lens, shown in Figure 15 (b), due to the relative small
 464 laser spot size, the effect of D cannot be neglected.

465 6. Probing of Thermal Nonequilibrium among Phonon Branches

466 The physical process happening inside different Raman-based methods consists of energy
 467 transfer among photons, electrons, and phonons. For phonons, three optical branches, which are
 468 longitudinal optical (LO), transverse optical (TO), and flexural optical (ZO) branches, are included.
 469 Similarly, there are also three acoustic branches (LA, TA, and ZA). And the temperatures of these
 470 branches are at nonequilibrium under laser excitation. ZA phonons are the main heat carriers in the
 471 heat conduction process, while optical phonons are the ones probed by Raman spectroscopy. Thus,
 472 neglect of nonequilibrium between ZA phonons and optical phonons can induce significant
 473 underestimation of thermal conductivity. Wang *et al.* designed and employed a nanosecond ET-
 474 Raman technique to explore the temperature nonequilibrium among different phonon branches [35].

475 Figure 17(a) shows the energy transfer process among different energy carriers. Optical phonons
 476 (OP) receive energy from hot carriers, and will have a prominent temperature rise. Then, OP will
 477 transfer majority of the energy to acoustic phonons (AP) through energy coupling. For the
 478 temperature difference between OP and AP, we have $\Delta T_{\text{OA}} \propto I \propto r_0^{-2}$, where I and r_0 are the laser
 479 energy and radius of laser spot. And the temperature rise of AP (ΔT_{AP}) is related to both r_0 and κ , we
 480 have $\Delta T_{\text{AP}} \propto f(\kappa) \cdot r_0^{-n}$ with $n < 2$. As shown in Figure 17(b), with the increase of laser spot size, ΔT_{OA}
 481 decreases to zero faster than ΔT_{AP} , which indicates that the effect of energy coupling between OP
 482 and AP is negligible under very large laser spot. In Raman-based techniques, as shown in Figure 17
 483 (c) the temperature rise of OP, which can be expressed as $\Delta T_m = \Delta T_{\text{OA}} + \Delta T_{\text{AP}} \propto Ar_0^{-2} + f(\kappa) \cdot r_0^{-n}$, is
 484 probed under different laser spot size. Afterwards, the percentages of ΔT_{OA} and ΔT_{AP} in ΔT_m are
 485 determined.

486

487

488

489

490

491

Figure 17. (a) The energy transfer process among different energy carriers in 2D materials under laser irradiation. (b) The temperature difference between optical phonons and acoustic phonons against laser spot size. (c) The determination of thermal conductivity and energy coupling coefficient between optical phonons and acoustic phonons [35]. Figure reproduced with permission from John Wiley and Sons.

492

493

494

In nanosecond ET-Raman experiments, the measured ψ values are linearly related to Raman intensity weighted temperature rise of the sample. The Raman intensity weighted temperature rise measured under steady state can be written as:

