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Shapes of fluid membranes with chiral edges
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We carry out Monte Carlo simulations of a colloidal fluid membrane with a free edge and composed of chiral
rodlike viruses. The membrane is modeled by a triangular mesh of beads connected by bonds in which the bonds
and beads are free to move at each Monte Carlo step. Since the constituent viruses are experimentally observed
to twist only near the membrane edge, we use an effective energy that favors a particular sign of the geodesic
torsion of the edge. The effective energy also includes the membrane bending stiffness, edge bending stiffness,
and edge tension. We find three classes of membrane shapes resulting from the competition of the various terms
in the free energy: branched shapes, chiral disks, and vesicles. Increasing the edge bending stiffness smooths the
membrane edge, leading to correlations among the membrane normals at different points along the edge. The
normalized power spectrum for edge displacements shows a peak with increasing preferred geodesic torsion.
We also consider membrane shapes under an external force by fixing the distance between two ends of the
membrane and finding the shape for increasing values of the distance between the two ends. As the distance
increases, the membrane twists into a ribbon, with the force eventually reaching a plateau.
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I. INTRODUCTION

Fluid membranes are ubiquitous in biological systems and
exhibit various shapes due to their fluidity and the constraints
of a fixed area and fixed volume. While closed membrane
vesicles show a wide range of shapes including pears, dis-
cocytes, stomatocytes, and toroids [1], membranes with free
edges can form shapes other than flat disks. For example, col-
loidal membranes composed of aligned rodlike chiral viruses
in the presence of a polymer depletant are typically found
to have open edges and form twisted ribbon shapes. The
handedness of a ribbon, defined by the handedness of the
helical edge of the ribbon, is determined by the intrinsic
chirality of the viruses; reversing the chirality of the viruses
reverses the handedness of the ribbons [2—4]. Lipid bilayer
membranes with free edges also play a role during the forma-
tion of vesicles [5-7] and can be stabilized by reducing the
line tension of the edge [8,9]. Likewise, liposomes exposed
to increasing levels of the protein talin form liposomes with
stable holes, cup-shaped liposomes, and, finally, lipid bilayer
sheets [10,11]. Helical ribbons are also seen as intermediate
states in the formation of self-assembled tubes from lipid
molecules [12,13].

In this paper, we use Monte Carlo (MC) simulations to
study the configurations that arise in a simple effective model
for colloidal membranes. A theoretical model of the mechan-
ics of colloidal membranes must account for the bending
energy of the membrane, the chiral liquid crystal energy asso-
ciated with the orientational ordering of the rodlike colloidal
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particles, and, finally, the energy associated with the free
edges of the membrane. Models that have been developed
to date include phenomenological Landau models [14-17],
entropically motivated models [18,19], and hard-body simu-
lations [20,21].

There are two competing effects governing the alignment
of the rodlike viruses in a colloidal membrane. One is the
tendency for the rods to line up side by side. The other is a
tendency for the rods to twist due to their intrinsic chirality.
These two tendencies are incompatible and thus the twist is
confined to a region near the membrane edge. The thickness of
this region is known as the twist penetration depth [22]. If the
twist penetration depth is small compared to the lateral dimen-
sions of the membrane, as is often the case in these colloidal
membranes, the liquid crystalline degrees of freedom can be
accounted for by an effective theory in which the local degrees
of freedom do not appear explicitly, and the energy depends
only on the geometric properties of the surface. This approach
was taken by Jia et al. [17], who accounted for the liquid
crystalline degrees of freedom with an effective edge energy
which includes an edge tension term involving the length
of the perimeter, a bending energy cost for the curvature of
the edge, and a chiral term involving the geodesic torsion
of the edge. The geodesic torsion is the rate that the normal
to the surface twists around the edge of the surface [23].
Even when using this simplified model it is difficult, if not
impossible, to analytically predict the equilibrium shapes of
the membranes. Instead, specific shapes must be assumed and
then the theory can assess which of those shapes will be
energetically favorable. A more comprehensive theory would
predict a priori the shape of the membrane given parameters
such as the depletant concentration and virus chirality.
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In this article, we take an important step towards devel-
oping such a comprehensive theoretical approach by carrying
out MC simulations of a discrete version of the continuum
model used by Jia et al. [17]. In our discrete model, the
membrane is a triangular network consisting of hard spher-
ical beads connected together by bonds [24,25]. Fluidity
of the membrane is imposed by allowing for bond recon-
nections [26]. We first determine the topology changes of
nonchiral membranes, recapitulating the results in Ref. [5],
which include MC simulations showing a first-order transition
from a branched-polymer shape to a closed vesicle at a low
bending stiffness, as well as theoretical arguments indicating a
transition from flat disks to closed vesicles at a higher bending
stiffness. With greater computational power we are able to
extend the simulation results of Ref. [5] to higher values of
the membrane bending stiffness and study the transition from
flat disks to closed vesicles.

