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Deep Learning for Massive MIMO With 1-Bit ADCs:
When More Antennas Need Fewer Pilots

Yu Zhang, Muhammad Alrabeiah, and Ahmed Alkhateeb

Abstract—This letter considers uplink massive MIMO systems
with 1-bit analog-to-digital converters (ADCs) and develops
a deep-learning based channel estimation framework. In this
framework, the prior channel estimation observations and deep
neural networks are leveraged to learn the non-trivial mapping
from quantized received measurements to channels. For that, we
derive the sufficient length and structure of the pilot sequence to
guarantee the existence of this mapping function. This leads to
the interesting, and counter-intuitive, observation that when more
base-station antennas are employed, our proposed deep learning
approach achieves better channel estimation performance, for the
same pilot sequence length. Equivalently, for the same channel
estimation performance, this means that when more antennas
are employed, fewer pilots are required. This observation is also
analytically proved for some special channel models. Simulation
results confirm our observations and show that more antennas
lead to better channel estimation in terms of the normalized mean
squared error and the receive signal-to-noise ratio per antenna.

Index Terms—Deep learning, massive MIMO, channel estima-
tion, 1-bit ADCs.

I. INTRODUCTION

SING low-resolution analog-to-digital converters
(ADCs) in massive MIMO systems has the potential
of reducing the power consumption while maintaining good
achievable rate performance. These gains attracted increasing
research interest in the last few years [1], [2]. One main
challenge in these systems, however, is estimating the
channels from highly quantized measurements. While several
channel estimation techniques have been proposed in the
literature [1], [2], these solutions generally require very large
training overhead (long pilot sequences). This highly impacts
the feasibility of employing low-resolution ADCs in practical
millimeter wave (mmWave) and massive MIMO systems.
This letter targets overcoming these challenges and enabling
low-resolution ADCs in large-scale MIMO systems.
Contribution: In this letter, we propose a deep-learning
based framework for the channel estimation problem in mas-
sive MIMO systems with 1-bit ADCs. In this framework,
the prior channel estimation observations and deep neu-
ral networks are exploited to learn the mapping from the
received quantized measurements to the channels. Learning
this mapping, however, requires its existence in the first place.
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For that, we derive the sufficient length and structure of the
pilot sequence that guarantees the existence of this quan-
tized measurement to channel mapping. Then, we make the
interesting observation that for the same set of candidate user
locations, more antennas require fewer pilots to guarantee the
mapping existence. This means that increasing the number of
base station antennas reduces the number of required pilots
to estimate their channels, which may seem counter-intuitive.
The intuition justifying this observation, however, is that with
more antennas, the quantized measurement vectors become
more unique for the different channels. Hence, they can be effi-
ciently mapped to their corresponding channels with less error
probability. This observation is also proved analytically for
the case of single-path channels. Simulation results highlight
the promising gains of the proposed deep learning approach;
they confirm that more antennas lead to better channel esti-
mates, in terms of normalized mean-squared error (NMSE)
and per-antenna signal-to-noise ratio (SNR).

Prior Work: To the best of our knowledge, no prior work has
addressed deep learning based channel estimation for massive
MIMO systems with 1-bit ADCs, or revealed the interesting
observation that more antennas need fewer pilots. Relevant
problems, however, have attracted a lot of research interest
in the last few years [1]-[6]. In [1], [2], classical signal pro-
cessing tools have been leveraged to design low-complexity
near-maximum likelihood (ML) data detector [1] and develop
efficient channel estimation techniques for massive MIMO and
mmWave systems [2]. A common problem in these solutions
is the need for very long pilot sequences to achieve good data
detection or channel estimation performance.

In [3]-[6], machine learning techniques were developed to
address several problems with 1-bit ADCs. For example, [3]
developed a machine learning framework for data detection,
but not for channel estimation, and [4] considered the channel
estimation problem in OFDM systems, but only for systems
with single antennas. In [5], deep learning solutions for data
detection and channel equalization were developed for MIMO
systems, but their approach works only for low-dimensional
MIMO regimes as the proposed network does not converge
for large numbers of antennas. In [6], systems with mixed
full-resolution and low-resolution ADCs were adopted, but
only the received signals from full-resolution ADCs were used
to estimate the channels, which is in fact equivalent to the
channel mapping concept we proposed in [7].