495

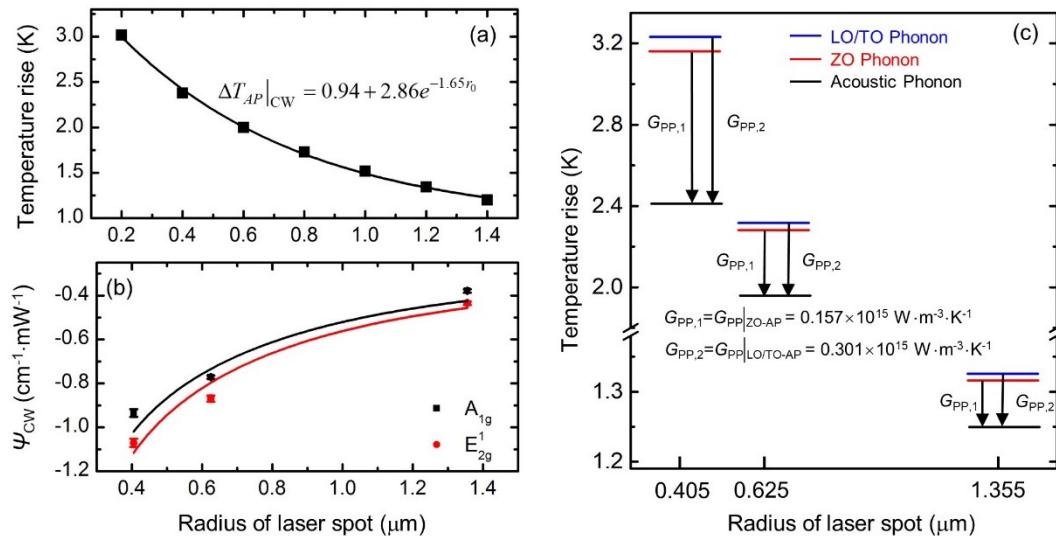
$$\Delta \bar{T}_{\text{m}} \Big|_{\text{CW}} = \Delta \bar{T}_{\text{AP}} \Big|_{\text{CW}} + \frac{1}{3} \cdot \frac{I_0}{\tau_L} \cdot \frac{\delta}{G_{\text{pp}} \Big|_{\text{CW}}}, \quad (11)$$

496

497

498

499


500

where $G_{\text{pp}} \Big|_{\text{CW}}$ is the energy coupling factor between OP and AP, I_0 is the absorbed laser power per unit area at the center of laser spot, τ_L is the laser absorption depth, and δ ($0 < \delta < 1$) is portion of laser energy transferred from the measured Raman mode optical phonons to acoustic phonons. Figure 18 (a) shows the variation of $\Delta \bar{T}_{\text{AP}} \Big|_{\text{CW}}$ against laser spot size using a 3D numerical modeling for the 55 nm thick MoS₂. Based on this, the relation between ψ_{CW} and $\Delta \bar{T}_{\text{m}} \Big|_{\text{CW}}$ can be expressed as:

501

$$\psi_{\text{CW}} = A \cdot \left[(0.94 + 2.86e^{-1.65r_0}) + \frac{1}{3} \cdot \frac{P}{\pi r_0^2 \tau_L} \cdot \frac{\delta}{G_{\text{pp}} \Big|_{\text{CW}}} \right] / P, \quad (12)$$

502 where A is determined by Raman shift temperature coefficient and laser absorption, P is the laser
 503 power, r_0 is the radius of laser spot. Figure 18 (b) shows the ψ_{CW} values under three objective lenses,
 504 and Equation (12) is used to obtain $\psi_{CW} \sim r_0$ fitting curve. Then, the energy coupling factors between
 505 OP and AP for the two Raman modes under steady state are determined as $0.301 \times 10^{15} \text{ W} \cdot \text{m}^{-3} \cdot \text{K}^{-1}$ for
 506 E_{2g}^1 mode and $0.157 \times 10^{15} \text{ W} \cdot \text{m}^{-3} \cdot \text{K}^{-1}$ for A_{1g} mode. Afterwards, the percentages of ΔT_{OA} and ΔT_{AP}
 507 can be distinguished, and the temperatures of LO/TO phonon, ZO phonon, and AP are obtained,
 508 shown in Figure 18 (c). Specifically, the temperature difference between OP and AP takes more than
 509 25% of the measured temperature rise under a small laser spot size. Thus, ΔT_{OA} cannot be neglected
 510 when a small laser spot is used.

511
 512 **Figure 18.** Determination of coupling factor of MoS_2 under steady state. (a) Temperature
 513 rise of acoustic phonons obtained from simulation. (b) Experimental values and fitting
 514 curves of ψ_{CW} against laser spot size. (c) Distinct temperatures of different phonon branches
 515 [35]. Figure reproduced with permission from John Wiley and Sons.