Then we consider the effects of chirality on the membrane
shape, both in the interior and on the edge. Finally, inspired
by the experiments in Refs. [3] and [27], where colloidal
membranes were stretched using optical tweezers, we fix the
locations of two beads on opposite sides of the membrane
and measure the energy of the system as the distance between
these two beads is varied. From this energy we can deduce the
force needed to stretch the membrane and compare our results
qualitatively to the experimentally measured values.

II. CONTINUUM MODEL

The continuum model used by Jia et al. [17] is given
by the following Hamiltonian, consisting of a bending term
integrated over the area of the membrane and an edge term
integrated over the perimeter:

H =Hp + He. (1

The bending energy H;, is the Canham-Helfrich en-
ergy [28,29],

Hy, = /dA[g(ZH)2+/ZK], )

where « is the bending modulus, H = (1/R; + 1/R;,)/2 is the
mean curvature, ¥ is the Gaussian curvature modulus, K =
1/(R1R,) is the Gaussian curvature, and R; and R, are the two
principal radii of curvature of the surface.

The modulus & is of the order of hundreds of kg7 [17,19]
and « is of the order of 10000 kzT [30]. The effective edge
energy #, proposed by Jia et al. is given by

B 2 B *\2
’He=¢ds )\.+Ek +5(Tg—fg) s (3)

where X is the line tension, B is the edge bending stiffness,
and k is the curvature of the edge. The effect of chirality is
introduced in the last term of the above equation with the edge
torsional modulus B’ and the geodesic torsion 7, = T (. x
dfi./ds). The geodesic torsion is the rate of rotation of the sur-
face normal fi. around the tangent T of the edge [23,31]. The
parameter 7, is the spontaneous geodesic torsion of the edge
and represents the chirality of the constituent virus particles
which comprise the membrane. The sign of 7, is determined
by the chirality of the particles.
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FIG. 1. Maximum bond lengths for self-avoidance of the mem-
brane. The figures show a triangle of beads (a) in the interior and
(b) at the edge of the membrane. Self-avoidance means that the fourth
bead cannot pass through the triangle. The figures show the threshold
for self-avoidance, i.e., the fourth bead could pass through if any of
the bond lengths are increased. The dashed line joins the center of the
fourth bead and any of the centers of the beads forming the triangle
and has length oy, the diameter of a bead. (a) We see that [, the
maximum length of a bond in the membrane interior, is given by
Iy = +/300. (b) In the obtuse triangle at the membrane edge the edge
bond (horizontal line) has length /;, the maximum possible value for
an edge bond, while the other two sides of the triangle have length /o,
the maximum length for interior bonds. From the figure we deduce

that Iy = lpy/4 — 12/0¢.

II1. DISCRETE MODEL

We discretize the model in the previous section using a
bond-and-bead model for self-avoiding membranes [24]. The
continuous two-dimensional membrane surface is replaced by
a triangular mesh M with hard-sphere beads of diameter oy
on vertices of the mesh which are connected by bonds. Each
bead can be thought of as a coarse-grained group of virus
particles. A bond connecting two beads does not allow them
to move farther apart than a distance [y for interior bonds
and /; for edge bonds. We choose [; > [y, so that triangles
at the membrane edge are more obtuse than those in the
interior of the membrane. If the triangles at the edge of the
membrane are too acute, the removal of an edge bond would
be prohibited because it would require a large edge bending
cost. With /; > [y we avoid this problem. For beads separated
by a distance less than /y in the interior and less than /; at the
edge (but greater than oy because of the beads’ hard cores),
we assume that there is no interaction between the beads, even
when they are connected by bonds. To avoid self-intersection
of the membrane where one bead might pass through the
center of a triangle formed by three other beads, we require
that [y < \/gao and [} < [pv4 — lg/oo2 (see Fig. 1).

