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 2 

Abstract  22 

 Scaling relationships, including power laws, provide quantitative predictions used in 23 

basic and applied sciences. We investigated scaling relationships between catchment area and 24 

lake surface area, the ratio of which has important implications for terrestrial-aquatic linkages. 25 

Synthesizing evidence from 9 datasets from three continents, we show that there is an 26 

approximately linear relationship between lake surface area and catchment area, and that 27 

reservoirs and other human-made lakes tend to have larger catchments than natural lakes. Using 28 

the example of DOC export from forested catchments, we illustrate how the relationships 29 

observed in this study can be used to provide first-order estimates of ecosystem processes 30 

coupling lakes and their catchments.  31 
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 3 

Introduction 32 

 Across the environmental and biological sciences, many well-known scaling relationships 33 

reflect fundamental processes and provide quantitative predictions useful in research, 34 

conservation, and natural resource management. For example, in numerous types of 35 

measurements the variance of a set increases as its mean also increases according to a power-law 36 

relationship, known in ecology as Taylor’s law (Taylor 1961). A multiplicity of biotic and 37 

abiotic variables, from the abundances of insect pests to human demography to Tornado 38 

outbreaks, conform to Taylor’s law (Taylor 1961, Downing 1979, Xu et al. 2014, Bohk et al. 39 

2015, Lagrue et al. 2015, Tippett and Cohen 2016, Reuman et al. 2017, Zhao et al. 2019), and 40 

knowledge of this scaling relationship has wide-ranging usefulness, from design of sampling 41 

protocols (Downing 1979, Taylor 2018), to scaling process measurements up in time and space, 42 

to quantifying portfolio effects (Doak et al. 1998, Hallett et al. 2014). Similar power-law 43 

relationships may hold for features of aquatic ecosystems. Two examples are the relationships 44 

between lake size and lake abundance (Downing et al. 2006, Seekell and Pace 2011) and stream 45 

network lengths and basin area (Shreve 1974, Robert and Roy 1990). There are many more small 46 

lakes than large lakes, and the logarithm of abundance declines approximately linearly with the 47 

logarithm of surface area, at least over some intervals (Downing et al. 2006, Seekell and Pace 48 

2011). Basin area tends to increase with stream network length according to a power-law (Shreve 49 

1974, Robert and Roy 1990).  50 

Here, we consider another possible power-law relationship, between lake surface area 51 

and catchment area. The ratio of catchment area to surface area, also known as the drainage ratio, 52 

is a commonly used indicator of the influence of catchment processes on lake dynamics and is 53 

related to factors including nitrogen removal (Harrison et al. 2009), carbon inputs (Sobek et al. 54 
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 4 

2007, Xenopoulos et al. 2013), carbon burial (Downing et al. 2008), and lake color (Rasmussen 55 

et al. 1989). However, surprisingly little has been reported about how catchment area scales with 56 

lake surface area. Reservoirs tend to have larger catchments than natural lakes, even relative to 57 

lake size (Hayes et al. 2017), and drainage ratios may differ between regions representing 58 

different geophysical settings (Kortelainen 1993). However, whether there is a power-law 59 

scaling relationship between lake area and catchment area, and whether this relationship is 60 

consistent across geographic regions and lake types (e.g., natural, reservoir) is unclear. 61 

 This study synthesizes evidence from 6542 lakes across 9 datasets from North America, 62 

Europe, and New Zealand to examine: 1) does catchment area scale with lake surface area? 2) do 63 

relationships between catchment area and lake area differ geographically or according to lake 64 

type? We find approximately linear (i.e. power-law) relationships between lake surface areas and 65 

catchment areas on logarithmic scales. These relationships change according to lake type, with 66 

reservoirs and other human-made lakes having consistently larger catchments relative to lake 67 

surface area. These relationships can be used to scale up local estimates of important ecosystem 68 

processes and to derive first-order approximations of important quantities, which we illustrate 69 

using dissolved organic carbon (DOC) export from forested watersheds as an example. 70 

 71 

Methods 72 

We analyzed using linear regression the scaling relationship between catchment area and 73 

lake surface area in nine datasets representing different regions and areal extents: the 74 

