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Abstract. Optimal analyses using the 2-point functions of large-scale structure probes re-
quire accurate covariance matrices. A covariance matrix of the 2-point function comprises
the disconnected part and the connected part. While the connected covariance only becomes
important on small scales, the disconnected covariance is dominant on large scales, where
the survey window has a significant impact. In this work, we develop an analytical method
to compute the disconnected covariance, accounting for the window effect. Derived under
the flat-sky approximation, our formalism is applicable to wide surveys by swapping in the
curved-sky window functions. Our method works for both the power spectrum and the corre-
lation function, and applies to the covariances of various probes including the multipoles and
the wedges of 3D clustering, the angular and the projected statistics of clustering and shear,
as well as the cross covariances between different probes. We verify the analytic covariance
against the sample covariance from the galaxy mock simulations in two test cases: (1) the
power spectrum multipole covariance, and (2) the joint covariance of the projected correlation
function and the correlation function multipoles. Our method achieve good agreement with
the mocks, while at a negligible computational cost. Unlike mocks, our analytic covariance
is free of sampling noise, which often leads to numerical problems and the need to inflate the
errors. In addition, our method can use the best-fit power spectrum as input, in contrast
to the standard procedure of using a fiducial model that may deviate significantly from the
truth. We also show that a naive diagonal power spectrum covariance underestimates the
signal-to-noise ratio compared to our analytic covariance. The code that accompanies this
paper is available at https://github.com/eelregit/covdisc.
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1 Introduction

Studies of the large-scale structure of the Universe have made rapid progress over the last two
decades especially with high precision measurements using large galaxy surveys. These sur-
veys have provided sensitive tests on the cosmological models using combinations of several
independent probes including redshift space distortions (RSD) [1-3], baryon acoustic oscilla-
tions (BAO) [4-6], weak gravitational lensing [7-10], supernovae [11] and strong lensing [12].
The next generation of galaxy surveys, LSST [13], Euclid [14], DESI [15], WFIRST [16], aim
to make even more precise measurements by observing even larger volume of the universe.



With the increasing precision of the measurements, it is becoming increasingly important
to have accurate methods to infer and extract information from these measurements. In this
work we focus on the probes of matter and galaxy two-point functions. The two-point
functions that measure clustering of galaxies or matter are still the primary source to extract
cosmological information from the observables. One of the challenges in extracting this
information is to accurately model the covariance matrices of these probes in order to obtain
unbiased likelihoods of model parameters. Inaccurate covariances make the inferences sub-
optimal and in extreme cases also introduce biases in the most likely values of the parameters.
Common methods account for the effects of noise in numerical covariances by inflating the
errors in the final constraints [17-19].

There are mainly three common approaches to quantify the covariance, including estima-
tions using mock simulations, internal estimations from data using jackknife or bootstrapping
methods, and analytic (or semi-analytic) modeling. Covariance estimation using mock simu-
lations has become the most popular approach as it is in principle possible to include proper
treatment of all the observable effects as well as nonlinear and multiscale physics. However,
mock covariance require generating many independent realizations and then computing the
two point functions over all realizations. This method becomes computationally very ex-
pensive, because the required number of simulations scales with the number of data points
and with the desired accuracy of the parameter covariance [20]. To overcome these chal-
lenges, several fast methods to run approximate mocks have been developed (see e.g. [21, 22]
for comparison of covariances from different mocks). Nonetheless, lack of correct physics in
these mocks potentially leads to biased covariances [23]. In addition, it is difficult to guess
a priori the right fiducial model at which the mocks should be generated. Any deviation
of the model from the truth introduces errors in the covariance, either underestimating or
overestimating the covariance depending on the relation of the fiducial model to the truth.

Computing covariance directly from the data has the potential to overcome these chal-
lenges as it includes all possible observational effects and can be estimated with relatively
small computational overhead. This approach requires splitting the data into smaller mutu-
ally exclusive subsets, and the number of subsets required depends again on the number of
data points and the desired accuracy of parameter covariance. However, splitting data into
smaller subsamples limits the largest scales that can be used in the analysis. Furthermore, the
subsamples are not totally independent (a requirement by the jackknife and bootstrap meth-
ods), and as a result they bias the covariance [24]. They are also biased by their subvolume
windows that are different from the survey window.

Compared to the mock and internal methods described above, calculating the covariance
matrices analytically has multiple advantages: its predictions are noiseless; it can be evaluated
at the best-fit cosmology with an iterative procedure, and it is computationally efficient.
However, analytically modeling the covariance proves to be difficult due to the following
reasons. The covariance of 2-point functions is related to 4-point functions that consists of
the disconnected and the connected contributions. The disconnected covariance, including
the Gaussian and Poisson errors, is a full-rank matrix and dominant on large scales [25]. It is
sensitive to the window of the survey, which is non-trivial to model accurately. On the other
hand, the connected covariance is a low-rank matrix, becomes important on small scales,
and is hardly affected by the window function. It receives many contributions, including
nonlinear mode-coupling [26-33], the super-sample covariance [34-42], shot noises [26, 43,
44], and possible baryonic effects. However, even as the subject of extensive studies, the
connected part remains intractable for accurate analytic prediction. Due to these challenges,



semi-analytic approaches have been developed, by combining parametric covariance models
with fewer number of mocks or the data [45-49]. These methods are able to relieve the
computational burden by a factor of @(10), but their accuracy is subject to the quality of the
parametric models. They also inherit other drawbacks from the mock and internal methods,
such as fixation on fiducial cosmology, lack of correct physics, and missing large-scale modes.

In this work, we propose a hybrid method to tackle the covariance challenge. We
develop a fully analytic method to compute the full-rank disconnected covariance with a
proper treatment of the window effect. We demonstrate its accuracy and efficiency using
galaxy mock simulations. Given the difficulty in modeling the connected contributions, and
the fact that it is only important on small scales and not sensitive to the survey window, one
should be able to calibrate it internally from the data, e.g. by low-rank approximation. By
treating the disconnected and connected components separately, our hybrid approach enjoys
the benefits of both the analytical and internal methods, and at the same time avoid their
disadvantages. In this paper we focus on the disconnected covariance, and leave the internal
estimation of the connected part as a future project.

This paper is structured as follows. In Sec. 2 we develop the methodology to analytically
model the disconnected covariance matrix of the power spectrum or the correlation function
of various large-scale structure probes, taking into account the survey window function. Our
analytic method involves oscillatory integrals with two Bessel functions, which we solve in
Sec. 3 with a novel quadrature algorithm. Using the mock simulations described in Sec. 4,
we demonstrate the accuracy and efficiency of the analytic method in Sec. 5. App. A gives
the detailed calculations that generalize our method for different applications, and App. B
provides the mathematical tools useful in the derivations.

2 Formalism and Methodology

In this section we develop the formalism of the analytic disconnected covariance including the
window effect. We start with the power spectrum covariance, and take the case of the power
spectrum multipoles as the main example. Our derivation assumes flat-sky approximation,
and is applicable to wide surveys by swapping in the curved-sky window functions. We then
generalize our method to the case of the correlation function, and various other large-scale
structure probes.

2.1 3D Power Spectrum Covariance

We begin by writing the number density of a discrete tracer field as a sum of Dirac delta
functions

Ndata(T) = Z o (x — x;), (2.1)

whose underlying number density is a continuous field n(x) = (ngata(x)), determined by
the tracer evolution and the survey selection. () takes the ensemble average or the expected
value of a quantity. The survey selection is most conveniently captured by a synthetic random
catalog, which in the simplest case is a Poisson process with mean (n,.nq(x)) = n(x)/a, where
« is a constant usually < 1 to reduce its shot noise. We can write down the overdensity



fields of those data and random catalogs’

1
= —1 _— D — i
ddata + () Z 0 (x — x;),

i€ data

Srand = —1+% Y (@ - z). (2.2)

j€rand

Following [25] (hereafter FKP), the galaxy overdensity is estimated as the difference
between the data and random catalogs weighted by a weight function w(x) (that maximizes
the performance of an estimator like the FKP weight, and/or minimizes some systematic
effects)

w(x) [Ndata(T) — ANrand ()]
= W(CC) [5data(w) - 5rand(w)] = W(CC)(;(:B) (2'3)

On the second line we have rewritten the difference in number densities with the difference in
overdensities, and defined a combined overdensity field = dqata — Orang that includes stochas-
ticity from both data and random catalogs. We have also combined the survey selection and
the weight function in the definition of the window function

W(x) = n(x)w(x). (2.4)

Throughout this paper W denotes the windows on the fields, and is to be distinguished from

the other window factors introduced later for the 2-point functions or their covariances.
Under the flat-sky approximation, the power spectrum can be simply estimated by

normalizing the squared Fourier-space overdensity before subtracting the shot noise

Py = WEE_p,,, 25)
where the shot noise power spectrum is
Paos = 0. (26)
and the constant factors are given by?
W= [ a@ru@? = [ Wep = [P
So=(14+a) / fi(x)w(x)? (2.7)

! These overdensity fields of discrete catalogs are only formal, and they help to simplify the calculation of
shot noise terms, e.g. (0datadrand) vanishes in (2.8).
2 In this paper we use the following shorthand notations for configuration-space and Fourier-space integrals

[ fe= =T



Assuming flat sky and no redshift evolution, dqata(x) and dyanq(x) are statistically ho-
mogeneous and satisfy

<5data(k)6data(_k/)> = (27’[')3 (5D(k — k/)P(k) —|—/ 771(11:)6“1“’“/)'55,

<5Tand(k)6rand(_k/)> = /w %e*i(k*k/)-m’
<5data(k)5rand<_k,)> = 0. (2.8)

Here the Dirac delta is a result of the translation invariance, P(k) is the 3D power spectrum
of the tracer, and the shot noise terms involving 1/7 arise from the discrete nature of the
data and random catalogs. As independent samples from 7(x), the data and the random
overdensity fields are not correlated, indicated by the third line in the above equations.
Plugging (2.3) and (2.8) into the ensemble average of the estimator in (2.5) we get

1 2, P(K)

(P = g [ Pl @@ =

/ W(q)2 = P(k). (2.9)
q

The first equality shows that the expectation of P is a convolution of the true power spectrum
P with a window. To distinguish <P> and P we refer to them as the convolved and the
unconvolved power spectra, respectively. In the second equality we have assumed that the
scales of interest are much smaller than the window size, i.e. k > ¢ for q where W (q)
is significant, so that a smooth power spectrum P(k — q) ~ P(k) can be taken out of
the integral. Therefore the last equality proves that (2.5) is an unbiased estimation of the
true power spectrum for modes much smaller than the survey scale. In other words, the
unconvolved and the convolved power spectra differ on large scales due to the window.