The energy of a configuration of beads and bonds is given
by discretizing Eqs. (2) and (3), subject to the constraints
imposed by the hard cores of the beads and the presence of
bonds. For all but the last term in Eq. (3), we use discretized
forms of the terms appearing in the total energy Eq. (1) that
have appeared previously in the literature. The discretized
mean curvature H (i) at bead i is [24,32-35]

. L. . dij .
H(i) = 3-(0)- %E(ri — 7)), 4)
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where the sum is over the neighbors j(i) of bead i, and fi(7) is
the surface normal at bead i. The surface normal at bead i is
defined as [36]

AG) =

®)

where the sum is over all of the triangles with one vertex at i,
n; is the direction normal to the jth triangle, and 6; is the inte-
rior angle of triangle j at vertex i. The distance between bead i
and bead j is [;; = |F; — ¥;|, where ¥, is the position vector of
bead i. The length d;; is given by d;; = [;;(cot0; + cot 6,)/2,
where 0, and 6, are the angles opposite bond ij in the two
triangles which meet at the bond, and o; = ) i) dijlij/4 is
the area of the cell on the virtual dual lattice centered at bead
i. See Ref. [35] for a detailed explanation of this discretized
mean curvature. Since calculating H (i) requires that every
bond connecting to i has two neighboring triangles, which is
not satisfied for an edge bond, we only include beads in the
membrane interior when calculating the bending energy. The
integral of Gaussian curvature is connected with the geodesic
curvature of the edge curve by the Gauss-Bonnet theorem,
[ dAK = 2m — ¢ dsk,, where the discretized geodesic cur-
vature is dskg(i) = — Zj 0; [37,38], and 6; is the interior
angle of triangle j incident to i. For the present case of a
membrane with a single edge, we have found that a small
nonzero Gaussian curvature modulus has little effect on our
results. We discard the Gaussian curvature for the following
discussion. Therefore, the discretized bending energy E} is

E, =35 Y o CHM), (©6)

ieM

where M is the interior of triangular mesh M.
Turning now to the edge energy, we write the discretized
form k(i) of the edge curvature as

0;
k(i) = —, 7
) as) (7N
where 6; is the angle between bonds i, (i — 1) and 7, (i + 1),
and the differential edge length is given by

ds(i) = $ (i1 + i) 3
with i — 1,i + 1 denoting the neighboring beads of i on the
edge.

To construct the discretized geodesic torsion, T,(i), we

denote by fi.(i) the surface normal for a bead at the edge,
using the same formula (5), as for beads in the interior. Then

we define
. |:ﬁc(i) X

Thus, the discretized edge energy E, is given by

Fiy1 — I

T,(i) =

0.+ lz)d_ I.Alc(i - 1)} ©)
s(i)

lic1,i1

B B
E, = Z ds(i){)» + 5k2(i) + 5 () — r;‘f}, (10)
icdM

where 9 M is the edge of the triangular mesh M, and the total
discretized energy is Eyy = Ep, + E,.

IV. MONTE CARLO SIMULATIONS:
METHODOLOGY AND RESULTS

A. Methodology

To sample the configuration space of the discrete model,
we use MC updates for the beads, the bonds, and the edge
as shown in Fig. 2. We measure lengths in units of oy and
energy in units of kg7. The bead positions are updated by
choosing a bead at random and giving it a uniform random
translation within a cube of side length 2¢ centered on the
bead. Bonds not on the edge are updated by choosing one at
random and moving it as shown in Fig. 2 [26]. Bonds on the
edge are updated by replacing a single edge bond of a triangle
bordering the edge with the two bonds of the same triangle as
shown in Fig. 2. Edge bonds can also be updated by reversing
this process, replacing two neighboring edge bonds by one
and creating a new triangle bordering the edge.

