ELSEVIER

Contents lists available at ScienceDirect

Water Research

journal homepage: www.elsevier.com/locate/watres

Long solids retention times and attached growth phase favor prevalence of comammox bacteria in nitrogen removal systems

Irmarie Cotto ^a, Zihan Dai ^b, Linxuan Huo ^a, Christopher L. Anderson ^a, Katherine J. Vilardi ^a, Umer Ijaz ^b, Wendell Khunjar ^c, Christopher Wilson ^d, Haydee De Clippeleir ^e, Kevin Gilmore ^f, Erika Bailey ^g, Ameet J. Pinto ^{a, *}

- ^a Department of Civil and Environmental Engineering, Northeastern University, United States
- ^b School of Engineering, University of Glasgow, United Kingdom
- ^c Hazen and Sawyer, Inc, United States
- d Hampton Roads Sanitation District, United States
- e DC Water, United States
- f Department of Civil and Environmental Engineering, Bucknell University, United States
- ^g City of Raleigh Public Utilities, United States

ARTICLE INFO

Article history: Received 11 July 2019 Received in revised form 3 October 2019 Accepted 1 November 2019 Available online 4 November 2019

Keywords: Comammox bacteria Nitrification Solids retention time qPCR Metagenomics

ABSTRACT

The discovery of the complete ammonia oxidizing (comammox) bacteria overturns the traditional twoorganism nitrification paradigm which largely underpins the design and operation of nitrogen removal during wastewater treatment. Quantifying the abundance, diversity, and activity of comammox bacteria in wastewater treatment systems is important for ensuring a clear understanding of the nitrogen biotransformations responsible for ammonia removal. To this end, we conducted a yearlong survey of 14 full-scale nitrogen removal systems including mainstream conventional and simultaneous nitrificationdenitrification and side-stream partial nitrification-anammox systems with varying process configurations. Metagenomics and genome-resolved metagenomics identified comammox bacteria in mainstream conventional and simultaneous nitrification-denitrification systems, with no evidence for their presence in side-stream partial nitrification-anammox systems. Further, comammox bacterial diversity was restricted to clade A and these clade A comammox bacteria were detected in systems with long solids retention times (>10 days) and/or in the attached growth phase. Using a newly designed qPCR assay targeting the amoB gene of clade A comammox bacteria in combination with quantitation of other canonical nitrifiers, we show that long solids retention time is the key process parameter associated with the prevalence and abundance of comammox bacteria. The increase in comammox bacterial abundance was not associated with concomitant decrease in the abundance of canonical nitrifiers; however, systems with comammox bacteria showed significantly better and temporally stable ammonia removal compared to systems where they were not detected. Finally, in contrast to recent studies, we do not find any significant association of comammox bacterial prevalence and abundance with dissolved oxygen concentrations in this study.

© 2019 Elsevier Ltd. All rights reserved.

1. Introduction

Nitrification, the oxidation of ammonia to nitrate via nitrite, coupled with denitrification where nitrate is reduced to dinitrogen gas are key processes in the removal of nitrogen from wastewater (Klotz and Stein, 2008). Traditionally, nitrification was considered

* Corresponding author.

E-mail address: a.pinto@northeastern.edu (A.J. Pinto).

as a two-step process driven by two distinct nitrifying guilds, i.e., ammonia oxidation by the aerobic ammonia oxidizing bacteria (AOB) (Kowalchuk and Stephen, 2001) or archaea (AOA) (Stahl et al., 2012) followed by nitrite oxidation by the aerobic nitrite oxidizing bacteria (NOB) (Daims et al., 2016). Ammonia oxidizers within the Betaproteobacteriales genera Nitrosomonas and Nitrosospira (Siripong and Rittmann, 2007; Wu et al., 2019) and NOB within the genus Nitrospira (Juretschko et al., 1998; Wu et al., 2019) and more recently Nitrotoga (Saunders et al., 2016) are thought to be

dominant nitrifiers in wastewater treatment systems. However, the discovery of complete ammonia oxidizing (i.e., comammox) bacteria (Daims et al., 2015; Pinto et al., 2015; van Kessel et al., 2015; Palomo et al., 2016) has added new complexity to nitrogen biotransformation in wastewater systems. For instance, comammox bacteria can completely oxidize ammonia to nitrate and may compete with canonical AOB and NOB, as well as anaerobic ammonia oxidizing (anammox) bacteria in partial nitritationanammox (PNA) systems, also known as deammonification systems. In the latter example, the effectiveness of deammonification process may be compromised by the complete conversion of ammonia to nitrate by comammox bacteria (Lawson and Lücker, 2018). However, van Kessel et al. (2015) demonstrated that comammox-Nitrospira and anammox can indeed co-occur under very low oxygen concentrations and furthermore, that comammox (i.e. N. inopinata) are better suited to oxidize ammonia than nitrite, potentially allowing interactions between comammox and anammox bacteria. The potential interactions (i.e., cooperation or competition) between comammox bacteria and other nitrifiers could thus have implications for process design and operation not only in wastewater treatment but also across other ecosystems.

Comammox bacteria have been detected in geothermal springs (Daims et al., 2015), aquaculture systems (van Kessel et al., 2015), drinking water (Pinto et al., 2015; Tatari et al., 2017; Wang et al., 2017), rapid gravity sand filters treating groundwater (Fowler et al., 2018; Palomo et al., 2016), soils (Hu and He, 2017; Orellana et al., 2018), as well as a range of wastewater treatment bioreactors (Annavajhala et al., 2018; Camejo et al., 2017; Chao et al., 2016: Fan et al., 2017: Gonzalez-Martinez et al., 2016: Pievac et al., 2017; Roots et al., 2019; Spasov et al., 2019; Wang et al., 2018; Xia et al., 2018). The key to evaluating the impact of comammox bacteria on wastewater process operations is to understand the impact of key process variables on whether comammox prevalence and abundance and in turn how this impacts overall activity and function of the engineered system. This can then help delineate laboratory-, pilot-, or even full-scale experiments to probe competitive dynamics between comammox bacteria and other nitrifiers in scenarios that are relevant from a process operations perspective. To address this issue, the current study presents a systematic year-long evaluation of nitrifying populations, including comammox bacteria, in full-scale wastewater treatment plants to provide a baseline of process configurations, operations, and environmental conditions under which comammox bacteria might be important.

All detected comammox bacteria belong to genus Nitrospira (lineage II) and exhibit close phylogenetic relatedness to canonical Nitrospira-NOB. Recent work suggests that the capacity to oxidize ammonia via the ammonia monoxygenase (AMO) and hydroxylamine dehydrogenase (HAO) enzymes may have been acquired by comammox Nitrospira via horizontal gene transfer (Palomo et al., 2018). Nonetheless, the close phylogenetic affiliation of comammox bacteria with canonical NOB represents a major challenge with their detection and quantitation. Specifically, the 16S rRNA gene and subunits A (nxrA) and B (nxrB) of the nitrite oxidoreductase (NXR) gene cannot distinguish between comammox bacteria from canonical NOB within the genus Nitrospira. One alternative to identify and obtain relative abundance of comammox bacteria within a complex nitrifying consortium involves the use of shotgun DNA sequencing (i.e., metagenomics). This has been employed by several studies (Annavajhala et al., 2018; Camejo et al., 2017; Chao et al., 2016; Fan et al., 2017; Gonzalez-Martinez et al., 2016; Pinto et al., 2015; Roots et al., 2019; Spasov et al., 2019; Xia et al., 2018) to demonstrate that comammox bacterial presence in wastewater systems is primarily dominated by clade A comammox bacteria closely related to Ca Nitrospira nitrosa. While metagenomics provides a snapshot overview, it is not ideally suited for highthroughput profiling of large number of samples particularly for microbial groups that are typically low-to-medium abundance (e.g., nitrifiers) due to sequencing cost and sequencing depth issues. To this end, the ammonia monooxygenase (amo) gene sequences provide a convenient approach for detection and quantitation. Specifically, both the subunit's A (amoA) and B (amoB) of the ammonia monooxygenase genes form distinct clusters from other known AOB and AOA. This sequence divergence has been used to develop primer sets targeting the amoA gene of clade A and clade B comammox bacteria separately (Pjevac et al., 2017) and together (Bartelme et al., 2017; Fowler et al., 2018; Xia et al., 2018; Wang et al., 2018). A consistent challenge with these primers is the formation of unspecific products and our experience in this study suggests that they are also unable to capture comammox bacteria detected via metagenomics (see results section). Alternatively (Beach and Noguera, 2019), proposed the use of species specific primers that target comammox bacterial amoA gene depending on the process of interest. For instance, they proposed that since Ca Nitrospira nitrosa are dominant in low energy wastewater treatment systems, utilizing primers that capture Ca Nitrospira nitrosa would be ideal. While this circumvents the challenge of unspecific product formation, a species-specific approach eliminates the possibility of detecting other closely related comammox bacteria. In this study, we used a metagenomic approach to recover amoA and amoB genes from several full-scale nitrogen removal systems and use them in combination with previously published gene sequences to design and validate clade level primers for the amoB gene of clade A comammox bacteria: this is to our knowledge is the primary comammox clade of relevance of wastewater treatment systems.

The overall objectives of this study were (1) to identify nitrogen removal process configurations for wastewater treatment where comammox bacteria are likely to be relevant, (2) develop a qPCR assay for quantitation of comammox bacteria in complex nitrifying communities, and (3) perform a temporal survey across a range of process configurations to determine the influence of environmental and variable process operation conditions on the abundance of nitrifying populations inclusive of comammox bacteria. This was accomplished through year-long quantitative tracking of nitrifying populations in fourteen nitrogen removal systems with varying process configuration using genome resolved metagenomics and qPCR combined with appropriate statistical analyses.

2. Materials and methods

2.1. Sampling sites, sample processing, and data collection

Samples were collected on a monthly basis from June 2017 to June 2018 at fourteen nitrogen removal systems which included seven full-scale suspended growth nitrification-denitrification (ND) systems, one full-scale integrated fixed film activated sludge (IFAS) ND system, two full-scale simultaneous ND (SND) systems, one full-scale suspended growth side stream PNA system, and two full-scale IFAS PNA systems. Table 1 provides an overview of the nitrogen removal systems sampled in this study. Sample collection and processing were conducted according to the MIDAS field guide (McIlroy et al., 2015). Specifically, samples were collected from the nitrifying bioreactors by operational personnel at each of the wastewater utilities and 100 ml of sample was shipped overnight in coolers with icepacks to Northeastern University (NU). Immediately upon arrival to NU, the samples were homogenized using the Hei-TORQUE Value 400 (Heidolph, Cat. No. 036093070) in a 30-mL glass/Teflon tissue grinder (DWK Life Sciences Wheaton, Cat. No. 357984) for 1 min (2nd gear, speed 9, 10 times from top to bottom

Table 1Overview of sampling locations, sampling scheme used in this manuscript, process type and sub-type, operational scale and sampling time-frame for this study.