The covariance function of the power spectrum estimator is define as

Cov[P(k), P(K)] = (P(k)P(K)) — (P(K))(P(K)) (2.10)

Substituting (2.5) into the above equation, we split the covariance into the disconnected and
connected pieces in the multivariate cumulant expansion

Cov[P(k), P(K')] = Cov¥®[P(k), P(K')] + Cove°™ [P (k), P(K)],

Cov ™ [P(k), P(K')] V\ljg\<6w(k)6w(—k’)>|2 + (K & =K,

Cov ™ [P(l), P(R')] = 5 (6w () () (K)o (=) 211)

The disconnected part Cov™® captures the part of the 4-point correlation arising from prod-

ucts of 2-point correlations, and the connected part Cov®™
beyond Cov¥¢. The subscript “c” on the ensemble average denotes the connected part or
the cumulant of the 4-point function.

In the conventional terminology, Cov®®® is referred to as the Gaussian part and Cov
is named the non-Gaussian part. This is true for a continuous random field, in which case
the terms “disconnected” and “Gaussian” can be used interchangeably. However, the con-
ventional names are not accurate and can be confusing for point processes like a galaxy
catalog. Since Gaussian and Poisson contributions enter both Cov®¢ and Cov®™, Covd* is

is from the excess correlation

conn



not purely Gaussian and Cov®™ is not completely free of Gaussian contribution. Therefore

in this paper we rename this covariance decomposition for clarification.
Let’s first look at the disconnected piece. From (2.3) and (2.8)

(6w (k)ow (—K')) = [ P(K" )W (k—K")W (K" —k')+(1+a) / fi(z)w(x)2e kK2 (212)
k" x

which includes both Gaussian and Poisson contributions. For modes much smaller than the

survey scale, the Gaussian term is only important when k” is close to both k and k', thus

P(K") approximates P(k) and P(k’). So we can approximate the integral by taking the

power spectrum out of the convolution while preserving the k <+ k’ exchange symmetry, and

then plug it into (2.11)

P(k)+ PR Wk —K) Sk — k)2

Covise[P(k), P(K')] ~ ( : - SR

+ (K + —K'), (2.13)

where we have introduced the following window factors

0~ [ we) W/Wa:)%
S(q) —/wS(:I:)e_“]w = /w x)2e T (2.14)

that modulate Gaussian and Poisson pieces, respectively. W and S are to be distinguished
from W, the window on the field. Notice that the constants W, and Sy introduced earlier
in (2.7) are special cases of W(q) and S(q) at g = 0.

The expansion of (2.13) contains quadratic combinations W2, WS, and S?, therefore
we further define the window factor Q’s as the auto and cross 2-point correlation of YW and
S. In Fourier space

Qx(q) =W / Qu(s)e "7, (2.15)

with the configuration-space Q(s)’s being the correlation functions of W(x) and S(x), e.g

= / W(x + s5)S(x). (2.16)

So they can be measured as the correlation functions or power spectra of the properly
weighted random catalogs, which we describe in more details in Sec. 2.3.

The final expression for the disconnected covariance given the power spectrum P and
the window function Q’s is

1
W
+ [P(k) + P(K)|R[Qx (k — k)] + Qs(k — k’)} (K o —K). (2.17)

Coviise [P(k), P(K')] ~ {P(k)P(k’)QW(k —K)



Notice that under the same P(k) ~ P(k’) approximation we have further simplified the ex-
pression by combining both P(k)P(k) and P(k’)P(k’) terms into P(k)P(k’) while preserving
the exchange symmetry. In general, the Q(k — k') windows have non-vanishing width de-
termined by the survey size, and its shape characterizes the correlation between neighboring
modes at k and k’. Also different Q windows generally have different shapes, and neglecting
this difference would lead to inaccurate Cov¥®®, which we show later in Fig. 7.

Now turning to the connected piece Cov®®™ it is composed of a mixture of the non-
Gaussian, Poisson, and Gaussian contributions. The non-Gaussian part arises from the
gravitational mode-coupling, including the trispectrum piece [26, 27] and the super-sample
covariance (SSC) [34, 35, 37]. The remaining parts of Cov®™ are various shot noise terms
due to the discrete nature of the tracer field [26], and involves Poisson, non-Gaussian (bispec-
trum), and Gaussian (power spectrum) components. Overall Cov®™ is more difficult and
complicated to model analytically than Cov®¢. However, it is a smooth function of k and k'
and can be well approximated with a low-rank eigen-decomposition [29, 31], which allows it
to be measured from the data with the internal covariance estimators. Leaving the internal
estimation of Cov®®™ as a future project, in this paper we can obtain Cov®®™ from the mock
simulations by subtracting CU*¢ from the mock sample covariance. We find this empirical
Cov™ is indeed smooth and a low-rank component with a principal component analysis.

2.1.1 Diagonal Limit

We expect Cov¥€ in (2.17) to reduce to the familiar diagonal form when certain condition
is met. In the limit where |k — k/| is much greater than the window scale, e.g. when they
are from different bins with very wide bin width, Q(q) approaches (27)3 6°(q)Q(s = 0), and
Cov¥*¢ reduces to a diagonal covariance:

P(k)2 +2P(k)Psh0t +P521r10t

Cov¥®8[P(k), P(K')] = (27)? (5D(k—k’){ Vi v 7

}+(k’ < —K'), (2.18)

where V’s are effective volumes defined as follows

. A I ICORTICOR
YT ow(s=0) " [a(@) w(@)!
e S8 @2
* T Qs(s=0) " [ (@) w(@)*
oo WeSo_ fpr@Pu(@)? [ n@)u@)? 219)

We call (2.18) the diagonal limit, and take it as an ansatz for Cov®® for any k and k' even
though the derivation only holds far enough from the diagonal. This diagonal covariance
accounts for the size of the window which is captured by Q(s = 0), but ignores the shape of
Q(s), and as a result biases the signal-to-noise ratio shown later in Sec. 5.1.1.

In the diagonal limit, the Cov® matrix of the band-power, binned in spherical k shells
following the later Sec. 2.5, is

+

diag [ D(1..\ D A — K
Cov®[P(k;), P(k;)] 2513/ Noy N, Ne } (2.20)

kil Ank2dk {P(k)2 N 2P(k)Paot P2,
kiy Vi,



where 0¥ is the Kronecker delta, and N’s are the effective numbers of modes associated with
the effective volumes:

N VkVW o VkVS o Vka
Nw = (2m)3’ s (2m)3’ T (2m)3 (2.21)

Often only Nyy is used to compute the diagonal covariance matrix, ignoring the differences
among N’s, that however could cause larger biases in the signal-to-noise ratio (see Sec. 5.1.1).
Eq. (2.18) and the constant effective volumes generalize the scale-dependent effective volume
commonly used in survey forecast [50] for any weights w(x).

2.2 Multipole Covariance

In redshift space, because of the azimuthal symmetry about the line of sight (LOS), the
power spectrum does not have azimuthal dependence, i.e. P(k) = P(k, k- n), where n is the
LOS direction. It is natural to decompose it into multipoles

Pk) = 3" Pu(k) Lol - 1), (2.22)
l
in which Ly is the Legendre polynomial of degree ¢. The multipole moments can be obtained
by?
Pyk) = (204 1) / Plk) Lo(k - 1), (2.23)
k

In real space, all high-order multipoles usually vanish, leaving only the monopole.
(2.22) and (2.23) also apply to their estimators P(k) and Py(k), so the disconnected
covariance of multipoles follows straightforwardly from (2.17)

220+ 1)(20 +1
/(k,)] ~ ( 1/3}(2 ) -
0 Ik’

P(k)P(K)Quw(k — k') + [P(k) + P(K)|R[Qx (k — k)] + Qs(k — k’)}. (2.24)

>

Cove [By(k), Lol 1) Lok - 7){

Since P(k) = P(—k) for auto power spectrum, here we only consider the even multipoles,
for which the k' <+ —k’ term in (2.17) simply doubles the first one giving the factor of 2 in
the above equation.

We compute the three terms in the curly brackets of (2.24) separately. First we consider
the P2 term, expand the power spectra in multipoles, plug in Qyy from (2.15), and repeatedly
couple Legendre polynomials with (B.1) and apply (B.7) to derive

o Lo(k-n) ﬁzf(l%’~fL)P(k)P(k’)/Qw(s)e—i(k—k').s
ke i .