Our simulation should satisfy the condition of detailed bal-
ance, 71(S)T(S - &) =n(S"T(S' — S), where 7(S) =
exp[—BE(S)] is the Boltzmann weight of state S, and T (S —
§’) is the transition probability from state S to state S’. To
satisfy this condition, we use the Metropolis-Hasting algo-
rithm [39—41], which takes the transition probability to be
the product of an acceptance probability a(S — S’) and the
conditional probability p(S — S’) of moving to state S’ given
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FIG. 2. Monte Carlo updates for the beads, internal bonds, and
edge bonds of the membrane. Edge bonds are indicated by a heavy
solid line. The updated bead and bond are highlighted with a black
dashed line; each update is reversible. The beads have a diameter oy
and do not overlap due to hard-core repulsion. The apparent overlap
of the beads is due to projection from three to two dimensions; the
relative out-of-plane position of the beads and the bonds is repre-
sented by the transparency.
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that the system is in state S. The acceptance probability is
given by

a(S — &) = min [1 w] (11)

C (S = Sn(S)

We have p(S — S§’) = p(§’ — S) for bead moves and inter-
nal bond flips, since the total numbers of beads and internal
bonds before and after these updates remain fixed. However,
p(S — 8 # p(S" — S) for edge updates; e.g., if there are
L beads on the edge for state S, and L + 1 for state S’, then
p(S —> S)=1/Land p(§' — S)=1/(L+1).

In the simulation, 1.6 x 103 MC steps are performed for
each set of parameters. Each step is composed of N/t at-
tempts at moving a bead chosen at random and N/t? attempts
at flipping a bond chosen at random. We also make +/N /¢?
attempts at edge shrinkage or extension. We equilibrate the
system for the first 8 x 10* steps. To eliminate the bias in-
troduced by the initial configuration, we start the simulation
at a high temperature 8 = 0.1 and gradually cool it down by
8B = 0.1 for every 4 x 10° steps until it has reached g = 1,
then equilibrate for another 4 x 10* steps, and then record
the data for the remaining 8 x 10* steps. The uncertainty in
the observables is estimated using Sokal’s method [42]. The
value r = 0.2 is used in updating bead positions. To avoid the
formation of a hexatic phase, the maximum bond length is set
to Ip = 1.56 [43] and [; = 1.95 in all of our simulations. We
now present the results of our simulations.

B. Disk-to-vesicle transition

We begin by investigating the simple topology change from
a disk to a closed vesicle, which is driven by the competition
between the line tension and the bending stiffness. For this
simulation, we include the line tension as the only edge energy
term. Due to advances in computing power over the past two
decades, we are able to study membranes with larger bending
stiffnesses (or, equivalently, lower temperatures) compared to
previous work by Boal and Rao [5]. With their lower value of
bending stiffness, Boal and Rao studied the transition from a
vesicle to a branched-polymer-like membrane with free edges,
with the length of the perimeter scaling like the number of
particles N. In our simulations, the bending stiffness can be
large enough that the state with free edges is a flat disk,
with the length of the perimeter scaling like N'/2. We recall
that branched-polymer-like shapes are also possible for closed
vesicles [44] with a low bending stiffness and high edge ten-
sion, but we do not study this phase.

In Fig. 3(a) we plot the average membrane edge length
( f ds) (measured in units of op) as a function of the line
tension A for various values of «, along with pictures of
representative membrane configurations. The dotted curve in
Fig. 3(a), corresponding to x = 1, shows a smooth transition
from the branched-polymer shape directly to a closed vesi-
cle. Our result is in quantitative agreement with that of Boal
and Rao [5] when setting both bond maximum distances to
=1 =173~ /3. The other curves in Fig. 3(a), corre-
sponding to higher values of the bending stiffness «, show a
smooth transition from the branched polymer shape to a flat
disk as the line tension increases and then a sharp transition
from the flat disk to a closed vesicle at a higher line tension.

