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Abstract

Understanding how star formation is regulated requires studying the energy balance between turbulence, magnetic
fields, stellar feedback, and gravity within molecular clouds. However, identifying the transition region where the
gravity takes over remains elusive. Recent studies of the Velocity Gradient Technique (VGT), which is an
advanced tool for magnetic field studies, reveal that the gradients of spectroscopic observables change their
directions by 90° with respect to the magnetic fields in the regions of gravitational collapse. In this study, we
perform 3D MHD numerical simulations. We observe that star formation successfully proceeds in strongly
magnetized and fully ionized media. We confirm that the self-gravity induces the change of gradients’ orientation
and gradients’ high amplitude. We explore two ways of identifying collapsing self-gravitating regions through the
double-peak feature in the histogram of gradients’ orientation and the curvature of gradients. We show that velocity
gradients’ morphology and amplitude can be synthetically used to trace the convergent inflows. By comparing with
the column density Probability Density Functions method, we show that VGT is a powerful new tool for studying
the gas dynamics and tracing magnetic field in star-forming regions. By analogy with VGT, we extend the Intensity
Gradient Technique (IGT) to locate the gravitational collapsing region and shocks. We demonstrate that the
synergy of VGT and IGT can determine the collapsing stages in a star-forming region.

Unified Astronomy Thesaurus concepts: Interstellar magnetic fields (845); Interstellar medium (847); Star
formation (1569); Star forming regions (1565)

1. Introduction

The molecular clouds in Milky Way are permeated by
ubiquitous turbulent magnetic fields (Larson 1981; Elmegreen &
Scalo 2004; Ballesteros-Paredes et al. 2007; McKee & Ostriker
2007; Chepurnov & Lazarian 2009; Chepurnov et al. 2020;
Zhang et al. 2020). Turbulence, magnetic fields, and gravity
significantly impact the critical properties of the star formation
processes and stellar initial mass distribution in molecular clouds
(Parker 1965, 1979; Jokipii 1966; Kennicutt 1998a, 1998b; Li &
Henning 2011; Hull et al. 2013; Andersson et al. 2015; Caprioli
& Spitkovsky 2014). To understand the complex interplay of
gravity, turbulence, and magnetic fields, it is essential to identify
and study the transition regions where gravity takes over and
collapse occurs (Shu 1977, 1992; Shu et al. 1994; Krumholz &
McKee 2005; Hennebelle & Chabrier 2011; Padoan & Nordlund
2011; Federrath & Klessen 2012, 2013; Traficante et al. 2020;
Xu & Lazarian 2020). Nevertheless, observational studies of the
self-gravitating transition region in molecular clouds have still
not yet been fully developed.

Most analytic star formation theories rely on the column
density Probability Density Functions (N-PDFs) of supersonic,
magnetized, and isothermal turbulence to gain insight regarding
self-gravity (Vazquez-Semadeni et al. 1995; Klessen 2000;
Robertson & Kravtsov 2008; Kritsuk et al. 2011; Collins et al.
2012; Padoan et al. 2017; Burkhart 2018). It was believed that in
the presence of self-gravitating gas, the N-PDF evolves to a
combination of log-normal format for low-density gas and a
power-law tail for high-density gas (Vazquez-Semadeni et al.
1995; Robertson & Kravtsov 2008; Ballesteros-Paredes et al.
2011; Price et al. 2011; Collins et al. 2012; Burkhart 2018). The
transition from log-normal to power-law N-PDF reveals the

density threshold, above which the gas is likely to become self-
gravitating. However, in addition to self-gravity, the N-PDFs are
also shaped into a power-law distribution due to the insufficient
optical depth in self-absorbing media (Hu et al. 2020a) or the
effects of line-of-sight contamination on the column density
structure (Schneider et al. 2015a, 2015b; Law et al. 2019), as
well as stellar feedback via ionization (Tremblin et al. 2014).
The applicability of N-PDFs is therefore constrained.
The Velocity Gradient Technique (VGT) was initially devel-

oped as an advanced tool for magnetic field studies (González-
Casanova & Lazarian 2017; Yuen & Lazarian 2017a; Hu et al.
2018; Lazarian & Yuen 2018). It uses the fact that within
magnetohydrodynamic (MHD) turbulence, the turbulent eddies are
anisotropic (Goldreich & Sridhar 1995) and their anisotropy
reveals the local direction of the magnetic field that percolates the
eddy (Lazarian & Vishniac 1999; Cho & Vishniac 2000). As a
result, the velocity gradients of the eddies are perpendicular to the
magnetic fields.
The ability of VGT to trace magnetic fields in turbulent media

has been extensively tested in numerical simulations (Yuen &
Lazarian 2017a; Hu et al. 2018; Lazarian et al. 2018; Yuen et al.
2018; Hsieh et al. 2019) as well as observations in, for example,
molecular clouds (Hu et al. 2019b, 2019c) and neutral hydrogen
gases (González-Casanova & Lazarian 2019; Hu et al. 2020b).
Lazarian & Yuen (2018) and Hu et al. (2019c) have also
revealed that a new effect takes place in the presence of self-
gravity, which results in a new method for measuring the
transition from strongly magnetized to gravitational collapsing
gas. The matter infall induces a change of the direction of
velocity gradients concerning the magnetic field. In other words,
toward regions where star formation is taking place, the
gradients of velocity observables induced by the infall motions
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parallel to the magnetic field gradually begin dominating over
the velocity gradients arising from turbulence. The observational
signature of this change in the cloud dynamics is that the VGT
orientation flips by up to 90° to align parallel with the direction
of the magnetic fields (Yuen & Lazarian 2017b; Lazarian &
Yuen 2018; Hu et al. 2019c).

By identifying the change of the velocity gradients, one can,
therefore, identify the regions in which dynamics are dominated
by self-gravity. If magnetic field direction is already known from
polarimetry, this identification is trivial. However, the VGT was
introduced as a technique for studying the magnetic field
independently of high-cost and frequently impossible polarimetric
studies. Therefore, in this paper, we discuss the pure applicability
of VGT in identifying collapsing cloud regions as well as—very
importantly—studying magnetic fields in self-gravitating mole-
cular clouds.

One of the most important tools in identifying the signature
of self-gravity in molecular clouds would be the use of
N-PDFs. Our study of N-PDFs of of synthetic CO emissions in
Hu et al. (2020a) has revealed that the shape of the N-PDFs will
be skewed in the presence of self-absorption. This is a severe
limitation of the N-PDFs. Moreover, even in the absence of the
effects of radiation transfer, as we discuss in the following
sections, VGT is a more sensitive tool compared to the
N-PDFs, as VGT is sensitive to the convergent infall flows
induced by the gravitational collapse. In addition, VGT can
be used synthetically with intensity gradients that also
change their orientation with respect to the magnetic field in
the presence of self-gravity (Yuen & Lazarian 2017b; Hu
et al. 2019a). However, the change of density field is an
accumulating process, while the velocity field is significantly
changed only when the gravitational energy dominates over
the kinematic energy of turbulence. This helps to identify the
stage of gravitational collapse for molecular clouds via the
relative orientation of intensity gradients and velocity gradients.
In addition, self-gravity induces high gradient amplitudes, but
this is not the case for shocks. This high-amplitude feature paves
the way to distinguish shocks and self-gravitating materials.

For this study, we use several computational tools that have
been developed for gradient studies. For instance, to identify
the boundary of the collapsing region, we develop a double-
peak algorithm and also use the curvature algorithm presented
in Yuen & Lazarian (2020). At the same time, we use Principal
Component Analysis (PCA) to extract the most important
channel map data from spectroscopic position–position–
velocity (PPV) cubes (Hu et al. 2018). To find gradient
directions, apart from the classical fixed size sub-block
averaging (Yuen & Lazarian 2017a), we experiment with
adaptive sub-block averaging (see Section 5.2). These methods
improve the ways that the gradients are calculated.

The rest of the paper is structured as follows. In Section 2,
we theoretically illustrate the properties of MHD turbulence in
the presence and absence of self-gravity. In Section 3, we
describe the full algorithm in calculating velocity gradients
with the filtering process, i.e., the PCA. In Section 4, we give
details about the numerical simulation used in this work. In
Section 5, we study the responses of N-PDFs and velocity
gradients with respect to self-gravity, and we identify
gravitational collapsing regions. In Section 6, we extend our
study of velocity gradients to intensity gradients and show
how to determine collapsing stages and shocks. In Section 7,

we discuss the application and further development of VGT. In
Section 8, we give our conclusions.

2. Theoretical Consideration

2.1. VGT and MHD Turbulence Theory

The VGT utilizes the properties of MHD turbulence; in what
follows, we explain those essential for understanding this
technique (see Figure 1). A more detailed discussion of MHD
turbulence can be found in a recent book by Beresnyak &
Lazarian (2019).
The theory of MHD turbulence has been given a boost by

the prophetic study by Goldreich & Sridhar (1995), denoted
as GS95 hereafter. In particular, GS95 predicted the turbulent
eddies to be anisotropic and showed that the degree of
turbulence anisotropy increases as the scale of turbulent
motions decreases (see Figure 1(b)). The subsequent study
of turbulent reconnection in Lazarian & Vishniac (1999)
demonstrated that turbulent reconnection of the magnetic
field, which takes place over just one eddy turnover time, is an
intrinsic part of the MHD turbulent cascade. The reconnection
enables the mixing of magnetic field lines perpendicular to the
magnetic field direction (see Figure 1(c)). The mixing motions
within the eddies further induce changes of the fluid velocities
perpendicular to the magnetic field lines (see Figure 1(d)).
Therefore, the local gas velocity gradients are directed
perpendicular to the local directions of the magnetic field.4

This phenomenon has been confirmed by the numerical studies
in Cho & Vishniac (2000) and Maron & Goldreich (2001). This
notion of a local system of reference is critical for under-
standing the VGT. Indeed, for the detailed tracing magnetic
field using the velocity field, it is essential that the velocities are
oriented in respect to the direction of the magnetic field in the
sampled volumes, rather than the direction of the mean
magnetic field.
In the process of observations, the contributions from eddies

of different scales are summed up. The smallest eddies trace the
fine magnetic structure, while the larger eddies sample
magnetic field on a coarser grid scale. For the VGT, it is
essential that the gradients arising from the smallest eddies
dominate. This follows from the scaling of MHD turbulence.
According to Lazarian & Vishniac (1999), magnetic fields

give minimal resistance to the motions of eddies with scale l⊥
perpendicular to the local direction of the magnetic field, i.e.,
the magnetic field passing through the eddy at scale l. Thus, the
eddies obey the hydrodynamic Kolmogorov law ~^ ^v ll,

1
3 ,

where ^vl, is the turbulence’s injection velocity perpendicular
to the local direction of the magnetic field. The relation
between the scale l& along the magnetic field and l⊥
perpendicular the magnetic field is expressed as (Lazarian &
Vishniac 1999):

^ -l L
l
L

M , 1inj
inj

A

2
3 4

3
⎛
⎝⎜

⎞
⎠⎟ ( )�&

where Linj is the injection scale of turbulence and MA=vl/vA
is the Alfvénic Mach number, i.e., the ratio between the
injection velocity vl of turbulence and Alfvénic velocity vA. By

4 The derivations in Goldreich & Sridhar (1995) for the anisotropy are done
using the mean-field reference frame. The GS95 scaling is not observable in
this mean-field frame.
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equating the period of Alfvénic wave and turbulent eddy’s
turnover time, the scaling of turbulent velocity of eddies is
derived as (Lazarian & Vishniac 1999):

^
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when MA=1 the relation returns to the GS95 version.
Explicitly, because the anisotropic relation indicates l̂ l� &,

the velocity gradient scales as:
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Equation (4) is a crucial element for VGT technique, as it
testifies that: (i) the gradients of velocity amplitude scale as

µ^ ^ ^
-v l ll,
2 3, i.e., the smallest resolved scales are most

important in calculating the gradients; and (ii) the measured
velocity gradients are perpendicular to the magnetic field at the
smallest resolved scales, i.e., they trace well the magnetic field
in the turbulent volume.

Figure 1. Cartoon extracted from Pattle (2019), explaining the principles behind the velocity gradient technique. Panel (a): the VGT technique considers Alfvénic fluid
motions, wherein a magnetic field and the conducting fluid in which it is embedded move together. Panel (b): turbulent eddies are elongated along magnetic field lines.
Panel (c): embedded magnetic field lines are preferentially moved perpendicular to their local direction by small-scale turbulent eddy motions. Panel (d): turbulent
reconnection is an essential part of the dynamics of turbulent eddies, which enables the mixing of magnetic field lines perpendicular to the magnetic field direction.
Mixing motions within the eddies (shown as magenta circles in panel (a)) induce changes of the fluid velocities perpendicular to the magnetic field lines. Therefore,
local gas velocity gradients (red arrows in panel (a)) are directed perpendicular to the local directions of the magnetic field. As a result, it is possible to predict the
direction of the magnetic field by measuring the direction of gas flow velocity gradients.
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2.2. Velocity Gradient for Sub- and Super-Alfvénic Turbulence

The magnetic field plays a crucial role in the anisotropic
scaling relation, as shown in Equation (1). It is therefore
important o discuss the turbulence scalings in different regimes,
i.e., sub- and super-Alfvénic turbulence. We briefly describe
the regimes below. A more extensive discussion can be found
in the review by Brandenburg & Lazarian (2013).

For super-Alfvénic turbulence, the anisotropic relation
appears when the scale of turbulence gets smaller than the
transitional scale lA, which is expressed as (Lazarian 2006):

= >-l L M M, 1. 5A inj A
3

A ( )
At scales smaller than lA, the turbulence transfers to the trans-
Alfvénic turbulence described by the GS95 relation and the
anisotropy of the turbulent eddies can be observed, i.e.,
Equation (3) still holds on. When turbulence’s scale is larger
than lA, the turbulence cascade is essentially a hydrodynamic
Kolmogorov cascade showing isotropic properties instead of
anisotropic (Lazarian 2006).