2 / 2
= > Py(k)Py(K)(205 +1) (g 601 %) (204 +1) (f) %)’ %)

l1020304

1/ 2
< (i) s 3 (g o %) Qe (3)jes (k3)jes (K's). (2:25)

Z//

3 In this paper we use the following shorthand notation for averaging (instead of integrating) over 4 solid

angle of any vector v a0
— <.
/13 / 4




Similarly we obtain the cross term between power spectrum and shot noise (P X Pypot)

Lo(k-7v) Lo (K ) [P(k) + P(k’)]sce[ / 0. (S)efz(kfk’)-s}

k&
2 2
NS4 N lo 0" 0" ) .
=3 Pa ()2 + ) (0 ! 02) (i)t [ansids Z<02 0 o> Qe (5);on (k) (K's)
010o o
+ (6 k< 0K, (2.26)

and the third (P32 _,) term

 Lalke) 5@/(’5"ﬁ)/Qs(s)e—i(k—k’ys
kK’ s
’ AN
— (—i)f—f /4%32(18 Z <O 0 0) QSZ//(S)jé(ks)jél(k/s). (2.27)

e//

Note that in the above derivations the disconnected covariance only depends on the
multipole moments of the window Q due to the redshift-space symmetry

Ou(s) = (20 +1) / O(s) Lao(5 - 2). (2.28)

As shown in (2.15) and (2.16), @ factors are really the 2-point functions of the WW and S win-
dows, so their multipoles can be readily measured from a random catalog of a survey. Given
Qy(s) from the randoms and FP(k) from the data, we can numerically evaluate (2.25), (2.26)
and (2.27) before summing them up in (2.24) to obtain the disconnected covariance for power
spectrum multipoles. The only remaining difficulty lies in the numerical integrals involving
two spherical Bessel functions, to which we provide a novel solution in Sec. 3.

2.3 Window Functions

In deriving the disconnected covariance we have assumed the flat-sky approximation. How-
ever, many current and future surveys have wide sky coverages, making their window func-
tions fundamentally curved-sky entities. Furthermore, the redshift-space clustering between
two points depends on the LOS direction that varies with the positions of the pair of points.
To account for this, the Yamamoto estimator proposed by Ref. [51] measures the multipoles
of galaxy clustering with respect to the midpoint direction of the two galaxies. An alternative
estimator also suggested by Ref. [51] uses the position of one galaxy of the pair as the reference
direction, and can be measured with a suite of efficient FFT-based algorithms [52-56].

Fortunately, it is easy to adapt our formalism to account for the curved-sky effects both
in the window function and the power spectrum. For modes smaller than the window scale,
our flat-sky equations remain a good approximation to capture their local power-window
coupling. The LOS dependence can be simply incorporated in our window functions, e.g.
in (2.28) by letting the fixed line-of-sight direction 72 to depend on @ and/or @ + s. Likewise,
we can use the model fit to the power spectrum multipoles measured with a LOS-dependent
estimator, to compute Covais,

We use nbodykit, which calls corrfunc [57], to measure the window functions via fast
pair counting. With a random catalog that describes the survey geometry and weights, we



count the weighted pair in bins of both separation s and the polar angle cosine p, and then
normalize the counts by the shell volume. For example

3 [ s W(@+s)S(s) 302 S Al@a)w(@a)*w(@s)*

~ 2.29
2m(s? — s3_1) (g — pj—1) 2 (s? — s7_1)(kj — pj-1) (2.29)

Qs(s, ) =

We take 441 logarithmic s bins ranging from 1Mpc/h to 3.4 Gpc/h, and 100 p bins from 0
to 1. The corrfunc package measures the midpoint polar cosine

§‘(m+s/2).

|z + s/2| (2:30)

M:

To relate the double integral to the pair summation, we have simply replaced fxﬁ with
a),. Given the Q windows in s and p bins, we then transform them into multipoles to
obtain an estimate of Qy with (2.28). All the odd order multipoles vanish because of the
choice of midpoint for measuring . With the same discretization trick, we can estimate the
normalization constants in (2.7) by replacing the integral with a summation over a random
catalog, e.g.

Wo =~ aZﬁ(aza)w(wa)z. (2.31)

We have seen in (2.9) that the expectation of the estimated power spectrum is subject
to a convolution with the window, and the unconvolved and convolved power spectra differ
significantly on large scales. For accurate Cov®¥™, rather than directly using the estimated
P, we should use an unconvolved model fit. To achieve this we convolve the power spectrum
model from [58] with the mask [59] before fitting it to the data (more detailed description
in Sec. 5.1 and illustration in Fig. 2). We then use the model before convolution to compute
COVdiSC.

2.4 Corollary Covariances

We generalize our formalism below for more applications, and refer the readers to App. A
for detailed derivations.

2.4.1 Cross Correlation and Cross Covariance

In Sec. 2.1 and 2.2 we have considered the simplest case for 2-point function disconnected
covariance: the covariance of auto correlations of a single tracer. In more general applica-
tions, one may need the cross covariance between different sets of auto and cross correlations
between different tracers. For the most general case, we derive the equations for cross co-
variance of cross 3D power spectra in App. A.1. The derivation parallels that of Sec. 2.1 and
preserves the Hermitian symmetry. The equations can be easily generalized to all other cases
including multipoles and those in the rest of this subsections.

2.4.2 Angular Power

We can generalize the formalism developed in Sec 2.2 to the angular power spectrum C'(¢)
which are generally used to measure the correlations in observables from CMB, weak gravi-
tational lensing as well as the clustering of photometric samples of galaxies. We derive the
equations in App. A.2, assuming flat sky and Limber approximation. Compared to the mul-
tipole case, the angular window effect is captured by some Q windows similar to (2.28) but

~10 -



defined on the sky, and the evaluation involves double Bessel integral but with the zeroth-
order Bessel function Jy in place of the spherical Bessel functions. The curved sky window
can be incorporated simply by using the Q window measured from the random catalog as a
function of angular separation on the sky similar to Sec. 2.3. Our method can be a fast alter-
native to the calculation on the sphere as is generally done for the CMB measurements [60].

2.4.3 Projected Power and Projected Cross Multipoles

When cross correlating a field with 3-dimensional information, such as spectroscopic galaxies,
with a field with poor radial information, e.g. weak lensing shear or convergence, one can
estimate their correlation projected at fixed transverse separation using the radial information
of the 3D field. This is commonly done in galaxy-shear cross correlations measurements
using spectroscopic galaxies for which covariance was derived by [61]. We derive the auto
covariance for this case in App. A.3, and also its cross covariance with power spectrum
multipoles, which is particularly useful for their joint analysis aimed at testing theories of
gravity [8, 62]. Because a projected power spectrum is indeed the transverse part of its 3D
counterpart, and the transverse power can be approximated by a series of multipoles, we can
adapt the multipole formalism to work for this cross covariance. We also derive alternative
equations for the auto projected covariance similar to the angular case in App. A.2.

2.4.4 Correlation Functions

In configuration space, the Landy-Szalay estimator [63] is typically employed to measure the
correlation function, and it can be written in our notation as

1
€)= Gotay / Sy (@)ow (@ + 5), (2.32)

where we have defined the normalization factor analogous to (2.16)

_ / W(x + 8)W (). (2.33)
x
(2.32) is free from the window effect, that can be shown easily in flat sky by taking its
expectation

_ 1
-~ OQw(s

- ( / W (@)W (@ + 5) = &(s), (2:34)

(€(s)) /W( YW (z + 8){(5(x)d(x + s))

where we have used the translation invariance of the correlation function &(s) = (6(x)d(x +

s)).

The 3D correlation function and power spectrum are simply related by the Fourier trans-
form, again assuming translation invariance. However, the relation between their estimators
is more complex due to the difference in normalizations:

£(s) = /k P(k)ei*,

F _ WO > eik-s
£(s) = QW(S)/kP(k) . (2.35)
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Here W is equal to the value of Qy (s = 0) according to (2.14) and (2.33). So the covariance
of the two 3D estimators are related by

Cov[£(s).&(s))] = 5——b——
Qw (8)Qw (8) Jirr
We are more interested in the correlation function covariances cast in the multipole,
angular, and projected form. We develop their relations to the corresponding power spectrum
covariances in App. A.4.

Cov[P(k), P(K)]e*seik"s", (2.36)

2.4.5 Wedges

In this paper and especially Sec. 2.2, we focus on using the multipole moments to label the
angular variation in 2-point functions. Another popular choice is the so-called wedges, which
are averages of the 2-point functions within bins of polar angle cosine, u;, between bin edges
(ui_% , Mi—i—%) for i =1,..., Nyedge- The power spectrum wedges are related to the multipoles
by
pol U Cmas
P(k, ) :/ o diu{z ] Zpe )Lo(p:), (2.37)
Bl MH‘% B Mi_% £=0

where we have truncated the multipoles at £;,,x and denoted the mean Legendre polynomial
across a wedge by £

- Kyl L d
L (2.38)
M1 Mi""% Mi_%
2
Therefore
Kmaxzmax . _ -
Cov¥™[P(k, u;), P =) ZCOleSC (k), Po(K')] Lo(i) Lo (115)- (2.39)

{=0 ¢'=

The same relation applies to the correlation functions* by replacing P — &, k — s.