516 However, for the FR-Raman and TD-Raman, this effect is ruled out since they only use the
 517 Raman shift change versus modulation frequency. The phonon branch temperature difference is a
 518 constant and has no effect in the physical data processing. Also in other techniques, like the TET
 519 technique, the phonon branch temperature difference is negligible. In TET, we fit the trend of the
 520 temperature change against time to determine the thermal diffusivity, then determine the thermal
 521 conductivity. The electrons-OP and OP-AP temperature difference will only add a constant value on
 522 the AP temperature, and does not affect the fitting results. Note in the TET technique, since the
 523 heating is over the whole sample and the inter-phonon branch heat current is significantly lower than
 524 the laser intensity in this work, the electron temperature is very close to that of the AP and their
 525 temperature difference is negligible compared with the measured temperature rise. The temperature
 526 difference between electron and AP can be calculated by $T_e - T_{AP} = I^2 RV^{-1} \left[\left(\sum G_{ep} \right)^{-1} + \left(\sum G_{pp} \right)^{-1} \right]$

527 , where I is the current flowing through the sample, R is its resistance at steady state, V is the volume
 528 of the sample, G_{ep} is the coupling factor between electrons and OP. As there are three phonon
 529 branches for both OP and AP, here the sums of all the corresponding coupling factors are used in the
 530 calculation. For instance, the in-plane thermal conductivity of graphene paper is obtained as $634 \text{ W} \cdot \text{m}^{-1} \cdot \text{K}^{-1}$ using the TET technique. The length, width, and thickness of the sample are around 17 mm, 0.28
 531 mm, and 28.6 μm , respectively [36]. Then, based on the coupling factors, the temperature difference
 532 between electrons and AP is calculated to be around $2.8 \times 10^{-8} \text{ K}$, which is negligible compared with a
 533 measured temperature rise of 2 K [35, 37].

535

7. Concluding Remarks and Outlooks

536 As Raman spectroscopy can be used to characterize the energy and charge transport in 2D
 537 materials, many different Raman-based techniques have been developed over the last decade. Steady
 538 state Raman can be used to measure the thermal conductivity and interface thermal resistance.
 539 However, both temperature calibration and laser absorption measurement, which induce large
 540 errors, are needed. To overcome this drawback, techniques involving time resolving, which include
 541 TD-Raman and FR-Raman, are proposed. For TD-Raman, it is not appropriate for studying very fast
 542 thermal transport phenomena. Though FR-Raman can be used for fast thermal transport, a large
 543 number of measurements under different frequencies are required for the data fitting process. Then,
 544 FET-Raman technique, with a fixed frequency, was developed to characterize the thermal properties
 545 by studying the Raman shift change against laser power.

546 For all the Raman-based techniques mentioned above, the hot carrier diffusion effect is not
 547 considered. By constructing different energy transport states in both time and space domains, ET-
 548 Raman techniques are proposed. For supported samples, a picosecond laser and a CW laser are
 549 combined to realize the simultaneous measurement of κ , D , and R . To reduce the heat accumulation
 550 effects in suspended samples, a nanosecond laser and a CW laser are used together to measure κ and
 551 D . As all Raman-based techniques share the similar energy transport process, the neglect of
 552 temperature nonequilibrium among different energy carriers can also introduce errors in the thermal
 553 property characterization. The nanosecond ET-Raman technique is further developed to study the
 554 energy coupling between OP and AP. The corresponding coupling factors are determined, and a
 555 much more accurate thermal conductivity is also obtained. This breakthrough is expected to move
 556 the Raman-based energy transport probing to an unprecedented level.