In the strong magnetic field case MA<1, the corresponding
turbulence is always highly anisotropic. However, turbulence
in the range from the injection scale Linj to transitional scale ltr
becomes wave-like rather than eddy-like:

= <l L M M, 1, 6tr inj A
2

A ( )
which is termed as weak Alfvénic turbulence (Beresnyak &
Lazarian 2019). This type of turbulence means that the
velocities change to (Lazarian & Vishniac 1999; Galtier
et al. 2000):

^
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and the velocity gradient becomes:
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At a scale smaller than ltr, the turbulence transforms into the
strong Alfvénic regime, which obeys the GS95 anisotropic
relation. In both regimes, the velocity gradients are perpend-
icular to the magnetic field. Note that turbulence can be also
injected locally, whereupon the scale of turbulent motions Linj
becomes different, as does lA. To trace the magnetic field
direction using gradients, it is important that a telescope can
resolve the turbulence at a scale smaller than lA for super-
Alfvénic turbulence. In the case that resolution is not sufficient,
the contribution from large scales should be removed using
spatial filtering (Yuen & Lazarian 2017b).

2.3. Velocity Gradient in the Presence of Self-gravity

In the vicinity of gravitational collapse, the self-gravity
radically modifies the nature of the turbulent flow. In the case of
strong self-gravity, velocity gradients are expected to change
their orientation from perpendicular to magnetic fields to align
with magnetic fields (Yuen & Lazarian 2017b; Hu et al. 2019c).
As shown in Figure 2, assuming the gravitational center is
located at the center of a turbulent eddy, when gravity is
subdominant to magnetic and turbulent energy, the magnetized
turbulent eddies are elongated in the direction parallel to the
magnetic field surrounding the eddies. As a result, the maximum
change of the velocity amplitudes (i.e., velocity gradient), is in
the direction perpendicular to the local magnetic field, and by
rotating the velocity gradient by 90°, we can trace the magnetic
field. In regions where gravitational collapse has begun, the
dynamics are different. If the magnetic field is strong enough to

Figure 2. Illustrations of how self-gravity changes the maximum gradient direction, extracted from Yuen & Lazarian (2017b). Panel (a): eddies are elongated parallel
to the local magnetic field direction. When gravity is absent (left), the maximum change of the velocity amplitudes (i.e., velocity gradient) is in the direction
perpendicular to the local magnetic field. Panel (b): the gravitational pull produces the most significant acceleration of the plasma in the direction parallel to the
magnetic field, and the velocity gradients are parallel to the magnetic field.
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provide support, we expect that in the direction perpendicular to
the magnetic field, any gravitational pull inducing the accelera-
tion is counteracted by a magnetic force. Hence, the gravitational
pull produces the most significant acceleration of the plasma in
the direction parallel to the magnetic field, and the velocity
gradients are parallel to the magnetic field. Alternatively, in a
case where the magnetic field support is weak compared to
gravity, the infall motions of the plasma will alter the magnetic
field geometry such that it tends to align parallel to the direction
of gravitational collapse. Nevertheless, the acceleration induced
by the collapse is still along the magnetic field direction. As a
result, the velocity gradients are also parallel to the magnetic
field. In this paper, we focus on exploring the ability of VGT to
trace magnetic field in the magnetically dominated environments
with sub-Alfvénic turbulence. The turbulence in molecular
clouds can be super-Alfvénic (Padoan & Nordlund 1999). In
order to numerically study the applicability of the VGT in a
super-Alfvénic setting, we require higher-resolution resolving
scales less than the transitional scale lA. The numerical study of
the VGT for super-Alfvénic molecular clouds will be done
elsewhere.

A similar argument also holds for intensity gradients, i.e.,
intensity gradients are perpendicular to the magnetic field due to
the anisotropic relation of turbulent eddies. However, intensity
gradients exhibit different properties from velocity gradients. A
prior study in Soler et al. (2013) reported that the intensity
gradient is rotating with respect to magnetic fields when arriving
density threshold ~ á ñn n50T (where á ñn denotes the average
column density) in the case of Ms=10 super-sonic media, and

~ á ñn n500T in the case of moderately magnetized media
(β=1.0) for super-Alfvénic and self-gravitating MHD simula-
tion. These findings are at the foundations of the Histograms of
Relative Orientation (HRO) technique proposed in Soler et al.
(2013) and elaborated further in Soler & Hennebelle (2017).

The difficulty of employing HRO compared to our way of
identifying the gravitational collapse stems from two issues.
First, HRO does not identify the change of the intensity
gradients on its own. Instead, it requires polarization measure-
ments to provide the magnetic field direction. Second, the
change of the intensity gradient direction with respect to the
magnetic field is also happening in the presence of shocks.
Indeed, it has been demonstrated that the intensity gradient
tends to be parallel to its local magnetic fields when getting
close to the dense shock front in the absence of gravity (Yuen
& Lazarian 2017b; Hu et al. 2019a; Xu et al. 2019). Therefore,
the intensity gradient is sensitive to both self-gravity and shock.
The change of intensity gradient induced by shocks does not
specify a density threshold, which calls the value of nT into
question. Therefore, it encourages a detailed study of intensity
gradients, i.e., distinguishing shocks and self-gravitating
regions. In contrast, VGT provides, as we shall discuss further,
a polarimetry-free way of determining self-gravitating regions.
In addition, using the Intensity Gradient Technique (IGT), as
we discuss later, there is a reliable way of distinguishing the
shocks and self-gravitating regions

We note that, in this paper, we also use the intensity
gradients. However, our IGT is different from the HRO (Hu
et al. 2019a). The IGT is an offshoot of the VGT technique, and
it uses the VGT procedures to trace magnetic field directions.
In this paper, we show the synergy of using the VGT together
with the IGT.

In this paper, we address the issue of how velocity gradients
and IGs trace magnetic fields in the regions of self-dominant
gravity for the case of sub- and trans-Alfvénic clouds, and
further discuss how the stage of collapse is correlated to the
alignment of density gradients and velocity gradients.

2.4. Distinguishing Shocks from Gravity in Spectroscopic
Velocity Channels

Our previous works show that both regions with shock and
those with self-gravity will cause the gradients of either
intensity or centroid gradients to be parallel to the magnetic
field (Yuen & Lazarian 2017b; Hu et al. 2019a). In this
subsection, we formulate qualitatively how shocks are different
from self-gravitating regions in velocity channel maps and how
can we make use of this simple yet important principle to
extract self-gravitating regions in observations.
In obtaining the velocity-gradient predicted magnetic field

directions, we have to perform a weighted sum along the line of
sight together with the magnetic field angle we predicted by VGT
on channels. Shock and self-gravitating regions act differently
under this “Stokes” sum (see Section 3): MHD shocks are mostly
formed with its velocity dispersion being rather small. Therefore,
when we are observing a shock region in PPV space, it occupies
only a few velocity channels. Comparatively, the self-gravitating
region accelerates fluid particles in its vicinity. That means when
we are observing the self-gravitating region in PPV space, we can
find this strongly self-gravitating region in almost all velocity
channels.
This simple phenomenological effect has a profound

consequence in searching for self-gravitating regions using
velocity gradients. The shock density enhancement, unlike its
self-gravity counterpart, is bounded by the sonic Mach number
of the environment, but that for self-gravity is unbounded. In
the case of shocks, there will be a limited number of channels
that are affected by shocks, subject to the sonic Mach number.
In this case, we will find most of the shocks in a limited amount
of channels together with non-shock materials that have their
gradients perpendicular to magnetic fields. As a result, for the
channels with shocks, the alignment measure decreases, while
for the channels without shocks, the alignment measure stays
the same. Because our prediction of the magnetic field is a
weighted sum along the line of sight, the effective alignment
measure is only slightly decreased and is a function of Ms.
Self-gravity acts differently in velocity channels. We can

find the self-gravitating region in all velocity channels,
depending on its stage of collapse; as a result, the velocity
gradients of every channel are rotated according to the strength
of acceleration, causing the alignment of each channel to be
significantly low. This would mean that, in the weighted sum,
there are no channels that have an alignment measure high
enough to counterbalance the gravity-induced low alignment
measure channels, causing the resultant Stokes map to have a
very low alignment measure. This means that only the change
of orientation caused by gravity is retained under Stokes’s
addition. Therefore, using this simple fact, we can determine
the self-gravitating regions by spotting the locations where
there are changes of orientation of Stokes-weighted velocity
gradients.

5
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2.5. Velocity Fluctuations in the Thin Velocity Channel

Information about turbulent velocities is contained in PPV
data, which are available through spectroscopic observations.
The statistics of the intensity fluctuations in PPV and their
relations to the underlying statistics of turbulent velocity and
density are presented in Lazarian & Pogosyan (2000). There, it
is shown the velocity effects are most prominent in thin channel
maps, i.e., in thin velocity slices of PPV cubes.

Within thin channel maps, the field of velocity produces
intensity fluctuations due to the effect of velocity caustics.
These fluctuations in particular regimes identified in Lazarian
& Pogosyan (2000) can dominate the effects of intensity
fluctuations arising from density clumping. In fact, if the
energy spectrum of magnetic fluctuations is steep (e.g.,
Kolmogorov spectrum), the velocity fluctuations determine
the statistics of the intensities in thin channels (Lazarian &
Pogosyan 2000). It can be demonstrated that this assumption
holds not only in the single-phase self-absorption media but
also in two-phase H I media (Lazarian & Pogosyan 2004;
Kandel et al. 2016, 2017a, 2017b), provided that the cold H I
clumps are moved together with the warm media. Therefore,
by varying the thickness of velocity channels, one can extract
the statistical density fluctuation and velocity fluctuation
in PPV cubes (Lazarian 2009; Yuen et al. 2019). The criterion
for distinguishing the thin channel and the thick channel is
given as:

d

d

D <

D .
v v

v v

, thin channel

, thick channel, 9

2

2 ( )

where Δv is the velocity channel width and δv is the velocity
dispersion calculated from the velocity centroid (Lazarian &
Pogosyan 2000). Therefore, we extract the velocity gradient
from all thin channels that satisfy the criteria as listed in
Equation (9).

However, in PPV cubes, only the velocity component
parallel to LOS is achievable. If the flow induced by the
gravitational collapse is exactly perpendicular to LOS and the
flow does not allow the transfer of energy between different
components, then there may be problems with detecting the
velocity gradients change. However, in reality, it is not possible
to accelerate the turbulent flow regularly in one direction
without changing all the components of velocity. Differing
from the convergent flow induced by the self-gravity, which
spreads through space, shock only induces a jump of velocity
in the direction perpendicular to the shocks’ front and the
velocity has limited range. Therefore, shocks’ contribution to
velocity field is insignificant in PPV cubes, as we discussed in
Section 2.4.

Clark et al. (2019) recently questioned the validity of
velocity causticsʼ effect in H I emission lines. They propose
that the H I intensity features in thin channels are real density
structures of the cold neutral medium instead of velocity
caustics. The arguments of the authors are based on special
properties of two-phase H I gas and are not applicable to
the study of velocity gradients in isothermal conditions of
molecular clouds that we deal in this paper. For a number
of molecular clouds, we have obtained good correspondence of
the magnetic field structure obtained from VGT and the one
from Planck polarization data (Hu et al. 2019c) and from
BLASTPOL polarization (Hu et al. 2019b).

A detailed discussion of the nature of the intensity
fluctuations in channel maps for galactic H I studies is beyond
the scope of the present paper. We shall only mention that the
corresponding answer has been presented in Yuen et al. (2019).
The fact is that the formation of velocity caustics predicted in
Lazarian & Pogosyan (2000) theory is the effect that has been
studied extensively, both theoretically and numerically, for the
last two decades (Lazarian et al. 2001; Esquivel et al. 2003;
Padoan et al. 2006; Chepurnov & Lazarian 2009; Kandel et al.
2017b; Clarke et al. 2018).
The predictions of the velocity caustic theory were

successfully used to find the velocity spectrum by different
groups in both two-phases H I media and one-phase media of
CO isotopes, Hα, N II, S II, and other species (Dickey et al.
2001; Stanimirović & Lazarian 2001; Khalil et al. 2006;
Padoan et al. 2006; Kandel et al. 2017b). Therefore, it is an
established fact that the velocity effects are important for the
formation of intensity structure of the velocity channel maps.
The discussion initiated by Clark et al. (2019) should be
viewed in terms of the relative contributions of density and
velocity for the production of the filaments observed in the
channel maps. Realistic simulations of the two-phase media
turbulence will clarify this issue. We also note that, by applying
the VGT to H I data, we obtained predictions of foreground
polarization that are in good correspondence with Planck
measurements (Hu et al. 2020b).

2.6. Probability Density Function

The Probability Density Function (PDF) is one alternative way
to identify gravitational collapsing regions by utilizing the
information of the density field. Indeed, several studies have
revealed that the density distribution is a log-normal (PN) for
supersonic magnetized isothermal turbulence (Vazquez-Semadeni
et al. 1995; Robertson & Kravtsov 2008; Collins et al. 2012;
Burkhart 2018):

ps
= -

s

-

P s e
1

2
, 10N

s
2

s s

s

0 2

2 2( ) ( )
( )

where r r=s ln 0( ) is the logarithmic density and σs is the
standard deviation of the log-normal, while ρ0 and s0 denote the
mean density and mean logarithmic density.
In the case of self-gravitating MHD turbulence, the gas

density PDF evolves to a combination of log-normal (PN) PDF
at low densities and a power-law (PL) PDF at high densities:

µ >a-P s e s S, , 11L
s

t( ) ( )

where r r a s= = -S lnt t s0
1
2

2( ) ( )/ is the logarithm of the
normalized transitional density between the log-normal and
power-law forms of the density PDF (Vazquez-Semadeni 1994;
Slyz et al. 2005; Ballesteros-Paredes et al. 2011; Körtgen et al.
2019). The transition density St value depends on the slope α of
the power law and the width of the log-normal. As α shallows
(i.e., becomes less steep, which is expected for strong self-
gravitating turbulence), the transition density (St) between the
PDF log-normal and power law moves toward lower density
(Li 2018). Nevertheless, there still exist limitations of the
N-PDFs in distinguishing regions of gravitational collapse in
self-absorbing media, as discussed in Hu et al. (2020a).
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3. Methodology

3.1. Velocity Gradient Technique

The VGT initially employed either a velocity centroid map
C(x, y) (González-Casanova & Lazarian 2017; Yuen &
Lazarian 2017a) or a velocity channel map Ch(x, y) (Lazarian
& Yuen 2018) to extract velocity information from PPV cubes:

ò
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ò
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r
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where ρ is gas density, v is the velocity component along the
line of sight, Δv is the velocity channel width satisfied with
Equation (9), and v0 is the velocity corresponding to the peak
position in PPV’s velocity profile. Note that both of these
methods have had their validity tested by both numerical
simulations (Yuen & Lazarian 2017a, 2017b; Lazarian &
Yuen 2018; Hsieh et al. 2019) and observational data (Hu et al.
2019b, 2019c).