2.5 Binning

All previous results in this section assume the power spectrum covariance as a function of
continuous k and k’. When numerically evaluating the equations we then discretize k and s
on logarithmic grids (more details in Sec. 3). In practice, the estimated power spectra are
averaged in bins k; separated by bin edges (k;_ 1 k; +1 1) for i = 1,..., Npin. In accordance,
we integrate the analytic prediction within spherlcal k: shells
k. 1 2 k. 1 /2 /
Cov[ﬁ’(ki),P(kj)] _ / i+d drk dk/ i++ 4wk’ dk C

i— J

ov[P(k), P(K)], (2.40)

Nl

j7
where Vi, = 471'(]{:? 1~ kf_l )/3 is the volume of the ith k-shell. The numerical integration
2 2

is achieved by interpolating the covariance function along each k at a time with B-splines
before integrating the piecewise polynomials.’

In the case of correlation functions, because their denominators are scale dependent, we
need to average separately the numerator and denominator in s bins before dividing them.
The binning integrals are similar to the above equation.

Nl

4 Note that the wedges are different from the p bins used for estimating fg( ). While one can directly
estimate P(k), due to its normalization &,(s) is usually converted from (s, su;) which is estimated in very fine
1 bins. Here the width of the wedges is assumed to be much wider than the width used for such conversion.

® We package and release this simple and general-purpose utility at https://github.com/eelregit/avgemn.
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Figure 1. An example 27 x 27 Hankel matrix Hy, for the Jy Hankel transform. We visualize it
in the left panel, and demonstrate in the right panel that the squared Hankel matrix is an identity
matrix. As a circulant matrix, a Hankel matrix carries out the convolution operation in the FFTLog
algorithm (Eq. 3.3 and 3.5). It is also the building block of the double Bessel quadrature method
(Eq. 3.1 and 3.10).

3 Double Bessel Quadrature

Eq. (2.25), (2.26), and (2.27) all have integrals involving two spherical Bessel functions. More
generally, we are interested in evaluating the following integral with Bessel functions

Gly.yf) = /0 ede F(a)J (zy) (2, (3.1)

which proves useful also for the applications in Sec.2.4. This applies to (2.25), (2.26),
and (2.27) given
™

Jal®) = /35 T 1 (- (3.2)

Usual quadrature methods struggle to converge for (3.1) because the Bessel kernels are highly
oscillatory and damp slowly. Recent solutions proposed by Ref. [64, 65] generalized the
FFTLog algorithm [66, 67] to perform the integral transform from F'(z) to G(y,y’) for each
fixed ratio y'/y.

Here we present a fast and simple algorithm that potentially suits the covariance cal-
culation better than that in Ref. [64, 65]. First let’s look at a simpler integral with only one
Bessel function

B(x) = /0 " ydy AW)J, (zy), (3.3)

known as the Hankel transform. We can perform integral transforms like this one using the
mcfit [68] package, which implements and generalizes the FFTLog algorithm. This method
exploits the convolution theorem in terms of Inz and Iny. It approximates A(elny) with
truncated Fourier series over one period of the periodic approximant, and Fourier-transforms
the kernel J, (e *+1nY) analytically. Because of the exact treatment of the kernel function,
this algorithm is ideal for oscillatory kernels like the Bessel functions.
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Specifically, we compute an equivalent form of (3.3)

oBa) = [~ L [y A)] foud )] (3.4)
with the input, output, and kernel functions rescaled by corresponding linear powers: A(y) —
yA(y), B(x) — xB(z), and J,(t) — tJ,(t). mcfit evaluates (3.4) by discretizing = and y
to grids of equal logarithmic intervals A = §lnz = dIny, on which the linear transform
essentially takes the following matrix form

N
Bi = aci_l Z Hy,z'jyjAj> (35)
7j=1

where the H, is an N x N real matrix carrying out the convolution, and N is the number
of grid points. H, is a Hankel circulant matrix, i.e. H,;; = h;y; with h being periodic
(hixn = h;). The explicit form of h can be found in Eq.(B26) of Ref. [67]. As an example we
show in Fig. 1 a 27 x 27 Hy matrix with A = 0.34. The above rescaling in (3.4) is important
because it (together with the FFTLog low-ringing condition when N is even) makes H, a
unitary matrix and involutory (being its own inverse), leading to the most numerically stable
results as demonstrated in the right panel of Fig. 1 by the nearly perfect agreement between
Hg and the identity matrix to machine precision.

Notice that formally (3.5) can be obtained by applying the following replacement rule
on (3.4) or (3.3):

H, d
xyJy(zy) — T’], /yy — AZ. (3.6)
J

While we emphasize that this rule is not rigorously true, i.e. H, ;; ¢ J,,(x;y;), coincidentally,
our final recipe for the double Bessel integral (3.1) also follows from this rule.

Now we are ready to derive our double Bessel quadrature algorithm. Consider the
following integral that further integrates (3.1) with some arbitrary auxiliary functions A(y)
and A'(y") over y and ¢/

I= /Oooydy /Oooy’dy' A(y)G(y, A (Y). (3.7)

We can change the order of integration to first integrate out y and 4’ to get B(z) and B'(z),
respectively, as shown from (3.3) to (3.5), so that

I= / xdx F(x)B(x)B’(ac) ~ A E Fz E Hy’ijyjAj E Hl/’,ij’yj’A;'" (38)
0 . . -
? J J

Alternatively, a direct discretization of (3.7) reads

I~ A 2 AG 5 Al (3.9)
JJ

Since A and A’ are arbitrary, by comparing the above two equations we derive the formula
to compute G(y,y’) on the logarithmic grid

1 _ _
Gjjr = A Zyj 1Hu,z'jFiHu',z‘jfyj/1. (3.10)
7
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Figure 2. Power spectrum multipoles, of 1000 Patchy mocks for NGC of BOSS DR12 in 0.5 < z <
0.75. The points with errobars show the sample mean and variance of the power spectrum multipoles
of the galaxy mocks. The “convolved” curve shows the best-fit RSD model from [58], including the
convolution with the appropriate window function [59] to accounts for mixing of power by the window.
We also show the “unconvolved” model prior to the convolution. We will use this “unconvolved” model
along with the window factors Q shown in Fig. 3 to compute the covariance matrices.

This result can also be obtained, formally, by applying the same replacement rule (3.6)
to (3.1).

Evaluation of (3.10) is simple and fast, as the formula can be optimized to O(N?log N)
time complexity: constructing the H, matrix requires one Fast Fourier Transform per v;
the summation over ¢ is a convolution therefore can be done efficiently with FFT by calling
mcfit; and our algorithm does not require any additional special function implementations
as do Ref. [64, 65].

Furthermore, (3.9) implies that G, ; approximates G(y,y’) as average values in the
logarithmic intervals. Generally G(y,y’) peaks sharply on the y = 3’ diagonal and almost
vanishes elsewhere, with roughly constant peak width. Our algorithm does not intend to
compute the exact value of G at point (y,y’) but a smoothed version over the (y;,y;/) grid.
This turns out to be beneficial as we are only interested in its coarse-grained values (see
Sec. 2.5) rather than the finer structure, and (3.10) allows us to perform the numerical
integration without scanning a very fine grid. On the other hand, the method in Ref. [64, 65]
evaluates G(y,y') itself, thus need to sample densely around the peak width to arrive at the
same coarse-grained result. And because of the logarithmic grid and constant peak width,
the sampling rate is determined by the large y end, and resolving the peak at large y leads
to waste of computation at small y.

4 Simulations

To verify our analytic covariances, we compare them to the empirical results measured from
Niock = 1000 realizations of the Multidark-Patchy galaxy mocks [69], produced for BOSS
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Figure 3. Window function multipoles, of 1000 Patchy mocks for NGC of BOSS DR12 in 0.5 <
z < 0.75. The Q window functions are directly related to the covariance, defined in (2.15), (2.16)
and (2.28). We normalize the window multipoles by their zero-lag monopoles to compare their shapes.
As the covariance is ~ (P+ Pyot)?, three Q factors in different colors describe the windows for different
pieces: Qw for P2, Q, for P x Pyot, and Qg for Pfhot. Their normalized monopoles start from 1 on
small scales and vanish on large scales beyond the size of the window. The higher order multipoles are
only non-vanishing around the window scale and capture the anisotropy of the window. Combining
the unconvolved P, in Fig. 2 and the Qy here, we can compute the disconnected covariance of B
following Sec. 2.2.

data release 12 (DR12) [6]. The Patchy algorithm are based on the augmented Lagrangian
perturbation theory and a stochastic halo biasing scheme calibrated on high-resolution simu-
lations. It then uses halo occupation distribution to construct catalogs to match the observed
galaxy clustering and its redshift evolution. In this work we use the North Galactic Cap
(NGC) region covering 6800 deg? of the sky, and two redshift ranges: the first (0.2 < z < 0.5)
and the third (0.5 < z < 0.75) redshift bins of BOSS DR12. The cosmology assumed by the
Patchy mocks is Q,, = 0.307, Q, = 0.048, h = 0.678, og = 0.829.

We estimate the redshift-space power spectrum multipoles with the endpoint Yamamoto
estimator [51] in the third redshift bin. We employ the FFT-accelerated algorithm [52]
enabled by multipole decomposition [70], implemented in the large-scale structure toolkit
nbodykit [71]. We use the standard Landy-Szalay [61, 63] estimator to estimate the cor-
relation functions in the first redshift bin. Correlation function multipoles are transformed
from the correlation function measured in 50 g bins and the projected correlation function
is computed using the ratio of pair counts integrated over the line of sight. Note that our
projected correlation function estimator is dimensionless and different from the projected
correlation function which has dimensions of length (see e.g. [61] for correlation function
with dimensions of length).