Adirondacks (New York, USA), the Eastern Lake Survey (USA), Iowa, Ohio, Finland, Florida, 75 

New Zealand, the Western Lake Survey (USA) and the USA National Lakes Assessment (NLA). 76 

Where possible, given sample sizes and provided information, we considered whether these 77 
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 5 

relationships differed by region and/or lake type attributes by asking whether model fit was 78 

improved by including these factors as random effects in linear mixed effects regression. Except 79 

when particular groups had too few members for robust analysis, we used lake type designations 80 

as provided in the original datasets. The first eight datasets were used primarily to assess the 81 

variety and consistency of scaling relationships across diverse ecological and geomorphic 82 

settings. Due to its sampling design, geographic scope, and detailed lake type information, we 83 

gave greater weight to the NLA data, and used this survey in particular to compare the relative 84 

strength of variability attributable to geography versus lake type. A summary of lake type 85 

designations for each dataset is provided in Table 1. 86 

 87 

Datasets 88 

The Adirondacks data were generated by the Adirondacks Lake Survey (Kretser et al. 89 

1989, Baker et al. 1990) and includes data on 1468 lakes in Adirondack Park, a mountainous 90 

≈24000 km2 region of northeast New York state. The dataset contains a representative sample of 91 

≈50% of lakes in the region, ranging in surface area from 0.2 to 203 ha. Lake type information 92 

was not available. 93 

The Iowa data come from the Iowa Ambient Lakes Monitoring Program which monitors 94 

water quality of “significant publicly-owned” lakes in the state of Iowa, or lakes and 95 

impoundments greater than 4 ha and capable of supporting a sport fish stock of at least 225 kg 96 

per hectare. The dataset includes 123 lakes located over the ≈150000 km2 state. We used lake 97 

type information in the dataset to designate Iowa lakes as human-made (borrow pits, 98 

impoundments) or natural.  99 
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 6 

The Ohio data were obtained from Hayes and Vanni (2018), and include 86 lakes over 100 

the ≈115000 km2 state, ranging from 7 to 6500 ha in surface area. Lakes types in this dataset 101 

included tributary reservoirs, canal reservoirs, permanently filled quarries, and natural lakes. We 102 

considered differences between reservoirs (tributary and canal) and other lakes; permanently 103 

filled quarries and natural lakes were not separately identified in the dataset. 104 

The Finnish data were obtained from the Finnish Environment Institute and are described 105 

in Forsius et al. (1990) and Kortelainen (1993). These data include 976 lakes over the ≈340000 106 

km2 area of Finland. The lakes span 1 to 750 ha in surface area, and are predominantly drainage 107 

(70%) or headwater lakes (17%) (Kortelainen 1993). Lake type information was not provided. 108 

The Florida data were obtained from (Xiong and Hoyer 2019) and contain observations 109 

of 87 lakes in Florida, USA. Lake surface areas ranged from <1 to >7000 ha. Lake type 110 

information was not provided. 111 

The New Zealand data were obtained by compiling records available online from Land 112 

Air Water Aotearoa at <https://www.lawa.org.nz> and from the Waikato Regional Government 113 

at <https://www.waikatoregion.govt.nz/assets/PageFiles/19300/2011-05.pdf>. These data cover 114 

136 lakes, from 0.7 to 61500 ha in surface area, distributed over the ≈270000 km2 area of New 115 

Zealand. Lakes in this dataset are predominantly natural, and other lake types were not 116 

sufficiently common for analysis of lake origin effects. 117 

The Eastern Lake Survey (ELS) and Western Lake Survey (WLS) datasets were obtained 118 

from the US Environmental Protection Agency. The surveys, conducted in 1984 and 1985, 119 

respectively, were part of the National Acid Precipitation Assessment Program. The ELS 120 

features data on 1669 lakes in the northeast, southeast, and upper Midwest regions of the USA. 121 

The WLS features data on 752 lakes over the remaining contiguous US. The ELS contained 122 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65



