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Abstract

Magnetic field lines in interstellar media have a rich morphology, which could be characterized by geometrical
parameters such as curvature and torsion. In this paper we explore the statistical properties of magnetic field line
curvature κ in compressible magnetized turbulence. We see that both the mean and standard deviation of magnetic
field line curvature obey power-law relations to the magnetization. Moreover, the power-law tail of the curvature
probability distribution function is also proportional to the Alfvénic Mach number. We also explore whether the
curvature method could be used in the field-tracing velocity gradient technique. In particular, we observe that there
is a relation between the mean and standard deviation of the curvature probed by velocity gradients to MA. Finally,
we discuss how curvature is contributed by different MHD modes in interstellar turbulence and suggests that the
eigenvectors of MHD modes could be possibly represented by the natural Frenet–Serret frame of the magnetic field
lines. We discuss possible theoretical and observational applications of the curvature technique, including the
extended understanding on a special length scale that characterizes the importance of magnetic field curvature in
driving MHD turbulence, and how it could be potentially used to study a self-gravitating system.

Unified Astronomy Thesaurus concepts: Interstellar medium (847); Interstellar magnetic fields (845); Interstellar
dynamics (839)

1. Introduction

Turbulence is ubiquitous in astrophysical environments, and
the interstellar gases are permeated by turbulent magnetic fields.
Magnetohydrodynamic (MHD) turbulence plays a very important
role in various astrophysical phenomena (see Armstrong et al.
1995; Biskamp 2003; Elmegreen & Scalo 2004; McKee &
Ostriker 2007; Chepurnov & Lazarian 2010; Beresnyak &
Lazarian 2019), including star formation (see Mac Low &
Klessen 2004; McKee & Ostriker 2007; Fissel et al. 2016),
propagation and acceleration of cosmic rays (see Jokipii 1966;
Chandran 2000; Farmer & Goldreich 2004; Yan & Lazarian
2008; Lazarian & Yan 2014; Lazarian 2016; Xu & Lazarian
2018), and regulating heat and mass transport between different
interstellar medium (ISM) phases (Green 1993; Deshpande et al.
2000; Dickey et al. 2001; Lazarian & Pogosyan 2004, 2006;
Khalil et al. 2006; Begum et al. 2006; Padoan et al. 2006 see
Draine 2009 for the list of the phases).

The anisotropy of MHD turbulence is being well studied in a
number of important theoretical papers (Montgomery &
Turner 1981; Matthaeus et al. 1983; Shebalin et al. 1983;
Higdon 1984). The study of the MHD turbulence of the solar
wind is presented in, e.g., Tu & Marsch (1995) and Goldstein
et al. (1995) (see Bruno & Carbone 2013 for a review). The
attempts in estimating the anisotropy from observations of the
magnetosphere and solar wind resulted in the development of
the model of MHD turbulence (see Zank & Matthaeus 1992
and references therein) that incorporates the concept of 2D
“reduced MHD” perturbations consisting of 2D “reduced
MHD” perturbations carrying approximately 80% of energy
and the “slab” Alfvénic waves carrying the remaining 20% of
energy (see Matthaeus et al. 2002 and references therein).

The theoretical description of incompressible MHD turbu-
lence that corresponds to numerical simulations was achieved
through understanding of both “critical balance” that governs

the turbulent motions in the strong turbulence regime Goldreich
& Sridhar (1995)3 and the role of turbulent reconnection that is
part and parcel of the turbulent cascade in Lazarian & Vishniac
(1999). Goldreich & Sridhar (1995) predicted that most of the
Alfvénic energy is concentrated in the modes with critical
balance between the parallel and perpendicular motions leading
to the scale-dependent anisotropy of the turbulent motions.
This anisotropy was derived in Goldreich & Sridhar (1995) in
the mean magnetic field of reference and formulated in terms of
scaling relation for the wavenumbers kP∝k̂2 3, with kP,⊥
being the parallel and perpendicular wavenumbers, respec-
tively. Later research corrected this point by introducing the
local system of reference in which the scale-dependent
anisotropy is present. The concept of the local reference
system is self-evident from the point of view of turbulent
reconnection (see Lazarian et al. 2020 for a review). It was
shown in Lazarian & Vishniac (1999) that the magnetic
reconnection happens over one eddy turnover time, and
therefore Alfvénic turbulence can be presented as the collection
of eddies with their angular velocities aligned with the
magnetic field. Naturally, this field is not the mean magnetic
field, but the field that surrounds the eddy, i.e., the local
magnetic field.4 Therefore, the turbulence scaling should be
studied with respect to the local system of reference.