Site code	Process type	Process sub-type	Treatment stream	Sampling Start (mm/yy)	Sampling End (mm/yy)	
NEU	ND ¹	Four/five stage	Mainstream	06/17	06/18	
DUR	PNA ²	Anitamox	Sidestream	06/17	06/18	
YAN	SND ³	ORP control ^a	Mainstream	11/17	05/18	
GRE	ND^1	SBR ^b	Mainstream	06/17	06/18	
DCWM	ND^1	Five stage	Mainstream	06/17	06/18	
KIN	ND^1	MBR/MLE ^c	Mainstream	06/17	06/18	
WIL	ND^1	Five stage	Mainstream	06/17	06/18	
JAMM	ND^1	IFAS ^d	Mainstream	06/17	06/18	
JAMS	PNA ²	Anitamox	Sidestream	06/17	06/18	
YORM	ND^1	Conventional	Mainstream	06/17	06/18	
YORS	PNA ²	DEMON	Sidestream	06/17	06/18	
BOA	ND^1	High MLSS	Mainstream	06/17	06/18	
NAN	SND^3	Five stage	Mainstream	06/17	06/18	
ARM	ND^1	Five stage	Mainstream	06/17	06/18	

¹Nitrification-denitrification, ²Partial nitritation-anammox, ³Simultaneous nitrification-denitrification, ^aOxidative-Reduction Potential Control, ^bSequencing batch reactor, ^cMembrane bioreactor/Modified Ludzack-Ettinger, ^dIntegrated Fixed-film Activated Sludge.

of the glass tissue grinder) following the MIDAS protocol, and four 1 mL homogenized aliquots per sample were transferred to Lysing Matrix E tubes (MP Biomedical, Cat. No. 6914100). Samples were centrifuged at 10,000g for 5 min and the supernatant was discarded and biomass pellet was stored at $-80\,^{\circ}$ C until DNA extraction. Further, ~20 mg of media attached biomass samples from the IFAS system were also stored in Lysing Matrix E tubes at $-80\,^{\circ}$ C. In addition, the utilities provided data on pH, temperature, ammonia, nitrite, nitrate, chemical oxygen demand (COD), biological oxygen demand (BOD), total suspended solids (TSS), volatile suspended solids (VSS), mixed liquor TSS (MLSS) and mixed liquor VSS (MLVSS) from the influent, nitrification reactor, and effluent for each sampling time point, as well as hydraulic retention time (HRT), solids retention time (SRT) and dissolved oxygen (DO) data from the nitrification reactors.

2.2. DNA extraction

Samples were subject to DNA extraction using the DNAeasy PowerSoil kit (Qiagen, Inc., Cat. No.12888) with automated extraction instrument QIAcube (Qiagen, Inc., Cat. No. 9002160) following manufacturer instructions with some modifications in the sample preparation step. Briefly, the lysing buffer from the PowerBead Tubes provided in the DNAeasy PowerSoil kit was transferred to the lysing matrix tubes containing the samples and 60 µL of Solution C1 from the kit was added to each sample. To complete cell lysis, beadbeating was performed using a FastPrep-24 instrument (MP Bio, Cat. No. 116005500) four times for 40 s each (McIlroy et al., 2015). Between each 40 s bead beating interval, samples were kept on ice for 2 min to prevent excess heating. Samples were centrifuged at 10,000g for 30 s and the supernatant was further purified using the QIAcube Protocol Sheet for the DNeasy PowerSoil Kit. Ten samples and two blanks (only reagents) were extracted for each DNA extraction run. Extracted DNA was quantified using Qubit instrument with Qubit dsDNA Broad Range Assay (ThermoFisher Scientific, Cat. No. Q32850) and a subset of samples were randomly selected for analysis using 1% agarose gel electrophoresis to visualize DNA shearing. Extracted DNA concentrations ranged from 2 to $254 \text{ ng/}\mu\text{L}$. DNA extracts were stored at $-80 \,^{\circ}\text{C}$ until further analysis.

2.3. Metagenomic sequencing and data analyses

One sample from each system was selected for metagenomic sequencing based on qPCR estimates of AOB and *Nitrospira* (see qPCR details in section 2.4). Specifically, samples with high

Nitrospira: AOB ratios were selected for metagenomic sequencing under the assumption that these samples were likely to consist comammox Nitrospira bacteria. For systems that included distinct suspended and attached growth phase (e.g., IFAS system from JAMM and PNA systems from JAMS and DUR), one sample each for the attached and suspended phase were included in the sequencing run resulting in a total of 18 metagenomes. Extracted DNA was shipped frozen to the Roy J. Carver Biotechnology Center at University of Illinois Urbana-Champaign Sequencing Core for sequencing. The DNA extracts were subject to PCR-free library preparation using Hyper Prep Library construction kit from Kapa Biosystems and subsequently sequenced on 300 cycle run (2 × 150nt reads) on two lanes of Illumina HiSeq 4000. This resulted in a total of 1.35 billion paired-end reads. Raw data for these 18 metagenomes was deposited in NCBI with bioproject number PRJNA552823. The reads were subject to adaptor removal and quality trimming using Trimmomatic (Bolger et al., 2014) which included adaptor removal, clipping of the first and last three bases, trimming of sequences where four-bp sliding window quality threshold was below Q20, and discarding of all trimmed sequences less than 75 bp in length. This resulted in a total of 1.03 billion paired end reads which were analyzed using a few different approaches (see below).

2.3.1. Reference genomes based annotation

A total of 53 publicly available Genomes/genome assemblies for nitrifying organisms were downloaded from NCBI (RefSeq version 86) (Table S1). This included genome assemblies for 12 AOA, five anammox bacteria, 17 AOB, 10 comammox bacteria, and nine NOB. Reads from all samples were competitively mapped to the reference genomes using bwa (Li and Durbin, 2010) followed by extraction of properly paired mapped reads (samtools view -f2) using SAMtools (Li et al., 2009). The extracted reads were then again competitively aligned against reference genomes using BLAST (Altschul et al., 1990) with a criterion of 90% sequence identity and 90% read coverage. The reads per kilobase million (RPKM) metric was used as a measure of the reference genome relative abundance in each sample and was estimated by dividing the number of reads aligning to reference genome at aforementioned criteria with the number of kilobases in each reference genome and the millions of reads per sample.

2.3.2. SSU rRNA based community characterization

The paired end metagenomic reads were assembled using MATAM (Pericard et al., 2018) with the SILVA SSU rRNA (Release 132) database (Quast et al., 2013) as the reference for assembly of

the 16S rRNA genes with a minimum 16S rRNA gene length threshold of 500 bp. The assembled 16S rRNA genes were classified against the RDP database (Cole et al., 2014) using Naïve Bayesian classifier approach (Wang et al., 2007). The relative abundance of each 16S rRNA gene was estimated by dividing the number of reads mapping to each MATAM assembled 16S rRNA gene with the total number of reads mapping to all assembled 16S rRNA genes per sample.

2.3.3. Gene-centric de novo assembly

The paired end reads from each sample assembled into contigs using metaSpades (Nurk et al., 2017); where two sets of reads were available from attached and suspended phase from same bioreactor (i.e., JAMM, JAMS, DUR) or from two parallel operated bioreactors (GRE), these were co-assembled. MetaSpades assembly/coassembly was carried out with kmers 21, 33, 55, 77, 99, and 127. The assembled contigs were filtered to remove all contigs smaller than 500 bp and subject to gene calling using prodigal (Hyatt et al., 2010) and annotation against the KEGG database (Kanehisa et al., 2016) using DIAMOND (Buchfink et al., 2015). Genes identified as encoding for amoA (KO:K10944), amoB (KO:K10945), and nxrA (KO:K00370) were extracted for further analyses. An analysis of genes assembled using *de novo* assembly approach for the complete metagenome revealed that several of the identified genes were highly fragmented. To circumvent this limitation, gene-centric de novo assembly was used. Specifically, paired end reads were mapped to a curated amino acid database of amoA, amoB, and nxrA genes using DIAMOND (Buchfink et al., 2015). The mapped reads were then assembled into contigs metaSpades (Nurk et al., 2017), followed by gene calling using prodigal (Hyatt et al., 2010) and annotation against the KEGG database (Kanehisa et al., 2016). The amoA, amoB, and nxrA genes identified using the complete and gene-targeted de novo assembly approach were combined, deduplicated, and further curated by evaluating phylogenetic placement of assembled genes. Specifically, reference alignments for amoA, amoB, and nxrA genes were created by extracting corresponding genes from the reference assemblies and aligning with MUSCLE (Edgar, 2004) followed by construction of a reference tree for each gene using RAxML (Stamatakis, 2014). The amoA, amoB, and nxrA genes were placed on the gene-specific reference tree using pplacer (Matsen et al., 2010). Annotated genes that did not conform to known phylogeny of amoA and amoB for AOB, AOA, and comammox bacteria and nxrA genes for NOB and comammox bacteria were discarded. Finally, the relative abundance of the curated genes in each sample was estimated using the RPKM metric. Specifically, the sum of reads mapping to contig containing gene of interest per sample were divided by number of kilobases for each contig and the millions of reads per sample.

2.3.4. Recovery, phylogenomic placement, and annotation of Nitrospira metagenome assembled genomes

Assembled contigs from nine metagenomes corresponding to seven nitrogen removal systems where comammox bacteria were detected (i.e., DCWM, GRE1/GRE2, JAMM/JAMMSM, KIN, NEU, WIL, and YAN) were pooled. Reads from each metagenome were mapped to all contigs with bowtie2 (default parameters, version 2.1.0) (Langmead and Salzberg, 2012) prior to binning with MetaBAT2 (-m 2000, version 2.12.1) (Kang et al., 2015). The completion and redundancy of the resulting bins were estimated with CheckM (lineage_wf, version 1.0.12) (Parks et al., 2015). Reads mapping to bins ≥50% complete were extracted and used to re-assemble the bin with Unicycler (default parameters, version 0.4.7) (Bankevich et al., 2012; Li et al., 2009; Wick et al., 2017). The quality and taxonomy of re-assembled bins were evaluated with CheckM (Parks et al., 2015) and the Genome Taxonomy Database Toolkit (GTDB-

Tk 0.2.2, database release r86 v3) (Parks et al., 2018), respectively. Bins greater than 70% complete and classified as Nitrospira by GTDB-Tk were retained for manual refinement with Anvi'o (Eren et al., 2015). Following refinement, the quality and taxonomy of the bins were re-assessed with CheckM (Parks et al., 2015) and the Genome Taxonomy Database Toolkit (Parks et al., 2018), selecting metagenome assembled genomes (MAGs) with completeness and redundancy estimates of >70% and <10%, respectively. Open reading frames (ORFs) were predicted using Prodigal (Hyatt et al., 2010) v2.6.3 for all Nitrospira MAGs recovered from this study (n = 10). KEGG orthologies (KO) were assigned to predicted ORF's in these 10 genomes against 10,108 HMM models of prokaryota in KEGG (Kanehisa et al., 2016) database v90.1 using KofamScan (Aramaki et al., 2019). To investigate the phylogeny of these 10 Nitrospira MAGs recovered from this study, 32 previously publicly available Nitrospira genomes were downloaded from Genbank (Table S2) (Poghosyan et al., 2019) and used as reference genomes for phylogenetic tree reconstruction. Phylogenomic tree reconstruction was conducted by Anvi'o (Eren et al., 2015) v5.5. ORFs were predicted for aforementioned 32 reference genomes and 10 MAGs from this study using Prodigal (version 2.6.3) (Hyatt et al., 2010) and then searched against a collection of HMM models summarized by Campbell et al., (2011) using hmmscan (version 3.2.1) (Eddy, 2011) including 48 ribosomal proteins. Only genomes containing more than genes encoding for 40 of the 48 ribosomal proteins (Table S3) were included in downstream phylogenomic analyses. Alignments for each gene were conducted using muscle (Edgar, 2004), alignments were concatenated, and finally phylogenomic tree was constructed using FastTree (version 2.1.7) (Price et al., 2010).