 7 

some lake type attributes, but this was ignored in our analyses because of the large fraction of 123 

lakes with missing information and the predominance of natural lakes among those for which 124 

lake type was recorded. The WLS identified lakes by hydrologic classes: closed, drainage, 125 

reservoir, and seepage, which we used to analyze lake type effects. Although these hydrologic 126 

lake types are somewhat different from the lake types for other datasets, which focused on 127 

natural versus human origin and modification, the hydrologic lake types in the WLS allowed us 128 

to address another potential source of variation in catchment area to surface area relationships. 129 

The NLA data were taken from the 2012 survey (U.S. Environmental Protection Agency 130 

2016). These data represent 1230 lakes over the contiguous United States (≈8000000 km2). The 131 

NLA includes lakes >1 ha in surface area, and lakes are selected for inclusion following a 132 

stratified random sampling procedure that ensures that lakes from major ecological zones are 133 

represented. The NLA distinguished five types of lakes: natural, enhanced natural, man-made, 134 

man-made abandoned, and reservoir. Enhanced natural lakes were originally open water shallow 135 

lakes that had been enhanced with flow diversions to form a larger/deeper lake. Man-made lakes 136 

were created by humans with current use for purposes of water storage, fishing, and recreation, 137 

but not irrigation or power generation; this category also includes lakes historically used for 138 

other purposes, such as mining pits and mill ponds. Man-made abandoned lakes have been 139 

abandoned from their intended function for many decades, and for our analysis were combined 140 

with the man-made class. Reservoirs are man-made impoundments used for drinking water, 141 

hydropower, flood control, and/or active irrigation. The NLA also grouped lakes by Level-1 142 

North American Ecoregions. Some regions were represented by few lakes and were, for our 143 

analysis, merged into adjacent regions. We merged regions 11 (Mediterranean California), 12 144 

(Southern Semi-Arid Highlands), and 13 (Temperate Sierras) into region 10 (North American 145 
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 8 

Deserts); region 15 (Tropical Wet Forests) intro region 8 (Eastern Temperate Forests); and 146 

region 7 (Marine West Coast Forest) into region 6 (Northwestern Forested Mountains). 147 

Analyses 148 

To analyze the scaling relationships between catchment area and lake surface area, we 149 

first took the base-10 logarithm of both quantities. The log transformation stabilizes variances 150 

and allows us to assess whether the relationship between lake surface and catchment area is a 151 

power-law. The power-law relationship C = aLb, where C is catchment area and L is lake surface 152 

area, is linearized by taking the logarithm of both sides to log10(C) = log10(a) + blog10(L). We 153 

used linear models to estimate log10(a) and b, and thereby quantify the relationship between 154 

catchment area and lake surface area. Where possible, given sample sizes and information 155 

provided in the selected datasets, we included random effects to examine whether the scaling 156 

relationship between catchment area and lake surface area varies by lake type or region. Except 157 

when particular groups had too few members for robust analysis, we used lake type designations 158 

as provided in the original datasets; exceptions are described above under the Datasets sub-159 

heading. We considered all models with random effects of lake origin or region on the intercept, 160 

the slope, or both, and used Akaike’s Information Criterion with correction for small sample 161 

sizes (AICc) to select the best model. For the Iowa, Ohio, and WLS datasets, we considered 162 

random effects of lake type. For the NLA data, we considered random effects of region and lake 163 

origin.  164 

To determine whether the relationship between catchment area and lake surface area for 165 

each dataset was well-described by a power law, we considered the linearity and 166 

homoscedasticity of each relationship (Zhao et al. 2019), and whether the estimate of b (the slope 167 

of the linear model, or the exponent on the natural scale) differs from 1. To determine whether 168 
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 9 

the linearity criterion was met, we compared the fit of the linear model, or the selected linear 169 

mixed-effects model, to an equivalent model including a quadratic term, e.g. log10(C) = log10(a) 170 