The Astrophysical Journal, 898:66 (15pp), 2020 July 20 https://doi.org/10.3847/1538-4357/ab9360
© 2020. The American Astronomical Society. All rights reserved.

3 In Goldreich & Sridhar (1995) the insight by Higdon (1984) in terms of
magnetized interstellar turbulence was called “nothing short of prophetic.” In
addition, the Goldreich & Sridhar (1995) study acknowledges that that the “critical
balance” between parallel and perpendicular timescales is the key assumption in
the derivation of the Straus & Schulz (1976) equations that was claimed in
Montgomery (1982) to describe the anisotropic state of incompressible MHD
turbulence. Nevertheless, unlike Goldreich & Sridhar (1995), the aforementioned
papers did not make the final step and did not provide the derivation of the spectra
and the parallel and perpendicular scales.
4 Incidentally, the critical balance condition in this formulation is a trivial
relation between the period of the eddy turnover λ⊥/vl and the period of the
Alfvén wave that the rotation of the eddy induces, i.e., &l VA.
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The practical way of defining the local system of reference in
numerical simulations was suggested first in Cho & Vishniac
(2000), and this and subsequent numerical studies unambigu-
ously confirmed that the critical balance exists only for the
eddies, for which parallel and perpendicular scales are
measured with respect to the local magnetic field and not with
respect to the mean magnetic field (Cho & Vishniac 2000;
Maron & Goldreich 2001; Cho et al. 2002). To reflect this in
the formulating of MHD theory, the anisotropy is given as a
relation between the sizes of parallel and perpendicular eddies
given by &l l~ ^

2 3, which substitutes the relation between the
wavevectors k in the original formulation of the critical
balance.5 The scales λ⊥and &l are different from reciprocals of
k⊥and &k , as they are measured in different systems of
reference.

Further studies allowed us to extend the original incompres-
sible MHD theory to compressible media (Cho et al. 2002; Cho
& Lazarian 2002; Jungyeon & Lazarian 2003; Kowal &
Lazarian 2010). A detailed discussion of the theory of
turbulence with derivations of the scaling relations and the
discussion of the stages of the theory development can be
found in reviews (Brandenburg & Lazarian 2013; Beresnyak
et al. 2005) and in a recent monograph on MHD turbulence
(Beresnyak & Lazarian 2019).

The geometry of magnetic field is also a very important way
to characterize its importance in interstellar turbulent media.
The Cauchy momentum equation carries a force term that is
proportional toB×(∇×B), whereB is the magnetic field,
which could be decomposed into the pressure term ∇(B2) and
the tension term B̃·∇B (see Biskamp 2003). The former term
drives compression of fluid elements, while the latter term
contains information on how magnetic field bending would
introduce acceleration to fluid elements. If the magnetic field
lines, with their strength being constant, are bent with a
curvature κ, then the tension term would be proportional to
κB2. Therefore, characterizing the magnetic field curvature in
MHD turbulence allows one to directly estimate how much
force the magnetic field bending exerts on fluid elements.

Curvature of magnetic field could also estimate the
magnetization. The curvature method has a significant
advantage compared to the traditional magnetic field polariza-
tion dispersion method, in that the latter only gives an
estimation of MA in a statistical area. For interstellar media
that have force balances within, the curvature of magnetic field
is expected to have a proportionality to magnetic field of B−2,
which reflects the force balance that is employed by the
technique in Li et al. (2015) that yields results consistent with
the Chandrasekhar & Fermi (1953) technique. Notice that the
curvature of magnetic field is a local quantity, while the method
of dispersion could only be measured statistically within a
selected region, which could provide a significant advantage in
characterizing the field strength with higher-resolution data.

This paper investigates the curvature of magnetic field lines
in the case of balanced turbulence. We start by introducing the
theoretical formulation of curvature of a magnetic field line in
MHD turbulence, as well as the expectation of curvature

dependencies on magnetic field strength in terms of MHD
turbulence theory. In Section 2 we discuss the numerical
method and introduce an efficient curvature calculation
algorithm applicable both numerically and observationally. In
Section 4 we discuss the statistics on magnetic field line
curvature, especially on how it is related to both magnetization
and magnetic field strength, both 3D and 2D. In Section 5 we
discuss the potential use of the curvature of velocity gradients
in estimating the field strength. In Section 6 we discuss how the
three MHD modes behave both theoretically and numerically
when there is a nonzero curvature in magnetic field lines, and
we discuss the length scales at which curvature would drive the
MHD modes. In Section 8 we discuss the potential use and
caveats of the curvature method. In particular, we discuss how
curvature would possibly deduce gravitational status in
Section 8.4. In Section 9 we conclude our paper.