To improve the performance of VGT, Hu et al. (2018) used
the Principal Component Analysis (PCA) as a tool to extract
the most crucial n velocity components in a PPV cube. The
implementation of PCA constructs a new orthogonal basis,
which consists of n eigenvectors and n eigenvalues. The
contribution from a principal component corresponding to
small eigenvalues is also insignificant. Therefore, by omitting
small eigenvalues and their corresponding principal compo-
nents in the PPV cube, we can remove the noise. Also, it is
possible to enhance the contribution from crucial components
by projecting the original data set into the new orthogonal basis
formed by the eigenvectors (Hu et al. 2018, 2020b). The PCA
algorithm is implemented as follows.

As illustrated in Figure 3 ①②, assuming that a PPV cube ρ
(x, y, v) is a probability density function of three random
variables x, y, v, we can obtain its covariance matrix and the
eigenvalue equation for this covariance matrix from (Brunt &
Heyer 2002a, 2002b; Hu et al. 2018, 2020b):

ò
ò ò
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l=S u u, 14· ( )
where S is the covariance matrix with matrix element S(vi, vj),
with i, j=1, 2, K, nv. nv is the number of channels in the PPV
cubes, and λ represents the eigenvalues associated with the
eigenvector u (Hu et al. 2018, 2020b). By weighting channel ρ
(x, y, vj) with the corresponding eigenvector element uij, we
project the PPV cube into a new orthogonal basis, in which the
corresponding eigen-map Ii(x, y) is:

å r=I x y u x y v, , , . 15i
j

n

ij j

v

( ) · ( ) ( )

Repeating the procedure for each eigenvector ui results in a
set of eigen-maps Ii(x, y), with i=1, 2,K, nv (see Figure 3 ③).
From an individual eigen-map Ii(x, y), the gradient orientation
at individual pixel (x, y) is calculated by convolving the image

with 3×3 Sobel kernels:
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where� I x y,x i ( ) and� I x y,y i ( ) are the x and y components of the
gradients, respectively. Here, ψgi is the pixelized gradient map
for each channel Ii(x, y) (see Figure 3 ④).
Note that, in the picture of turbulence, a single gradient in

each pixel of ψgi contains little statistical information and does
not directly indicate the magnetic field direction. However, the
distributions of the gradient orientation appear as an accurate
Gaussian profile with appropriate-sized subregions. Yuen &
Lazarian (2017a) therefore proposed the sub-block averaging
method, i.e., taking the Gaussian fitting peak value of the
gradient distribution in a selected sub-block in order to
statistically define the mean magnetic field in the corresponding
subregion. Differing from Yuen & Lazarian (2017a), we
continuously implement the sub-block averaging method. Each
pixel of ψgi is taken as the center of a sub-block and the recipe
of sub-block averaging is applied. The size of each sub-block is
determined by the fitting errors within the 95% confidence
level. We vary the sub-block size and check its corresponding
fitting errors. When the fitting error reaches its minimum
value, the corresponding sub-block size is the optimal
selection. The resolution of the resulting gradient map is
unchanged. We refer to this procedure as adaptive sub-block
averaging (see Figure 3 ④).
We denote the gradients’ orientation after the adaptive sub-

block averaging implemented as y x y,gi
s ( ). In analogy to the

Stokes parameters of polarization, the pseudo Qg and Ug of
gradient-induced magnetic fields are defined as:
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The pseudo polarization angle ψg is then defined correspond-
ingly, which gives a probe of plane-of-the-sky magnetic field
orientation after rotating 90°. The rotation is automatically
performed without specification (see Figure 3 ⑤). Note that, in
constructing the Qg(x, y) and Ug(x, y), one can project the data
onto the subset of the dominant principal components but not
onto all of them, i.e., n<nv, especially when the smallest
eigenvalues of the covariance matrix are dominated by noise
(Hu et al. 2020b). The noise can be removed by eliminating the
the smallest eigenvalues. Also, the pseudo-Stokes parameters is
advantageous in correcting abnormal gradients vectors induced
by either noise or fitting error. Lazarian & Yuen (2018) showed
that magnetic field lines should be continuous, but an abnormal
gradient vector cuts off the streamline compared to the
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neighboring vectors. To smooth the outlying abnormal
gradients, Lazarian & Yuen (2018) proposed the moving
window method. In terms of the moving window method, a
sub-block is selected to move along the orientation of the
predicted magnetic field. When there is an abnormal gradient
vector, a rotation is applied to the abnormal vector so that a
smooth field line is formed. The moving window method is
mathematically equivalent to the convolution of a Gaussian
kernel with the cosine and sine angular components of the
vectors. Nevertheless, Hu et al. (2019a) point out the nonlinear
cosine or sine transformation distorts the Gaussian properties of

the vectors. The Gaussian convolution may further induce
abnormal gradient vectors. In contrast, the pseudo-parameters
recover the Gaussian distribution because of the weighting term
Ii(x, y) (see Figure 10 in Hu et al. 2019a). Therefore, instead of
smoothing directly the cosine and sine components, we propose
that the Gaussian convolution can be applied to Qg(x, y) and
Ug(x, y). In this work, as no noise is introduced to the numerical
simulation, we do not distinguish the noise subset selecting
n=nv and do not employ the smoothing procedure.
The relative alignment between magnetic fields orientation

and rotated pseudo polarization angle (ψg+π/2) is quantified

Figure 3. Diagram of the VGT procedure to identify the gravitational collapsing regions (see Section 3). Steps 1 to 3 cover preprocessing of the spectroscopic data
with dimensions Nx×Ny×N via PCA. Assuming that a PPV cube ρ(x, y, v) is a probability density function of three random variables x, y, v, we can construct a new
orthogonal coordinate system formed by the eigenvectors (e1,e2 ... eN ) of PPV’s covariance matrix (see Equations (13) and (14)). By weighting the original PPV cube
with the eigenvectors, we project the data into PCA’s eigenspace. In the new space, the significance of important eddies is separated and signified. Step 4 and step 5
consist of constructing the pixelized 2D gradients map (see Equations (16) and (17)). With the preprocessed data cube, we calculate the per pixel gradients in each
slice through the convolution with Sobel kernels. Per pixel gradient slice then is processed by the per pixel adaptive sub-block averaging method (see Section 5.2),
which takes the Gaussian fitting peak value of the gradient distribution in a selected sub-block to statistically define the mean magnetic field in the corresponding
subregion. This step outputs an Nx×Ny×N gradient cube. Final 2D gradient’s orientation map results from the summation of the gradient cube, similarly to Stokes
parameters (see Equation (17)). Step 6 and step 7 consist of identifying the boundary of gravitational collapsing regions through the double-peak algorithm (see
Section 3.2). Based on theoretical considerations, gradients change their orientation by π/2 in gravitational collapsing regions. Therefore, in diffuse region 1, we can
see the gradient’s histogram is approximately a single Gaussian distribution with the peak value located at yg

1 . In gravitationally collapsing region 3, the peak value of
the histogram becomes yg

2. However, in transitional region 2, the histogram appears bimodal, showing two peak values: yg
1 and yg

2. Corresponding pixel is labeled as
the boundary of the collapsing regions once the difference between yg

1 and yg
2 is approximately π/2. Step 6 and step 7 can be achieved by the curvature algorithm

(Section 3.3).
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by the Alignment Measure5 (AM):

q= á ñ -AM 2 cos
1
2
, 18r

2⎜ ⎟⎛
⎝

⎞
⎠ ( )

where θr is the angular difference in individual pixels, while
á ñ... denotes the average within a region of interests. In the case
of a perfect alignment of the magnetic field and VGT, we get
AM=1, i.e., the global rotated ψg is parallel to the POS
magnetic field, while AM=−1 indicates global rotated ψg is
perpendicular to the POS magnetic field. The standard error of
the mean gives the uncertainty σAM, i.e., the standard deviation
divided by the square root of the sample size.

3.2. Double-peak Features in the Histogram of Velocity
Gradients Orientation

To identify the boundary of collapsing regions from gradients’
orientation, we developed the “double-peak algorithm,” the
essence of which we describe below. Based on our theoretical
consideration, velocity gradients change their orientation by π/2
in gravitational collapsing regions. This change can be extracted
from the histogram of velocity gradientsʼ orientation: (i) the
single peak of the histogram locates at θ in diffuse regions; (ii)
the single peak of the histogram becomes θ+π/2 in
gravitationally collapsing regions; and (iii) in the transitional
region, i.e., the boundary of collapsing regions, the histogram is
therefore expected to show two peak values θ and θ+π/2,
denoted as a double-peak feature. As shown in Figure 4, the
histogram of velocity gradientsʼ orientation in the diffuse region
shows a single-peak Gaussian profile, while in the boundary of
the gravitational collapsing region, it shows a double-peak
Gaussian profile. This distinct feature, therefore, gives informa-
tion about gravitational collapsing regions. For magnetic field
tracing, we perform a 90° rerotation to the gradients in the
collapsing region. The resultant magnetic fields agree with the
one inferred from synthetic polarization, i.e., AM=0.75.

To implement the double-peak algorithm, we define every
single pixel of ψg as the center of a sub-block and draw the
histogram of velocity gradients orientation within this sub-
block (see Figure 3 ⑥). Note the size of the sub-block can be
different from the one for the sub-block averaging method
(see Section 3.1) and we denote it as the second block. To
suppress noise and the effect from an insufficient number of
bins, we plot the envelope for the histogram, which is a
smooth curve outlining its extremes. Any term whose
histogram weight is less than the mean weight value of the
envelope is masked. After masking, we work out the peak
value of each consecutive profile. Once we have more than
one peak value and the maximum difference of these peaks
values is within the range 90°± σθ, where σθ is the total
standard deviation of each consecutive profile, the center of
this sub-block is labeled as the boundary of a gravitationally
collapsing region (see Figure 3 ⑦).

3.3. The Curvature of Velocity Gradients

In addition to the double-peak algorithm, the curvature of
velocity gradients can also be used to identify the boundary of
collapsing regions. For a gravitationally collapsing region,
velocity gradients rapidly change their direction by 90°. In this
case, the curvature of velocity gradients reaches its maximum
value on the boundary of the collapsing region, but the ambient
region usually has small curvature. By sorting out the
curvature, one can therefore find the boundary of self-
gravitating regions. Note that, to have the best performance,
the calculation of the velocity gradient should satisfy
Equation (9). Otherwise, the contribution from density may
be significant.
To calculate the curvature, we follow the precedent of Yuen

& Lazarian (2020) by considering the magnetic field lines to be
the velocity field of an imaginary particle. We first interpolate
the pixelized gradient field ψg. Next, a second-order Runge–
Kutta (RK2) vector integrator is implemented to produce a
sufficient stream path that allows us to compute the curvature
directly.
The method of RK2 vector integration can be easily

implemented. Given a vector field ψg(x, y) and step size dt,
where (x, y)äR, for example, we can produce the next two
coordinates ¢ ¢x y,( ) and (x″, y″) along the stream path of
gradients as:

y¢ ¢ = o *x y x y x y dt, , , 2 19g( ) ( ) ( ) ( )
y´ ´ = o ¢ ¢ *x y x y x y dt, , , 2, 20g( ) ( ) ( ) ( )

where the plus sign means a forward integrator and minus sign
is a backward integrator. We perform the integrator forward
and backward, respectively, for four steps each, to establish a
streamline = ÎL t x y t, , Ni i i( ) {( )} for each pixel, where t is the
parameterized variable defining the streamline. Then we can
compute the unsigned curvature κ(t) through the definition
(Coolidge 1952):
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Because the computation of T(t) requires a normalization, we
then will first obtain the normalized T. The derivative of T(t) is
computed using the one-dimensional five-point stencil:
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By repeating this recipe for every pixel in the map, we can
create a pixelized 2D curvature map of the gradient field ψg(x,
y). When there exists a 90° change of gradients, κ(t) obtains its
maximum value.

4. MHD Simulation Data

We perform 3D MHD simulations through the ZEUS-MP/3D
code (Hayes et al. 2006), which solves the ideal MHD equations
in a periodic box. We use single-fluid, operator-split, solenoidal
turbulence injections and staggered-grid MHD Eulerian assump-
tion. To emulate part of an interstellar cloud, we use the

5 The alignment measure given by Equation (18) was introduced in analogy
with the grain alignment research (see Lazarian 2007) in González-Casanova &
Lazarian (2017) and then was used in all the subsequent publications by our
group. It has also been borrowed by other groups, e.g., for doing the Histogram
of Oriented Gradients (Soler et al. 2019) and the Rolling Hough Transform
(Clark & Hensley 2019).
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barotropic equation of state, i.e., these clouds are isothermal,
with temperature T=10.0 K, sound speed cs=187m s−1, and
cloud size L=10 pc. The sound-crossing time tv=L/cs is
∼52.0Myr, which is fixed owing to the isothermal equation
of state.