+ b1log(L) + b2log(L)2. Linearity was rejected if a likelihood ratio test indicated the quadratic 171 

model to perform better at the α = 0.01 significance level (Zhao et al. 2019). To determine 172 

whether the homoscedasticity criterion was met, we regressed absolute valued residuals from the 173 

power-law model against log10(L). If the relationship between residuals and log10(L) was 174 

statistically significant at the α = 0.01 level, homoscedasticity was rejected. The α = 0.01 175 

significance level was used to evaluate consistency with a power-law relationship because, as our 176 

goal was to explore an approximate empirical relationship in data with error and potential 177 

sampling biases, we were willing to accept that relationships between lake surface area and 178 

catchment area approximately followed a power law unless there were considerable deviations 179 

from these assumptions. We used the 95% confidence interval on the estimate of the linear 180 

regression coefficient to determine if it differed from 1. 181 

We analyzed all datasets separately because of differences between datasets in how lakes 182 

were selected for inclusion in each dataset, and in whether and how lake types were represented. 183 

There are also potential differences between datasets in methods for determining lake area and 184 

catchment area, the precise nature of which we were not able to be determined from available 185 

documentation. Additionally, we note that model-II regression would in some ways have been 186 

appropriate because it assumes that there is measurement error in both the predictor and response 187 

variables, but we are unaware of an established methodology for including random effects in 188 

these procedures. Furthermore, the independent variable, lake area, is likely measured with high 189 

precision and accuracy while the dependent variable, catchment area, typically has higher 190 

uncertainty. In this context the analysis is arguably closer to model I regression. Analyses were 191 
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 10 

conducted in R version 3.5.1 (R Core Team 2018) using the ‘lmerTest’ package (Kuznetsova et 192 

al. 2017). 193 

 194 

Results 195 

For all nine datasets, there were strong relationships between lake area and catchment 196 

area (Figures 1 and 2). Most of the lake area to catchment area relationships were best fit by 197 

linear, as opposed to quadratic relationships, and most relationships had homoscedastic residuals. 198 

Among lakes meeting the linearity and homoscedasticity criteria, two datasets exhibited super-199 

linear relationships (b > 1), one dataset had b not statistically different from 1, and three datasets 200 

exhibited sub-linear relationships (b < 1).  201 

For the Adirondacks, there was a quadratic relationship between log10(lake surface area) 202 

and log10(catchment area) (Fig. 1a). The quadratic relationship gave a substantially better fit to 203 

the data than the linear relationship (ΔAICc = -25.5; likelihood ratio test F = 27.7, df = 1, p < 204 

0.0001). Lakes in the ELS also exhibited a quadratic relationship between log10(lake surface 205 

area) and log10(catchment area) (Fig. 1b), but the relationship was less strongly nonlinear than 206 

for the Adirondacks (ΔAICc = -7.3; likelihood ratio test F = 9.32, df = 1, p = 0.002). Finnish 207 

lakes exhibited a linear relationship (Figure 1c) between log10(lake surface area) and 208 

log10(catchment area), but heteroscedasticity was detected (absolute valued residuals increase 209 

with log10(lake surface area); b = 0.082, p < 0.0001). 210 

For datasets where relationships were linear and homoscedastic (Florida, Iowa, New 211 

Zealand, Ohio, WLS, NLA), most estimates of b were near one, but in some cases significantly 212 

greater than one, and in other cases, less than one. In addition, where data were available, 213 

accounting for different lake origins was important, as human-made water bodies had higher 214 
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 11 

estimates of log10(a) (y-intercepts on the log-log scale). In every dataset where the data allowed 215 

testing its effect (Iowa, Ohio, WLS, and NLA), the best model by AICc also included random 216 

effects of lake type on the linear regression intercept. For Florida lakes (Fig 1d), the estimate of b 217 

was indistinguishable from 1 (b = 0.972 ± SE = 0.065). For Iowa lakes (Fig. 1e), human-made 218 

lakes—predominantly reservoirs—had larger catchments than natural lakes, but b was the same 219 

across lake origins (Fig. 1e). The relationship was super-linear, i.e., b >1 (b = 1.147 ± SE = 220 