2.4. Quantitative PCR for total bacteria and nitrifying populations and design of primers targeting amoB gene of clade a comammox bacteria

PCR thermocycling and reaction mix conditions of previously published primer sets for qPCR-based quantification of 16S rRNA gene of total bacteria (Caporaso et al., 2011), AOB (Hermansson and Lindgren, 2001) and Nitrospira (Graham et al., 2007) and ammonia monoxygenase subunit A (amoA) gene for AOB (Rotthauwe et al., 1997) are shown in Table S4. Further, qPCR assays targeting the amoA gene of comammox bacteria were conducted using previously published primer sets (Fowler et al., 2018; Pjevac et al., 2017) (Table S4). However, these assays either resulted in unspecific product formation and non-detection of comammox bacteria in samples where metagenomic analyses indicated presence of comammox bacteria. As a result, new primer sets targeting the amoB gene of clade A comammox bacteria (only clade A comammox bacteria were detected via metagenomic analyses in this study) were designed. To do this, the amoB genes assembled from the metagenomic data were combined with amoB gene sequences from previous studies (Daims et al., 2015; Palomo et al., 2016; Pinto et al., 2015; van Kessel et al., 2015). The primer set was designed to ensure no degeneracies within the first and third nucleotides of the primer and amplifying less than 400 bp PCR product. This resulted in development of primer set follows cmx_amoB-148F (5'-3', TGGTAYGAYACNGAATGGG) and cmx_amoB_485R CCCGTGATRTCCATCCA) which amplifies a 337 bp PCR product. This new primer set was tested with samples from this study that were positive and negative for comammox bacteria, along with DNA extracts from Ca Nitrospira inopinata as positive control involving variation in annealing temperature, primer concentration, and template concentration.

We performed *in silico* analysis to determine the specificity of the primer set against recently published comammox bacteria amoB gene sequences. To do this, we downloaded genomes from previously published manuscripts (van Kessel et al., 2015; Daims et al., 2015; Pinto et al., 2015; Palomo et al. 2016, 2018; Camejo et al., 2017; Wang et al., 2017; Parks et al., 2017; Orellana et al., 2018; Woodcroft et al., 2018) and a pre-print (Palomo et al., 2019). This resulted in a total of 60 metagenomes assembled genomes (MAG) and one complete genome (i.e., Ca Nitrospira inopinata). Subsequently, we used prodigal (Hyatt et al., 2010) to identify open reading frames (ORF) and then annotated them against the KEGG database (Kanehisa et al., 2016) using DIAMOND (Buchfink et al., 2015). The nucleotide and amino acid sequences for ORF's annotated against the amoB gene (KO: K10945) were extracted. This resulted in the identification of 47 amoB gene sequences. These 47 amoB amino acid sequences were used to create protein database using DIAMOND (Buchfink et al., 2015). Subsequently, publicly available metagenomic assemblies with confirmed presence of comammox bacteria were downloaded from NCBI including from the above-referenced studies and this study. The contigs from these assemblies were subject to ORF prediction using prodigal (Hyatt et al., 2010) and predicted ORFs were searched against the custom amoB database using DIAMOND (Buchfink et al., 2015). The best hit for each ORF was extracted from the DIAMOND output, by excluding genes that exhibited 100% identity to amoB gene sequences from the 60 comammox Nitrospira MAGs. This resulted in a total of 48 additional putative amoB gene sequences. Subsequently, the amino acid sequences of amoB gene from the MAGs (n = 47)were aligned using muscle (Edgar, 2004) and the alignment was trimmed using trimal (Capella-Gutiérrez et al., 2009). The trimmed alignment was then used to construct a maximum likelihood reference tree using RAxML (Stamatakis et al., 2014) with flags -m PROTGAMMAWAGF -p 12345. The putative amoB gene sequences extracted from the metagenomes were then places on the reference phylogenetic tree using pplacer (Matsen et al., 2010). Only the amoB gene sequences that were unambiguously clustered with reference sequences from the MAGs were retained for further analyses. This resulted in a total of 85 amoB gene sequences spanning clade A (n = 60) and clade B (n = 25), including from the reference MAGs and from this study. Of the 60 clade A sequences, 48 sequences contained the binding site for both cmx_amoB-148F and cmx_amoB_485R and primer specificity was checked against these. Further, the primers were also checked for their ability to capture non-target sequences (i.e., amoB gene of clade B comammox bacteria, as well as amoB gene of Betaproteobacteriales AOB extracted from genomes (n = 96) downloaded from NCBI (Table S5).

The qPCR assays were performed on a QuantStudio 3 Real-Time PCR System (ThermoFisher Scientific, Cat. No. A28567) in $20\,\mu L$ reaction volume including: 10 µL Luna Universal qPCR Master Mix (New England Biolabs, Inc., Cat. No. NC1276266), primers listed in Tables S4 and 5 µL of 10 times diluted DNA template and the required volume of DNAse/RNAse-Free water (Fisher Scientific, Cat. No. 10977015) to reach 20 μL reaction. Reactions were prepared by the epMotion M5073 liquid handling system (Eppendorf, Cat. No. 5073000205D) in triplicate. The cycling conditions were as follows: initial denaturing at 95 °C for 1 min followed by 40 cycles of denaturing at 95 °C for 15 s, annealing temperatures and times listed in Table S4, and extension at 72 °C for 1 min. Melting curve analyses was performed at 95 °C for 15 s, 60 °C for 1 min, and 95 °C for 15 s. A negative control (NTC) and a standard curve ranging from 10³-10⁹ copies of 16S rRNA gene of *Nitrosomonas europaea* for total bacteria assay and $10^2 - 10^8$ copies of 16S rRNA genes for Nitrosomonas europaea and Ca Nitrospira inopinata for the AOB and Nitrospira assays, respectively and 10^2-10^8 copies for amoA of Nitrosomonas europaea and Ca Nitrospira inopinata for the AOB and comammox assays, respectively and amoB gene of Ca Nitrospira inopinata for the comammox assays were included in the qPCR analysis.

2.5. Statistical analyses

Statistically significant differences in the abundance of nitrifying organisms between nitrogen removal systems was evaluated using the non-parametric Kruskal-Wallis or Wilcoxon rank sum test in R as appropriate (RCoreTeam, 2014). Correlations between any two variables were determined using Spearman rank correlations and BIOENV analysis within the R package "vegan" to identify process and environmental variables that demonstrate significant correlation with changes in nitrifier population abundances. All statistical tests and figure generation (Wickham, 2009) were performed in R (RCoreTeam, 2014).

3. Results and discussion

3.1. Overview of nitrogen removal systems included in this study

As part of this study, we sampled fourteen full-scale nitrogen removal systems of varying process configurations. Specifically, we sampled nine nitrification-denitrification (ND), two simultaneous nitrification-denitrification (SND) mainstream systems, and three partial nitrification-anammox (PNA) sidestream systems with diverse process subtypes (Table 1). The process sub-types ranged from multi-stage suspended growth systems with secondary clarification to sequencing batch reactors (SBRs) ones to membrane bioreactors (KIN) to systems with significant attached growth components (e.g., DUR, JAMM, JAMS). The typical process parameters for each of these systems is shown in Fig. 1. All nitrogen removal systems included in this study performed normally during this study with no significant and sustained process upset.

3.2. Identification of nitrifying populations using reference genome mapping and 16S rRNA gene assembly

Mapping of reads to reference genomes indicated that Nitrospira-like bacteria were dominant members of the nitrifying communities in all ND and SND systems followed by Nitrosomonas-like bacteria, with no or very low detection of AOA (Fig. 2A). Nearly all detected AOB belonged to the genus Nitrosomonas with low levels of detection of AOB within the genera Nitrosococcus and Nitrosospira in two systems (i.e., ARM and BOA) at very low abundances, likely a result of unspecific mapping. Metagenomic reads mapped to comammox references genomes within the genus Nitrospira for samples from six ND and one SND system, with abundances higher than canonical Nitrospira-NOB for three ND systems (i.e., GRE, KIN, and NEU) and one SND system (i.e., YAN). Genera containing other canonical NOB, i.e. Nitrotoga and Nitrobacter, were detected in two ND and one SND system with Nitrotoga being the primary NOB in BOA. Mapping of metagenomic reads from PNA systems to reference genomes primarily resulted in the detection of anammox bacteria (genus: Brocadia) and AOB (genus: Nitrosomonas), with no detectable presence of Nitrospira. It is important to note that while metagenomic reference genome based approach may be useful for detection of organisms, its quantitative value is limited. This limitation likely emerges from the reliance of a reference database of genomes and the stringent criteria used for read mapping (i.e., 90% sequence identity between metagenomic read over 90% of the read length). Thus, it is possible that the significant over representation of Nitrospira in the metagenomic reference genome-based approach emerges from a high level of genomic similarity between Nitrospira in the samples and in the reference database and under representation of AOB emerges from a low level of genomic similarity between AOB in the samples and in the reference