557 In summary, Raman-based techniques show excellent suitability and performance in
 558 characterizing the energy and charge transport of 2D materials. Additionally, since 2D materials are
 559 extremely thin, the beam scattering techniques (e.g. XRD) cannot obtain sound diffraction signal and
 560 determine the in-plane lattice size. On the other hand, using thermal diffusivity (α) measured by
 561 Raman spectroscopy, we can measure the thermal diffusivity at different temperatures. Then by
 562 using the thermal reffusivity theory, we can extend to obtain the thermal reffusivity at the 0 K limit,
 563 and obtain the structure domain size. The thermal reffusivity model of phonons is expressed as:

$$564 \quad \Theta = \frac{1}{\alpha} = \frac{3}{v^2} \left(\frac{1}{\tau_{\text{phonon}}} + \frac{1}{\tau_{\text{defect}}} \right) = \Theta_0 + C \cdot e^{-B/T}, \quad (13)$$

565 where v is the average group velocity, τ_{phonon} and τ_{defect} are the electron-phonon scattering time and
 566 defect scattering time, respectively. Θ_0 is the thermal reffusivity at the 0 K limit, and is entitled as
 567 residual thermal reffusivity, B is a constant proportional to the material's Debye temperature. Based
 568 on Equation (13), Θ decreases with the decrease of temperature and reaches Θ_0 at the 0 K limit. **And**
 569 **the defect scattering intensity from grain boundary, lattice imperfections, chemical impurities, rough**
 570 **edges, and amorphous structures, etc. can be reflected by Θ_0 .** In addition, the lattice vibration also
 571 weakens and the phonon population decreases as temperature goes down. From Equation (13), Θ_0
 572 can be written as $\Theta_0 = 3 / (v l_0)$, where l_0 is the mean free path limited by defect scattering. l_0 is called
 573 structure thermal domain size, which is actually an effective domain size combining the effect from
 574 three-dimensional crystallite [38-40].

575 During Raman scattering of 2D materials, the intensity in fact reflects some critical properties of
 576 the 2D materials, like electron excitation energy and interface spacing [22]. In TMDs, based on the
 577 light scattering theory and time-dependent perturbation theory, the Raman intensity can be written
 578 as:

$$579 \quad I \propto \left| \frac{1}{[E(T) - E_i - i\Gamma(T)][E(T) - E_s - i\Gamma(T)]} \right|^2, \quad (14)$$

580 where $E(T)$ and $\Gamma(T)$ are exciton's temperature dependent transition energies and damping constants,
 581 respectively. E_i and E_s are the energy of incident and scattered lights. Based on this equation, the
 582 sample temperature will affect electronic band structure, and the corresponding Raman intensity will

583 then be influenced. In addition, the optical properties of the sample and their variation with
584 temperature also affect the Raman intensity. For supported samples, there is an interface spacing
585 between the sample and the substrate. The Raman intensity is altered due to the multi-reflections in
586 this spacing air gap layer. Thus, the interpretation of temperature dependent Raman intensity should
587 take all the factors above into consideration, and it is a critical direction that needs to be explored.

588 Raman-based techniques are also widely used for exploring the thermal properties of monolayer
589 2D materials. Guo *et al.* measured the thermal conductivity of strained monolayer graphene by using
590 optothermal Raman method [41]. Cai *et al.* measured the thermal conductivity and thermal expansion
591 coefficient of suspended monolayer boron nitride by using optothermal Raman method [42]. Yalon
592 *et al.* measured the temperature-dependent thermal boundary conductance of monolayer MoS₂ with
593 AlN and SiO₂ using Raman thermometry technique [43]. However, the radiative electron-hole
594 recombination effect, which significantly affects the measurement accuracy, is not considered in
595 current Raman-based techniques. Further work should consider this effect and significantly advance
596 the understanding.

597 **Author Contributions:** R.W. and T.W. conceived and wrote the review; H.Z. cooperated in bibliographic
598 searches and studies; D.L. and X.W. conceived and revised the paper. All authors have read and agreed to the
599 published version of the manuscript.

600 **Funding:** This research was funded by National Key R&D Program of China (No. 2020YFC2004600 for R.W.)
601 and U.S. National Science Foundation (CBET1930866 for X.W.).