0.069). New Zealand lakes had a sub-linear (b = 0.860 ± SE = 0.050), power-law relationship 221 

between catchment area and lake surface area (Fig. 1f).  For the Ohio lakes, reservoirs had larger 222 

catchments than other lakes, including natural lakes, and the slope was the same across lake 223 

origins (Fig. 1g). The slope estimate was less than 1 (b = 0.773 ± SE = 0.094). The WLS data 224 

showed a power-law relationship with effects of lake origin on catchment area, but b did not 225 

differ by lake origin (Fig. 1h). Reservoirs had the largest catchments, and seepage lakes the 226 

smallest. The scaling relationship was sublinear (b = 0.802 ± SE = 0.032). For the NLA data, 227 

reservoirs and other man-made lakes had the largest watersheds, but b did not differ among lake 228 

origins. The scaling relationship was super-linear (b = 1.050 ± SE = 0.024). The model 229 

accounting for lake type alone outperformed models allowing variation among ecoregions in the 230 

scaling relationship.  231 

 232 

Discussion 233 

There is generally a linear scaling relationship between lake surface area and catchment 234 

area. Lake type can modify this relationship such that a reservoir or impoundment of a given size 235 

will typically have a larger catchment than a natural lake of comparable surface area, but the rate 236 

at which catchment area increases as a function of lake surface area does not appear to change 237 
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 12 

according to lake origin, at least within a given data set. Although we observed some variation 238 

between datasets in the shape of this scaling relationship and its parameters, differences among 239 

lake types appeared to be more important than differences among regions in the scaling between 240 

lake surface area and catchment area. Knowledge of these relationships is useful for scaling the 241 

total magnitudes of fluxes of matter and energy between landscapes and lakes, for example to 242 

extrapolate loading rates known for one system to another, differently-sized system. 243 

In the context of assessing power-law relationships, identifying whether the relationship 244 

is sub- or super-linear, i.e., b is less than or greater than 1, is key. In the absence of evidence, 245 

linearity is often the default assumption, but severe mispredictions can occur if the increase in 246 

catchment area as lake surface area increases occurs more slowly (b < 1) or more rapidly (b > 1) 247 

than linearly. For example, if we take the y-intercept log(a) = 1.2 (a typical value for our study) 248 

and estimate the catchment area of a 100 ha lake with b = 0.8 versus b = 1.2, the estimated 249 

catchment area ranges 630 to 3980 ha, a difference of >3000 ha. Although some individual 250 

datasets gave estimates of b that were statistically distinguishable from 1, all were qualitatively 251 

close to 1, so even if the true relationship is subtly nonlinear, other sources of variation and error 252 

likely have a greater effect on predictions based on this relationship than a slight misspecification 253 

of the form of the relationship. 254 

Estimates of the log(a), the y-intercept on the linearized scale, when converted back to 255 

the natural scale, correspond to the average ratio of catchment area to lake surface area. 256 

Estimates of log(a) were typically between 1 and 2, meaning that catchment areas were, on 257 

average, 10 to 100 times greater than lake surface area. The catchments of natural lakes were 258 

generally smaller, relative to lake surface area, than artificial lakes, which had much larger 259 

catchments. This is consistent with  analysis of a U.S. and global dataset and a subsetted NLA 260 
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database, where catchment areas of artificial lakes were 3 to 4 times greater than the catchment 261 

areas of natural lakes (Thornton et al. 1980, Harrison et al. 2009, Hayes et al. 2017). 262 

A utility of the relationships is illustrated by a simple example. An approximate average 263 

export of dissolve organic carbon (DOC) from a forested catchment is 40 kg C ha-1 (Aikenhead 264 

et al. 2000; Canham et al. 2004). Using the relationships for Finland, New Zealand, and WLS, 265 

we can estimate of catchment areas for a 100 ha lake. Using the DOC export, we can then 266 

calculate areal loading rates as ~ 1000, ~ 700, and ~ 450 kg C ha-1 for Finland, New Zealand, and 267 