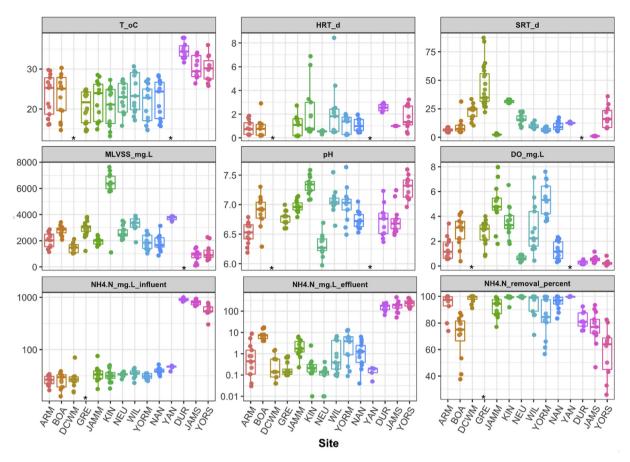
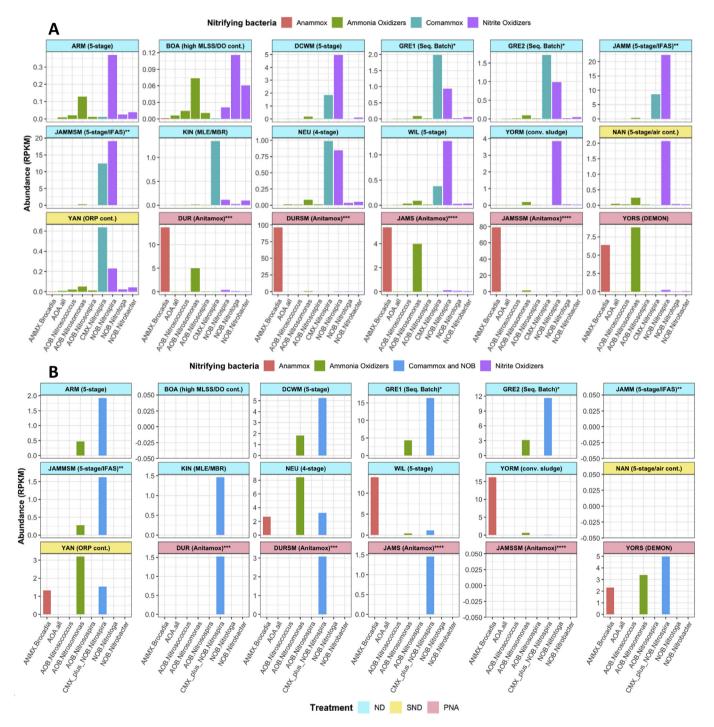


Fig. 1. Overview of key process parameters and performance metrics monitored as part of this study for 14 nitrogen removal systems. Column indicated with "*" indicates lack of relevant process data for the respective nitrogen removal system.


database. This is the most likely scenario because genomic similarity between organisms within the same genus can be as low as 75% (Jain et al., 2018).

In contrast, a subset of genes (particularly ribosomal genes) may be far more reliable for relative quantitation of microbial abundance within the larger community. Thus, we used MATAM to identify reads originating from the 16S rRNA gene within each metagenomic sample and subsequently assemble them and finally determine the relative abundance of each gene in the sample microbial community. The reference genome mapping results were largely consistent with classification of MATAM-assembled 16S rRNA genes (Fig. 2B) with Nitrospira- and Nitrosomonas-like bacteria dominant in ND and SND systems and Brocadia- and Nitrosomonas-like bacteria being dominant in PNA systems. Three of the 14 systems included in this study consisted of distinct suspended and attached growth phase, i.e., ND IFAS system (i.e., JAMM) and two side-stream PNA systems (DUR and JAMS). Relative abundances of Nitrospira- and Nitrosomonas-like bacteria were similar between the suspended and attached growth phase for JAMM while Brocadia-like bacteria were enriched in the attached growth phase for DUR and JAMS. The key differences between reference genome- and 16S rRNA gene analyses were for the PNA systems and one ND system (i.e., BOA). Specifically, Nitrospira-like bacteria were also detected in all PNA system included in this study using 16S rRNA gene analyses compared to reference mapping of metagenomics reads. The discrepancies between reference genome based analyses and 16S rRNA gene assembly based analyses may result from the limitation of the prior (as stated above), inefficient assembly of 16S rRNA genes due to highly conserved regions (Miller

et al., 2011; Pericard et al., 2018), or a combination of both.

3.3. Functional gene based metagenomic identification of ammonia and nitrite oxidizing bacteria

Mapping of reads to curated amoA, amoB, and nxrA genes, followed by gene-centric de novo assembly was used to detect and estimate the relative abundance of AOB, comammox bacteria, and NOB in the metagenomic datasets from the 14 systems. Subsequently, all assembled and annotated genes were placed on gene specific phylogenetic trees to eliminate potentially misannotated amoA, amoB, and nxrA genes. This analysis revealed that nearly all annotated AOB belonged to Betaproteobacteriales (Fig. 3A) and contained representative sequences from ND. SND. and PNA systems, while amoA and amoB sequences from comammox bacteria were detected in DCWM, GRE, JAMM/JAMMSM, KIN, NEU, WIL, and YAN (Fig. 3B). These results are qualitatively consistent (i.e., presence/absence of comammox bacteria) with those obtained by reference genome based analyses of comammox bacteria. The relative abundance of comammox bacteria was higher than AOB in JAMM/JAMMSM, while both were equally abundant two ND systems (i.e., GRE and NEU) and one SND system (i.e., YAN). In contrast, comammox bacteria were less abundant than AOB in DCWM and WIL; both of these are ND systems. Interestingly, no AOB were detected in KIN (an MBR/MLE system) with comammox being the only ammonia oxidizer. The results for KIN were consistent with that of reference genome based and 16S rRNA gene based analyses, where no AOB were detected. Further, the similarity in relative abundance of amoA, amoB, and nxrA genes indicates that all

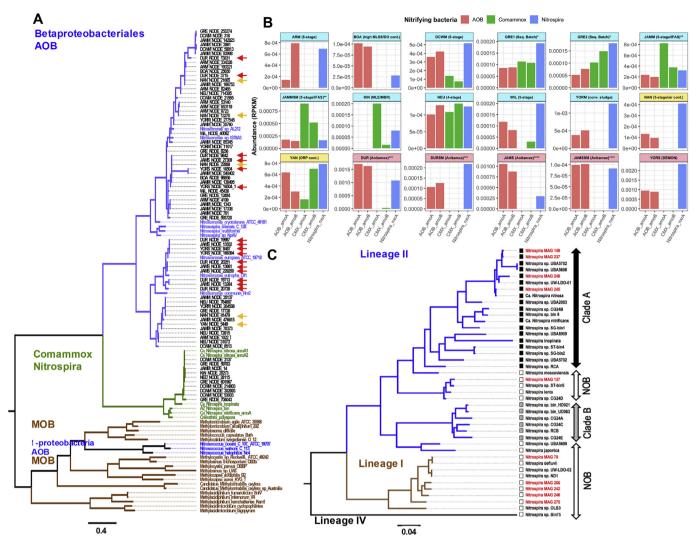


Fig. 2. Relative abundance of nitrifying organisms in nitrogen removal systems based on (A) mapping of reads to reference genomes and (B) classification of MATAM assembled 16S rRNA genes. Bar colors indicate type of nitrifying organism detected (see color legend below each figure), while facet color indicates process type (i.e., red: PNA, Blue: ND, and Yellow: SND). This information can also be found in Table 1. GRE1/GRE2* panels present abundance of nitrifying populations from two different reactors at the same treatment plant. JAMM/JAMMSM**, DUR/DURSM***, and JAMS/JAMSSM**** panels present abundance of nitrifying populations in the suspended phase and attached growth phase of the system, respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

detected *Nitrospira* bacteria in this system are likely to be comammox bacteria. The non-detection of other low abundance AOB and NOB (e.g., *Nitrotoga*) that were detected by reference genome based or 16S rRNA gene assembly based analyses could be due to challenges with *de novo* assembly genes from low abundance microorganisms (i.e., insufficient sequencing depth and thus low coverage).

A consistent aspect of systems with prevalent comammox

populations was their high total solids retention time (SRT). For instance, KIN is an MBR system with an estimated SRT of ~30 days, DCWM is a ND system with a total SRT of ~30 days, and GRE is an SBR system with an SRT >30 day (Fig. 1). While JAMM/JAMMSM (i.e., James River) has an SRT of 2.5 days for the suspended phase, this is an IFAS system with a significant attached growth component. This suggests that irrespective of the process configuration type (ND, SND) and/or mode of operation (continuous, SBR,

Fig. 3. Maximum likelihood phylogenetic tree of amoA genes recovered from gene centric *de novo* assembly along with reference amoA and pmoA gene sequences. Clades are colored by functional grouping and labels for reference sequences within each cluster are colored according to the functional group, while amoA sequences recovered from this study are shown in black labels. Red arrows and orange diamonds indicate amoA gene sequences recovered from PNA and SND systems respectively, while those recovered from ND systems are not annotated. amoA gene sequences from YAN and KIN are not shown in the phylogenetic tree due to recovery of short sequences not suitable for tree construction. (B) Abundance (RPKM) of amoA, amoB gene sequences of AOB and comammox bacteria, and nxrA gene sequences of Nitrospira are shown. (C) Phylogenetic placement of Nitrospira MAGs (red label) with 32 reference genomes (black label). Clade A (black squares), clade B (grey squares) comammox bacteria and canonical NOB (open squares). (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

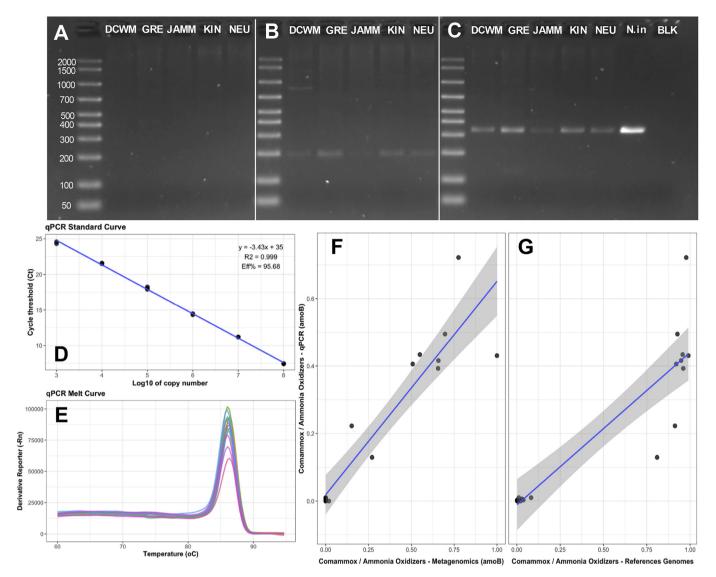
attached growth), the key similarity among comammox prevalent systems is their high SRT or presence of attached growth component (i.e., implicitly high SRT). This is consistent with thermodynamic and metabolic pathway modeling that suggests that comammox bacteria have a very low specific growth rates compared to AOB and NOB (Costa et al., 2006). For instance, recent literature suggests that comammox maximum specific growth rates are 3-10, 5-11, and 2 times lower than that of Nitrospira-NOB, AOB, and AOA (Kits et al., 2017; Lawson and Lücker, 2018). While this explains the prevalence of comammox in long SRT system, it does not explain the absence of AOA in these systems. Yet, while AOA are highly prevalent in other ecosystems (i.e., soils, drinking water, marine environments) (Prosser and Nicol, 2008), they are rarely detected in wastewater systems (Muβmann et al., 2011; Chao et al., 2016; Pjevac et al., 2017) including the systems included in this project.