602 **Conflicts of Interest:** The authors declare no conflict of interest.

603 References

1. Cheng, J.; Wang, C.; Zou, X.; Liao, L., Recent advances in optoelectronic devices based on 2D materials and their heterostructures. *Advanced Optical Materials* **2019**, *7* (1), 1800441.
2. Jiang, Q.; Lei, Y.; Liang, H.; Xi, K.; Xia, C.; Alshareef, H. N., Review of MXene electrochemical microsupercapacitors. *Energy Storage Materials* **2020**, *27*, 78-95.
3. Kurapati, R.; Kostarelos, K.; Prato, M.; Bianco, A., Biomedical uses for 2D materials beyond graphene: Current advances and challenges ahead. *Adv Mater* **2016**, *28* (29), 6052-6074.
4. Grigoropoulos, C. P., Laser synthesis and functionalization of nanostructures. *International Journal of Extreme Manufacturing* **2019**, *1* (1), 012002.
5. Ahmadi, Z.; Yakupoglu, B.; Azam, N.; Elafandi, S.; Mahjouri-Samani, M., Self-limiting laser crystallization and direct writing of 2D materials. *International Journal of Extreme Manufacturing* **2019**, *1* (1), 015001.
6. Chen, R.; Li, Y.-C.; Cai, J.-M.; Cao, K.; Lee, H.-B.-R., Atomic level deposition to extend Moore's law and beyond. *International Journal of Extreme Manufacturing* **2020**, *2* (2), 022002.
7. Fang, F.; Zhang, N.; Guo, D.; Ehmann, K.; Cheung, B.; Liu, K.; Yamamura, K., Towards atomic and close-to-atomic scale manufacturing. *International Journal of Extreme Manufacturing* **2019**, *1* (1), 012001.
8. Xu, X.; Chen, J.; Li, B., Phonon thermal conduction in novel 2D materials. *Journal of Physics: Condensed Matter* **2016**, *28* (48), 483001.
9. Song, H.; Liu, J.; Liu, B.; Wu, J.; Cheng, H.-M.; Kang, F., Two-dimensional materials for thermal management applications. *Joule* **2018**, *2* (3), 442-463.
10. Chen, J.; Walther, J. H.; Koumoutsakos, P., Strain engineering of Kapitza resistance in few-layer graphene. *Nano Lett* **2014**, *14* (2), 819-825.
11. Cai, Y.; Lan, J.; Zhang, G.; Zhang, Y.-W., Lattice vibrational modes and phonon thermal conductivity of monolayer MoS₂. *Phys Rev B* **2014**, *89* (3), 035438.
12. Lindsay, L.; Broido, D. A.; Mingo, N., Flexural phonons and thermal transport in graphene. *Phys Rev B* **2010**, *82* (11), 115427.
13. Sullivan, S.; Vallabhaneni, A.; Kholmanov, I.; Ruan, X.; Murthy, J.; Shi, L., Optical generation and detection of local nonequilibrium phonons in suspended graphene. *Nano Lett* **2017**, *17* (3), 2049-2056.
14. Jiang, P.; Qian, X.; Yang, R., Tutorial: Time-domain thermoreflectance (TDTR) for thermal property characterization of bulk and thin film materials. *J Appl Phys* **2018**, *124* (16), 161103.

633 15. Jo, I.; Pettes, M. T.; Kim, J.; Watanabe, K.; Taniguchi, T.; Yao, Z.; Shi, L., Thermal conductivity and
634 phonon transport in suspended few-layer hexagonal boron nitride. *Nano Lett* **2013**, *13* (2), 550-554.

635 16. Wang, H.; Sen, M., Analysis of the 3-omega method for thermal conductivity measurement. *International
636 Journal of Heat and Mass Transfer* **2009**, *52* (7), 2102-2109.

637 17. Shahil, K. M.; Balandin, A. A., Graphene-multilayer graphene nanocomposites as highly efficient thermal
638 interface materials. *Nano Lett* **2012**, *12* (2), 861-867.