MHD turbulence is characterized by sonic Mach number
=M v cs l s and Alfvénic Mach numberMA=vl/vA, where vl is

the injection velocity and vA is the Alfvénic velocity. The
turbulence is highly magnetized when the magnetic pressure of
plasma is larger than the thermal pressure, i.e., MA<1. The
compressibility of turbulence is characterized by b = 2 M

M

2

s

A( ) .
We refer to the simulations in Table 1 by their model names. For
instance, each of our figures will have a model name indicating
which data cube was used to plot the figure. The total mass Mtot
in the simulated cubes A1 is Mtot∼18430.785 Me, the
magnetic Jean mass is MJB∼286.95 Me, average magnetic
field strength is B∼30.68 μG, mass-to-flux ratio is Φ∼1.11,
and volume density is ρ∼318.32 cm−3. As for A2, we have
Mtot∼32765.74 Me, MJB∼96.68 Me, B∼31.33 μG, Φ∼
1.92, and volume density ρ∼565.90 cm−3. Based on the initial
setting parameters, the intrinsic freefall time tff is ∼1.88Myr and
1.40Myr for simulations A1 and A2, respectively.

The self-gravitating module, which employs a periodic
Fast Fourier Transform Poisson solver, is switched on after
turbulence inside the cube becomes saturated and the simulation
has run for at least two sound crossing times. The scale of
the simulation has 10 pc represented by 792 and 480 pixels for
A1 and A2, respectively. The thermal Jeans length, therefore,

occupies 94 pixels (1.18 pc for A1) or 45 pixels (0.89 pc for A2).
We keep driving both turbulence and self-gravity until the
simulation violates the Truelove criterion (Truelove et al. 1997),
which requires that the self-gravitating core should occupy at
least four pixels. The density, therefore, can be enhanced
by a factor of ∼552 (A1) or ∼127 (A2) times, i.e., we can
have maximum volume density ρmax∼175712.63 cm−3 for A1,
while ρmax∼71869.30 cm−3 for A2, which informs us when to
stop the simulation before having numerical artifacts due to self-
gravitational collapse.

5. Results

5.1. Evolution of the Probability Density Functions

To examine the behavior of the PDF at different collapsing
stages, we apply it to 18 snapshots of A2 for each interval of the
evolution time Δtr=0.20Myr, after the gravity is turned on. In
Figure 5, we plot the density PDF for simulation A2. The N-PDFs
are fitted within a 95% confidence level from initial data analysis.
Figure 5(a) shows that the N-PDFs are in log-normal format until
tr=2.2Myr, while the width of the N-PDFs is increasing. The
prior studies (Krumholz & McKee 2005; Burkhart et al. 2009)
explained that, for isothermal turbulence, the width of log-normal
N-PDFs is given by Ms and turbulence driving parameter b:

s = + b Mln 1 . 23s s
2 2 2( ) ( )

Theoretically, σs should include the contribution from the
magnetic field. However, σs is an auxiliary method for our

Figure 4. Example of how velocity gradients change orientations at the gravitational collapsing region, using simulation A1 with tr;0.8 Myr (see Table 1). Panels
(a) and (b): a global and a zoom-in magnetic field morphology respectively inferred from VGT. Magnetic field is superimposed on the projected intensity map and
visualized using the Line Integral Convolution (LIC). LIC is plotted using Paraview’s default setting with steps 40 and step size 0.25. Panels (f) and (e): a global and a
zoom-in magnetic field morphology respectively inferred from synthetic polarization. Panel (c): histogram of velocity gradientsʼ orientation in the diffuse region,
which shows a single-peak Gaussian profile (left), and in the boundary of the gravitational collapsing region, which shows a double-peak Gaussian profile (right). This
same region has been shown to be gravitationally collapsing in Figure 13 through the N-PDFs. Panel (d): zoom-in magnetic field morphology inferred from VGT with
a 90° rerotation implemented for the gravitationally collapsing region; corresponding AM is 0.75.
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paper, which is dealing with gradients. We do not provide a
dedicated study of this quantity in this paper. In any case, this
equation is widely used in many MHD studies (Vazquez-
Semadeni et al. 1995; Robertson & Kravtsov 2008; Ballesteros-
Paredes et al. 2011; Price et al. 2011; Collins et al. 2012;
Burkhart 2018), so we keep it in the original form. In this
situation, we expect that A2 will tend to be supersonic with
the increment of self-gravity, and we do see the Ms�1 after
tr>2.0 Myr. Note that, although the fitted N-PDFs in
Figure 5(a) are log-normal, fewer parts of unfitted N-PDFs
are similar to a power-law format. One explanation for this may
be that the small volume gravitational center becomes self-
gravitating earlier.

Figure 5(b) shows that the N-PDFs of A2 with tr�2.4 Myr.
We see the N-PDFs become the combination of a log-normal
component for low-density gas and a power-law component for
high-density gas. The increasing σs also indicates that the Ms of
simulation A2 is continuously growing. The gas within the
power-law part is expected to be self-gravitating. The shallower
slope α and the smaller value of transitional density St reveal
that the volume of self-gravitating gas is increasing (Collins
et al. 2012; Burkhart 2018).

However, the supersonic simulation A1 behaves differently
in the presence of self-gravity. The power-law part appears at
tr�0.2Myr. The transition from an overall log-normal N-PDF
to a hybrid (i.e., the combination of a log-normal part and a
power-law part) PDF disappears for A1. Slope α gets shallower,
and the value of transitional density St becomes smaller with the
evolution. The width of the log-normal part increases insignif-
icantly. We then expect the volume of gravitationally collapsing

Table 1
Description of Our MHD Simulations

Model Ms MA
b = 2 M

M

2

s

A( ) Resolution tr (Myr)

5.64 0.31 0.006 7923 0
6.03 0.31 0.005 7923 0.2

A1 6.23 0.31 0.005 7923 0.4
6.41 0.31 0.005 7923 0.6
6.52 0.31 0.004 7923 0.8

0.20 0.02 0.020 4803 0
0.20 0.02 0.020 4803 0.2
0.21 0.02 0.018 4803 0.4
0.25 0.02 0.013 4803 0.6
0.29 0.03 0.021 4803 0.8
0.35 0.03 0.015 4803 1.0
0.42 0.04 0.018 4803 1.2
0.52 0.04 0.012 4803 1.4

A2 0.63 0.05 0.013 4803 1.6
0.77 0.06 0.012 4803 1.8
0.94 0.08 0.014 4803 2.0
1.16 0.10 0.015 4803 2.2
1.43 0.12 0.014 4803 2.4
1.77 0.14 0.013 4803 2.6
2.20 0.17 0.012 4803 2.8
2.71 0.21 0.012 4803 3.0
3.31 0.24 0.010 4803 3.2
3.97 0.27 0.010 4803 3.4

Note. The self-gravitating module is switched on at the beginning, i.e., running
time tr is 0. We take a snapshot of the simulation every 0.2 Myr. Here, Ms and
MA are the instantaneous values at each snapshot.

Figure 5. Log-normal plus power-law models of normalized PDF with bin size
100. Dotted line outlines all the density past the transition density, which is the
dense self-gravitating gas. Here, α is the slope of the power-law part, I0 is the
mean intensity value, St denotes the transition density, and σs represents the
standard deviation of the log-normal part.
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gas to be small, such that it contributes little to the overall
supersonic gas.

5.2. Adaptive Sub-block Averaging

In order to identify the gravitational collapsing region, a high-
resolution gradient map produced by VGT is indispensable. In
Yuen & Lazarian (2017a), the velocity gradient calculation
requires the use of a sub-block that would eventually degrade the
input observable map in order to have a statistically viable
magnetic field prediction. The size of such a block has to be large
enough to obey the statistical requirement (which is the Gaussian
fitting requirement) as listed in Yuen & Lazarian (2017a) and
Lazarian & Yuen (2018), but not too large, so that most of the
information is retained. For our particular purpose in this paper,
we are more concerned with the signature of gravitational collapse
in the observables. As we know from previous works (Yuen &
Lazarian 2017b; Lazarian & Yuen 2018; Hu et al. 2019a), a large
fixed block size would provide low spatial resolution and may
miss the small gravitational collapsing region in which the
gradients flip their direction. It is inevitable that we need a block
averaging algorithm that can provide a high-resolution magnetic
field output yet not violate the statistical requirement as posted in
Yuen & Lazarian (2017a).

Therefore, in the current work, we introduce an algorithm
called adaptive sub-block averaging. Pictorially for a selected
pixel on the sky, a rectangular box is constructed with the
selected pixel at the center. By increasing the size of the sub-
block, we can obtain a better fit in terms of the squared error of
the Gaussian statistics requirement, as listed in Yuen & Lazarian
(2017a) under 95% confidence. We shall pick that as the
“optimal block size” for that pixel. This fitting procedure will
ensure that: (1) each pixel will have a block size for later
statistical purposes and (2) the output magnetic field and the
input observable map have comparable resolutions. Although
this procedure is similar to the convolution with a kernel, it takes
the peak value of the fitted Gaussian curve rather than adding
each element of the image to its local neighbors, weighted by the
kernel. Without specification, we adopt the adaptive sub-block
averaging method in what follows. It is worth remarking that the
Gaussian fitting requirement in Yuen & Lazarian (2017a) can be
replaced by a more theoretically driven cosine fitting require-
ment, as suggested by Lu et al. (2020).

In Figure 6, we compare the adaptive sub-block averaging
method with the old version, i.e., fixed sub-block size, using
simulation A1 at tr;0.8Myr. We can clearly see that the
adaptive sub-block averaging method outputs a magnetic field
map with higher resolution than that of the fixed sub-block
(size=44 pixels). We calculate the AM between the rotated
velocity gradients and magnetic fields. For the fixed sub-block
averaging, we vary the block size from 22 to 33, 44, and 66. We
can see the AM is increasing from 0.625 to 0.825 with the
increment of block size. If we implement the adaptive sub-block
averaging method, the AM is approximately 0.73, which is
similar to the case where the fixed block size is 40 pixels. Note
that the adaptive block method does not trace per pixel magnetic
field, but rather the mean magnetic field within approximately
the effective block. The effective block size gives the global
mean resolution of the magnetic field resolved by VGT.
Importantly, the adaptive sub-block averaging method guaran-
tees the gradient map sufficiently high resolution for the
implementation of the double-peak algorithm, as we will discuss
in Section 5.6.1.

5.3. The Change of Velocity Gradients’ Orientation

Velocity gradients are expected to change their relative
orientation with respect to magnetic fields in the presence of
gravitational collapse. To study the significance of gravity in
the properties of gradients, we further explore the evolution of
gradients with regard to different stages of gravitational
collapse by taking eighteen snapshots for simulation A2. We
calculate the AM of rotated gradients and magnetic fields. The
results are shown our in Figure 7(a). At the time tr=0, gravity
has been introduced into the simulation that already stirred with
magnetized turbulence, and we take the snapshot until
tr;3.4 Myr. At tr;2.4Myr, the AM falls below zero. After
this, the negative AM indicates that most of the rotated gradient
vectors tend to be orthogonal to the magnetic field direction. To
confirm that this change is induced by gravitational collapse, an
estimation of the collapsing material is necessary. However, a
cloud may not be collapsing because of the support of the
magnetic field and turbulence, even if the gravitation energy is
large. A more reliable measurement of collapsing gas is the
convergence of the 3D velocity field, since when there exists
gravitational collapse, flows of matter are converging into the
collapsing center. As a result, the convergence of velocity is
expected to increase significantly. We then calculate the
convergence C, which is defined as the negative divergence
of velocity:
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where vx, vy, vz are the x, y, z components of the 3D velocity field
respectively. We project it along the line of sight into a 2D map.
Since the projection sums up all divergence and convergence, a
positive 2D convergence is expected to indicate the dominance
of convergent flow in 3D. In Figure 7(b), we plot the correlation
of the mean projected convergence and gravitational energy. We
can see that convergence is positively proportional to the
increment of gravitational energy. The supersonic convergent
fluid is, therefore, induced by self-gravity. Also, in Figure 7(c),
we show the variation of magnetic field energy, kinetic energy,
and gravitational energy Eg∣ ∣. We find kinetic energy Ek and
gravitational energy are both increased because the self-gravity
is accelerating the convergent flow. The energy relation
approximately satisfies E E2g k∣ ∣ � . However, the magnetic
energy is keeping approximately constant, which is the result
of turbulence reconnection. The reconnection diffusion tends to
make the magnetic distribution uniform and uncorrelated with
the density enhancement (Lazarian et al. 2020).
According to our theoretical consideration in Section 2, the

convergent flow shall follow the magnetic field line. In
Figure 7(d), we calculate the AM of magnetic field angle and
velocity angle in 3D Position–Position–Position space. We see the
AM is increasing from−0.2 to+0.6 with the increment of freefall
time, i.e., gravitation energy. This implies that the velocity field is
becoming parallel to the magnetic field. As the convergent fluid is
following the same direction as velocity, the convergent flow is
also parallel to the magnetic field in the case of gravitational
collapse. This agrees with our theoretical consideration. Also, at
the full range of evolution time, the magnetic field energy is
always more significant than others.
In addition, we apply the second-order correlation function

to the projected intensity map I(x, y) at different snapshots. This
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function is defined as:

= á + ñR r r RI ICF , 25( ) ( ) ( ) ( )
where =r x y,( ) and R is a lag vector. Figure 8 shows how the
correlation function should behave in terms of the contour plot.
We can observe that when tr�1.0 Myr, the contours are
elongated along the rP direction, i.e., the mean magnetic field
direction. As explained in Yuen et al. (2018), the large contours
are slightly misaligned from the rP direction because of the
limited inertial range in numerical simulations. In terms of
correlation and structure functions, only the small-scale
contributions are considered to be meaningful. Importantly,
with the increment of evolution time, the contours change its
orientation, becoming elongated along the r⊥ direction, i.e.,
perpendicular to the mean magnetic field. We also observed

that the elongation along r⊥ becomes more significant after
tr�2.6 Myr, i.e., the ratio of

^

r

r
& decreases. According to our

theoretical considerations, in the case of a strong magnetic
field, the convergent flow can only have motion along the
magnetic field line. Therefore, initially, the turbulent eddies are
anisotropic in the direction parallel to the magnetic field, as
described in Lazarian & Vishniac (1999). After the self-gravity
starts controlling the cloud, the collapsing material converges
along the magnetic field direction. The material in the
gravitational center, hence, is accumulated as filamentary
structures perpendicular to the magnetic field, i.e., elongating
perpendicular to the magnetic field.
Crutcher et al. (2010) showed that, in molecular gas, there is

a power-law relation between the value of LOS component of
magnetic field strength Blos inferred from Zeeman splitting and

Figure 6. Comparison of adaptive sub-block averaging and old sub-block averaging (fixed sub-block size) in terms of the alignment of rotated gradients and magnetic
fields. We use the supersonic simulation A1 at tr;0.8 Myr. Panel (a): magnetic field (red segments) predicted by VGT with fixed sub-block size 44 pixels. Panel (b):
magnetic field (streamlines) predicted by VGT using adaptive sub-block averaging. Panel (c): magnetic field morphology inferred from synthetic polarization. Panel
(d): AM of VGT and actual magnetic field in in terms of various fixed block size.
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the volume density n as Blos∝n0.65. Later, Li et al. (2015)
numerically demonstrated that this power law also holds for the
total magnetic field strength µ oB ntot

0.62 0.11. Similarly, for
simulation A2 at tr;3.4 Myr, we bin the volume density in
uniformly spaced bins with bin size 100 and take the averaged
total magnetic field strength within each corresponding bin.
Note the difference from Figure 7—the magnetic field used
here is the local value instead of the global summation. Due to
the finite rate of reconnection, the local magnetic field will be
bent, and its strength can increase in the vicinity of the
gravitational collapse. In Figure 9, we plot the correlation
between the volume density and magnetic field strength. We
can see that the density tends to increase with the increment of
the magnetic field. At high density range n�5×104, there is
a power-law relation Btot∝n0.60± 0.03. Summing up the results
from Figures 7–9, we can thus conclude that star formation can
be efficient in strongly magnetized and fully ionized media.