All comammox based *amoA* and *amoB* gene sequences detected using metagenomic sequencing closely clustered with *Ca* Nitrospira nitrosa and distinct from other clade A bacteria (e.g., *Ca* Nitrospira

nitrificans, Ca Nitrospira inopinata) (Fig. 3B). Further, all Nitrospira MAG's recovered from the genome binning process were associated with either lineage 1 or 2 Nitrospira and included six canonical NOB and four clade A comammox. Genome statistics for the recovered MAGs are shown in Table 2. Consistent with previously described clade A comammox bacteria, all comammox MAGs contained some or all genes associated with both ammonia and nitrite oxidation, except for Nitrospira MAG 248 which is likely due to lower completeness (i.e., 70%). Similarly, these comammox MAG's contained genes involved in urea uptake and hydrolysis - a feature shared with the other recovered canonical Nitrospira NOB MAGs. Further, similar to other clade A comammox bacteria, the recovered comammox MAG's lacked ammonium transporter (Amt) or any of formate dehydrogenase genes which are reported present in clade B comammox as well as canonical NOB within lineage II Nitrospira (Poghosyan et al., 2019). In fact, it has been demonstrated that Nitrospira-NOB can thrive on formate and hydrogen (Daims et al., 2016). Finally, similar to previously reported clade A comammox bacteria, the comammox MAG's recovered in this study also

Table 2Statistics of the Nitrospira MAG's assembled in this study and their functional grouping.

Nitrospira MAGs	79	137	149	237	242	245	246	248	266	275
Nitrospira lineage	1	2	2	2	1	2	1	2	1	1
Completeness (%)	94.94	87.92	75.23	93.3	89.09	82.17	84.94	70.99	83.58	97.67
Redundancy (%)	1.36	9.15	1.14	3.86	2.36	4.6	4.09	2.12	2.73	7.78
Genome size (Mbp)	3.49	4.07	3.08	4.54	4.02	3.8	3.78	2.59	3.73	3.91
GC content	59.14	58.05	54.87	54.83	58.41	54.64	58.36	54.86	58.42	58.79
Number of contigs	136	410	229	48	114	203	98	412	78	54
N50 of contigs	40833	25623	21078	171941	177531	34975	85503	8266	78457	794701
genes	3361	4115	3141	4498	3886	3779	3694	2693	3625	3753
Protein coding genes	3322	4062	3113	4455	3845	3743	3653	2668	3583	3708
rRNA	0	1	1	3	0	0	0	0	0	0
tRNA	38	51	26	40	41	36	41	25	41	44
Functional group	NOB	NOB	CMX	CMX	NOB	CMX	NOB	CMX	NOB	NOB


indicated presence of genes associated with group 3b [NiFe] hydrogenase.

3.4. Development of qPCR assay for quantitative detection of comammox bacteria

We initially performed in silico analysis to determine if previously published primers would capture the comammox amoA gene sequences assembled from the systems included in this study (Pjevac et al., 2017; Bartelme et al., 2017; Fowler et al., 2018; Xia et al., 2018; Wang et al., 2018). The primer set developed by Bartelme et al. (2017), Xia et al. (2018), and Wang et al. (2018) were not experimentally tested because they were found to be unsuitable for a range of amoA sequences retrieved from this study. Specifically, the forward and reverse primers presented by Bartelme et al. (2017) missed >50% and 100%, respectively, of the comammox amoA sequences assembled from metagenomic data in our study. The primer set presented by Wang et al. (2017) did not capture any of the comammox amoA gene sequences detected in our systems. And finally, while the forward primer presented by Xia et al. (2018) captured all comammox amoA gene sequences detected in our systems, the corresponding reverse primer did not capture any. Thus, we focused our experimental testing on primers developed by Pjevac et al. (2017) and Fowler et al. (2018) because in silico analyses indicated that they would theoretically capture all and majority of the comammox amoA gene genes in the systems included in this study, respectively (Table S4).

Pjevac et al. (2017) provided two different primer sets targeting the amoA gene both clade A and clade B comammox bacteria; one primer set was the degenerate primer set while the other contained an equimolar proportion of six forward and six reverse primers. In contrast, Fowler et al. (2018) developed a single primer set targeting the amoA gene of both clade A and clade B comammox bacteria. While both primer sets showed excellent PCR efficiency with DNA extracts from pure culture of Ca Nitrospira inopinata, efforts to PCR amplify the amoA gene from samples included in this study demonstrated either non-detection of comammox bacteria in the six systems with metagenomic evidence of their presence or unspecific product formation (Fig. 4A and B). This was also consistent for amoA specific primers designed in this study (data not shown). The same issue was also highlighted by Beach and Noguera (2019), who suggested the use of species primers for comammox detection based on the system of interest (i.e., wastewater, drinking water, etc). The comammox amoA primers were also tested against the comammox amoA genes recovered from the metagenomic sequencing data. This in silico analysis indicated that primer sets comaA-D (244f-659R), comaA (244F-659R), and comA-F/R matched recovered amoA genes, yet the issue with unspecific product amplification and non-detects in some samples were persistent despite additional efforts to optimize annealing temperatures, template concentration and PCR additives (i.e., DMSO, BSA, magnesium, etc). Therefore, we developed a new primer set targeting the amoB gene of comammox bacteria, specifically clade A comammox bacteria; the primary comammox clade detected in our study and in wastewater treatment systems analyzed by recent studies (Chao et al., 2016; Pjevac et al., 2017; Roots et al., 2019; Spasov et al., 2019). The amoB gene exhibits phylogenetic clustering consistent with that of amoA gene and places comammox bacteria in a distinct cluster from all other ammonia oxidizers. Thus, we developed a primer set targeting the amoB gene of comammox bacteria with an expected product size 337 bp. This primer set resulted in high specificity (i.e., no unspecific amplification) (Fig. 4C), high PCR efficiency (~94%) (Fig. 4D), and a clean melting curve (Fig. 4E). Further, the qPCR based estimates of the ratio of comammox bacteria (determined using amoB specific primers) to total ammonia oxidizers was highly correlated with the ratio of comammox bacteria to total ammonia oxidizers determined using metagenomic data involving gene centric de novo assembly (Fig. 4F) and mapping of metagenomic reads to reference genomes (Fig. 4G), suggesting that the primer set developed was accurately and specifically able to capture the amoB gene of comammox bacteria in the systems included in this study. The deviations of the data points from the mean regression line comparing the qPCR and metagenomic assays (Fig. 4F and G) could be due to a combination of database dependence for the reference genome mapping exercise and possibly due to inability to assemble low abundance gene sequences from metagenomic data (Fig. 4F) which may distort the ratios.

We further tested the ability of this primer set to capture comammox bacteria from other ecosystems by comparing against amoB gene sequences from published MAGs as well as metagenomic assemblies with confirmed presence of comammox bacteria (Fig. S1). Of the 60 clade A sequences, 48 sequences contained the binding site for both cmx_amoB-148F and cmx_amoB_485R. The forward primer (cmx_amoB-148F) demonstrated perfect matches (0 mismatches) to 83% of sequences, with one and two mismatches to 12.5 and 4.5% of sequences. The mismatches to 17% of sequences were primarily associated with comammox bacteria from drinking water and sediments, with the primer matching 100% of all sequences retrieved from wastewater treatment plants retrieved thus far (including in this study). (Table S6). The single nucleotide mismatch to 12.5% of the sequences can be remedied by switching base "A" in position 15 of the primer a degeneracy "R" (i.e., A/G). Thus, we recommend that future studies test a modified version of the cmx_amoB-148F primer (5'-3', TGGTAY-GAYACNGARTGGG). The reverse primer (cmx_amoB-485R) demonstrated perfect matches (0 mismatches) to 77% of sequences, with one and two mismatches to 21 and 2% of sequences. The

Fig. 4. Previously published primer sets for the *amoA* gene of comammox bacteria, i.e. (A) comaA, and (B) Ntspa-amoA, result in non-detection and unspecific amplification samples from DCWM, GRE, JAMM, KIN, NEU where comammox bacteria were detected using metagenomics. In contrast the newly designed *amoB* gene specific primers (C) result in a single band formation of the right size for these samples which is consistent with that amplified from *Ca* Nitrospira inopinata (N.in). BLK stands for PCR negative control. The primers exhibit excellent PCR efficiency (D), demonstrate clean melting curves (E), and provide estimates of comammox bacterial abundance consistent with those seen in PCR-free metagenomics analyses (F, G).

mismatches to 21% of sequences were primarily associated with comammox bacteria from drinking water and sediments, with the primer matching 100% of all sequences retrieved from wastewater treatment plants retrieved thus far (including in this study). (Table S7). The single nucleotide mismatch to 21% of the sequences could be remedied by switching base "C" in position 3 of the primer to an ambiguous base "N". However, we recommend utilizing equimolar proportion of four reverse primers where the third base is variable. While the mismatches of cmx_amoB-148F/cmx_amoB-485R may indicate that these primers may not work optimally work for all ecosystems, they appear to capture ~95% (forward primer 95.5%, reverse primer 98%) with 0 or 1 mismatch and capture perfectly (0 mismatches) all comammox bacterial sequences recovered from wastewater treatment plants. Further, while the reverse primer matched 24% of the comammox clade B amoB gene sequences, it exhibited >2 + mismatches to the remaining amoB gene sequences. Further, the forward primer consistently exhibited 2 + mismatches with the primer binding site of all comammox clade B amoB gene sequences, including at the last base at the 3' end. This suggests that this primer set would exclude the detection of clade B comammox bacteria. Finally, the primers also did not capture any betaproteobacterial amoB genes and consistently exhibited 2 + mismatches to either the forward or reverse primers developed in this study.

3.5. Quantitative detection of nitrifying populations including comammox bacteria

Initial assessment of qPCR results from the *amoA* assay for AOB underestimated AOB abundance when compared to the qPCR data targeting the 16S rRNA gene for AOB (Supplemental Fig. S1). In contrast, 16S rRNA gene based qPCR estimates for AOB were consistent with those obtained using metagenomics (Supplemental Fig. S2). This issue was also reported by Dechesne et al. (2016) who indicated that *amoA* primer sets do not provide sufficient coverage for AOB, while the 16S rRNA primer sets likely capture some non-

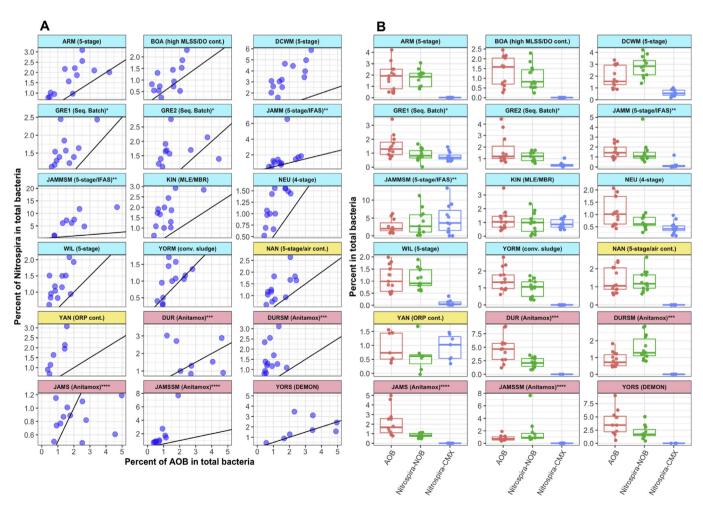
AOB sequences as well. Our analyses suggest that while *amoA* primer sets did not provide sufficient coverage for AOB in our study, comparisons with metagenomic data indicated no evidence on unspecific non-AOB detection with 16S rRNA gene primers. As a result, all subsequent measurements of AOB were conducted using 16S rRNA gene based assays.