2. The Theory of Magnetic Field Line Curvature

2.1. Mathematical Formulation of Curvature and Torsion of
Magnetic Field Lines

The magnetic field line can be considered to be “the path”
of an imaginary particle with the particle speedB at each
point in a small neighborhood. Such characterization of
“magnetic field lines” globally does not exist since the
concept of magnetic field lines becomes ambiguous when we
face regions with magnetic reconnections or magnetic field
crossing (Newcomb 1958). The consideration of the geometry
of the local field lines provides an immediate advantage: a
natural curvilinear frame called the Frenet–Serret frame could
be defined locally with two geometric properties about
magnetic field called curvature κ and torsion τ, which
characterize how the magnetic field lines deviate from a line
and a plane, respectively. While their velocity counterparts
(velocity curvature, torsion) are well studied (see, e.g., Braun
et al. 2006; Kadoch et al. 2011), the study of magnetic field
curvature has not been popular until recently (Yang et al.
2019).
In the studies of magnetic field topology, the concept of

curvature is important since magnetic field lines are expected
to have a smaller curvature as the strength of the magnetic
field increases. A recent numerical work by Yang et al. (2019)
shows the probability density function (pdf) of the magnetic
field curvature has a power-law tail of κ−2 in 2D and κ−2.5 in
3D for incompressible simulation with initially fluctuation
energy equipartitioned between the kinetic and magnetic
ones. They also show that magnetic field lines follow a
proportionality relation of κ∝fB/B2, where fb represents the
normal force component. Observationally Li et al. (2015) use
the curvature of magnetic field lines as an estimate of
magnetic field strength in NGC 6334. Together, curvature of
magnetic field lines becomes an important physical quantity
in characterizing the strength of magnetic field.
Mathematically, we would parameterize the magnetic field

lines by the line variable s assuming that the magnetic field
forms a vector field for an imaginary particle. Intuitively, we
would imagine a particle placed at at an arbitrary initial
positionr0 and allow it to evolve following the vector integral

( )= -B r rLd
dt 0

B , where the magnetic fieldB is a velocity field

5 We note that in the frame of the mean magnetic field the anisotropy is
different, i.e., & ~ ^k Ck , where C is a constant, i.e., there is no anisotropy that
changes with the scale (see Cho et al. 2002). For historic reasons, due to the
original formulation in the pioneering Goldreich & Sridhar (1995) study, this
fact sometimes causes confusion with the researchers searching the scale-
dependent anisotropy measuring parallel and perpendicular direction with
respect to the mean magnetic field.
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of the particle. The path length of the imaginary particle is then

( ) ( ) ( ) ( ) ( )ò= ¢ ¢ + ¢ + ¢s l dl B l B l B l , 1
l

x y z
0

2 2 2

and the Frenet–Serret frame of the magnetic fields lines would
be (Callen et al. 2003)

ˆ ˆ
ˆ ˆ ˆ

ˆ
ˆ ( )

k

k t

t

=+

=- +

=-

dt
ds

n

dn
ds

t b

db
ds

n, 2

where ˆ ˆ=t B is the unit vector of the magnetic field, ˆ ˆn b, are
the normal and binormal vectors, respectively, ˆ ·= �t xdx

ds
is

the line derivative along a vector x, and τ is the torsion of the
magnetic field line (Section 8.1). Under this formulation, the
signed curvature could be given by

ˆ · ˆ ( )k = n
dt
ds
. 3

2.2. Prediction of Dependencies of Curvature on Magnetic
Field Strength and Sonic and Alfvénic Mach Number in MHD

Turbulence

The Frenet–Serret frame is a natural frame in studying the
local geometry of magnetic field. We expect that in the
presence of magnetized turbulence, there should be a power
law κ∝B−γ, where γ is a constant yet to be defined. From
Equation (3), apparently the magnetic field line curvature is
inversely proportional to the squared amplitude of magnetic
field. Indeed, as argued in Yang et al. (2019), if the force term
is constant, then κ∝B−2, but in the case of MHD turbulence
the interaction of velocity and magnetic fields would tend to
reduce the dependencies of κ to B. Therefore, we would expect
the properties of turbulence are characterized not only by
magnetic field strength but also by the velocities and densities
of the fluid elements, a more appropriate estimate would be

( )k µ gM , 4A

where MA=vinj/vA is the ratio of the injection and Alfvén
velocities, pr=v B 4A 0 0 .