As above, the convergence of velocity is a proper probe of
gravitational collapse. We can thus study the behavior of
velocity gradients in collapsing regions using the convergence

C. We plot the 2D histogram of velocity gradients’ orientation
and the projected velocity’s convergence using simulation A2
in Figure 10(a) and (b). At the snapshot tr;0.0 Myr, we see
that the velocity gradients’ orientation is concentrated in the
vicinity of π/2. However, at tr=3.4 Myr, we see an extreme
increment of the convergence. More importantly, the velocity
gradients flip their direction by π/2, becoming 0 or π. The
whole fraction of the gradients in the range of [0: 0.4] and
[2.74: 3.14] is 63.5% of the total volume (summation of all
gradients). For some gradients, the change is less than 90°. The
reason is presented in Section 5.5; there should be enough self-
gravitating gases along LOS to see this change. Therefore, this
confirms that velocity gradients change orientation by 90° in
the presence of gravitational collapse.
The change of velocity gradients’ orientation provides the

potential to identify the gravitational collapsing regions without
the assistance of polarimetry. For example, as shown in
Figure 4, the histogram of velocity gradients’ orientation along
the boundary of the collapsing region appears as a double-peak
feature. The corresponding angular difference between the two

Figure 7. Panel (a): AM (red line) between magnetic fields and velocity gradients concerning the time since self-gravity is turned on (0 Myr), using the subsonic A2
simulation set. Blue line indicates the total gravitational energy in each cube. Panel (b): correlation of total gravitational energy and the mean convergence of the 3D
velocity field, using subsonic A2 simulations. Panel (c): variation of total kinetic energy, magnetic field energy, and gravitational energy for A2 simulations. Panel (d):
AM of the 3D magnetic field angle and 3D velocity angle for A2 simulations.
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peaks is 90°. This double-peak feature can, therefore, be used
to distinguish diffuse and gravitational collapsing regions (see
Section 5.6.1). The curvature of velocity gradients will also
reach its maximum value on the boundary of the collapsing
region, since the gradients rapidly flip their direction by 90°
(see Section 5.6.2). There are several ways to detect this
change. For instance, one can take calculate the gradient of the
resultant velocity gradients’ map again, i.e., ∇(∇v(x, y)).
The amplitude � �v x y,∣ ( ( ))∣ will reach its maximum on the
boundary of the collapsing region. Also, we can perform
the extrapolation along the direction of velocity gradients in
diffuse regions. Because the rotated velocity gradients in the

diffuse region are following magnetic field lines, the extra-
polated gradients in the collapsing region do not flip their
direction. When the difference between the extrapolated
gradients and the actual gradient is 90°, we can locate the
collapsing region.

5.4. The Change of Velocity Gradients’ Amplitude

In addition to velocity gradients’ orientation, the self-gravity
also affects velocity gradients’ amplitude. Self-gravitating gas
induces an additional force and acceleration to turbulent plasma.
As a result, the gradients’ amplitude is expected to increase in
the gravitationally collapsing region. As shown in Yuen &
Lazarian (2018), the dispersion of gradients’ amplitude is
positively proportional to the evolution time. Therefore, we
expect that the analysis of velocity gradients’ amplitude can also
provide a distinguishable feature in self-gravitating regions.
In Figure 11, we describe the response of velocity gradients’

amplitude in the presence of self-gravity. We plot two 2D
histograms of logged velocity gradients’ amplitude6 and the
projected velocity’s convergence using simulation A2 at
tr;0.0 Myr and tr;3.4Myr, respectively. When the self-
gravity is absent, we see the 2D histogram give no preferential
direction, i.e., the probability of obtaining large gradients’
amplitude is similar for both high-convergence and low-
convergence cases. However, the situation is changed when
gravitational collapse starts. At tr;3.4 Myr, we find that the
2D histogram becomes anisotropic. The high convergence
corresponds to only large gradients’ amplitude, and low
convergence corresponds to small gradients’ amplitude. Since

Figure 8. Correlation function of 2D intensity maps at different snapshots, using simulation set A2. Here, r⊥ and rP are the real space scales perpendicular and parallel
to the magnetic field respectively. For all plots, r⊥ and rP are in scales less than 60 pixels.

Figure 9. Correlation of averaged volume density n in uniformly spaced bins
and 3D magnetic field strength B using A2 simulation at tr;3.4 Myr. Here, k
is the slope of the fitted line.

6 Note that we are using velocity centroid map C(x, y) for the calculation of
the normalized velocity gradientsʼ amplitude here. The PCA technique employs
the pseudo-Stokes parameters, thus erasing the information of gradients’
amplitude.
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the high-velocity convergence is induced by self-gravity, large
gradients’ amplitude is, therefore, the reaction to self-gravity
also. It thus provides an alternative way to identify grav-
itationally collapsing regions through gradients’ amplitude.

5.5. The Fraction of Collapsing Gas

The velocity gradient exhibits different reactions to the
dominance of either turbulence or self-gravity. However, in the
2D map, the particular properties of gradients’ change due to
self-gravity can only be seen when the fraction of self-
gravitating material is sufficiently large. In the case that the
fraction of collapsing gas occupies a small volume of the
clouds, the projection of both self-gravitating and non-self-
gravitating gases can overwhelm the gravitational collapsing
region in 2D. For example, in Figure 7, we see that AM, which
quantifies the relative orientation between the velocity gradient
and magnetic field, is gradually decreasing to negative values.

At the same time, the fraction of collapsing gas is gradually
increasing. The negative AM is therefore contributed by more
collapsing regions being resolved by VGT.
To test the effect of a small fraction of collapsing gas, we

produce a synthetic PPV cube from the MHD simulation A1 at
tr=0.8 Myr, using a unity density field while keeping the
original velocity field unchanged MS=6.52. The unity density
field erases all self-gravitating gas. In Figure 12, we plot the
actual magnetic field inferred from synthetic dust polarization
and also the magnetic fields inferred from VGT (see Section 3).
We can see that the magnetic field orientation is distributed
around π/2 (with respect to the right horizontal direction) and
VGT gives a good agreement with the actual magnetic field,
i.e., AM=0.98. The magnetic fields orientation inferred VGT
using the actual density field is plotted in Figure 4, showing
AM=0.73. Therefore, it confirms that when most of the
matter along the line of sight is not collapsing, VGT does well
at tracing the magnetic field, compared with dust polarization.

5.6. Identify Gravitational Collapsing Regions through
Velocity Gradient

5.6.1. Double-peak Histogram of Velocity Gradients’ Orientation

As above, we confirm that velocity gradients change
orientation by 90° in the presence of the gravitational collapse
(see Section 5.3). We thus expect, when getting close to the
boundary of self-gravitating gas, that the histogram of
gradients’ orientation will appear as a double-peak feature (see
Figure 4). The algorithm of the double-peak feature is therefore
used to locate gravitating collapsing gas (see Section 3.2 for
details).
In Figure 13, we zoom in on two subregions, A1-1 and A1-2,

from simulation A1 at tr;0.8 Myr. These subregions both
contain well-defined convergent flows. We plot the gradients’

Figure 10. Panel (a): 2D histogram of velocity gradients’ orientation and
velocity’s convergence using A2 simulation at tr;0.0 Myr. Here, p gives the
volume fraction of each data point. Panel (b): 2D histogram of velocity
gradients’ orientation and projected velocity’s convergence using simulation
A2 at tr;3.4 Myr. Here, p gives the volume fraction of each data point and
bin size is 200 for the 2D histograms. Note that the orientation is measured in
typical Cartesian coordinate, i.e., with respect to the right horizontal direction.

Figure 11. Two-dimensional histogram of velocity gradients’ amplitude, i.e.,
�Clog(∣ ∣), and velocity’s convergence using simulation A2 at tr;0.0 Myr

(top) and tr;3.4 Myr (bottom). Here, p gives the volume fraction of each data
point. Bin size is 200 for the 2D histograms.
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orientation and the velocity convergence projected from 3D for
each region. We see that some gradients flip their directions by
π/2. These resulting gradients are either 0 or π. One possible
explanation is the different directions of infall gas. We compare
the change of gradients’ orientation with the N-PDF method
(see Figure 13). First of all, we observe that the majority of
self-gravitating regions identified from the two methods are
similar and reflect the convergent flows. However, for the A1-1
region, we find there exists a filamentary structure that is
identified as self-gravitating by N-PDFs but not by the double-
peak algorithm. For N-PDFs, it gives a density threshold to
distinguish high-density gas showing self-similarity. However,
the high-density gas contains not only self-gravitating materials
but probably also non-self-gravitating density enhancement. As

a result, the PDF method could mix self-gravitating structures
and non-self-gravitating density enhancement. The second
reason could come from velocity gradients. In Figure 7,
velocity gradients hold their orientation with little change at the
early stages of collapsing. We can expect that the velocity field
is significantly changed only when the gravitational energy
dominates over the kinematic energy of turbulence. In this case,
this filamentary structure could be at the beginning of collapse.
Also, if the collapsing fluid occupies only a small volume along
LOS, the change of velocity gradients can be insignificant (see
Section 5.5).
For the implementation of the double-peak algorithm, we

first produce a pixelized map of velocity gradients’ orientation
using the adaptive sub-block averaging method (see
Figure 13(a)). Based on the resultant velocity gradients’ map
after the adaptive sub-block, we draw the histogram of gradient
orientation again in another sub-block (which it is denoted as
the second sub-block) and recognize the features of a double
peak based on the orientation distribution after the adaptive
sub-block. Note that the second sub-block here is different
from the one for the first step of magnetic fields tracing (see
Section 3.2). Since the second sub-block does not require a
Gaussian fitting, we do not utilize an adaptive sub-block size,
but instead keep it fixed (see Section 3.2 for details). In
Figure 13, we vary the size of the second block and highlight
the entire region enclosed by the boundary identified by the
double peak using the color red. We can see that a large block
size of 50 produces a more significant boundary of the self-
gravitating region, which is expected. We compare velocity’s
mean convergence in the self-gravitating regions identified
from N-PDFs and VGT’s double-peak algorithm, as well as the
global mean convergence in the entire subregion (see
Figure 14). For VGT with the double-peak recognition
algorithm, the convergence is not constant. A large second
block, as well as the procedure of adaptive sub-block
averaging, would include more noncollapsing gas so that the
convergence becomes small. Both the adaptive sub-block
averaging method and the double-peak algorithm would
include additional parts of nonconvergent material, due to the
blocks on the boundary. This explains why the convergence
obtained from the PDF method is always larger. To have the
best performance, the block size should be selected until the
histogram shows two apparent Gaussian distributions. In
addition, in both of these regions, we can see that the
convergences for VGT are positive and more significant than
their corresponding global mean convergences.