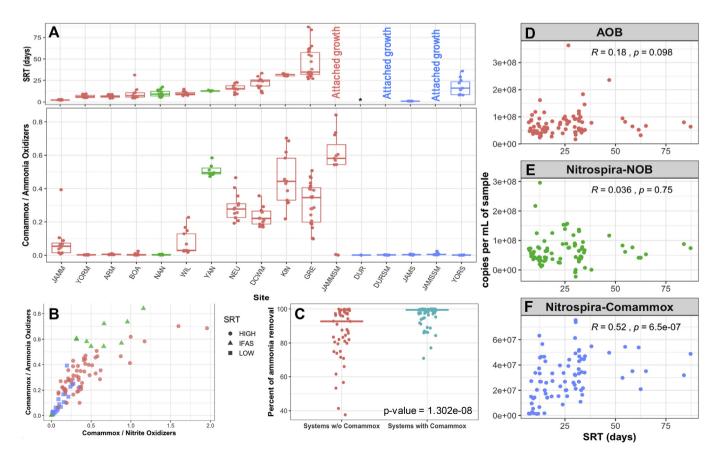
Canonical AOB and *Nitrospira* (including comammox and NOB) were detected in all systems irrespective of the nitrogen removal process configuration. The relative abundance of both groups ranges from 0.25 to 9% of total bacteria with an average of 1.71 and 1.65%, respectively, except for Nitrospira in the attached growth of JAMM/JAMMSM which reached a maximum relative abundance of 20% with an average of 8.56% (Fig. 5A and B). For several systems, the abundance of *Nitrospira* in proportion to AOB was significantly and consistently above what would be expected if nitrification was being driven by AOB and NOB alone. These included the following ND systems: DCWM, attached growth phase of JAMM (i.e., JAMMSM), KIN, SND system: YAN, and PNA systems: attached growth phase of JAMS (i.e., JAMS). While comammox bacteria were detected in most systems with higher proportional abundance of Nitrospira over AOB (except for the PNA system: JAMS), the presence of comammox bacteria was not exclusive to them (Fig. 5B). For instance, comammox bacteria were also detected in GRE and NEU where the abundance of Nitrospira and AOB were largely in line

with expected proportions if nitrification was primarily driven by AOB and NOB (Costa et al., 2006). Comammox bacteria were not detected in four ND systems (ARM, BOA, NAN, YORM), one SND system (NAN), and the three PNA systems (DUR/DURSM, JAMS/ JAMSSM, YORS), which was consistent with metagenomic observations. In all, comammox bacteria were detected in six ND systems (i.e., DCWM, GRE, NEU, WIL, KIN, JAM/JAMSM) and one SND system (i.e., YAN). The abundance of comammox bacteria in these systems ranged from 0.5% to ~3% of total bacteria in the suspended growth phase, while it was as high as ~17% in the attached phase of the IFAS systems (i.e., JAMMSM). In systems that included only suspended growth phase, comammox bacteria constituted between 20 and 70% of all ammonia oxidizers (i.e., AOB + comammox) for the duration of the study, with abundances equal to that of AOB in two ND systems (i.e., GRE and NEU). The proportion of comammox bacteria to that of total ammonia oxidizers varied significantly for two systems with low dissolved oxygen, i.e., KIN (ND) and YAN (SND), from 1 to 70% and at times significantly surpassed that of AOB.

3.6. Comammox bacterial abundance was strongly associated with solids retention time

Comammox bacteria were prevalent and temporally persistent




Fig. 5. (A) Comparison of the abundance of Nitrospira (% of total bacteria) to that of AOB (% of total bacteria) indicates that several systems with higher proportional abundance of Nitrospira when compared to the theoretical estimates (black line) if nitrification was being driven by AOB and NOB. (B) The abundance of AOB, Nitrospira-NOB, and comammox bacteria as a proportional of total bacterial abundance indicates that comammox bacteria were (1) consistently detected in systems with metagenomic evidence of their presence, (2) their abundance was lower than AOB in suspended growth systems where they were detected and high in systems with attached growth phase. Asterisks levels indicate samples from the same system.

in systems with long SRTs, despite fluctuations in SRT levels within each system. The abundance of comammox bacteria as a proportion of all ammonia oxidizers (i.e., comammox + AOB) increased with increasing median SRT of the system (Fig. 6A and B), with high abundances on the attached growth phase of the IFAS systems at JAMM. Further, the mean ammonia removal was typically higher in systems with comammox bacterial present compared to those without comammox bacteria (Wilcoxon rank sum test, $p\!<\!0.0001$) (Fig. 6C). And finally, while comammox bacterial abundance increased with SRT (Fig. 6F) (Spearman's $R\!=\!0.52,\,p\!<\!0.0001$), the abundance of $Nitrospira\!-\!NOB$ and AOB did not exhibit significant association with SRT (Fig. 6D and E). This suggests that increases in comammox abundance may not be associated with a concomitant decrease in AOB or NOB concentrations.

These data provide two potential insights into comammox bacterial relevance in nitrogen removal systems and their potential competitive dynamics or lack thereof with canonical nitrifiers. First, as stated earlier (section 3.3), comammox bacteria are preferentially enriched in systems with long SRT's and systems with an attached phase component. While the prevalence in long SRT systems may be explained by their slower net growth rates compared to canonical AOB and NOB (Kits et al., 2017; Lawson and Lücker, 2018), this does not provide basis for explaining their preferential enrichment over AOB and NOB with increasing SRT. It is also important to note that the AOB and NOB abundances were not associated with a concomitant increase in comammox bacterial abundance suggests that these bacteria may occupy exclusive niches within the nitrifying consortium. For instance, AOB and comammox may occupy independent niches at different ammonia

concentrations due to different affinity levels for ammonia (Kits et al., 2017; Lawson and Lücker, 2018) which may allow for their co-existence. In fact, in three ND systems (i.e., DCWM, NEU and YAN) and the IFAS ND system (i.e., JAMMSM) the concentrations of AOB and comammox were positively correlated (R = 0.53 (DCWM), 0.41 (NEU), 0.91 (YAN), 0.60 (JAMMSM), p < 0.01), suggesting the potential for some level of cooperation between the two. Further. like other lineage II Nitrospira, comammox bacteria demonstrate potential to exhibit diverse metabolic capacities (Daims et al., 2016; Lawson and Lücker, 2018) including genes involved in urea uptake and urease for conversion of urea to ammonia (Daims et al., 2016; Koch et al., 2015; Lawson and Lücker, 2018). Thus, it is plausible that the combination of greater metabolic diversity (e.g., ability to utilize urea) and higher affinities for ammonia of comammox bacteria compared to that of AOB, may ensure that comammox bacteria may have preferential access to ammonia (or other electron donors) made available via increased biomass decay products at longer SRTs. This could likely explain the increase in the abundance of comammox bacteria and not AOB or NOB with increasing SRT.

The second insight is that systems with comammox bacteria may have higher ammonia removal efficiencies compared to nitrogen removal systems where they are absent. It is important to note that this statistically significant observation is confounded by the fact that systems with comammox bacteria also exhibited higher SRT. Thus, it is difficult to disentangle the role of comammox bacteria from that of SRT alone in explaining the differences in ammonia removal efficiency. Nonetheless, the presence and indeed the dominance of comammox bacteria in nitrifying systems may present other key benefits. For instance, Kits et al. (2019)

Fig. 6. Increase in solids retention time (A) was associated with comammox bacteria constituting a greater proportion of all ammonia oxidizers (B). (C) Systems with comammox bacteria exhibited greater ammonia removal efficiencies compared to systems without comammox bacteria. This comparison does not include PNA systems. In contrast to AOB (D) and NOB (E), whose abundance was not associated with SRT, comammox bacterial abundance (F) was significantly and positively correlated with system SRT.

demonstrated that Ca Nitrospira inopinata cannot denitrify to nitrous oxide (N₂O) and produces N₂O at significantly lower levels as compared to canonical AOB. Further, a recent study has shown that Ca Nitrospira inopinata can degrade micropollutants (e.g., carbendazim, benzimidazole), that cannot be degraded by AOA or AOB (Han et al., 2019). Thus, even if the presence of comammox bacteria is not associated with stable and higher nitrogen removal. these benefits suggest that operating at higher SRT's to ensure stable comammox bacterial populations may carry additional benefits. Further, we did not find any other significant correlations between comammox bacterial concentrations and proportions (of total bacteria and ammonia oxidizers) with any of the other measured process parameters including loading rates, pH, temperature, and dissolved oxygen (DO) concentrations. The lack of association with DO concentrations is in contrast with previous studies (Beach and Noguera, 2019; Roots et al., 2019). In fact, comammox bacteria were present and their abundances stable in systems with DO less than 1 mg/l (i.e., YAN, NEU) as well as those with DO levels significantly in excess of 2 mg/l (i.e., GRE, JAMM, WIL, KIN). It is important to note that correlations of comammox bacterial abundance and proportions with process parameters were estimated on a system-by-system basis, with a maximum of 12 data points per system. Thus, it is feasible that our correlation efforts were limited by the richness of our dataset on an individual system basis, where multiple factors may together play a role in influencing microbial community composition. Thus, while this does not eliminate the possibility that low DO levels (or other process parameters) impact comammox bacteria, it suggests that SRT plays a more prominent role compared to other process parameters in the selection of comammox bacteria in full-scale mainstream nitrogen removal systems. Finally, it is important to note that qPCR or metagenomic assays (such as those performed in the current study) are subject to biases from a range of factors such as differential lysing efficiencies (Dionisi et al., 2003; Smith and Osborn, 2009) and extracellular DNA (Carini et al., 2016). Thus, while our results clearly identify the presence of comammox bacteria and their importance in nitrogen systems with long solids retention time, their quantitative higher abundance over canonical AOB should be confirmed with assays that are not impacted by biases associated with DNA extraction and isolation (e.g., Fluorescent in situ hybridization - FISH) (Wagner et al., 2003). To our knowledge, there are currently no FISH probes available that can distinguish canonical NOB within the genus Nitrospira from comammox Nitrospira bacteria. Considering the fact that the SSU rRNA gene, which is often the target of FISH assays, of Nitrospira-NOB and comammox Nitrospira are largely indistinguishable, fluorescence microscopy based differentiation between these two phylogenetically similar but functionally distinct bacterial groups remains an open challenge.