300 |

200 |

(J ds)

100

300 |

200 |

100

([ds) (No/N)*

FIG. 3. Simulation results for a membrane with bending stiffness
k (in units of kzT') and edge tension A (in units of kg7 /o). All
other moduli are 0. (a) Average edge length ([ ds) (measured in
units of o) as a function of the line tension A at different «: k = 1
(dashed line), x = 5 (dash-dotted line), k = 10 (dashed line), and
« = 15 (solid line). The snapshots of the configurations have x = 10
and A = 2.0 [self-avoiding branched-polymer (BP) shape], A = 5.0
(disk), and A = 8.0 (vesicle). (b) Rescaled average edge length vs A
for different system sizes N and x = 10, showing the transition from
the BP shape to a disk shape. We used Ny = 200 for the rescaling.
Note that for each value of N, the rightmost data point is at the value
of A at which the disk transitions to a vesicle.

Figure 3(b) shows how the perimeter scales with N* for the
case of k = 10 and demonstrates the smooth transition from
the branched polymer shape (u = 1) at a lower edge tension
A to the flat disk shape (u = 1/2) at a higher A. The pos-
sibility of having structures with a fractal dimension where
1/2 < p < 1, particularly near the transition, is not ruled out,
but we have not studied such possibilities.

Though the critical line tension for the disk-vesicle transi-
tion is sensitive to both the bending stiffness x and the system
size N, the value for X at the branch-to-disk transition barely
changes as « or N varies. In our study of the effects of chirality
in the next section, we take the bending stiffness « to be large
enough that the membrane state with free edges is disklike
rather than branched-polymer-like.

C. Edge shape and fluctuation

Next, we add an edge bending stiffness, edge torsional
stiffness, and a spontaneous geodesic torsion for the edge.
Even in the presence of a line tension A, the edge of a mem-
brane disk with no edge bending stiffness is jagged, as shown
by the branched polymer and disk shapes in Fig. 3(a). Intro-
ducing a positive edge bending stiffness B leads to a smoother
edge and correlations between the tangent vectors along the
edge. Figures 4 and 5 show this effect. In the left panel in
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FIG. 4. Snapshots of membranes with various values of the spontaneous edge geodesic torsion t.* for two values of the bending stiffness B;

8

the membranes in the left panel have a low edge bending stiffness, while those on the right have a high edge bending stiffness (B is measured
in units of k3T 0y). The system size is N = 200, the membrane bending stiffness is « = 10 (in units of kzT'), and the twist stiffness is B’ = 40

in units of kzT oy.

Fig. 4, where B = 2, the membranes form branched-polymer
shapes for A = 1, 2 and disklike shapes with rough edges for
A =4. As the spontaneous geodesic torsion 7, of the edge
increases, the branches form twisted ribbons. On the other
hand, the disk shapes remain mostly flat as rg* increases, but
their edges exhibit localized regions of high twisting. These
localized regions of twist lead to a rougher edge at the higher
values of 7. In the right panel in Fig. 4, we see that the larger
value of the edge bending stiffness leads to a smoother edge.
Localized regions of edge twist are suppressed, but the high
value of the twist stiffness B’ causes the entire membrane to
warp like a saddle to allow the edge to twist to a degree that
increases with increasing 7. Note that the high value of the
edge bending stiffness B leads to disks with smooth edges
even for low values of line tension such as A = 2.

Figure 5 displays a quantitative analysis of the membrane
shapes. Figure 5(a) shows that the total edge curvature squared
decreases rapidly as the stiffness B increases. A nonzero value
of the spontaneous geodesic torsion of the edge causes the
edge to twist, which necessarily leads to more edge curva-
ture at small values of B. While we recognize that chirality,
and, more specifically, handedness, cannot be captured by a
single pseudoscalar [45,46], we quantify the handedness of
the edge by dividing the average total geodesic torsion of the
edge ([ dst,) by the average perimeter ([ ds) to associate
an average rate of twist with the edge. Figure 5(b) displays
the average rate of twist of the edge vs the edge stiffness for
various values of the spontaneous geodesic torsion 7, and a
large value of the twist modulus B’. When 7, = 0, there is
no preference for either handedness, and the average rate of
twist vanishes. For nonzero rgf" and small B, the edge twists
at a rate that is close to the spontaneous geodesic torsion

because B’ is so large that the cost for departure of 7, from
7, is high. But since twist of the edge requires curvature of
the edge, the average twist decreases as B increases. Varying
the twist stiffness B’ affects 7, more directly. Lowering B’
leads to a smaller value of 7,. As B’ approaches 0, 7, likewise
approaches 0, as there is no energy cost related to chirality. By
their nature, achiral membranes have no preference to twist
either left-handed or right-handed.