II. SYSTEM AND CHANNEL MODELS

We consider the system shown in Fig. 1 where a massive
MIMO base station (BS) with M antennas is communicating
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Fig. 1. The adopted massive MIMO system where the base station receiver

uses 1-bit ADCs. The uplink quantized received measurement matrix Y is fed
to a deep learning model that predicts the channel vector h.

with a single-antenna user. The BS employs only 1-bit analog-
to-digital converters (ADCs) in its receive chains. Further, we
adopt a time division duplexing (TDD) system operation where
the channel is estimated through an uplink training and used
for downlink data transmission as summarized below.

Uplink Training: If the user transmits an uplink pilot
sequence X € CN X1 where N is the length of pilot sequence,
then the received signal at the BS after the ADC quantization
can be expressed as

Y = sgn(hx™ +N), (1)

where h € CM*1 s the channel vector between the mobile
user and the BS antennas, N is the receive noise matrix at
the BS with independent and identically distributed (i.i.d.)
elements drawn from ANc(0,02), and the transmitted pilot
sequence is satisfying E[xx'] = P;I with P; denoting the
average transmit power per symbol. The element-wise opera-
tor sgn(-) is the signum function, and it is applied separately
to the real and imaginary part of its argument. Finally, Y is the
M x N quantized receive measurement matrix that consists of
the received pilot signals after quantization.

Channel Model: We adopt a general geometric channel
model for h. Assume that the signal propagation between the
user and BS consists of L paths. Each path £ has a complex
gain oy and an angle of arrival ¢, then we define

L
h =" "asa(¢y), @)

=1

where a(¢y) is the array response vector of the BS.

Channel Estimation: The quantized receive measurement
matrix Y will be processed using a channel estimator to con-
struct an estimated channel vector h. This letter focuses on
leveraging deep learning models for this channel estimation
task as will be discussed shortly in Sections III and IV.

Downlink data transmission: Based on the estimated chan-
nel vector, the downlink beamforming f is constructed as a

conjugate beamforming, i.e., f = h /|/h||. With this design,
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the downlink receive SNR per fransmit antenna can be writ-
ten as

p [
T

3
where p denotes the average receive SNR before beamforming.

III. PROBLEM DEFINITION

In this letter, we investigate the design of efficient chan-
nel estimation strategy that can construct the channel h from
the highly quantized received signal Y. More specifically,
assuming that the pilot sequence x is known to the BS
(the receiver), our objective is to develop a channel esti-
mation strategy that minimizes the normalized mean-squared
error (NMSE) between the estimated channel and the original
channel vectors, defined as

| = Ry?
NMSE_]El—”hHQ . “@

Traditionally, channel estimation algorithms attempt to pro-
cess the quantized signal Y to estimate the channel h. Since
Y is highly quantized, though, very long pilot sequences
normally need to be used to achieve a reasonable channel
estimation quality. To overcome this challenge, we propose
to exploit deep learning models to learn how to efficiently
estimate the channels from the quantized measurements while
requiring only small pilot sequences.

IV. DEEP LEARNING BASED CHANNEL ESTIMATION

Classical channel estimation techniques for massive MIMO
systems with low resolution ADCs, such as [1], [2], attempt
to estimate the channel only from the quantized received sig-
nal, without using prior observations. The channels, however,
are intuitively some functions of the different elements of the
environment, such as the environment geometry, materials,
transmitter/receiver positions, etc. [8]. This means that the BSs
deployed in a certain environment will likely experience simi-
lar channels more than once. Hence, prior experience could be
leveraged to learn the underlying relation between the quan-
tized received signals and the channels. This has the potential
of significantly reducing the pilot length. With that in mind,
we propose to utilize deep learning to learn the mapping from
the quantized received measurement matrix Y to the chan-
nel h. Next, we first establish the conditions under which this
mapping exists then highlight an interesting observation about
how scaling the number of antennas up scales the number of
required pilots down.