For a pair of 2-point observables, denoted by O and O’, the unbiased sample covariance
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matrix from the Np.q realizations is

Nmock
— 1 ~ _ ~ —
COV(O, O/) = ﬁ E (OT - O)(O;. - Ol), (41)
moc —

where O (0') is the sample mean of O, (O.) for r over all Nyoq realizations.
For all the test cases in this paper, we use the following weight function

W = WFKP X Wvetos (42)

in which wpxp = 1/(1 + 7 x 10* Mpc3/h3), and the veto mask excludes certain types of
unobservable regions, e.g. near bright stars. To estimate the power spectrum, we use synthetic
random catalogs that have 50 times as many points as the mock galaxies, i.e. a = 0.02. For
correlation functions we use 5 times as many randoms, i.e. @« = 0.2. And we estimate the
window functions using pair counting with a = 0.2.

5 Results

In this section, we validate our analytic disconnected covariance against the sample covari-
ance measured from the mock simulations. We compare them in two test cases: the power
spectrum multipole covariance, and the joint covariance of projected correlation function and
correlation function multipoles.

5.1 Power Spectrum Multipole Covariance Matrix

We compute the analytic disconnected covariance of Py(k) using the equations in Sec. 2.2, that
requires the unconvolved P, and the window function multipoles O, as inputs. To obtain the
former, we measure the sample mean and variance of the power spectrum multipoles from the
1000 Patchy mocks, shown in Fig. 2. With all model parameters initialized to their fiducial
values, we use the RSD model from [58] to compute a diagonal covariance matrix [72] and
fit this model to the mock sample mean over the k range from 0.02 /Mpc to 0.4 h/Mpc. We
obtain the maximum a posteriori (MAP) estimate of the model parameters using the L-BFGS
algorithm, and subsequently the diagonal covariance is re-computed using the best-fit model.
We then repeat the fitting process until convergence is reached. This analysis is performed
with the pyrsd package. To account for the window convolution in (2.9), we convolve the
model with the appropriate window [59] before fitting it to the mocks. We show both the
unconvolved and convolved model curves in Fig. 2.

To measure the window functions represented by their multipole moments, as defined
in (2.15), (2.16), and (2.28), we use the random catalog of Patchy mocks, and follow the
procedure described in Sec. 2.3. As shown from (2.13) to (2.17), because the covariance
has a quadratic form in power spectrum and its shot noise, i.e. ~ (P + Pshot)2, the three
different window factors describe the covariance shape of different pieces: Q) for P27 Qx
for P X Pyot, and Qg for Pfhot. They capture the same survey geometry but differ in the
weights, and therefore have similar shapes and different normalizations. Our analytic Covds®
is derived in the flat-sky limit, so only depends on the even order Q,’s. We find that our
results have converged when truncating the multipoles at ¢,,x = 10. In Fig. 3, we show the
shapes of the first 4 Q,’s after normalizing them by their monopoles at zero lag. Starting from
the small scales, the window monopoles are < 1 while the other multipoles are negligible,
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Figure 4. Slices of covariance matrices of power spectrum multipoles, of bin width 0.005k/Mpc,
normalized by the monopole. Different panels shows the auto and cross covariance matrices of different
multipoles, as labeled next to the vertical axes. Every spike corresponds to a slice of covariance matrix
near the diagonal (k' = k) at fixed k& (marked by the position of the peak). The difference (dashed
orange) between the mock (dotted black) and analytic (solid blue) covariance is consistent with a
smooth component, as expected from the connected covariance in the mocks. This demonstrates that
the analytic result has accounted for most, if not all, of the disconnected covariance of the mocks. For
comparison we also show the diagonal limit of the analytic covariances from (2.20) in red dots, that
ignores the inhomogeneity and anisotropy of the survey window and are only nonzero at the peak of
each spike with very different values.

reflecting the fact that the windows are homogeneous and isotropic in the small scale limit.
Moving to larger scales, the monopoles start to decrease, whereas the higher order multipoles
rise due to the anisotropy of the window on those scales. And finally all the multipoles vanish
beyond the size of the window.

With the unconvolved Py, the Qp, we can evaluate the analytic disconnected covariance
of P using the equations in Sec. 2.2. The equations involve double Bessel integrals that
we compute using the quadrature method introduced in Sec. 3. And finally we average the
covariance function in linear k bins of width 0.005h/Mpc to obtain the covariance matrix,
as described in Sec. 2.5. The computation takes 2 minutes on a single CPU.

In Fig. 4, we compare our analytic covariance for power spectrum multipoles, Py, P», P4,
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to the mock sample covariance computed using eq. (4.1). Out of the six combinations, we
focus on the auto covariance of the Py, P», P, and the cross covariance between Py and
Py, in different panels. All panels are normalized by Py (without shot noise), to present the
relative error with respect to the monopole. Because the covariance matrices peak sharply
near the k-k' diagonal where the disconnected piece dominates, and are smooth otherwise
(as better illustrated by Fig. 5), for each 2D matrix we plot a few slices across fixed k near
the diagonal (|k' — k| < 0.0025 h/Mpc).

Recall that our analytic covariance matrix only has the disconnected contribution,
whereas the mock result also contains the connected piece. By subtracting the analytic
matrices from the mock ones, we can obtain an estimate of the connected covariance matri-
ces:

Cov " = Cov — Covdisc (5.1)
We also show the differences in mock and analytic covariance in Fig. 4 and find them smooth
as expected, implying that the analytic result has accounted for most, if not all, of the
disconnected covariance of the mocks.

Having shown the amplitude and shape of the covariance in a few slices near the diagonal,
in Fig. 5 we present the shape of the full covariance matrix by normalizing it as the linear
correlation coefficients given by

Cov(0,0")

Corz(0,0') = /Cov(0,0) Cov(07,07) (5:2)

where Cov € {Covdisc,(/l(;f} for analytic and mock covariances, respectively. The visu-
alized matrix has 3 x 3 blocks, with the horizontal and vertical blocks corresponding to
O € {Py(k), Py(k), Ps(k)} and O’ € {Py(K'), Po(K"), Py(K')}, respectively. Because the covari-
ance is symmetric, we combine the analytic and mock covariances in the top panel, with the
upper triangular part showing the analytic covariance and the lower triangular part showing
the mock covariance. The diagonals of corresponding blocks in the upper and lower triangles
have very similar shapes and scale dependence. We again observe that far from the block
diagonals the analytic blocks have vanishing elements, while the mock blocks vary smoothly
with some noise.

To visualize the full connected covariance, we normalize the (5.1) by the diagonal of the
analytic disconnected covariance

———conn

/
COI‘I‘COHH(O, O/) _ . COV (07 O ) ,
\/Covl=(0,0) Covl(0", 0)

(5.3)

and show it in the lower panel of Fig. 5. Note that it is not normalized properly as a
correlation matrix, but correspond to the ratio of connected to disconnected covariance. As
was shown in Fig. 4, this residual component is smooth, suggesting that the disconnected
part has been cleanly removed. There are some notable remaining low k diagonal features
for £ = 4 and £ = 2, and they are likely due to the bias in mock Py caused by the sparse
angular sampling of the Fourier grid.

Note that the connected covariance estimated with (5.1) also includes possible error in
————conn
our analytic Cov®®® as well as the noise in the mock sample covariance. From Cov we can

extract the connected part alone, by exploiting the fact that it is smooth and has a low-rank
approximation [29, 31]. We perform principal component analysis on Corr®™ in (5.3), and

disc
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find that only the first 4 principal components have eigenvectors with broadband features,

while the rest are consistent with noise. Therefore we can replace Corr®™™ with this ragol§m4

substitute, and rescale it by the denominator in (5.3) to obtain a smooth estimate of Cov
—— conn,sm

which we denote by Cov . Now if we subtract that from the mock sample covariance,
the residual is an estimate of its disconnected covariance from the mocks

——disc —— conn,sm

Cov = Cov — Cov . (5.4)
This mock éafdlsc can be compared directly to the analytic Cov®™, which we present
in Fig. 6 as slices across the correlation matrix. The slices are arranged in the same way as in
Fig. 4. Also shown is the difference between the analytic and mock results, with everything
normalized by the analytic Cov®®® as in (5.3) so that the comparison is fair. This residual
contains possible flaw in the analytic Cov?®® and the error on mock sample covariance. We
can quantify the level of the latter with the bootstrapping method, and find it comparable
to the residual. Therefore our analytic disconnected covariance is accurate to the extent of
the errors on the sample covariance from 1000 mocks.