We can make a similar estimation on the dependence of
κ∝ gMA from the theory of MHD turbulence (Goldreich &
Sridhar 1995; Lazarian & Vishniac 1999). As Goldreich &
Sridhar (1995) formulated for trans-Alfvénic, i.e., MA=1
turbulence, in what follows we are mostly using the Lazarian &
Vishniac (1999) expressions obtained forMA<1. ForMA>1
the Goldreich & Sridhar (1995) approach can be easily
generalized (see Lazarian 2006) as we discuss below.

In the incompressible limit, the parallel and perpendicular
length scales of the turbulent eddies would be related by the
following relations based on the theory of MHD turbulence. In
the following we shall only consider cases where we have
strong magnetic field (MA=vinj/vA<1, where vinj is the
injection velocity and vA is the Alfvén velocity) or we are in the
regime of dynamically important magnetic field (MA>1 but
the length scale < = -l l L MA inj A

3, where Linj is the injection
scale). Here we consider that the magnetic field eddies that are
coherent to that of the velocity eddies (which is the case when

we are considering Goldreich & Sridhar turbulence; see
Goldreich & Sridhar 1995), so that one could simply use the
same scaling law for magnetic field structures without further
approximations.
In the cases of strong magnetization, there exists a scale
=l L Minj A

2 such that scales smaller than that would be the
strong turbulence. We shall omit discussion of length scales
larger than that since those usually have a limited spatial range.
We stress that the parallel length scale λP and perpendicular
length scale λ⊥ are defined in terms of the local direction of
magnetic field. While in earlier works (Shebalin et al. 1983;
Higdon 1984; Matthaeus et al. 1996) the anisotropy is observed
and theoretically tested, these anisotropies are generally
measured along the mean magnetic field. In fact, the concept
of the local magnetic field is absent in Goldreich & Sridhar
(1995), where all the closure relations used for the derivation
are formulated in the reference frame of the mean field
(Lazarian & Vishniac 1999). The concept of local reference
frame was shown to be valid numerically (see Cho &
Vishniac 2000; Maron & Goldreich 2001; Cho et al. 2001, or
the Appendix of Lazarian et al. 2018 for a comprehensive
discussion). It is important to stress that the relations between
λP and λ⊥ are not valid if & and ^ distances are measured with
respect to the mean field (Cho & Vishniac 2000).
Notice that the Goldreich-Sridhar turbulence has to be

understood under the reference frame defined by the local
magnetic field directions (Lazarian & Vishniac 1999; Lazarian
et al. 2018). That means that the anisotropy should be computed
with respect to magnetic field at the scale of the eddies. In the
local system of magnetic field of the eddies, the parallel and
perpendicular scales of the eddies are related for MA<1 as
(Lazarian & Vishniac 1999)

⎛
⎝⎜

⎞
⎠⎟ ( )&l

l
~ ^ -L

L
M , 5inj

inj

2 3

A
4 3

where λP,⊥ are the parallel and perpendicular length scales
of the turbulent eddies under Lazarian & Vishniac (1999)
formalism. Equation (5) has two differences from the original
expression by Goldreich & Sridhar (1995). First of all, it relates
the physical scales of the eddies rather than wavenumbers. The
latter are given in the frame of the mean field and do not exhibit
the scale-dependent anisotropy of Equation (5). Second,
Goldreich & Sridhar theory is formulated for MA=1.
Readers should be careful that the parallel and perpendicular

scales that we are discussing here are referring to the local
scales argument in Lazarian & Vishniac (1999). Numerically
the 2/3 scaling law is tested in Cho & Vishniac (2000), and the
energy spectrum is tested in Jungyeon & Lazarian (2003).
Those studies confirmed that the aspect ratio is larger for
smaller eddies and, in fact, follows the predicted “critical
balance” relation. The justification of such a procedure follows
from the eddy description of MHD turbulence based on the
Lazarian & Vishniac (1999) study. The subsequent studies (see
Cho et al. 2002; Beresnyak et al. 2005) provided the numerical
support for these scalings. Recently, Yuen et al. (2018, see their
Appendix) also revisited this issue and stated again clearly that
only the local computation would yield the desired 2/3 scaling
law, in agreement with the expectations based on Lazarian &
Vishniac (1999) reconnection theory.
For super-Alfvénic turbulence MA>1 and at large scales

magnetic fields do not change the Kolmogorov picture. In the
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case of weak magnetization and < = -l l L MA inj A
3, the parallel

length scale λP and perpendicular length scale λ⊥ are related by

⎛
⎝⎜

⎞
⎠⎟ ( )&l

l
~ ^L

L
. 6inj

inj

2 3

In either case, the minimal curvature of the eddies measured
for the eddy of size λ⊥could be estimated by &l l^