4. Conclusions

- Comammox bacteria were not prevalent in side-stream PNA systems, including single stage systems that contain attached growth and suspended phase components. This is likely to be associated with the high ambient ammonia concentrations in PNA systems.
- All comammox bacteria detected in full-scale systems belonged to clade A comammox bacteria and are closely associated with Ca Nitrospira nitrosa. This study provides a novel primer set and qPCR assay targeting the amoB gene of clade A comammox bacteria relevant to wastewater treatment systems.
- Comammox bacteria were prevalent in full-scale mainstream nitrogen removal systems with long SRT's and/or systems with attached growth components. This finding is consistent with

- estimates of slower growth rates for comammox bacteria compared to canonical AOB and NOB.
- Increases in comammox bacterial abundance in systems with sufficient SRT and/or attached growth phase were not associated with a concomitant decrease in the abundance of canonical AOB or NOB indicating that they may occupy niche independent from that of canonical nitrifiers within complex nitrifying communities.
- We found no significant associations between DO concentrations and comammox presence/absence or concentration in this study. While this does not eliminate the possibility that low DO levels favor comammox bacteria in wastewater treatment systems, it suggests that SRT is the key variable driving the prevalence of comammox bacteria.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

This research was supported by the Water Environment and Reuse Foundation (Grant U4R16) and The National Science Foundation (Award number: 1703089). The authors also acknowledge the operational personnel for assistance with sampling and process data sharing. The authors would also like to thank Prof. Kartik Chandran (Columbia University) and Prof. Holger Daims (University of Vienna) and Dr. Petra Pjevac (University of Vienna) for providing DNA extracts of *Nitrosomonas europaea* and *Ca* Nitrospira inopinata, respectively, for preparation for qPCR standards.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.watres.2019.115268.

References

Altschul, S.F., Gish, W., Miller, W., Myers, E.W., Lipman, D.J., 1990. Basic local alignment search tool. J. Mol. Biol. 215 (3), 403–410.

Annavajhala, M.K., Kapoor, V., Santo-Domingo, J., Chandran, K., 2018. Comammox functionality identified in diverse engineered biological wastewater treatment systems. Environ. Sci. Technol. Lett. 5 (2), 110–116.

Aramaki, T., Blanc-Mathieu, R., Endo, H., Ohkubo, K., Kanehisa, M., Goto, S., Ogata, H., 2019. KofamKOALA: KEGG ortholog assignment based on profile HMM and adaptive score threshold. bioRxiv 602110.

Bankevich, A., Nurk, S., Antipov, D., Gurevich, A.A., Dvorkin, M., Kulikov, A.S., Lesin, V.M., Nikolenko, S.I., Pham, S., Prjibelski, A.D., Pyshkin, A.V., Sirotkin, A.V., Vyahhi, N., Tesler, G., Alekseyev, M.A., Pevzner, P.A., 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19 (5), 455–477.

Bartelme, R.P., McLellan, S.L., Newton, R.J., 2017. Freshwater recirculating aquaculture system operations drive biofilter bacterial community shifts around a stable nitrifying consortium of ammonia-oxidizing archaea and comammox nitrospira. Front. Microbiol. 8 (101).

Beach, N.K., Noguera, D.R., 2019. Design and assessment of species-level qPCR primers targeting comammox. Front. Microbiol. 10 (36).

Bolger, A.M., Lohse, M., Usadel, B., 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30 (15), 2114–2120.

Buchfink, B., Xie, C., Huson, D.H., 2015. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12 (1), 59–60.

Carini, P., Marsden, P.J., Leff, J.W., Morgan, E.E., Strickland, M.S., Fierer, N., 2016. Relic DNA is abundant in soil and obscures estimates of soil microbial diversity. Nat. Microbiol. 2, 16242.

Camejo, P.Y., Santo Domingo, J., McMahon, K.D., Noguera, D.R., 2017. Genome-enabled insights into the ecophysiology of the comammox bacterium "Candidatus Nitrospira nitrosa". mSystems 2 (5) e00059-00017.

Campbell, B.J., Yu, L., Heidelberg, J.F., Kirchman, D.L., 2011. Activity of abundant and rare bacteria in a coastal ocean. Proc. Natl. Acad. Sci. 108 (31), 12776.

Capella-Gutiérrez, S., Silla-Martínez, J.M., Gabaldón, T., 2009. trimAl: a tool for

- automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25 (15), 1972–1973.
- Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-Lyons, D., Lozupone, C.A., Turnbaugh, P.J., Fierer, N., Knight, R., 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108 (1), 4516–4522.
- Chao, Y., Mao, Y., Yu, K., Zhang, T., 2016. Novel nitrifiers and comammox in a full-scale hybrid biofilm and activated sludge reactor revealed by metagenomic approach. Appl. Microbiol. Biotechnol. 100 (18), 8225–8237.
- Cole, J.R., Wang, Q., Fish, J.A., Chai, B., McGarrell, D.M., Sun, Y., Brown, C.T., Porras-Alfaro, A., Kuske, C.R., Tiedje, J.M., 2014. Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42 (Database issue), D633–D642.
- Costa, E., Pérez, J., Kreft, J.U., 2006. Why is metabolic labour divided in nitrification? Trends Microbiol. 14 (5), 213–219.
- Daims, H., Lebedeva, E.V., Pjevac, P., Han, P., Herbold, C., Albertsen, M., Jehmlich, N., Palatinszky, M., Vierheilig, J., Bulaev, A., Kirkegaard, R.H., von Bergen, M., Rattei, T., Bendinger, B., Nielsen, P.H., Wagner, M., 2015. Complete nitrification by Nitrospira bacteria. Nature 528 (7583), 504–509.
- Daims, H., Lücker, S., Wagner, M., 2016. A new perspective on microbes formerly known as Nitrite-Oxidizing bacteria. Trends Microbiol. 24 (9), 699–712.
- Dechesne, A., Musovic, S., Palomo, A., Diwan, V., Smets, B.F., 2016. Underestimation of ammonia-oxidizing bacteria abundance by amplification bias in amoAtargeted qPCR. Microb. Biotechnol. 9 (4), 519–524.
- Dionisi, H.M., Harms, G., Layton, A.C., Gregory, I.R., Parker, J., Hawkins, S.A., Robinson, K.G., Sayler, G.S., 2003. Power analysis for real-time PCR quantification of genes in activated sludge and analysis of the variability introduced by DNA extraction. Appl. Environ. Microbiol. 69 (11), 6597.
- Eddy, S.R., 2011. Accelerated profile HMM searches. PLoS Comput. Biol. 7 (10), e1002195.
- Edgar, R.C., 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32 (5), 1792—1797.
- Eren, A.M., Esen, Ö.C., Quince, C., Vineis, J.H., Morrison, H.G., Sogin, M.L., Delmont, T.O., 2015. Anvi'o: an advanced analysis and visualization platform for 'omics data. PeerJ 3, e1319.
- Fan, X.Y., Gao, J.F., Pan, K.L., Li, D.C., Dai, H.H., 2017. Temporal dynamics of bacterial communities and predicted nitrogen metabolism genes in a full-scale wastewater treatment plant. RSC Adv. 7 (89), 56317—56327.
- Fowler, S.J., Palomo, A., Dechesne, A., Mines, P.D., Smets, B.F., 2018. Comammox Nitrospira are abundant ammonia oxidizers in diverse groundwater-fed rapid sand filter communities. Environ. Microbiol. 20 (3), 1002–1015.
- Gonzalez-Martinez, A., Rodriguez-Sanchez, A., van Loosdrecht, M.C.M., Gonzalez-Lopez, J., Vahala, R., 2016. Detection of comammox bacteria in full-scale wastewater treatment bioreactors using tag-454-pyrosequencing. Environ. Sci. Pollut. Control Ser. 23 (24), 25501–25511.
- Graham, D., Knapp, C., Van Vleck, E., Bloor, K., Lane, T., Graham, C., 2007. Experimental demonstration of chaotic instability in biological nitrification. ISME J. 1 (5), 385–393.
- Han, P., Yu, Y., Zhou, L., Tian, Z., Li, Z., Hou, L., Liu, M., Wu, Q., Wagner, M., Men, Y., 2019. Specific Micropollutant biotransformation pattern by the comammox bacterium *Nitrospira* inopinata. Environ. Sci. Technol. 53 (15), 8695–8705.
- Hermansson, A., Lindgren, P.E., 2001. Quantification of ammonia-oxidizing bacteria in arable soil by Real-Time PCR. Appl. Environ. Microbiol. 67 (2), 972–976.
- Hu, H.W., He, J.Z., 2017. Comammox a newly discovered nitrification process in the terrestrial nitrogen cycle. J. Soils Sediments 17 (12), 2709–2717.
- Hyatt, D., Chen, G.L., LoCascio, P.F., Land, M.L., Larimer, F.W., Hauser, L.J., 2010. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinf. 11, 119.
- Jain, C., Rodriguez-R, L.M., Phillippy, A.M., Konstantinidis, K.T., Aluru, S., 2018. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9 (1), 5114.
- Juretschko, S., Timmermann, G., Schmid, M., Schleifer, K.H., Pommerening-Roser, A., Koops, H.P., Wagner, M., 1998. Combined molecular and conventional analyses of nitrifying bacterium diversity in activated sludge: Nitrosococcus mobilis and Nitrospira-like bacteria as dominant populations. Appl. Environ. Microbiol. 64 (8), 3042—3051.
- Kanehisa, M., Sato, Y., Kawashima, M., Furumichi, M., Tanabe, M., 2016. KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res. 44 (D1), D457—D462
- Kang, D.D., Froula, J., Egan, R., Wang, Z., 2015. MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3, e1165.
- Kits, K.D., Jung, M.-Y., Vierheilig, J., Pjevac, P., Sedlacek, C.J., Liu, S., Herbold, C., Stein, L.Y., Richter, A., Wissel, H., Brüggemann, N., Wagner, M., Daims, H., 2019. Low yield and abiotic origin of N2O formed by the complete nitrifier Nitrospira inopinata. Nat. Commun. 10 (1), 1836.
- Kits, K.D., Sedlacek, C.J., Lebedeva, E.V., Han, P., Bulaev, A., Pjevac, P., Daebeler, A., Romano, S., Albertsen, M., Stein, L.Y., Daims, H., Wagner, M., 2017. Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature 549, 269–272.
- Klotz, M.G., Stein, L.Y., 2008. Nitrifier genomics and evolution of the nitrogen cycle. FEMS Microbiol. Lett. 278 (2), 146–156.
- Koch, H., Lücker, S., Albertsen, M., Kitzinger, K., Herbold, C., Spieck, E., Nielsen, P.H., Wagner, M., Daims, H., 2015. Expanded metabolic versatility of ubiquitous nitrite-oxidizing bacteria from the genus Nitrospira. Proc. Natl. Acad. Sci. 112