Figures 5(c) and 5(d) show the correlation function g(m) =
(8.(0) - B (m)) = (1/L) Y47 8.() - f.(i + m) of the surface
normal vector fi, at the edge for the chiral and achiral cases,
respectively, for various values of the edge bending stiffness
B. When B = 0, the correlation function decays rapidly since
the edge is jagged. If B = 0 but the membrane edge has a
spontaneous geodesic torsion, the localized twist regions of
the edge lead to less correlation than in the achiral case. As B
increases, the correlation function for the chiral case starts to
develop oscillations since the entire membrane is twisting like
a potato chip.

We have also studied the power spectrum of the edge fluc-
tuations [17]. By following the membrane edge position ¥ (i),
the distance from an edge bead i to the averaged membrane
center can be calculated as r(i) = |F.(i) — (¥.)|. The auto-
correlation of edge fluctuations is given by (5r(0)dr(m)) =
(r(0)r(m)) — (r(0))2, where 8r(i) = r(i) — (r(0)) is the de-
viation of r(i) from the average membrane radius. Thus the
power spectrum is the cosine transform of the autocorrelation
function (8r,8r_4) =2, (8r(0)8r(m)) cos[g(m + 1/2)].

Figure 6(a) shows the normalized power spectrum
(<3rq8igq)(q(L))2 of edge fluctuations for various values of
the spontaneous geodesic torsion 7,. A peak in the middle of
the curves appears and grows as 7, increases, which is also
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([ dsk?)

([ dsg) /([ ds)

FIG. 5. Geometrical properties of the membrane edge in the disk
region of the phase diagram for a membrane with N = 200, « = 10,
A = 4, and torsional stiffness B’ = 40 (measured in units of kzT oy).
(a) The average total square curvature (measured in units of 00’1) Vs
B (measured in units of k3T op) for t* = 0 (dotted line), r; =0.1
(dash-dotted line), T, = 0.2 (dashed line), and T, = 0.3 (solid line).
(b) Average total geodesic torsion per average perimeter versus B,
with the legend the same as in (a). (¢) The correlation function
g(m) = (1.(0) - A.(m)) of the surface normal vector fi, along the
edge versus the distance along the edge measured in terms of the
number of beads m divided by the averaged number of beads on the
edge (L) for T, = 0.3 and B = 0 (dotted line), B = 2 (dash-dotted
line), B = 5 (dashed line), and B = 10 (solid line). The oscillation
of g(m) indicates the twist of the edge. (d) The edge normal-normal
correlation function g(m) along the edge for the achiral case where
r; = 0. The legend is the same as in (c).

observed in experiments [17]. Increasing the edge bending
stiffness B flattens the curve and makes this phenomenon less
detectable. Figure 6(b) shows the configurations for several
different values of rg‘. As rg* increases, the membrane edge
becomes more rippled, which is also in qualitative agreement
with experiment [3]. The detailed dependence of the peak on
the chiral coupling follows from the equipartition theorem,
as described in [17]. Note that the theoretical peak in [17] is
sharper than in Fig. 6(a) because the line tension is fit to the
measurements and shown to reduce with increasing chirality
in [17], whereas here we keep the line tension fixed.

D. Ribbon formation under external force

Experiments show that a colloidal membrane disk subject
to a stretching force by laser tweezers deforms into a twisted
ribbon, with the twist increasing as the ends of the membrane
are drawn apart [3,27]. Motivated by this work, we fix the
distance between two beads on the edge of our membrane and
find the shape as a function of the distance /; between these
two beads. As the distance increases, the membrane forms
a twisted ribbon, with the twist increasing with distance, as
shown in Fig. 7(a). Note that a helicoid with right-handed
helical edges has a positive geodesic torsion, in accord with
the fact that we find right-handed ribbons when we pull on a
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FIG. 6. Edge fluctuations of the membrane for various values
of the spontaneous geodesic torsion. The parameters are such that
the membrane forms a disk with a larger value of the line tension:
N =200,« = 15,2 =7,B =0, and B’ = 40. (a) Normalized power
spectrum ((Srqur,,,)(q(LD2 calculated from the cosine transform of
the edge fluctuations (measured from the center of the membrane)
as a function of the corresponding wave number ¢ times the aver-
aged number of beads on the edge (L). (b) Snapshots of membrane
configurations with r; = 0.1, 0.3, and 0.5, from bottom to top.

membrane disk with positive 7,. If we reverse the sign of 7,
then we find that the handedness of the ribbons reverses as
shown in Fig. 8.