639 18. Yue, Y.; Zhang, J.; Wang, X., Micro/Nanoscale spatial resolution temperature probing for the interfacial
640 thermal characterization of epitaxial graphene on 4H-SiC. *Small* **2011**, *7* (23), 3324-3333.

641 19. Tang, X.; Xu, S.; Zhang, J.; Wang, X., Five orders of magnitude reduction in energy coupling across
642 corrugated graphene/substrate interfaces. *ACS Appl Mater Interfaces* **2014**, *6* (4), 2809-2818.

643 20. Tang, X.; Xu, S.; Wang, X., Corrugated epitaxial graphene/SiC interfaces: photon excitation and probing.
644 *Nanoscale* **2014**, *6* (15), 8822-8830.

645 21. Yuan, P.; Li, C.; Xu, S.; Liu, J.; Wang, X., Interfacial thermal conductance between few to tens of
646 layered-MoS₂ and c-Si: Effect of MoS₂ thickness. *Acta Materialia* **2017**, *122*, 152-165.

647 22. Zobeiri, H.; Xu, S.; Yue, Y.; Zhang, Q.; Xie, Y.; Wang, X., Effect of temperature on Raman intensity of
648 nm-thick WS₂: combined effects of resonance Raman, optical properties, and interface optical interference.
649 *Nanoscale* **2020**, *12* (10), 6064-6078.

650 23. Xu, S.; Wang, T.; Hurley, D.; Yue, Y.; Wang, X., Development of time-domain differential Raman for
651 transient thermal probing of materials. *Opt Express* **2015**, *23* (8), 10040-10056.

652 24. Li, C.; Xu, S.; Yue, Y.; Yang, B.; Wang, X., Thermal characterization of carbon nanotube fiber by time-
653 domain differential Raman. *Carbon* **2016**, *103*, 101-108.

654 25. Wang, T.; Xu, S.; Hurley, D. H.; Yue, Y.; Wang, X., Frequency-resolved Raman for transient thermal
655 probing and thermal diffusivity measurement. *Opt. Lett.* **2016**, *41* (1), 80-83.

656 26. Wang, T.; Han, M.; Wang, R.; Yuan, P.; Xu, S.; Wang, X., Characterization of anisotropic thermal
657 conductivity of suspended nm-thick black phosphorus with frequency-resolved Raman spectroscopy. *J Appl Phys* **2018**, *123* (14), 145104.

658 27. Zobeiri, H.; Wang, R.; Wang, T.; Lin, H.; Deng, C.; Wang, X., Frequency-domain energy transport
659 state-resolved Raman for measuring the thermal conductivity of suspended nm-thick MoSe₂. *International
660 Journal of Heat and Mass Transfer* **2019**, *133*, 1074-1085.

661 28. Wang, R.; Zobeiri, H.; Lin, H.; Qu, W.; Bai, X.; Deng, C.; Wang, X., Anisotropic thermal
662 conductivities and structure in lignin-based microscale carbon fibers. *Carbon* **2019**, *147*, 58-69.

663 29. Yuan, P.; Liu, J.; Wang, R.; Wang, X., The hot carrier diffusion coefficient of sub-10 nm virgin MoS₂:
664 uncovered by non-contact optical probing. *Nanoscale* **2017**, *9* (20), 6808-6020.

665 30. Yuan, P.; Wang, R.; Tan, H.; Wang, T.; Wang, X., Energy transport state resolved Raman for probing
666 interface energy transport and hot carrier diffusion in few-layered MoS₂. *ACS Photonics* **2017**, *4* (12), 3115-
667 3129.

668 31. Yuan, P.; Tan, H.; Wang, R.; Wang, T.; Wang, X., Very fast hot carrier diffusion in unconstrained MoS₂
669 on a glass substrate: discovered by picosecond ET-Raman. *Rsc Adv* **2018**, *8* (23), 12767-12778.