5.6.2. The Curvature of Velocity Gradients

The curvature of velocity gradients reaches its maximum
value when the gradients flip their direction by 90°, but the
ambient region usually has small curvature. The curvature
therefore provides a second way to identify the self-gravitating
regions by sorting out the curvatures. In Figure 15, we give an
example of how the curvature algorithm works. We use three
different collapsing stages of the subregion A1-2, i.e., 0.4, 0.6,
and 0.8 Myr. At the initial stage of collapse, we expect that
there exists a large amount of convergent gas, and the dynamics
become slim at the later collapsing stage. This can be measured
from the changes in gradients’ orientation. Figure 15 shows
that the area in which gradients change directions decreases in
size when the evolution time goes up. It is clear that the red tail
in this area is vanishing. In the second row of Figure 15, one

Figure 12. Magnetic field derived from polarization (top) and magnetic field
inferred from VGT (bottom) using a synthetic PPV cube. Magnetic field is
superimposed on the polarized intensity map Ip and visualized using the LIC.
Cube is produced from MHD simulation A1 at tr=0.8 Myr, using a unity
density field while keeping the original velocity field unchanged MS=6.52,
i.e., all collapsing materials are removed. Corresponding AM=0.98.
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can see that the gradients’ curvature becomes significantly
larger at the boundary of collapsing regions. However, the
curvature does not reveal the region where the change of
velocity gradients’ direction is less than 90°. For example,
when the collapsing material only occupies a small fraction of
the cloud along the LOS, the resulting gradient can have a
change of direction less than 90°. We expect this is the reason
we see three disconnected self-gravitating regions in the third
row, 0.4Myr, of Figure 15. According to the enclosed
boundary outlined by the curvature, we figure out the full
collapsing regions using the “contourf” function of Julia
(Bezanson et al. 2012). One can see the formation of the core at
tr=0.8 Myr, and the collapsing region is shrinking in size.
Compared with the collapsing regions identified from N-PDFs
(see Figure 15, fourth row), we get similar results for both VGT
and N-PDFs methods at tr=0.8 Myr. However, N-PDFs
indicate a smaller collapsing area than does VGT at
tr=0.4 Myr and tr=0.6 Myr. One reason is that N-PDFs

do not measure the existence of the continuous inflow into the
star-forming cores at the early stages of star formation, before
enough gas is accumulated in the core, but VGT samples
velocities and therefore it is sensitive to the inflow.
We show in Figure 10 that the large convergence in

collapsing regions guarantees a large amplitude of velocity
gradients. Therefore, we study the gradient amplitude in the
collapsing region identified from VGT and N-PDFs. In
Figure 16, we calculate the average value of gradients’
amplitude in the corresponding collapsing regions and also
the global mean value of the amplitude. We can see that both
VGT and N-PDFs always give the gradients amplitudes more
significant than the global mean value. However, in some
cases, N-PDFs can also show a higher amplitude than does
VGT. The adaptive sub-block averaging method still con-
tributes to the difference, as does the second sub-block, because
the utilization of both sub-blocks will take into account extra
nonconvergent inflow. However, the sub-block averaging is not

Figure 13. Panel (a): the first and second rows are two subregions extracted from simulation A1 at tr;0.8 Myr, denoted as A1-1 (length scale ;1.7 pc) and A1-2
(length scale ;2.8 pc), respectively. First column: gravitationally collapsing regions (blue regions) identified from the N-PDFs. Second column: orientation of velocity
gradients in the range of [0, π] (i.e., red: ;π, blue: ;0, and green: ;π/2). Third column: projected velocity convergence of each corresponding region. Discontinuity
comes from numerical effect. Panel (b): gravitationally collapsing regions (red regions) identified from the double-peak feature of velocity gradientsʼ morphology.
Second block size is implemented in the double-peak algorithm to plot the histogram of velocity gradients’ orientation in a subregion. We test three block sizes: 30, 40,
and 50 pixels.
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Figure 14. Comparison of velocity’s mean convergence in the self-gravitating regions identified from N-PDFs (blue dashed line) and VGT’s double-peak algorithm
(red solid line). The two corresponding regions are shown in Figure 15. Black dashed line indicates the global mean convergence in each region.

Figure 15. Example showing how to identify collapsing regions from the curvature of velocity gradients. We use three different collapsing stages of subregion A1-2,
i.e., 0.4 Myr (first column), 0.6 Myr (second column), and 0.8 Myr (third column). First row: orientation of velocity gradients in the range of [0, π) (i.e., red: ;π, blue:
;0, and green: ;π/2). Second row: curvature of velocity gradients calculated via the RK2 method. Third row: gravitationally collapsing regions (red regions)
identified from the curvature of velocity gradients. Fourth row: gravitationally collapsing regions (blue regions) identified from the N-PDFs.
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implemented in the calculation of gradients’ amplitude, and
high amplitude is only induced by self-gravity. With the
assistance of gradients’ amplitude, it is possible to get rid of the
extra non-self-gravitating regions introduced by both sub-
blocks.

wIn Figure 17(a), we outline the areas of gradientsʼ amplitude
corresponding to the collapsing regions identified by VGT (see
Figure 15), but at different collapsing stages tr;0.4, 0.6, and
0.8Myr. In the same regions, we also mask the low-amplitude
pixel, i.e., its corresponding amplitude is less than the global
mean value. The remaining areas, therefore, have high-amplitude
gradients and high convergence, i.e., the convergent inflow. We
can see in Figure 17 that the inflow is slight but covers a larger
area at tr=0.4Myr. At tr=0.6Myr, the inflow gets stronger
and finally goes into the core of star formation at tr=0.8Myr.
In Figure 17(b), we plot the actual 2D convergent flow map (i.e.,
the density structures correspond to positive convergence)
normalized by the total column density along the particular line
of sight. Comparing with the actual convergent flow, we can see
both N-PDF and VGT give similar answers and can determine
the projected convergent flow by themselves. Note that, at
tr=0.4Myr and tr=0.6Myr, the convergent flow obtained
from VGT occupies an area larger than the one defined by the
N-PDFs (see Figure 15). We expect the reason is that N-PDFs
are sensitive only to the already formed accreting cores, but
gradients trace the entire convergent flow. The outcome of VGT
is also affected by the fraction of collapsing gas in the cube. In
Section 5.5, we show that when most of the matter along the line
of sight is not collapsing, VGT may not reveal the collapsing
region. As for the N-PDFs, in addition to the issue of the low
fraction of collapsing gas, the low-density part of collapsing gas
may also be overwhelmed because of the projection effect. To
justify this point, we show the 3D visualization of actual
convergent flow at tr=0.6Myr in Figure 17(c) and (d). We use
a blue box to outline the corresponding 3D convergence
identified by VGT and N-PDFs, respectively. We can see the
convergent area defined by VGT include the majority of 3D
convergent flows, while the N-PDFs give only the strongly
convergent fluid, which does not cover the convergence on the
top volume. We find the convergent fluid on the top corresponds

to the low-intensity region of the 2D projected intensity map (see
Figure 17(d)). The N-PDFs, therefore, do not resolve the low-
intensity part because the transition threshold St of N-PDFs only
highlights the high-intensity part (see Section 2). As for the
bottom part of the 3D convergence, the fraction of collapsing gas
is minimal (see Figure 17(d)). Its 2D projection is therefore
dominated by noncollapsing gas.
In addition, we calculate the mean convergence for the regions

corresponding to: (i) the inflow outlined by the VGT (curvature
and amplitude algorithm), (ii) the collapsing region identified by
the curvature algorithm, (iii) the collapsing region identified by
N-PDFs, and (iv) the entire A1-2 region. The result is presented
in Figure 18. First, we see that the global mean convergence is
increasing with the evolution of gravitational collapsing. Both
VGT and N-PDFs always give larger convergence than the
global mean value, while N-PDFs can also show a larger
convergence than VGT employing only the curvature algorithm.
In particular, at tr=0.4Myr and tr=0.6Myr, VGT (curvature
and amplitude) appears to have a larger range of inflow and the
largest convergence. As for the very initial and final moments,
i.e., tr=0.2Myr and tr=0.8Myr, the dynamics of collapse
are less significant, and the VGT (curvature and amplitude)
includes some nonconvergent fluid. The performance of VGT in
identifying gravitational collapsing region is therefore compar-
able or better to the N-PDFs.

6. Identifying Gravitational Collapsing Regions with
Intensity Gradients

It has been shown that intensity gradients also change their
direction by 90° in the presence of gravitational collapse (Yuen
& Lazarian 2017b; Hu et al. 2019a). Here, we apply the tools
developed in this paper, i.e., the adaptive sub-block averaging
and curvature algorithm, to identify the gravitationally
collapsing region using the IGT. The intensity map I(x, y) is
produced through the integration of PPV cubes along the line
of sight:

ò r=I x y x y v dv, , , , 26( ) ( ) ( )

where ρ is gas density and v is the velocity component along
the line of sight. By means of convolution with Sobel kernels
Gx and Gy, we obtain the intensity gradient orientation at
individual pixel (x, y):
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where� I x y,x ( ) and� I x y,y ( ) are the x and y components of the
intensity gradients, respectively. ASB denotes the implementa-
tion of the adaptive sub-block averaging method (see
Section 5.2), and ψ is the resultant intensity gradient map.
As an analogy to the velocity gradient, we repeat the same

analysis for the intensity gradient in order to study its properties
in collapsing regions. In Figure 19, we plot the 2D histograms
of the intensity gradients’ amplitude, i.e., �Ilog(∣ ∣), and
velocity’s convergence using the A2 simulation at tr ;
0.0Myr and tr;3.4 Myr. In the absence of self-gravity, i.e., at
tr;0.0 Myr, the convergence of velocity is low and the
histogram slightly deviates toward the part where gradients

Figure 16. Comparison of the average velocity gradients’ amplitude in the self-
gravitating regions identified from N-PDFs (blue) and VGT’s curvature
algorithm (red). Corresponding regions are shown in Figure 15. Black line
indicates the global mean convergence in each region.

20

The Astrophysical Journal, 897:123 (32pp), 2020 July 10 Hu, Lazarian, & Yuen



Figure 17. Panel (a): areas of the gradientsʼ amplitude corresponding to the collapsing regions identified by VGT (see Figure 15) in A1-2 at tr;0.4 Myr (left),
0.6 Myr (middle), and 0.8 Myr (right). In the same regions, we mask the low-amplitude pixel, i.e., its corresponding amplitude is less than the global mean value.
Remaining colorful areas indicate high-amplitude gradients and a high convergence, i.e., the convergent inflow. Panel (b): comparison of the convergent flow
determined by the PDF (middle), VGT (right), and the actual convergent flow (left) at tr;0.8 Myr. Here, IN is the projection of normalized volume density. Panel (c):
visualization of 3D velocity convergence. Positive convergence outlines the convergent inflow. Inner blue box approximately outlines the boundary of the collapsing
region identified from VGT. Panel (d): visualization of 3D velocity convergence. Inner blue box approximately outlines the boundary of the collapsing region
identified from N-PDFs.
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have high-intensity amplitude. In general, the probability of
obtaining a high amplitude for the intensity gradients is similar
in both high-convergence and low-convergence cases.
Figure 10, on the other hand, shows a similar histogram of
velocity gradients’ amplitude to be more isotropic. When the
self-gravity grows strong, i.e., at tr;3.4 Myr, the 2D
histogram becomes very anisotropic. The high convergence
corresponds to only large gradients’ amplitude, and low
convergence corresponds to small gradients’ amplitude. Since
the high-velocity convergence is induced by self-gravity, large
gradients’ amplitude is, therefore, the outcome of self-gravity.
In the bottom row of Figure 19, we give the 2D histograms of
intensity gradients’ orientation and velocity’s convergence still
using the A2 simulation at tr;0.0 Myr and tr;3.4Myr. We
see that the histogram is close to a uniform distribution. For
either the positive convergence part or negative convergence
part, one is equally able to find the orientation of intensity
gradient in the full range of [0, π). However, the distribution of
velocity gradients only concentrates on the π/2 (see Figure 7),
which is the mean magnetic field direction in our simulation.
Velocity gradients are, therefore, more accurate in terms of
magnetic field probing than intensity gradients. As for
tr;3.4 Myr, the distribution of intensity gradients deviates
toward either 0 or π, i.e., gradients become perpendicular to the
magnetic field (note we rotate gradients by 90° in this work).
Therefore, in the case of gravitational collapse, both velocity
gradient and intensity gradient flip their direction by 90°, and
large gradients’ amplitudes are induced simultaneously. The
intensity gradient thus provides an alternative way to identify
regions of gravitational collapse.

In Figure 20, we apply the curvature algorithm to identify the
collapsing part in subregion A1-2 at tr;0.4Myr, 0.6 Myr, and
0.8 Myr, respectively (see analysis in Figure 15). First, we see
intensity gradients change their orientation at the vicinity of the
core. However, the area showing the change is significantly
larger than the one seen in velocity gradients’ orientation, while
its evolution is similar. At tr;0.4 Myr, the top and bottom
parts initially show the change of gradients’ direction, but at

tr;0.8 Myr, the change disappears in these two areas.
According to our theoretical consideration, both intensity and
velocity gradients are sensitive to the motion of infall fluid.
Once the collapse has been completed without surrounding
infall fluid, the gradients do not distinguish the core. We
distinguish the collapsing region and see that some diffuse
regions on the right side of the intensity map are also covered.
Because the intensity gradients are sensitive to both self-gravity
and shock (Hu et al. 2019a), the change in the diffuse area
might come from shocks. Recall that self-gravity will also
induce a larger amplitude of intensity gradients, but this is not
the case for shock, i.e., the upper limit of the amplitude
depends on the compressibility β (Yuen & Lazarian 2018; Xu
et al. 2019). We then also highlight the high-amplitude part
(i.e., its corresponding amplitude is larger than the global mean
value) in Figure 20. We see that large gradientsʼ amplitude only
appears in the vicinity of the collapsing core, while the diffuse
region only shows small values of gradientsʼ amplitude. As for
velocity gradients, we show in Figure 18 that they disclose the
self-gravitating region.
To justify our consideration of shocks, we give the 3D

visualizations of velocity convergence in Figure 21, using
simulation A1 at tr;0.8Myr. As with Figure 18, we remove
negative convergence to outline the convergent inflow and mask
the low-amplitude pixel, i.e., its corresponding amplitude of
intensity gradients is less than the global mean value. The large-
amplitude region agrees with the high-convergence region. As for
the small-amplitude region at the top, the convergence is
insignificant and is not expected to be resolved by gradients. In
addition, in Figure 21, we outline those high-intensity structures
with intensities five times larger than the global mean value.
Recall that the magnetic field is pointing toward or away from the
viewer (i.e., along the z-axis) in this visualization. We can see that
those high-intensity structures are perpendicular to magnetic
fields, as explained in Xu et al. (2019). In the bottom panel of
Figure 21, we show the 3D visualizations of high gravitational
energy, i.e., the corresponding gravitational energy in each pixel is
five times larger than the global mean value. As we expected, the
upper right volume is not bounded by gravitational energy but is
filled with high-intensity structures, which are believed to be
shocks. After projection, this shock space matches the area in
which the intensity gradients change their orientation. The change
of intensity gradients’ orientation in the diffuse region is,
therefore, mostly coming from the contribution of shocks. We
then can distinguish the collapsing regions and shocks through the
comparison of intensity gradients’ orientation and amplitude, as
well as velocity gradients. More importantly, the gravitationally
collapsing region identified by VGT agrees with the 2D projection
of space with high gravitational energy. Also, in Figure 22, we
find in the zoomed-in collapsing region, the local magnetic field
energy reaches its maximum at the center of the collapsing clump.
Although the turbulent reconnection tries to minimize the
increment of the magnetic field, the effect is constrained by its
finite rate in high-density regions. We can, therefore, observe a
stronger magnetic field in the collapsing center.
Figure 22 also shows that our finding of the gravity-induced

convergent flow is converged in terms of resolution. In
Figure 7, we use the A2 simulation with a resolution of 4803,
showing that the magnetic field tends to follow the convergent
flow. Figure 22 visualizes this phenomenon using the A1
simulation with a resolution of 7923. Indeed, as the gravita-
tional collapse is not bounded, the convergent flow will spread

Figure 18. Comparison of velocity’s mean convergence for the regions
corresponding to: (i) the inflow outlined by the curvature and amplitude (lime),
(ii) the collapsing region identified by the curvature algorithm (red), (iii) the
collapsing region identified by N-PDFs (blue), and (iv) the entire A1-2 region
(black).
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to all surrounding pixels with the increment of evolution time.
Otherwise, to see the convergence at the very beginning of the
collapse, we need a very high resolution to resolve the
collapsing core.