WLS, respectively. This calculation suggests a forested Finnish lake likely has a substantially 268 

higher DOC loading rate than a similar New Zealand lake and that a lake in the Western U.S 269 

receives less than half the DOC input relative to a similar Finnish lake. Similar to these 270 

calculations, we could estimate a range of DOC loading for lakes of the same size using the 271 

prediction intervals of the regressions. While such calculations must be used cautiously—for 272 

example, they do not account for differences in processing of material from the catchment en 273 

route to the lake—they can provide the basis for first order estimates and hypotheses for further 274 

investigation that is particularly useful in expanding limnological investigations to regional and 275 

global scales. Because lake surface areas are commonly measured, but catchment areas and, 276 

especially, export and loading rates, are more difficult to quantify, calculations such as this could 277 

be summed over many lakes to estimate regional and global-scale values. 278 

Only two datasets, Adirondacks and ELS, better fit a quadratic than linear regression 279 

model for lake surface area and catchment area on the log-log scale (Fig. 1). It is possible that the 280 

log10(catchment area) to log10(lake surface area) relationship is truly nonlinear in some settings. 281 

That this pattern was shared between both eastern USA datasets could suggest an unknown 282 

geomorphic explanation. However, we suspect that attributes of these datasets mask what is truly 283 
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a linear relationship with lake type effects, as was seen in the Iowa, Ohio, WLS, and NLA 284 

datasets (Figs. 1, 2). Because different lake origins have different size distributions, and different 285 

lake types also have different y-intercepts (on the log-log scale), overrepresentation of particular 286 

lake types at different ranges of lake size could make the overall shape of the relationship appear 287 

nonlinear. While the Adirondacks data did not contain lake type information, the study does 288 

include water bodies with “reservoir” in the name. We suspect that some of the larger catchments 289 

relative to lake area (positive residuals in Figure 1) may be reservoirs but we did not have the 290 

data to test this conjecture. This same argument may explain the heteroscedasticity in the Finland 291 

relationship.  292 

In summary, catchment area scales to lake area typically in linear form on a log-log scale, 293 

with slopes near one. Although we found evidence of some regional variability in the catchment 294 

area to lake area scaling relationship, within a region, catchment area-lake area slopes are 295 

consistent but intercepts differ in relation to lake type, with reservoirs and other man-made water 296 

bodies tending to have larger drainage ratios. Given that the geographic scope and stratified 297 

random sampling procedure used to select lakes for inclusion in the dataset ensured wide 298 

representation of lake characteristics and geomorphic settings, the relationships for the NLA 299 

dataset likely generalize best to lakes outside the specific regions investigated here. Catchment 300 

area-lake area relationships provide a means to calculate inputs and impacts of catchment 301 

processes on lakes and how these vary.    302 
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publicly archived at https://doi.org/10.6073/pasta/3a45bd3bb328fb202ff24b7d54b83cba. The 310 

Adirondacks, Finland, and Florida datasets were used with permission from the original authors 311 

of the datasets, but without permission to distribute them. Contacts for those datasets should be 312 

to the authors of the original papers cited in the text.  313 
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Tables 395 

Table 1: Datasets used in this analysis and associated lake origin designations. Lake origins 396 

correspond to random effects considered in our analysis. 397 

Dataset Lake type designations 
Adirondacks None 
Eastern Lake Survey None 
Finland None 
Florida None 
Iowa Human-made: borrow pits, impoundments 

Natural: naturally-occurring lakes 
New Zealand None 
Ohio Other: natural lakes and permanently-filled quarries 

Reservoir: tributary and canal reservoirs 
Western Lake Survey Closed: lakes having no outlet 

Drainage: lakes having an inlet and an outlet 
Reservoir: human-made impoundments used for drinking water, 
hydropower, and/or active irrigation 
Seepage: lakes having no inlet or outlet 

National Lakes 
Assessment (2012) 

Man-made: created by humans, includes abandoned man-made 
lakes, but not reservoirs 
Natural: naturally occurring, unmodified lakes 
Enhanced natural: naturally occurring, but enhanced with flow 
diversions e.g. to make a larger or deeper lake. 
Reservoir: human-made impoundments used for drinking water, 
hydropower, and/or active irrigation 
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Figures: 399 

 400 

Fig. 1: Relationships between lake surface area and catchment area for 8 selected datasets. 401 
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 402 

Fig. 2: Relationship between lake surface area and catchment area for lakes sampled in the 2012 403 

National Lakes Assessment survey. 404 
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