670 32. Yuan, P.; Wang, R.; Wang, T.; Wang, X.; Xie, Y., Nonmonotonic thickness-dependence of in-plane
671 thermal conductivity of few-layered MoS₂: 2.4 to 37.8 nm. *Physical Chemistry Chemical Physics* **2018**, *20* (40),
672 25752-25761.

673 33. Wang, R.; Wang, T.; Zobeiri, H.; Yuan, P.; Deng, C.; Yue, Y.; Xu, S.; Wang, X., Measurement of the
674 thermal conductivities of suspended MoS₂ and MoSe₂ by nanosecond ET-Raman without temperature
675 calibration and laser absorption evaluation. *Nanoscale* **2018**, *10* (48), 23087-23102.

676 34. Zobeiri, H.; Wang, R.; Zhang, Q.; Zhu, G.; Wang, X., Hot carrier transfer and phonon transport in
677 suspended nm WS₂ films. *Acta Materialia* **2019**, *175*, 222-237.

678 35. Wang, R.; Zobeiri, H.; Xie, Y.; Wang, X.; Zhang, X.; Yue, Y., Distinguishing optical and acoustic
679 phonon temperatures and their energy coupling factor under photon excitation in nm 2D materials.
680 *Advanced Science* **2020**, *7* (13), 2000097.

681 36. Xie, Y.; Yuan, P.; Wang, T.; Hashemi, N.; Wang, X., Switch on the high thermal conductivity of
682 graphene paper. *Nanoscale* **2016**, *8* (40), 17581-97.

683 37. Lu, Z.; Vallabhaneni, A.; Cao, B.; Ruan, X., Phonon branch-resolved electron-phonon coupling and the
684 multitemperature model. *Phys Rev B* **2018**, *98* (13), 134309.

685

686 38. Xie, Y.; Zhu, B.; Liu, J.; Xu, Z.; Wang, X., Thermal reffusivity: uncovering phonon behavior, structural
687 defects, and domain size. *Frontiers in Energy* **2018**, *12* (1), 143-157.

688 39. Han, M.; Liu, J.; Xie, Y.; Wang, X., Sub- μ m c-axis structural domain size of graphene paper uncovered
689 by low-momentum phonon scattering. *Carbon* **2018**, *126*, 532-543.

690 40. Liu, J.; Qu, W.; Xie, Y.; Zhu, B.; Wang, T.; Bai, X.; Wang, X., Thermal conductivity and annealing
691 effect on structure of lignin-based microscale carbon fibers. *Carbon* **2017**, *121*, 35-47.

692 41. Guo, M.; Qian, Y.; Qi, H.; Bi, K.; Chen, Y., Experimental measurements on the thermal conductivity of
693 strained monolayer graphene. *Carbon* **2020**, *157*, 185-190.

694 42. Cai, Q.; Scullion, D.; Gan, W.; Falin, A.; Zhang, S.; Watanabe, K.; Taniguchi, T.; Chen, Y.;
695 Santos, E. J. G.; Li, L. H., High thermal conductivity of high-quality monolayer boron nitride and its thermal
696 expansion. *Science Advances* **2019**, *5* (6), eaav0129.

697 43. Yalon, E.; Aslan, Ö. B.; Smithe, K. K. H.; McClellan, C. J.; Suryavanshi, S. V.; Xiong, F.; Sood, A.;
698 Neumann, C. M.; Xu, X.; Goodson, K. E.; Heinz, T. F.; Pop, E., Temperature-dependent thermal
699 boundary conductance of monolayer MoS₂ by Raman thermometry. *ACS Appl Mater Interfaces* **2017**, *9* (49),
700 43013-43020.

701

© 2020 by the authors. Submitted for possible open access publication under the terms and conditions of the Creative Commons Attribution (CC BY) license (<http://creativecommons.org/licenses/by/4.0/>).