A. Mapping Quantized Measurements to Channels

Now, we investigate the existence of the mapping from
quantized measurements to channels and highlight the motiva-
tion to leverage deep learning models. We also briefly explain
why our proposed approach has the potential of reducing the
number of pilots. First, consider a setup (indoor or outdoor
environment) where a massive MIMO BS is serving a single-
antenna user, as described in Section II. Let {h} denote the
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set of candidate channels for the user, which depends on the
candidate user positions as well as the surrounding environ-
ment. Further, let {Y} represent the corresponding quantized
measurement matrices for the channel set {h} and a pilot
sequence X. We can then define the mapping from quantized
measurements to channels, ®(.), as

& : (Y} - {n). )

Note that if this mapping exists and is known, it can be used
to predict the channel vector h from the quantized receive
matrix Y. Next, we establish existence of this mapping in
Proposition 1 and then discuss how we can learn it.

Proposition 1: Consider the system and channel model in
Section II with N = 0 and a set of candidate channels {h}.
Define the angle o as

&= min o max|Z[hu]y — Zfbv]p|- (6)
uF£v

If the pilot sequence x is constructed to have a length N
satisfying N > [g%], with the angles of the pilot com-
plex symbols uniformly sampling the range |0, 7|, then the
mapping function $(.) exists.

Proof: See the Appendix. |

Proposition 1 means that once the pilot sequence is designed
with the specific structure described in the proposition, then
there exists a one-to-one mapping ®(.) that can map the quan-
tized measurement matrix Y to the channel h, i.e., it can use
Y to predict h. Interestingly, as we will see in Section V,
only a few pilot symbols (very small N) are needed in mas-
sive MIMO systems to make this mapping ®(.) exist with high
probability. This has the potential of significantly reducing the
channel training overhead compared to classical 1-bit ADC
channel estimation techniques. To be able to leverage this map-
ping function, however, we need to know it. Characterizing
this mapping analytically is very non-trivial mainly because of
the non-linear quantization. With this motivation, we propose
to exploit the powerful learning capabilities of deep neural
networks to learn this mapping and harvest the promising gains
in reducing the channel training overhead. Before describing
the adopted deep learning model in Section IV-C, we first
highlight in the next subsection an interesting gain of using the
proposed deep learning based 1-bit ADC channel estimation
approach in massive MIMO systems.

B. Discussion: More Antennas Need Fewer Pilots

As shown in Proposition 1 and its proof, the desired pilot
sequence should have a length that guarantees that every
two different channels in {h} result in two unique quan-
tized measurement matrices. Intuitively for the same uplink
pilot sequence length, the more antennas deployed at the BS
the more likely they lead to unique measurement matrices.
Interestingly, this means that more antennas will lead to better
channel estimation as will be shown in Section V. This also
implies that when more antennas are employed at the BS,
fewer pilots are required to guarantee that the mapping from
{h} to {Y} is bijective (one-to-one). This interesting relation
can be analytically characterized for several channel models.
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In the next corollary, we consider the LOS channel model, and
prove that more antennas need fewer pilots.

Corollary 1: Consider a BS employing a ULA with half-
wavelength antenna spacing and a single-path channel model
(L = 1). Let d¢ denote the smallest difference between any
two angles of arrival, ¢1,¢2 € [0,7[, of any two users. If
the pilot sequence is constructed according to Proposition 1,
then the required pilot sequence length to guarantee that the
mapping ®(.) exists is

1
N= {(M = 1)(4@2(5@2))] @

Proof: The proof follows from Proposition 1 and is omitted
because of the limited space. |

Corollary 1 captures clearly the interesting gain in our
proposed deep learning approach, where more antennas require
fewer pilots to ensure the existence of ®(.), i.e., to have
the same channel estimation quality. This interesting finding
will also be validated using numerical simulations in section
Section V.

C. Proposed Deep Learning Model

To map back quantized received signal to complex-valued
channels, we chose to utilize the expressive ability of
deep leaming [9], more specifically fully-connected neural
networks. These networks are known to be good function
approximators [10], and therefore, we design and train a
dense neural network to learn the mapping from quantized
measurements to channels.

Network architecture: The designed network has three dense
stacks of layers. The first two are very wide and comprise
a sequence of fully-connected layer, non-linearity layer, and
dropout layer. The number of neurons in each fully-connected
layer is Ly, and they are followed by Rectified Linear Unit
(ReLU) non-linearities. The last stack, which is the output,
has only a fully-connected layer with 2M-neurons.

Network training: As our target is estimating users’ chan-
nels, we pose our learning problem as a regression problem in
a supervised leaning setting; the network is trained to minimize
a loss function measuring the accuracy of the predictions using
a distance measure to some desired outputs. Given the chan-
nel estimation problem formulation in Section III, we choose
NMSE as the loss function. Training is implemented using
ADAM optimizer, and, therefore, we choose to minimize the
average NMSE over a training mini-batch of size B users.