- (36), 11371-11376.
- Kowalchuk, G.A., Stephen, J.R., 2001. Ammonia-oxidizing bacteria: a model for molecular microbial ecology. Annu. Rev. Microbiol. 55, 485–529.
- Langmead, B., Salzberg, S.L., 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359.
- Lawson, C.E., Lücker, S., 2018. Complete ammonia oxidation: an important control on nitrification in engineered ecosystems? Curr. Opin. Biotechnol. 50, 158–165.
- Li, H., Durbin, R., 2010. Fast and accurate long-read alignment with Burrows—Wheeler transform. Bioinformatics 26 (5), 589—595.
- Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G., Durbin, R., Subgroup, G.P.D.P., 2009. The sequence alignment/map format and SAMtools, Bioinformatics 25 (16), 2078–2079.
- Matsen, F.A., Kodner, R.B., Armbrust, E.V., 2010. pplacer: linear time maximumlikelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinf. 11, 538.
- McIlroy, S.J., Saunders, A.M., Albertsen, M., Nierychlo, M., McIlroy, B., Hansen, A.A., Karst, S.M., Nielsen, J.L., Nielsen, P.H., 2015. MiDAS: the field guide to the microbes of activated sludge. Database 2015.
- Miller, C., Baker, B., Thomas, B., Singer, S., Banfield, J., 2011. EMIRGE: reconstruction of full-length ribosomal genes from microbial community short read sequencing data. Genome Biol. 12 (5), R44.
- Mußmann, M., Brito, I., Pitcher, A., Sinninghe Damsté, J.S., Hatzenpichler, R., Richter, A., Nielsen, J.L., Nielsen, P.H., Müller, A., Daims, H., Wagner, M., Head, I.M., 2011. Thaumarchaeotes abundant in refinery nitrifying sludges express amoA but are not obligate autotrophic ammonia oxidizers. Proc. Natl. Acad. Sci. 108 (40), 16771.
- Nurk, S., Meleshko, D., Korobeynikov, A., Pevzner, P.A., 2017. metaSPAdes: a new versatile metagenomic assembler. Genome Res. 27 (5), 824–834.
- Orellana, L.H., Hatt, J.K., Iyer, R., Chourey, K., Hettich, R.L., Spain, J.C., Yang, W.H., Chee-Sanford, J.C., Sanford, R.A., Löffler, F.E., Konstantinidis, K.T., 2018. Comparing DNA, RNA and Protein Levels for Measuring Microbial Activity in Nitrogen-Amended Soils, p. 466680 bioRxiv.
- Palomo, A., Jane Fowler, S., Gulay, A., Rasmussen, S., Sicheritz-Ponten, T., Smets, B.F., 2016. Metagenomic analysis of rapid gravity sand filter microbial communities suggests novel physiology of Nitrospira spp. ISME J. 10 (11), 2569–2581.
- Palomo, A., Pedersen, A.G., Fowler, S.J., Dechesne, A., Sicheritz-Pontén, T., Smets, B.F., 2018. Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox Nitrospira. ISME J. 12 (7), 1779—1793.
- Palomo, A., Dechesne, A., Smets, B., 2019. Genomic profiling of Nitrospira species reveals ecological success of comammox Nitrospira. biorxiv 61226. https:// doi.org/10.1101/612226.
- Parks, D.H., Rinke, C., Chuvochina, M., Chaumeil, P., Woodcroft, B.J., Evans, P.N., Hugenholtz, P., Tyson, G.W., 2017. Recovery of nearly 8,000 metagenomeassembled genomes substantially expands the tree of life. Nat. Microbiol. 2, 1533–1542.
- Parks, D.H., Chuvochina, M., Waite, D.W., Rinke, C., Skarshewski, A., Chaumeil, P.-A., Hugenholtz, P., 2018. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat. Biotechnol. 36, 996–1004.
- Parks, D.H., Imelfort, M., Skennerton, C.T., Hugenholtz, P., Tyson, G.W., 2015. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res. 25 (7), 1043–1055.
- Pericard, P., Dufresne, Y., Couderc, L., Blanquart, S., Touzet, H., 2018. MATAM: reconstruction of phylogenetic marker genes from short sequencing reads in metagenomes. Bioinformatics 34 (4), 585–591.
- Pinto, A.J., Marcus, D.N., Ijaz, U.Z., Bautista-de lose Santos, Q.M., Dick, G.J., Raskin, L., 2015. Metagenomic evidence for the presence of comammox nitrospira-like bacteria in a drinking water system. mSphere 1 (1) e00054-00015.
- Pjevac, P., Schauberger, C., Poghosyan, L., Herbold, C.W., van Kessel, M.A.H.J., Daebeler, A., Steinberger, M., Jetten, M.S.M., Lücker, S., Wagner, M., Daims, H., 2017. AmoA-targeted polymerase chain reaction primers for the specific detection and quantification of comammox nitrospira in the environment. Front. Microbiol. 8 (1508).
- Poghosyan, L., Koch, H., Lavy, A., Frank, J., van Kessel, M.A.H.J., Jetten, M.S.M., Banfield, J.F., Lücker, S., 2019. Metagenomic recovery of two distinct comammox Nitrospira from the terrestrial subsurface. Environ. Microbiol. 21 (10), 3627–3637. https://doi.org/10.1111/1462-2920.14691.
- Price, M.N., Dehal, P.S., Arkin, A.P., 2010. Fasttree 2 approximately maximum-likelihood trees for large alignments. PLoS One 5 (3), e9490.
- Prosser, J.I., Nicol, G.W., 2008. Relative contributions of archaea and bacteria to aerobic ammonia oxidation in the environment. Environ. Microbiol. 10 (11), 2931–2941.
- Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., Glöckner, F.O., 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, 590–596.
- RCoreTeam, 2014. R: A Language and Environment for Statistical Computing. R foundation for statistical computing, Vienna, Austria.
- Roots, P., Wang, Y., Rosenthal, A.F., Griffin, J.S., Sabba, F., Petrovich, M., Yang, F., Kozak, J.A., Zhang, H., Wells, G.F., 2019. Comammox Nitrospira are the dominant ammonia oxidizers in a mainstream low dissolved oxygen nitrification reactor. Water Res. 157, 396–405.
- Rotthauwe, J.H., Witzel, K.P., Liesack, W., 1997. The ammonia monooxygenase structural gene amoA as a functional marker: molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 63 (12), 4704–4712.
- Saunders, A.M., Albertsen, M., Vollertsen, J., Nielsen, P.H., 2016. The activated sludge

- ecosystem contains a core community of abundant organisms. ISME J. 10 (1), 11-20
- Siripong, S., Rittmann, B.E., 2007. Diversity study of nitrifying bacteria in full-scale municipal wastewater treatment plants. Water Res. 41 (5), 1110–1120.
- Smith, C.J., Osborn, A.M., 2009. Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS (Fed. Eur. Microbiol. Soc.) Microbiol. Ecol. 67 (1), 6–20.
- Spasov, E., Tsuji, J.M., Hug, L.A., Doxey, A.C., Sauder, L.A., Parker, W.J., Neufeld, J.D., 2019. Comammox Bacteria Are Dominant Ammonia Oxidizers in Rotating Biological Contactors of a Municipal Wastewater Treatment Plant, p. 529826 bioRxiv.
- Stahl, D.A., Torre, J.R.d.l., SM, A., JI, P., 2012. Physiology and diversity of ammoniaoxidizing archaea urease activity in neutrophilic autotrophic ammoniaoxidizing bacteria isolated from acid soils. Annu. Rev. Microbiol. 66 (1), 83–101.
- Stamatakis, A., 2014. RAxML Version 8: a tool for phylogenetic analysis and postanalysis of large phylogenies. Bioinformatics 30 (9), 1312–1313.
- Tatari, K., Musovic, S., Gülay, A., Dechesne, A., Albrechtsen, H.-J., Smets, B.F., 2017. Density and distribution of nitrifying guilds in rapid sand filters for drinking water production: dominance of Nitrospira spp. Water Res. 127, 239–248.
- van Kessel, M.A.H.J., Speth, D.R., Albertsen, M., Nielsen, P.H., Op den Camp, H.J.M., Kartal, B., Jetten, M.S.M., Lücker, S., 2015. Complete nitrification by a single microorganism. Nature 528 (7583), 555–559.
- Wagner, M., Horn, M., Daims, H., 2003. Fluorescence in situ hybridisation for the identification and characterization of prokaryotes. Curr. Opin. Microbiol. 6 (3), 302–309.
- Wang, M., Huang, G., Zhao, Z., Dang, C., Liu, W., Zheng, M., 2018. Newly designed primer pair revealed dominant and diverse comammox amoA gene in full-scale

- wastewater treatment plants. Bioresour. Technol. 270, 580-587.
- Wang, Q., Garrity, G., Tiedje, J., Cole, J., 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73 (16), 5261–5267.
- Wang, Y., Ma, L., Mao, Y., Jiang, X., Xia, Y., Yu, K., Li, B., Zhang, T., 2017. Comammox in drinking water systems. Water Res. 116, 332–341.
- Wick, R.R., Judd, L.M., Gorrie, C.L., Holt, K.E., 2017. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13 (6), e1005595.
- Wickham, H., 2009. ggplot2: Elegant Graphics for Data Analysis. Springer, New York.
- Woodcroft, B.J., Singleton, C.M., Boyd, J.A., Evans, P.N., Emerson, J.B., Zayed, A.A.F., Hoelzle, R.D., Lamberton, T.O., McCalley, C.K., Hodgkins, S.B., Wilson, R.M., Purvine, S.O., Nicora, C.D., Li, C., Frolking, S., Chanton, J.P., Crill, P.M., Saleska, S.R., Rich, V.I., Tyson, G.W., 2018. Genome-centric view of carbon processing in thawing permafrost. Nature 560 (7716), 49–54.
- Wu, L., Ning, D., Zhang, B., Li, Y., Zhang, P., Shan, X., Zhang, Q., Brown, M., Li, Z., Van Nostrand, J.D., Ling, F., Xiao, N., Zhang, Y., Vierheilig, J., Wells, G.F., Yang, Y., Deng, Y., Tu, Q., Wang, A., Global Water Microbiome Consortium, Zhang, T., He, Z., Keller, J., Nielsen, P.H., Alvarez, P.J.J., Criddle, C.S., Wagner, M., Tiedje, J.M., He, Q., Curtis, T.P., Stahl, D.A., Alvarez-Cohen, L., Rittmann, B.E., Wen, X., Zhou, J., 2019. Global diversity and biogeography of bacterial communities in wastewater treatment plants. Nat. Microbiol. 4, 1183—1195.
- Xia, F., Wang, J.G., Zhu, T., Zou, B., Rhee, S.K., Quan, Z.X., 2018. Ubiquity and diversity of complete ammonia oxidizers (comammox). Appl. Environ. Microbiol. 84 (24) e01390-01318