The combination of VGT and IGT can also be used to
determine the stages of gravitational collapse. For instance,
comparing Figures 20 and 15, we find that the dense collapsing
region identified by IGT is still larger than the one identified by
VGT. Considering the physical evolution of intensity and
velocity fields, the velocity field is dramatically changed only
when the gravitational energy dominates over the kinematic
energy of turbulence, but the intensity field’s change is
accumulating. Therefore, the change of intensity gradients
would be observed in the initial collapsing stages. As a result,
we can determine the collapsing stages through the comparison
of VGT and IGT. The first stage is the onset of collapse, during
which the rotated velocity gradients and intensity gradients,
together with the magnetic field, are aligned with each other.
Next, during the middle stage of collapse, the rotated velocity
gradients are still parallel to magnetic fields, while the intensity
gradients show no alignment with either the velocity gradients or
magnetic fields. In the final stage of collapse, the rotated velocity
gradients and intensity gradients are antialigned (perpendicular)

to the magnetic field, while velocity gradients and intensity
gradients are aligned parallel to each other.

7. Discussion

7.1. Identifying Self-gravitating Regions from Velocity
Gradients and Intensity Gradients

7.1.1. Implications for Velocity Gradients

The novel VGT technique utilizes the velocity gradient to
trace the magnetic field based on the anisotropic properties of
MHD turbulence. The properties of turbulence are modified in
self-gravitating environments. As shown in Figure 22, in a
gravitationally collapsing region with sub-Alfvénic conditions,
the magnetic field is strong enough to provide a supporting
force. This magnetic force counteracts any gravitational pull
inducing the acceleration, which is perpendicular to the
magnetic field. The gravitational force, therefore, produces
the most significant convergent plasma accelerating in the
direction parallel to the magnetic field. The maximum spatial
difference of velocity then follows the same direction as the
convergent flow, which means the velocity gradients are
parallel to the magnetic field. Comparing with the non-self-
gravitating turbulence, in which the velocity gradients are

Figure 19. Top row: 2D histogram of intensity gradients’ amplitude, i.e., �Ilog(∣ ∣), and velocity’s convergence using A2 simulation at tr;0.0 Myr (left) and
tr;3.4 Myr (right). Here, p gives the volume fraction of each data point. Bottom row: 2D histogram of intensity gradients’ orientation and velocity’s convergence
using A2 simulation. Note that the orientation is measured in typical Cartesian coordinates, i.e., with respect to the right horizontal direction. Bin size is 200 for the 2D
histograms.
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perpendicular to the magnetic field, the velocity gradient flips
its direction by 90° when self-gravity dominates over
turbulence. Such changes mark the transition from a magnetic
field and turbulence-dominated regime at low densities into
higher-density regions that are collapsing under gravity.

Based on the change of gradients’ orientations in the
collapsing region, we propose two novel approaches to identify
gravitational collapsing regions through velocity gradients, i.e.,
the double-peak algorithm (see Section 3.2) and the curvature
algorithm (see Section 3.3). The double-peak algorithm
quantifies the change of gradients’ orientation in a histogram
format. Suppose we zoom in on a subregion and draw the
corresponding histogram of velocity gradients’ orientation.
When the subregion is diffuse, the velocity gradient will be
perpendicular to the magnetic field, and the histogram will be a
single Gaussian distribution. However, when the subregion
contains enough collapsing materials, i.e., on the boundary of
the collapsing region, some velocity gradients flip their
directions by 90°, becoming parallel to the magnetic field.
The histogram, therefore, appears as two Gaussian peak values
at angles θ and θ+π/2, which we denote as the double-peak
feature. This feature reveals the boundary of the gravitationally
collapsing region without the usage of polarimetry measure-
ments. As for the curvature algorithm, it utilizes the geometry
of the velocity gradient. When the velocity gradient goes from
a diffuse region to a collapsing region, i.e., on the boundary of
the collapsing region, its direction is rapidly changed by 90°.
This significant change induces the maximum curvature of
velocity gradients, but the ambient region usually has small

curvature. The calculation of curvature, therefore, allows us to
highlight the boundary of the gravitational collapsing region.

7.1.2. Implications for Intensity Gradients

Intensity gradients also change their direction in the presence
of self-gravity (Yuen & Lazarian 2017b; Hu et al. 2019a). In
particular, Hu et al. (2019a) elaborated on the difference
between intensity gradients and velocity gradients in the
presence of self-gravity with more numerical detail. That study
clearly showed that, in self-gravitating regions, the change of
intensity gradients’ orientation is faster and more dramatic than
that of velocity gradients. The expected reason is that the
change of the density field is an accumulating process, while
the velocity field is significantly changed only when the
gravitational energy dominates over the kinematic energy of
turbulence. Ergo, this provides a way of, first of all, locating
regions dominated by self-gravity, and second, identifying the
stage of gravitational collapsing.
By utilizing the properties of intensity gradients under the

influence of gravity, in Section 6 we apply the tools developed
in this paper, i.e., the double-peak algorithm and the curvature
algorithm, to intensity gradients. We see that, in the case of
gravitational collapse, intensity gradients flip their direction by
90°, and large gradients’ amplitudes are induced simulta-
neously. It then provides a self-consistent way to identify
gravitationally collapsing regions through intensity gradients.
However, the change of direction was shown to happen at
different stages of the collapse (Lazarian & Yuen 2018). By

Figure 20. Example showing how to identify collapsing regions from the curvature of intensity gradients. We use three different collapsing stages of subregion A1-2,
i.e., 0.4 Myr (first column), 0.6 Myr (second column), and 0.8 Myr (third column). First row: orientation of intensity gradients in the range of [0, π) (i.e., red: ;π, blue:
;0, and green: ;π/2). Second row: gravitationally collapsing regions (red regions) identified from the curvature of intensity gradients. Third row: areas of the
gradientsʼ amplitude corresponding to the collapsing regions identified by intensity gradients. In the same regions, we mask the low-amplitude pixel, i.e., its
corresponding amplitude is less than the global mean value.
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Figure 21. Top: visualization of 3D velocity convergence using simulation A1 at tr;0.8 Myr. Positive convergence outlines the convergent inflow. Inner blue box
approximately outlines the boundary of the 3D collapsing region identified from IGT. Projected 2D plot on the right side shows the corresponding intensity gradients
amplitude log �I(∣ ∣). We mask the low-amplitude pixel, i.e., its corresponding amplitude is less than the global mean value. Middle: visualization of 3D intensity
structures. Inner blue box approximately outlines the boundary of the 3D collapsing region identified from IGT (red region in the 2D projection). We highlight high-
intensity structures, i.e., their corresponding intensity is five times larger than the global mean value. Bottom: visualization of 3D gravitational energy. Inner blue box
approximately outlines the boundary of the 3D collapsing region identified from VGT (red region in the 2D projection). We keep only the pixels with high
gravitational energy, i.e., those with corresponding gravitational energy five times larger than the global mean value.
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comparing the velocity and intensity gradients, one could
distinguish the stage of the gravitational collapse.

7.2. Comparison with Other Techniques

In recent decades, several techniques have been proposed to
probe magnetic field morphology based on the anisotropic
properties of turbulence (see Section 2). The Correlation
Function Anisotropy (CFA) technique employs the correla-
tion function to predict the magnetic field (Esquivel &
Lazarian 2005; Burkhart et al. 2014). At the same time, the
CFA advantageously gives analytical predictions of different
anisotropies associated with slow, fast, and Alfvén modes
(Kandel et al. 2016, 2017a, 2017b). However, the CFA
requires a larger statistical area for averaging than does the
VGT, and thus the CFA can only estimate a coarse structure
of the magnetic field (Yuen et al. 2018).

Clark et al. (2014) proposed the rolling Hough Transform
(RHT) to study the magnetic field in the diffuse interstellar
region probed by neutral hydrogen 21 cm emission. However,
the RHT requires linear structures elongating along the
magnetic field in the ISM (Clark et al. 2014). As for molecular
clouds, there exist structures perpendicular to the magnetic field
(Planck Collaboration et al. 2016; Soler 2019). Since RHT does
not distinguish the perpendicular structures and the parallel
structures with respect to the magnetic field, it is therefore
incapable of revealing the magnetic field direction in the
molecular cloud (Malinen et al. 2016). Compared with RHT,
VGT is parameter-free (since the block size is self-consistently
found) while RHT requires three parameters as inputs: a
smoothing kernel diameter (DK), window diameter (DW), and
intensity threshold (Clark et al. 2014). Although CFA and RHT
can be complementary to the study of magnetic fields in some
phases of interstellar media, neither of them can be used to
identify the gravitational collapse—but VGT can.

Figure 22. Top: visualization of 3D magnetic field energy using simulation A1 at tr;0.8 Myr. We highlight high-intensity structures, i.e., their corresponding
intensity is five times larger than the global mean value. Bottom: visualization of magnetic field’s orientation (left, blue vectors) and velocity’s direction (right, red
vectors). Note that this subregion exhibits high magnetic field energy and the velocity indicates the direction of convergent flow. Units of energy and volume density
are Me pc2 Myr−2 and Me pc−3, respectively.
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The N-PDFs of column density is an alternative approach to
study the gravitational collapse (Vazquez-Semadeni et al. 1995;
Robertson & Kravtsov 2008; Ballesteros-Paredes et al. 2011;
Price et al. 2011; Collins et al. 2012; Burkhart 2018). The
N-PDFs, however, are strongly limited by radiation transfer
effects (Hu et al. 2020a), the effects of line-of-sight
contamination on the column density structure (Schneider
et al. 2015a, 2015b; Law et al. 2019), and stellar feedback via
ionization (Tremblin et al. 2014).

In addition to velocity gradients, intensity gradients are also
widely used in the study of molecular clouds. The HRO
developed in Soler et al. (2013) employs the intensity gradient
to characterize the relative orientation of column density
structures and magnetic fields. The HRO relies on comparison
of polarimetry measurement and does not distinguish between
self-gravitating regions and shocks. Also, Koch et al. (2012)
uses the intensity gradient of polarized dust emission to
estimate the magnetic field strength in the molecular cloud.
Their technique is different: it relies on polarimetry measure-
ment and does not take sub-block averaging, which is used in
our IGT (Hu et al. 2019a).

7.3. Shock Identification

The change of the direction of intensity gradients can happen
in the presence of shocks (Yuen & Lazarian 2017b; Hu et al.
2019a), i.e., intensity gradients flip their direction by 90° in
front of shocks, but this is not the case for velocity gradients.
For instance, in Section 6, we show that the area in which
intensity gradients flip their direction is significantly larger than
the one seen in velocity gradients’ orientation (see Figures 15
and 20). In Figure 21, we confirm that the change that
happened in diffuse regions is caused by shocks. At the same,
the self-gravity will induce a larger amplitude of intensity
gradients than shocks. We can then separate shocks and
gravitational collapse through comparison with either the
intensity gradients’ amplitude or velocity gradients’ orientation
(see Section 6). We summarize the difference between shocks
and gravitational collapse in terms of the gradients in Table 2.

7.4. Combining Different Approaches to Trace Magnetic Fields
in Star-forming Regions

Many polarimetry surveys showing the projected magnetic
field morphology of molecular clouds, including the Planck
survey of diffuse dust polarized emission (Planck Collaboration
et al. 2018), have provided us with a comprehensive picture of
magnetic field morphology across the full sky. The problem
that grain alignment efficiency drops near the gravitational
object center raises some concerns regarding the accuracy of
such surveys (Andersson et al. 2015). It is well-known that, in

high-density regions, grain alignment frequently fails if the
radiation field is not strong enough, while in the vicinity of
radiation sources, the alignment can occur with respect to
radiation rather than the ambient magnetic field (Lazarian &
Hoang 2007; Hoang et al. 2018). Inside Giant Molecular
Clouds (GMCs), this is most likely to occur in the region under
severe gravitational collapse. The gravitational collapse
prevents observers from studying the contribution of the
magnetic field to the star formation process.
The VGT has been developed as a vast ecosystem that can

not only can trace magnetic field tracing method in both
the diffuse atomic gas region and dense molecular region
(Hsieh et al. 2019; Hu et al. 2019b, 2019c, 2020b), it can also
measure the magnetization (Lazarian & Yuen 2018; Yuen &
Lazarian 2020), study the turbulent properties of the ISM, i.e.,
measure MS (Yuen et al. 2018), distinguish shocks (Hu et al.
2019a), and probe the magnetic field in galaxy clusters (Y. Hu
et al. 2020, in preparation). The magnetization is correlated
with the dispersion of the velocity gradient’s orientation. When
the media is highly magnetized, the compressed gas exhibits
small dispersion, while the dispersion becomes incremental for
a weakly magnetized environment. The magnetization, there-
fore, can be computed through the power-law correlation
between MA and the dispersion given in Lazarian et al. (2018).
A similar argument has also been extended to the intensity
gradient by Hu et al. (2019a). In addition to the dispersion, the
geometry of the velocity gradient is still sensitive to the
magnetic field strength. A strong magnetic field bends the
stream path formed by the velocity gradient showing small
curvatures. A corresponding study, measuring MA from the
curvature, has been conducted by Yuen & Lazarian (2020). The
velocity gradient also contains fruitful information about
the turbulence. Supersonic turbulence induces the compressible
motion of the fluid, which accordingly shows a large amplitude
of the gradients, including both velocity and intensity gradients.
Yuen et al. (2018) gives the power-law relation of Ms and the
dispersion of the amplitude. Also, pertinent to studying the
magnetic field and turbulence, one particular property of
velocity gradients is that they flip their directions by 90° in the
presence of gravitational collapse. This property offers two
additional benefits: identifying the collapsing regions and
restoring the magnetic field morphology in a self-gravitating
GMC. As shown in Figure 4, we first identify the collapsing
region through the double-peak algorithm and then rerotate the
velocity gradients by 90°. The rerotated velocity gradients still
align with the magnetic field inferred from synthetic polariza-
tion measurement, showing AM=0.75. The comprehensive
picture of the parameter-free VGT is clear. Using the molecular
line observations, VGT can probe the magnetic field morph-
ology, magnetization, and sonic Mach number over scales
ranging from tens of parsecs to =0.1 pc, being synergistic to
dust polarimetry. Once the observation has a resolution
sufficiently high to resolve the collapsing structures on a scale
larger than the minimum sub-block size (empirically, the
minimum size is 20×20 pixels), VGT reveals the self-
gravitating region.
To ensure the high accuracy of VGT, several approaches

have been proposed to remove the noise, e.g., the Principal
Component Analysis (Hu et al. 2018), and to extract the most
crucial velocity gradients components, e.g., the sub-block
averaging method (Yuen & Lazarian 2017a) and moving
window (Lazarian & Yuen 2018). In this work, based on our