Before moving on, we examine the dependence of analytic Cov®*® on the Q windows. In
this paper we have been modeling and measuring three distinct covariance windows, namely
Oy, 9Oy, and 9s. Given their similarity in shapes (see Fig. 3), one possible simplification
is to approximate all @ windows with the same shape. In practice this can be achieved
in (2.13) by adding the shot noise to the power spectrum and multiplying the squared sum
by a single @ window, for which we use Qyy. We compare this simplified treatment with our
previous result in Fig. 7. Since all results are analytic, the unbinned curves are shown for
better visualization. We find that the approximation leads to 20% error in the disconnected
covariance. And this error depends on the shot noise magnitude since we have changed
the shot noise window, and is larger on small scales where shot noise is more important.
Therefore, it is necessary to use three separate Q windows for accurate evaluation of Cov®®,
especially when shot noise is significant.

disc
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Figure 5. Correlation matrix of the power spectrum multipoles. In the 3 x 3 blocks, from bottom to
top and from left to right, we visualize the auto and cross correlations of ]50, ]52, Py. The top panel
compares the analytic result in its upper triangular block with the mocks covariance in the lower
triangular block. The bottom panel shows the difference between the mock and analytic covariance
matrices, normalized by the diagonal of the latter. As was shown in Fig. 4, this residual component
is smooth, and captures the connected part of the covariance matrix. There are some remaining low
k diagonal features that are more prominent for larger ¢, and are likely due to the bias in mock P,
for ¢ > 0 caused by the sparse angular sampling of the Fourier grid.
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Figure 6. Slices of disconnected correlation matrix of power spectrum multipoles. Every spike
corresponds to a slice of covariance matrix near the diagonal (k' = k) at fixed & (marked by the
position of the peak). For fair comparison, all covariance matrices are normalized by the diagonal of
the analytic one. The mock disconnected covariance is obtained by subtracting the connected part,
approximated with the first 4 principal components of the lower panel of Fig. 5, from its full covariance.
Its difference from the analytic result reflects latter’s accuracy and this residual is comparable to the
bootstrapping errors on the mock sample covariance (grey band around zero).
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Figure 7. Slices of analytic disconnected correlation matrix of power spectrum multipoles, using
different @ functions. The solid blue lines show the same but unbinned result as in previous figures,
with which we normalize all the covariance in this figure for fair comparison. It was computed with the
window functions Qyy, Q«, and Qg, which are shown in Fig. 3. To illustrate the necessity of modeling
three separate windows, in dotted black line we show an approximation computed by assigning the
same shape to all Q’s: Oy + Oy and Qs « Q). The dashed orange lines give the difference
between the two approaches. Although three Q functions have similar shapes, their differences can
leads to 20% difference in the disconnected covariance. This difference depends on the shot noise
magnitude, and is larger on small scales where shot noise is more important.

~93 -



5.1.1 Signal-to-Noise Ratio

Our analytic disconnected covariance Cov¥® captures the correlation between neighboring k

bins and multipoles due to the window effect. In Sec. 2.1.1 we have derived its diagonal limit
Cov¥i#8  that only captures the survey size but neglect its inhomogeneity and anisotropy.
Fig. 4 compares the two and shows they can have very different shapes and values. However
such comparison is sensitive to binning: coarser bins would suppress the off-diagonal elements
of Cov?®® and reduce the difference between Cov®®® and Cov¥8 on their diagonals. Here we
compare their signal-to-noise ratios, which are independent of binning, thereby study more
carefully the impact of the survey window on the information content.
The signal-to-noise ratio of each power spectrum multipole is defined as

SN2 S
(N)disc - Z Pz(kl) COleSC [P(kl)) P(k])] lpf(kj)) (55)
ki kj<kmax

as a function of the maximum wavenumber k.. The covariance is limited to the dis-
connected part to compare Cov® and Cov¥?8, and P, are the convolved power spectrum
multipoles. Fig. 8 shows the results for Py and P». We find that with the diagonal covariance
S/N is underestimated. The difference is more significant on large scales: > 10% below
0.1 h/Mpc, and =~ 5% even between 0.2 h/Mpc and 0.4 h/Mpc. This trend is expected be-
cause the window affect mostly the largest scales in the survey, and is roughly homogeneous
and isotropic on small scales as shown in Fig. 3. We also show that it further biases S/N
on small scales if one ignores the differences among the three effective volumes in (2.18) and
uses only Vyy, due to incorrect normalizations of the shot noise terms.

We warn however that this figure cannot be used for a quantitative estimate of S/N of
cosmological parameters, and a more complete analysis that marginalizes over all nuisance
parameters, and includes also the connected covariance, is needed. This analysis will be
presented in a future work.
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Figure 8. The signal-to-noise ratio of the power spectrum monopole and quadrupole with the discon-
nected covariance. We compare the signal-to-noise ratios using our analytic Cov®™ and its diagonal
limit (Sec. 2.1.1). The latter captures the window size with three effective volumes in (2.18), but
ignores the shape of the window, resulting in very different covariance matrices (see Fig. 4). It un-
derestimates the signal-to-noise ratio, and the difference is significant on large scales. This trend is
expected because the window affects mostly the largest scales in the survey, and is roughly homoge-
neous and isotropic on small scales (see Fig. 3). Also shown is the approximation that uses only Vi,
for all three effective volumes, which causes large bias on small scales where the shot noise terms are
incorrectly normalized.

5.2 Projected-Multipole Correlation Function Covariance Matrix

Using the equations derived in Sec. 2.4.4 and App. A.4, we can transform the power spectrum
covariance to that of the correlation functions. Here we test this formalism on the joint
covariance of the projected correlation function &, and correlation function multipoles &;.
Note that here £, is dimensionless unlike the w), estimator which is more commonly used
and has the dimension of length. While it’s possible to predict the covariance of w, with our
formalism, we choose £, as the test case as it is simpler to compute (see [61] for derivation
of covariance for wp). ¢, and w, have similar signals and correlation matrices, as £, is
effectively w, with one very large bin of LOS separation, although the amplitudes of the two
estimators are different due to the factor of length in w,. However, the correlation matrices
for two estimators can be different for very large LOS integration: the w, estimator gets
larger contribution from noisier bins from large LOS separation, while in é | those bins are
damped by the LOS window.

First, we use the same power spectrum model P, and window function multipoles Q,
as in Sec. 5.1, to compute the auto covariance of the projected power spectrum P, and
the cross covariance between P; and Pp’s, following App. A.3. Together with the auto
covariance of Pp’s obtained in Sec. 5.1, we have the full joint covariance of P, (k) and P;(k)’s.
Note that this is before the binning operation and k is sampled on a logarithmic grid. Then
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Figure 9. The diagonal of the joint covariance matrices of the projected correlation function and
correlation function multipoles. We verify that the small-scale deviations in the &, covariances are
due to the connected covariance.

we can perform Hankel transforms on this covariance twice with mcfit to replace k with
s, and k" with s’. The result is almost the correlation function covariance, except for the
difference in the normalization factors arising from the P and é estimators. We account for
this normalization difference following App. A.4, before binning the covariance into matrices
with s bins of width 4 Mpc/h. The whole process takes less than 30 minutes on a single CPU,
and is more than ten times as long as the computation for the power spectrum. Most of the
time is spent on the £ cross & blocks where we approximate a Dirac delta function with
multipole expansion truncated at ¢, = 16, much higher than the power spectrum case.
The computation can be significantly faster when the cross covariance is not needed.

Again we compare the analytic correlation function Cov®¥ to the sample covariance
from mocks. Fig. 9 shows this comparison on the s = s’ diagonal of the auto covariance
matrices. We find the analytic Cov¥®® reproduce well the scale dependences. On small scales
< 50Mpc/h, the mock covariances of £ and & are larger than the analytic ones, and we
ﬁ/niicgl&gss?n excesses are due to the connected covariance by transforming the power spectrum

ov  from Sec. 5.1. Apart from that, the analytic and mock covariance still differ by
an offset for £, and a 15% deficit near 50 Mpc/h for ;. This is probably due to the fact that
the analytic Cov?*° is based on the best-fit P, to the mock power spectrum, that in general
can be somewhat different if fitted against the correlation function measurement.
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Figure 10. Correlation matrix of of the projected correlation function and correlation function
multipoles. In the 3 x 3 blocks, from bottom to top and from left to right, we visualize the auto and
cross correlations of f 1, 507 fg The upper figure compares the analytic result in its upper left corner
with the mocks in the lower right corner. And the lower figure shows the difference between the mock
and analytic covariance matrices, normalized by the diagonal of the latter.

We also compare the shapes of the analytic and mock covariance by showing their
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correlation matrices in Fig. 10. The top panel shows the two have very similar shapes, and
their difference (normalized by the diagonal of the analytic Cov¥¢ similar to Fig. 5) is < 10%
except in the regions noted above.

6 Discussion

We presented an analytic method to compute the disconnected part of the covariance matrix
of 2-point functions in large-scale structure studies, accounting for the survey window effect.
This method works for both power spectrum (Sec. 2.1, App. A.1) and correlation function
(Sec. 2.4.4, App. A.4), and applies to the covariances for various probes including the multi-
poles (Sec. 2.2) and the wedges (Sec. 2.4.5) of 3D clustering, the angular (App. A.2) and the
projected statistics of clustering and lensing (App. A.3), as well as their cross covariances
(App. A.1, App. A.3).

We verify our analytic covariance against the covariance from 1000 galaxy mock simu-
lations for BOSS DR12. We compare the analytic and mock covariance matrices on power
spectrum multipoles, and demonstrate that we obtain an excellent agreement without the
sampling noise associated with numerical covariance matrices. As a consequence, our method
does not require various corrections and inflated errors that have been developed for this pur-
pose [17, 19].

Another advantage of our method is that its predictions use the best-fit power spectrum
model to the data, and does not assume a fiducial model that may not fit the data well. The
method is thus best viewed as part of a full data analysis pipeline, where we determine both
the power spectrum and the covariance matrix within the same (iterative) procedure. We
also tested the joint covariance matrices of the projected correlation function and correlation
function multipoles, and find the accuracy of the analytic prediction is satisfactory, given that
our model is fitted to the power spectrum instead of the correlation function. The analytic
computation is efficient and costs negligible CPU time compared to the mocks.