Data pre-processing: Before any training takes place, the
inputs and outputs of the network must be pre-processed for
efficient training, see [11]. The first stage of pre-processing
normalizes those channels, whether in the training or testing
datasets, to the range [—1, 1] using the maximum absolute
channel value obtained from the training set. We have found
such normalization to be very useful in prior work [7], [8]. The
second stage of the pre-processing is vectorizing the received
quantized measurement matrices to have dimensions of M
N x 1. Finally, since popular deep learning software frame-
works mainly support real-valued computations, channel and
measurement vectors are decomposed into real and imaginary
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Fig. 2. The NMSE of the predicted channel using the proposed deep learning
based approach and EM-GM-GAMP versus the number of BS antennas, for
different pilot sizes and SNRs.

components and flattened into a (2M x 1) vectors for the
channels and 2M N-dimensional vectors for the measurement.

V. SIMULATION RESULTS

In this section, we evaluate the performance of our proposed
deep learning based channel estimation solution for massive
MIMO systems with 1-bit ADCs. We first describe the adopted
scenario, dataset and the deep learning parameters used in our
simulations and then discuss the interesting results.

A. Scenario and Dataset

In our simulations, we consider the indoor massive MIMO
scenario ‘I1_2p4° which is offered by the DeepMIMO
dataset [12] and is generated based on the accurate 3D ray-
tracing simulator Wireless InSite [13]. This scenario depicts
a 10 m x 10 m room with two tables and users distributed
across two x-y grids.

Given this ray-tracing scenario, we generate the DeepMIMO
dataset which contains the channels between every candidate
user location and every antenna at the BS. We adopt the fol-
lowing DeepMIMO parameters: (1) Scenario name: I1_2p4,
(2) Active BSs: 32, (3) Active users: Row 1 to 502, (4) Number
of BS antennas in (x, y, z): (1, 100, 1), (5) System band-
width: 0.01 GHz, (6) Number of OFDM sub-carriers: 1
(single-carrier), (7) Number of multipaths: 10 in Fig. 2 and 1
in Fig. 3. To form training and testing datasets, we first shuffle
the elements of the generated DeepMIMO dataset, and split it
into 70% training set and 30% testing set. These datasets are
then used to train the deep learning model and evaluate the
performance of the proposed solution.

B. Model Training and Testing

The fully-connected network adopted in our simulation has
two hidden layers, with 8192 neurons each.! The dimension of
input and output layers depends on the number of antennas at

IThe code files that implement our deep learning based channel estimation
solution are available in [14].
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BS and the number of pilots used for estimation. For example,
if there are 100 antennas and 10 pilot symbols, then the input
and output sizes will be 2000 and 200 respectively. We orga-
nize our training samples by (y, h), with y stands for the input
and h for the target channel. Each sample corresponds to one
user and all those samples are randomly drawn from the two
grids.

The network is trained with 105981 samples for 100 epochs,
and the performance of the trained network is evaluated with
45421 unseen samples. We use NMSE as our performance
metric. To guarantee a fair comparison, the structure of the
network and training parameters are kept unchanged in all our
simulations, except for the input and output dimensions.

C. Performance Evaluation

Now, we evaluate the performance of our proposed deep
learning based channel estimation approach, adopting the
described uplink massive MIMO scenario in Sections V-A
and V-B. In Fig. 2, we plot the NMSE versus the number
of antennas (M) for different SNRs (0dB, 10dB, and mixed
SNRs in the range of 0dB-10dB). This is implemented by
adding noise samples to the measurement matrices used to
train and test the deep neural network. Fig. 2 first shows that
the proposed deep learning approach requires only a few pilots
to have very accurate channel predictions at different SNRs.
This is in contrast with the very long sequences normally
required by classical (non-machine learning) channel estima-
tion approaches [1], [2], such as expectation maximization
Gaussian-mixture generalized approximate message passing
(EM-GM-GAMP) [2]. As shown in Fig. 2, with the very short
pilot sequences, the proposed deep learning approach has a
clear gain over the EM-GM-GAMP solution..