Table 2
Reactions of Velocity Gradient ∇vl and Density Gradient ∇ρl with Respect to

Shocks and Gravitational Collapse

∇vl versus B ∇ρl versus B �vl∣ ∣ r� l∣ ∣
Shock ⊥ P Low Low

Collapse P P High High

Note. The second and third columns show the relative orientation between
gradients and the magnetic field B. The fourth and fifth columns indicate the
gradients’ amplitude.
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old sub-block averaging method, we develop the adaptive sub-
block averaging method, which guarantees the high resolution
of VGT. The uncertainty of VGT measurement can also be
accurately quantified through the standard deviation of velocity
gradients’ orientation in each sub-block. Compared with
polarimetry, VGT shows advantages in probing the local
magnetic fields by getting rid of the contribution along the LOS
with high resolution. Besides the study of GMC, VGT can then
assist in modeling the three-dimensional Galactic magnetic
fields, which is indispensable for removing the Galactic
foreground and detecting primordial B-mode polarization in
the CMB. Our prior works have applied VGT to the full data of
the GALFA-H I survey and show good correspondence,
including both magnetic field tracing and E/B modes
decomposition, with those reported by Planck 353 GHz (Hu
et al. 2020b).

7.5. Observational Application of VGT

The development of the VGT was initially motivated by
studying magnetic fields in turbulent diffuse gas. In molecular
clouds, it was shown that the velocity gradients change their
directions with respect to the magnetic field (Yuen &
Lazarian 2017b; Lazarian & Yuen 2018; Hu et al. 2019c).
However, the identification of these regions with polarimetry
devalued the VGT technique, which is the technique of tracing
the magnetic field on its own. This paper provides a detailed
study of how the VGT can be used for tracing magnetic fields in
self-gravitating molecular clouds. In addition to magnetic field
tracing, the VGT is shown to be able to identify the collapsing
self-gravitating regions. The problem of identifying such regions
is significant for the understanding of star formation.

The abundant spectroscopic data sets of different molecular
tracers, for instance, the CO data obtained from JCMT (Liu et al.
2019), GAS (Kauffmann et al. 2017), COMPLETE (Ridge et al.
2006), FCRAO (Young et al. 1995), ThrUMMS (Barnes et al.
2015), CHaMP (Yonekura et al. 2005), and MALT90 (Foster
et al. 2011) surveys, extends the applicability of VGT. Hu et al.
(2019b) showed VGT could construct the 3D magnetic field
model in molecular clouds by utilizing different emission lines
of Vela C molecular cloud. For example, using CO12 , CO13 , and
C O18 data, VGT tells us about the POS component of the
magnetic field over three different volume density ranges, from
102 to 104 cm−3. VGT is also applicable to higher-density
tracers, such as CS, HCN, HCO+ (Hu et al. 2019b). We can,
therefore, expect that VGT can reveal the volume density range
in which the collapsing occurs using multiple emission lines. A
similar argument also holds for intensity gradients.

8. Summary

The paper furthers the advancement of the VGT and extends
it to regions where the effect of self-gravity is important. We
attempt to solve two interrelated problems. First, we explore
the ability of gradients to trace of the magnetic field in the
presence of gravitational collapse. In parallel, we study how to
observationally identify different stages of the gravitational
collapse. In our study, we present star formation simulations for
different magnetization levels of the media as well as different
levels of turbulence. We observe that star formation can
successfully happen in strongly magnetized media and that
nonideal effects like ambipolar diffusion are not necessary for
this. In our simulations, after the gravitational collapse begins,

the dispersion of intensity N-PDFs, as well as the MS, increase
with the supersonic turbulence driven by self-gravity. Our main
discoveries are:

1. We confirm that intensity gradients and velocity gradients
flip their orientation by 90° in the presence of gravita-
tional collapse, becoming parallel to magnetic fields.

2. Further developing the VGT, we introduce a new
adaptive sub-block averaging method that increases the
resolution of the magnetic field map we obtain with our
technique. We test it using the synthetic data from MHD
simulations.

3. We demonstrate that, without polarization measurements,
VGT is capable of identifying regions of gravitational
collapse through:
(a) The double-peak feature in the histogram of gradients’

orientation, i.e., in the boundary of collapsing regions,
the histogram shows two Gaussian distribution with
peak values θ and θ± π/2.

(b) The curvature of velocity gradients, which reaches its
maximum value in a gravitationally collapsing region
because intensity gradients and velocity gradients
rapidly change their direction by 90°.

(c) The synergetic utilization of velocity gradients’
morphology and amplitude that can reveal the inflow
motion in collapsing regions.

4. We demonstrate the VGT’s ability in tracing magnetic
fields in both diffuse and gravitational collapsing regions.

5. We demonstrate the ability of VGT to reveal the
boundaries of the transitional regions and determining
the density range for which the gravitational collapse
takes place.

6. Comparing the VGT to the analysis of N-PDFs, we
demonstrate that N-PDFs are sensitive to the strongly
convergent flows induced by the already formed accret-
ing cores. The density threshold given by N-PDFs does
not distinguish self-gravitating gas and non-self-gravitat-
ing density enhancement, while VGT traces all gravity-
induced converging flow.

7. We explore the synergy of the VGT and its offshoot, the
IGT, to identify shocks as well as different stages of the
gravitational collapse.
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Appendix
The Relative Angle between Magnetic Field and Line of

Sight

As above, in both the strong magnetic field and weak
magnetic field environments, the convergent flow induced by
the gravitational collapse follows the magnetic field direction.
As a result, the convergent flow significantly modifies the
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properties of velocity gradients such that their direction
becomes parallel to the magnetic field and they exhibit a
larger amplitude (see Section 2).

Nevertheless, in observations, one can only ascertain the
velocity component parallel to LOS. Ideally, if the flow induced
by the gravitational collapse is exactly perpendicular to LOS and
the flow does not allow the transfer of energy between different
components, the change of velocity gradient may not be observed.
However, as discussed in Section 2.4, in reality, the gravitational
collapse accelerates the turbulent flow in all directions, changing

all the components of velocity. For example, in our sub-Alfvénic
numerical simulation, the magnetic field is set to be perpendicular
to LOS, which indicates that the convergent flow ideally should
lie on the POS. However, as shown in Figure 22, near the collapse
region, gravity bends the magnetic field such that all velocity
components converge. The emission lines therefore always
contain velocity information about the gravitational collapse. To
test how the relative angle between the magnetic field and LOS
affects VGT, we use a new MHD simulation A3 with Ms;6.47,
MA;0.61, β;0.018, and resolution 7923. We consider the

Figure A1. Example of how the VGT identifies collapsing regions from the double-peak algorithm, when the global magnetic field is perpendicular to the line of sight.
We use simulation A3 with tr;1.0 Myr and length scale ;1.96 pc. Top right: magnetic field morphology inferred from VGT. Magnetic field is superimposed on the
projected intensity map and visualized using the LIC. Here, γ is the relative angle between the mean magnetic field and LOS. Top left: magnetic field morphology
inferred from synthetic polarization, which is superimposed on the polarized intensity map. Middle left: gravitationally collapsing regions (blue regions) identified
from the N-PDFs. Middle right: collapsing regions identified by the double-peak algorithm velocity gradients with a second block size of 30. Bottom left: projected
velocity convergence. Bottom right: areas (red contour) of the velocity gradient’s amplitude corresponding to the collapsing regions identified by the double-peak
algorithm. In the same regions, we mask the low-amplitude pixel, i.e., its corresponding amplitude is less than the global mean value.
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simulation at tr;1.0Myr snapshot to have the VGT best
matching the N-PDFs, as Figure 15 shows the N-PDFs are not
sensitive to the initial stages of gravitation collapse. A3 is still
isothermal, with temperature T=10.0 K, sound speed cs =
187m s−1, and cloud size L=10 pc. The total mass Mtot in the
simulated cubes A3 is Mtot∼8191.45 Me, the magnetic Jean
mass is MJB∼143.57 Me, average magnetic field strength is
B∼14.18 μG, mass-to-flux ratio is Φ∼1.06, volume density is
ρ∼141.47 cm−3, and freefall time is tff∼2.82Myr. As with the
simulation described in Section 4, we keep driving both

turbulence and self-gravity until the simulation violates the
Truelove criterion (Truelove et al. 1997). The Jeans length
∼1.77 pc, therefore, occupies 140 pixels. The density can be
enhanced by a factor of ∼1225.0, i.e., we can have maximum
volume density ρmax∼173300.75 cm−3, which informs us when
to stop the simulation before having numerical artifacts due to
self-gravitational collapse.
In Figure A1, we set the global magnetic field perpendicular

to LOS and zoom in on subregion A3-1 from the simulation
A3. This subregion contains well-defined convergent flows and

Figure A2. Example of how the VGT identifies collapsing regions from the double-peak algorithm, when the mean magnetic field is 45° inclined to the line of sight.
We use simulation A3 with tr;1.0 Myr and length scale ;1.96 pc. Top right: magnetic field morphology inferred from VGT. Magnetic field is superimposed on the
projected intensity map and visualized using the LIC. Here, γ is the relative angle between the mean magnetic field and the LOS. Top left: magnetic field morphology
inferred from synthetic polarization, which is superimposed on the polarized intensity map. Middle left: gravitationally collapsing regions (blue regions) identified
from the N-PDFs. Middle right: collapsing regions identified by the double-peak algorithm velocity gradients with a second block size of 30. Bottom left: projected
velocity convergence. Bottom right: areas (red contour) of the velocity gradient’s amplitude corresponding to the collapsing regions identified by the double-peak
algorithm. In the same regions, we mask the low-amplitude pixel, i.e., its corresponding amplitude is less than the global mean value.
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formed cores. We plot the magnetic field morphology predicted
by synthetic dust polarization and VGT. We observed in the
high-density regions that the rotated velocity gradients are
perpendicular to the magnetic field rather than aligned with it.
According to our study presented in Section 5, this is
potentially a gravitational collapsing region. Through the
density threshold determined from the N-PDFs, we highlight
the region in which the N-PDFs is a power-law distribution,
indicating this region is under gravitational collapse. We find
that the collapsing region identified from N-PDFs agrees with
the one showing a 90° change of velocity gradient. There is one
exception: in the top right region, in which the N-PDFs indicate
gravitational collapse, there is no change of velocity gradient
observed. Possible explanations for this include: (i) the density
threshold given by N-PDFs does not distinguish self-gravitat-
ing gas and non-self-gravitating density enhancement; (ii) the
fraction of collapsing material is so small in this region that
the velocity gradient does not reveal its existence (see the
discussion in Section 3.2). Nevertheless, we apply the
double-peak algorithm with the second block size set to 30 in
order to identify the collapsing regions from the velocity
gradient (see Figure A1). First, we observe that the majority of
self-gravitating regions identified from the two methods, i.e.,
N-PDFs, and VGT, are similar and reflect the convergent flows.
However, VGT shows larger identified areas than do the
N-PDFs, since the double peak is required to cover both
the diffuse and self-gravitating regions in order to identify
the boundary. To reduce the boundary effect, we highlight the
region showing a high amplitude of gradients, i.e., its
corresponding amplitude is larger than the global mean value.
Since the gravitational collapse also induces a high amplitude
in the gradients (see Section 5), this procedure helps exclude
the additional diffuse regions introduced by the double-peak
algorithm.

The above result illustrates the case where the global
magnetic field is perpendicular to LOS. We then rotate the
MHD simulation A3 so that the magnetic field is 45° inclined
to LOS. The corresponding convergent flow is changed
together with the magnetic field. We repeat the calculation of
VGT as above. The results are presented in Figure A2. We can
see that, for the low-density regions, the magnetic field
morphology inferred from VGT agrees well with the one
derived from synthetic polarization measurement. For the
intermediate regions, however, the velocity gradient starts
appearing misaligned with the magnetic field. This misalign-
ment comes from the spread convergent flow in the space,
because the inclination angle γ= 45°. Insufficient collapsing
material along the LOS will also induce a change of velocity
gradient, but this change does not arrive at 90°. Nevertheless, in
high-density regions, the VGT measurement becomes perpend-
icular to the magnetic field and the magnetic field is also
partially bent by the self-gravity, as we see in Figure 22. We
can see that this high-density region corresponds to the
collapsing region determined by N-PDFs. By repeating the
double-peak and gradient amplitude algorithm, we obtain
results similar to those from the N-PDFs, and we also
determine the convergent flow. Thus, we conclude that the
relative angle between the magnetic field and LOS does not
degrade the VGT.
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