In contrast to previous work [72] our method includes the window effect on the covari-
ance. This commonly adopted approximation to the disconnected covariance only captures
the size of the survey window but ignores its shape (inhomogeneity and anisotropy), resulting
in a diagonal power spectrum covariance matrix. We show the proper diagonal limit arises
as the homogeneous and isotropic limit of our analytic covariance, and it generalizes the
usual expression by accounting for the inhomogeneous number density. We show that such a
diagonal covariance underestimates the signal-to-noise ratio compared to our analytic covari-
ance. Other previous works modeled the window effect to different extents. In Ref. [73], the
authors accounted for the window function in the diagonal elements of the power spectrum
covariance matrix in the flat-sky limit, by using FFT and pair summation over Fourier modes,
but they needed an ansatz to approximate the off-diagonal elements that again ignored the
window. Ref. [74] presented an analytic calculation of the disconnected covariance of the
galaxy power spectrum multipoles with variable LOS, under some approximations that sim-
plify the coupling between the power and the window. Our formalism assumes flat sky and
similar simplified power-window coupling, but uses the curved-sky window to account for the
spherical geometry. Compared to our method, the equations in ref. [74] are more complicated
and need Monte-Carlo integration to evaluate. Ref. [61] also derived the expression for the
covariance and cross covariance for 3D clustering and projected correlation functions, but
assumed uniform window when computing the covariance matrices. Our method generalizes
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the disconnected covariance for arbitrary windows which are normally encountered in the
large-scale structure surveys.

Being able to compute the accurate disconnected covariance analytically opens the pos-
sibility of calibrating the connected part using only small-volume mocks or internal covariance
estimators from the data, thereby substantially reduces the computational cost required for
estimating the full covariance matrices. We will address this connected part of covariance
matrix in the future work. Having the complete noiseless covariance will allow for the optimal
analyses of the 2-point functions from the large-scale structure data.
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A Disconnected Covariance

In this appendix we present calculations of the disconnected auto and cross covariance of
power spectra of various forms, including the general 3D power spectra, the multipoles, the
angular power spectra.

A.1 Fully General 3D Case

As usual we model the tracer fields as a Poisson process that samples a homogeneous random
field. Under such assumption, the cross correlation between two fields a and b is given by

(62 (k) Sn(—K')) = (2m)2 8" (K — k') PO (k) + / (*;;)e%kk')-w

()
K
<fand(k)<5rand( K')) = /_O“sab o—ilk—k')-®

Ng(x)
(0data(R)fana (—K")) = (0gata (k) Ofana (—K')) = 0. (A.1)
For each field the subscript ‘data’ and ‘rand’ labels the data and random catalogs, respec-

tively. And the overdensity field for analyses is usually the difference between the data and
random overdensities

(5 = 5data — 6rand~ (AQ)

The shot noise term is related to n4,(x), the mean number density of the overlap between the

two samples. Apparently 745 reduces to n, when a = b, and the cross shot noise is at most as

big as the minimum of the auto shot noises of the two samples: 744 /(7ig7) < min(1/7g, 1/7p).
The windowed field in Fourier space is a convolution

5, (k) = / 5 (k — @)W (q). (A.3)
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The following estimator of 3D power spectrum measures the cross correlation between a and
b fields (k)3 (k)
0% (k)ov, (—k

t WabVE/O) Pshot (A4)
This is a Hermitian function that satisfies P%(k)* = P (—k) = P (k), and a real function
when a = b. The auto and cross covariance functions of the estimators

P(k) =

Cov [P (k), P(K')] = (P (k) PI(K')*) — (P®(k)) (P (K)*) (A.5)
has the following disconnected part
(95 ()3 (—K')) (3t (—K) iy ("))

Covdisc [PabU{:), pcd(k/)] _ + (c, ) PN d, —k’). (A.G)

Wab (O)ch (0)

Both covariance are Hermitian forms that satisfy Cov®®“(k, k')* = Cov*®*®(k’ k). So the
full Hermitian symmetry including those of the estimators are: a,k <> b, —k; ¢, k' <> d, —k’;
and a,b, k < ¢, d, -k .

Plugging (A.1) into the following 2-point function

(0% (K)o (—K'))

w
:/ Pk — )W (@)W’ (k — K —q) + (1 +ady, ~ilk-k)
q

Jwp(x)e

— /N Pab(k”)Wa(k _ k//)wb(k// kl + CY(S b( ) —i(k—k’)-:t

e
e

B Pab(k) 4 Pab(k/)
-~ 2
where the curly mode mixing windows W and S are define as

Wlg) = / W(a)e "1 = / W ()W (z)e 0,
S*(q) = / SP(z)e % = (1 + adk,) / Tiap () wa () wy (2 )e 9. (A.8)

x

WPk — k') +S®(k — k), (A.7)

In the second equality of (A.7), we have used change of variables to rewrite it in the more
symmetric way. Under the assumption that the power spectrum is smooth, which is true at
large k and £/, we can make the approximation P(k) ~ P(k”) ~ P(k') to obtain the last
line. This is due to the fact that the window functions are only significant when k ~ k" ~ k'
to the extent of the Fourier-space window scale. By replacing P(k”) with its average at k
and k', our approximation preserves the Hermitian symmetry a, k <> b, —k’.

With (A.7) we can easily derive the following disconnected covariance

COVdiSC [pab(k:) PCd(k,)] szb( )1W0d(0) { [Pac(k) —; Pac(k/)wac(k _ k/) + Sac(k _ k:/):|

y [Pbd(k) —I—Pbd(k’)

5 Wh(k — ') + S*(k — k’)]

Pad(k) +Pad(k/)*
+ |0

Pbc(k) —‘erC(k/)*
x [ '

WYk + k') + S¥(k + k’)}

WY (k + k') + S"(k + k’)} ’ } (A.9)
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Furthermore because we have assumed P(k) ~ P(k’), in the very same approximation we

can combine certain terms by letting P(k)P(k) ~ P(k)P (k') ~ P(k')P(kK') to simplify the

expression while still preserving its Hermitian symmetries

Pac(k:)Pbd(k:/)* + Pac(k/)Pbd(k)*
2

isc [ pa pe N =~ !
Cov®™[P*(k), P (k)] ~ Wab(O)WCd(O){
PHly 1 PH(K)
2

Q%’bd(k _ k/)
PaC k _"_ P(lC k/ ac
( ) 2 ( )Qx,bd(k:_k/)_i_

Pad k Pbc k/ +Pad k/ *Pbc k)* ad.be
Pad(k) +Pad(k/)* Pbc(k)* +Pbc(k/)
2 2

Ql;d,aC(k _ k/)* _|_ Qgc,bd(k _ k/)

QU + k') +

Ql;c’ad(k—i-k/)* + Qasd,bC(k_i_k/)}’
(A10)

where we have further defined the following auto and cross power spectra of W and S

Q@) = W (@)W (a)” = | Oy (s)ee”,

S

ng,cd(q) — Sab(q)Scd(q)* _ Q‘C'gl),cd(s)e—iq's7
Qib,cd(q) = Wab(q)SCd(Q)* — Qib’Cd(S)e_iq.s, (All)

with Q(s) being the auto and cross correlation functions of W and S, e.g.

Q1 (s) = / W (z + 5)S (). (A.12)
x

The different Q functions completely captures the mode mixing effect in the disconnected
covariance, therefore is the key to its evaluation. Since the survey window is usually conve-
niently represented by a synthetic random catalog, one can measure the @ window as either
correlation functions or power spectra of the random catalog. We show how to quantify
the @ window and then the disconnected covariance in each specific case in the following
subsections.

A.2 Angular Case

We consider the angular power spectrum and its disconnected covariance in the flat sky limit.
The angular field is related to the 3D field by an integral along the line of sight

S (6) = / 5(z)W (), (A.13)
X

where z = (z1,7) = (x0,x). The 3D window function is usually decomposable into
angular and radial distributions W (x) = W(0)W(x) = n(0)w(0)n(x)w(x). In Fourier space
the angular field becomes

Sw(8) = /9 S (@)e 0 = /X , 5(£ _El,x) WEWK) (A.14)

X X

Note that here 6(k, x) is only the 2D Fourier transform of a transverse slice of §(x), so that
it has the dimension of area instead of volume.
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The flat-sky Limber approximation [75-77] states that in the kj [y — x’| > 1 limit, the
correlation between two density slices is given by

(6“(k, X)0" (=K', X)) E/ : (6%(z)o" (') )e i k@ =kl L)
zl’wJ_

~ 8°(x — X)[(27)2 8 (k. — KL P (ks 2) + / u ;;f;‘lg;g)(w)aﬂkrkvm}, (A.15)

where P(k;z) is the 3D power spectrum at redshift z(x).
Using the Limber approximation one can derive the angular power spectrum of a win-
dowed field in a similar way that leads to (A.7)

(6w (£)ow (—2'))
N A . W (e — "YW —£\YW(x)? N ﬁ(w)w(cc)ze_i(g_e/)_e
N/ZNP< ) 2 +(1+ )/XB X2

X’ X ,
x)2
CU YW (L — YW — &) + St — 0 / nhowix)”
Z/I X
/ 5 2
~ CO Oy gy 1 se-e) / 7”(’()“;()‘) (A.16)
2 x X
where C(£) is the unmasked angular power spectrum in the flat-sky limit
_ £\ W)?
ce) = /XP(X,2> S (A.17)
and similar to (A.8) the angular mode-mixing windows are
/ W ()20,
S)=(1+a) / 7(0)w (@)%~ (A.18)
6

Likewise their correlation function Qyy, Qs, and Qx can be defined analogous to (A.11).
Notice that even though we have assigned the same symbols to both the 3D and angular
window factors, the specific one in use should be clear from the context. From (A.16) one
can show that the following C(€) estimator

é(f) = (SVVV\()?‘Q — Ushot (A19)

is unbiased at high ¢ and the shot noise is
a()w(x)* So /T‘l(x)w(x)2 Jo 1(0)w(0)?
Cs ot — 1 — . A20
hot /X o ow Y T e eer 20

Because of the similarity of structure here to that of the 3D case, the disconnected co-
variance of the angle-averaged angular power spectrum resembles that of the power spectrum
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multipoles. So analogous to (2.24) we can write down immediately

Ovdisc A 172N OVdisc A AN\~ / ‘W(E —E,)|2
covtee. o)) = [ co=loe.cen) =2 [ {ewoe) R
, RW(E— €)S(€—£)*] S(e— &)
[0+ Ol Camm o S 3, ST

)/\273 {C(E)C(E’) / 2m0d0 Qyy(6)Jo(£6) Jo(€'0)

+[C) + o)) / 2700 Q.. (8)Jo (00)Jo (£'0) + / 2706 Qs(o)Jo(ze)Jo(efe)}, (A.21)

in deriving which we have used the Jacobi-Anger expansion (B.4).