The average twist rate of the ribbon increases roughly lin-
early with extension /, except when r;‘ = 0, in which case the
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FIG. 7. Results for a membrane under external forces. The pa-
rameters are such that the membrane forms a disk in the absence
of external force: N =200, x = 10, A =4, B = 10, and B’ = 40.
(a) Snapshots of the membrane with 77 = 0.2 and, from top to
bottom, /; = 30, 42, and 54. (b) Correlation function g(m) for the
surface normal at the edge versus the distance along the edge mea-
sured in terms of the number of beads m divided by the average
number of beads on the edge (L), for [, = 30 (dotted line), I/, =
42 (dash-dotted line), and [; = 54 (dashed line). (c) Average total
geodesic torsion divided by the average perimeter for 7; =0, 0.1,
0.2, and 0.3, from bottom to top. (d) Force required to impose the
separation /¢, calculated as the derivative of the total average energy
(E) with respect to [, for rg* = 0 (dotted line), rg* = 0.1 (dash-dotted
line), 7,7 = 0.2 (dashed line), and 7; = 0.3 (solid line).
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(b)
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FIG. 8. The effect of the sign of the spontaneous geodesic torsion
of the edge on the shape of a membrane subject to an external force,
with parameters N = 200, « = 10, A =4, B =10, and B’ = 40.
(a) Average total geodesic torsion divided by the average perimeter
for ‘Eg* =0.2,0.1, —0.1, and —0.2, from top to bottom. (b) Snapshots
of a membrane with ;7 = 0.2 (first, third, and fifth from the top)
and ‘L’; = —0.2 (second, fourth, and sixth from the top), showing that
membranes with opposite 7; have opposite handedness, for /; = 30,
42, and 54 for the pairs from top to bottom.

membrane does not twist. (Recall that we have set k = 0, so
the membrane bending energy does not give a tendency for the
membrane to have a negative Gaussian curvature). Figure 7(b)
shows the correlation function g(m) for the membrane normal
at the edge. The increase in oscillations with increasing values
of Iy correspond to an increase in membrane twist with /5.
Finally, Fig. 7(d) shows the force required to hold the beads
at separation /. The force is found by calculating the average
energy as a function of /; and then differentiating with respect
to Ir. The force increases linearly and then asymptotes to a
constant value, 2A. As t; increases, the value of the force
plateau decreases. Similar results were found in a semianalytic

model which assumed that the shape of the membrane is a
helicoid [27].

V. CONCLUSION

Colloidal membranes take on a wide range of shapes be-
yond flat disks and closed vesicles due to their tendency to
have free edges and due to the chirality of their constituent
particles. In this article, we determined the membrane shapes
and their properties using Monte Carlo simulations with an
effective energy that accounts for the liquid crystalline degrees
of freedom near the edge using geometric properties of the
edge. Our work extends semianalytical approaches that make
simplifying assumptions about the membrane shape [27]. The
presence of the edges and the effective energy terms such
as the edge bending stiffness and edge torsional stiffness
lead to a richer free energy landscape compared to existing
studies of systems either with no edge [25,47] or with only
line tension and bending stiffness [5,9]. Although we use a
simple effective model that does not account for the liquid
crystalline degrees of freedom in the membrane bulk, the
shapes we find are qualitatively similar to the ribbons [27],
vesicles [48], and saddle shapes [49] found in experiments.
Also, we have disregarded the Gaussian curvature term since
experimental measurements show that ¥ < « [17,19,30]. In
our Monte Carlo studies, we have found that a small nonzero
Gaussian curvature modulus has little effect on our results.
Finally, future work should test the validity of the assumptions
of the effective theory by explicitly accounting for the liquid
crystalline degrees of freedom in Monte Carlo simulations of
the membrane.
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