Furthermore, Fig. 2 illustrates that the NMSE performance
of the proposed solution improves significantly when more
antennas are deployed at the BS, which confirms our results
in Section IV-B. This interesting result is consistent with
Proposition I. The minimum « (in rad) defined by (6) of the
adopted dataset is 3.07 x 10~ for the system with 2 antennas
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and 0.2476 for the 100 antenna system. Accordingly, based on
Proposition I, the minimum pilot lengths guaranteeing the
uniqueness of all the channels (in the form of quantized
measurements) are 51166 and 7, respectively. This clearly
shows the potential of our deep learning based approach
that requires very small pilot sequences for massive MIMO
systems. Further, even though Proposition 1 suggests that the
number of pilots required for full bijectiveness (i.e., to be able
to distinguish between any two channels) is very large for the
case of 2 antennas, we can show that the percentage of these
channels that need long pilots to be distinguishable is negli-
gible. For example, with only 5 pilots, 98% of the complex
channels in the dataset are distinguishable. This percentage
increases to 99.5% with 10 pilots. All that clearly explains
the good performance achieved by the proposed solution with
only few pilots.

In Fig. 3, we repeat the same experiment of Fig. 2 and
compare the SNR per antenna defined in (3), for different
pilot length and antenna numbers. In the figure, the SNR of
the received measurement matrices is fixed at 0 dB. Fig. 3
shows that for a fixed pilot length, despite a dip in the
region of small number of antennas, the achievable per-antenna
SNR approaches the upper bound as the antenna number
increases. This upper bound is achieved by designing the con-
jugate beamformer based on the exact channel knowledge.
Interestingly, this is the case even when only 2 pilots are
used, i.e., with N = 2. The reason that we get the dip (in
case of N = 2, 5) is mainly because the improvement on the
total SNR does not match the rate at which antenna number
increases. However, we notice that when increasing the pilot
length or antenna numbers, this dip gradually vanishes. This
can be explained by the insights in Sections IV-A and IV-B,
which conclude that the mapping from the quantized measure-
ments to channels becomes more bijective as more pilots are
sent or more antennas are employed.

VI. CONCLUSION

In this letter, we developed a deep learning based chan-
nel estimation framework for massive MIMO systems with
1-bit ADCs. We derived the structure and length of the pilot
sequence that guarantee the existence of the mapping from
quantized measurements to channels. We then showed that
this existence requires fewer pilots for larger antenna num-
bers. This was confirmed using both analytical and simulation
results which showed that only few pilots are required to effi-
ciently estimate massive MIMO channels. Further, the results
showed that the achievable SNR per antenna approach the
upper bound with increasing the number of antennas, which
highlights the promising gains for massive MIMO systems. For
future work, it is interesting to extend the proposed approach
for broadband systems with frequency-selective channels.

APPENDIX
Proof of Proposition I: For the mapping ® : {Y} — {h}
to exist, the (inverse) mapping ¥ : {h} — {Y} has to be
bijective. To guarantee the bijectiveness of the mapping ¥,
any two channels in {h} have to lead to two unique received
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quantized measurements in {Y}. Consider any two channels
hy, hy € {h}, and a pilot sequence x, the following condition
needs then to be satisfied

sgn(huxT) # sgn (hvxT). 8)

This can be achieved if we guarantee that there exists at least
one pair of corresponding elements in (8) that satisfies

Sgﬂ([hﬂ]m[x]n) % Sgn([h\’]m[x]n)a (9)

forany m € 1,...,M,n €1,...,N. Since the elements of
the channel and pilot vectors are complex values, we can view
these elements as vectors in the complex plane. If we write
[X]n as |zn|e?%, then multiplying the channel element [hy]m
by [x]n simply rotates [hy|m by fn and scales it by |zy|. In
this sense, achieving (9) is by ensuring that [hy|m and [hy|m
are rotated by [x], to lie in two different quadrants of the
complex plane. This can happen if we have a pilot sequence
of length N > [, where

a= n&a‘x|£ﬂ]u]m - LD]V]mL
m

and draw these N pilots such that their angles evenly sample
the range |0, 5]. Finally, to ensure that any two channels in {h}
satisfy the condition in (8), we find the minimum @ defined
in (10) among all channel pairs in {h}, that is

n&?;a;ﬂéﬂ]u]m - LD]V]mL

(10)

a= min
Vhy,hy € {h}
uF#£v

This leads to N > [5], which concludes the proof.

(an
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