As in the multipole case, given the @ measured from the survey random catalog and the
C(¢) constrained from the data, we can compute the disconnected covariance of C(£) with
this equation. Its evaluation again includes three integrals involving two zeroth order Bessel
functions Jy. We show their solution in Sec. 3.

A.3 Projected and Projected x Multipole Cases

When cross correlate a field with full 3-dimensional information, e.g. spectroscopic galaxies,
with a field with poor radial information, e.g. weak lensing shear or convergence, one can
estimate their correlation projected at fixed transverse separation & using the radial infor-
mation of the 3D field. Compared to the angular projection in A.2, in such case each field
are effectively projected as

Swlx) = / 5(z)W (), (A.22)
X

which in Fourier space reads
£
wlkes) = [ok—awia) = [ s(k- S )wEwe. (a2
q X, X

The projected field is indeed the k| = 0 component of the corresponding 3D field, therefore
having the same equations for 2-point estimator, shot noise, covariance, etc. Therefore
according to (A.7) the cross correlation between a projected and a 3D field is

Pab k Pab k'

(ot ()il (k) = DB E D o gy s, k) (a20)
with W and S defined as in (A.8). The auto correlation of two projected fields then reduces
to a special case of the above equation when k’l = 0.

As before, the above cross correlation forms the basis to compute the disconnected cross
covariance between a projected power spectrum and multipoles

Cov ™ [P (k), Ph(K)]
)

220 +1 b N T
= VV&(O)WJ(O)/,;,,;,% (k-7) Lo (K - R)[(85 (k)oY (—K))|

R 2020+ 1)(20 + 1) £,(0)
Wa(0)V5(0) o

Lo(k -7) Lo (K - 7)) (85 (k)0%(—k)). (A.25)

(]

=0
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Since both power spectrum and the window are smooth functions in angular direction, we
can expand the Dirac delta above in multipoles using (B.2) truncated at some fy,,x. This
reduce the above expression to the multipole case that we have already solved, as shown
n (2.24), (2.25), (2.26), and (2.27).

One may want to compute the disconnected auto covariance of a projected power spec-
trum in a similar way by expanding both Dirac deltas as follows

Co disc[pa(k) pr_(k,/)]

2(2¢ + 1 26/ )ﬁg( )ﬁgl(O)
) Z “OAH0) o CeE ) Ll

However, this turns out to converge much more slowly with £, than the equation before.
Instead, for the projected auto covariance we limit the computation only in the transverse
direction as in (A.21)

7) | (0% () Sy (k') .

Cov®™ [Pf(k), PL (K)] = W(o)2Wb(0)/k ¢ (83 (e )oby (—K))|
~ S W) [amsis Q0 e

+[PE(R) + P(K)] / osds QU (s) o (ks) Jo(K's)

+ / 2msds Qg‘f”(s)Jo(ks)Jo(k’s)}. (A.26)

Here k = k| on the first line. The projected power spectrum P, can be expressed as a linear
combination of multipoles P (k) = Y, Py(k) L¢(0) = Po(k) — Pa(k)/2 + 3P4(k)/8. And the
projected Q factors in the above equation have their radial separation integrated and their
direction of transverse separation averaged

gubed(s) ) = / - gel(s), (A.27)
S8

A.4 Correlation Function Case

Sec. 2.4.4 shows that the Fourier transform relates the 3D correlation function and power
spectrum, and thus their covariances. Here we derive similar relations for the more practical
bases, including multipole, angular and projected cases. For multipoles, the Fourier transform
connecting two representations becomes the Hankel transform. Apart from that, additional
polar angle dependence in Qyy couples to that in the power spectrum to give

. 2 247 .
i =eee Y (o0 8) Q@i [ SFPaminwa)].  (a29)

where Oy, is the multipole moments of 1/Qyy(s), i.e.

(A.29)

2

Q) = (2@+1)/§QW1(8)£@(§-
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Assuming smooth angular variation, Q;Vlg(s) can be computed given Qu(s) and we show
this procedure in App. B.1.
Therefore the disconnected covariance of the correlation function multipoles is

2 2
disc [ £ : _ 2 0l by U ls Uy
Cov [ﬁg(s),&g/(s’)] = (204 1)(2¢' + HYW; e ;E Z <0 00 00 0
1£2£3%44

-1 -1 01 —V3 k2dk k/2dk/ disc [ p ® N . ’.l
QWZQ (S)QWZ4 (3) v o2 on2 Cov [P& (k)v Pf:a (k )]j& (kS)ng (k S ) (A'30)

Once we have computed Cov®s® [pg(k‘), Py (K )] following Sec. 2.2, we can evaluate the above
equation by calling mcfit to Hankel transform k into s, and k' into s, respectively.

The flat-sky angular correlation function is related to the corresponding power spectrum
(App. A.2) by the Jy Hankel transform

we) =[5 48 o 0)a0(06),

i(9) = / ) (A.31)
Qw (0)
Thus the disconnected covariance of the angular correlation function is
. W3 edeede A A
disc [~ ~0"] — 0 disc ! !/ ! (AL
Cov [w(@),w(& )] QW(G)QW(H’)/ T — Cov [C(ﬁ),C(@ )] Jo(£8)Jp(£'0"). (A.32)

Again this is straightforward to compute with mc£it, given Cov¥*¢[C/(¢), C(¢')] from Sec. A.2.

The same relations in the above two equations also connect the projected correlation
function and power spectrum (App. A.3), if we replace w — &,, C — P, § — s, and
¢ — k. Here £, is the dimensionless projected correlation functions. Combining the re-
sults on multipole and projected cases, we can write down the disconnected covariance of
projected xmultipole correlation functions

isc[&£ £ / 2€/+1W vl ’
Cov4 [€1(s),€0(s)] = Qw1 (s S Z(O (;} (;1)

@ k/2dk/
2 2m?

Quly, (s ™58 Covl¢[ Py (k), Pry (k)] Jo(ks)je, (K's').  (A.33)

We verify this equation with galaxy mocks in Sec. 5.2.

B Useful Relations

The product of two Legendre polynomials can be expanded in itself as

L1+ 01 0o 0 2
Lol La) = Y. @at)) (g 30 Lo, (B.1)
C3=[01—0s]

where the 2 x 3 matrix enclosed by parentheses denotes the Wigner 35 symbol. The com-
pleteness relation of the Legendre polynomials is

1) = 32 2L £y 20, (B.2)
£=0
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The plane wave expansion equates the kernel of Fourier transform in 3D with a series
in spherical Bessel function j, and Legendre polynomial

o0

e* s =N (20 + 1)ijo(ks) Lok - 3), (B.3)
=0

and in 2D with a series in Bessel function J,,

0= 3 il (19)e™ = To(t9) + 2> i" T (06) cos(ng), (B.4)

n=—o00 n=1

where cos ¢ = 2.6.
The addition theorem for spherical harmonics relates the Legendre polynomial with sum
of products of spherical harmonics

A 4 - ok
Lo(k-8) = > Y (R)Y(E) (B.5)
¢
with the spherical harmonics satisfying the following orthonormal relation

/Y By )*7% (B.6)
VA Z’ - 47_‘_ 9 .

where an extra 4w factor appears due to our shorthand notation fﬁ (footnote 3) that averages
rather than integrates over the solid angle.
One can prove the following relation by using (B.3), (B.5), and (B.6)

/,; Lol R)e™ ™% = (<)o (ks) Lo(5 - 7). (B.7)

B.1 Inversion of Multipoles

The redshift-space correlation function has a u-dependent denominator. To account for this
in the covariance of & (s), in one approach we can compute the multipole moments of the
inverse of the denominator, whose multipoles are already known. Let ay be the multipole
moments of a(u) and we want to compute by of b(u) that satisfy

00 o 2
1= Zagbg/ Eg [,g/ Z agbg/ g” + 1) <0 0 0) ﬁgu (M) (B.8)

124 eer

The multipole coupling on the right hand side should result in only the monopole on the left
hand side, leading to the following linear system

00 0\?
Zazbgl <0 0 0) = g, (B.9)

174

from which we can solve for by.
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