2.
Therefore, we would obtain the expected curvature for eddies
as a variable of the minor length λ⊥:

⎪

⎪

⎧
⎨
⎩

( )

· ( )
( )

( )

k l l~

< <

> <

^
-

^
-

-

L

M M l L M

M l L M

1,

1 1,
, 7

inj
2 3 1 3

A
8 3

A inj A
2

A inj A
3

for which the curvature at length scale λ⊥ is proportional to the
Alfvénic Mach number. Here the curvature that we measured,
κ(λ⊥), corresponds to the curvature we measure in real space
when we only discuss eddies of size λ⊥. For eddies larger than
the scales in the two individual cases, i.e., for >l L Minj A

2 if
MA<1 and < -l L Minj A

3 for MA>1, the curvature of these
isotropic eddies with scale λ is simply λ−1 with no relation
between λ and MA.

The measured curvature value in real space would be mainly
contributed by two factors: (1) the largest scale that has
turbulent anisotropy and (2) contributions from eddies with
scales larger than the largest scale that has turbulent anisotropy.
Since the curvature value of real space is basically a statistical
sum of all curvature values from the eddies with different sizes,
it is natural to consider for what size the eddy dominates over
the measurements. In the case of sub-Alfvénic turbulence, the
largest scale measurable with anisotropy is =l L Minj A

2. There-
fore, the curvature of eddies at scale =l L Minj A

2 would be

( ) ( ) ( )k l = = <^
-L M L M M 1 , 8inj A

2
inj
1
A
2

A

while for super-Alfvénic turbulence, the respective transition
scale is = -l L Minj A

3,

( ) ( ) ( )k l = = >^
- -L M L M M 1 . 9inj A
3

inj
1
A
1

A

The contribution of curvature from eddies with scales larger
than the scale having turbulence anisotropy has no dependence
on MA. The observed curvature would then be a statistical sum
of curvature values acting on different size of eddies.
Moreover, notice that the discussion above is based on the
turbulence scaling laws from incompressible turbulence theory.
Since compressible modes in compressible magnetized turbu-
lence (see Jungyeon & Lazarian 2003) rarely have nonzero
curvature and the observed curvature is the statistical average
of the curvature values obtained from the three MHD modes,
the larger weight of compressible modes would decrease the
observed curvature (see discussion in Section 6). Observation-
ally we cannot perform an analysis of curvature as a function of
λ⊥unless precise magnetic field orientations are given, which
requires the knowledge of the 3D magnetic field distribution.
Statistically one would only obtain a value of curvature
contributed by all three modes of MHD turbulence and all
scales. As a result, we expect that the measured curvature value

has a weaker dependence on MA for both cases, i.e., we expect

⎪

⎪

⎧⎨
⎩· ( )

( )
( )k ~

<

>

a

a
-

-

-
L

M M

M M

1

1
10inj

1 A
2

A

A
1

A

for some constant α dependent on the properties of injection
and the composition of modes. As we will see in Section 4, the
inclusion of α is necessary in explaining the behavior of
curvature in compressible turbulence.
We also expect the index ( )g a= - <M2 1A or -1

( )a >M 1A to be shallower in 2D, i.e γ2D<γ3D since the
projection effect of magnetic field would tend to cancel out
the magnetic field deviations, which are not a straight line. As
a result, the curvature observed in the projected space should
be systematically smaller than that in 3D.

3. Method

3.1. Simulation Setup

The numerical data cubes are obtained by 3D MHD
simulations that are from a single-fluid, operator-split,
staggered grid MHD Eulerian code ZEUS-MP/3D to set up a
3D, uniform turbulent medium. Our simulations are isothermal
with T=10 K. To simulate the part of the interstellar cloud,
periodic boundary conditions are applied. We inject turbulence
solenoidally.6

For our controlling simulation parameters, various Alfvénic
Mach numbers MA=Vinj/VA and sonic Mach numbers
Ms=Vinj/Vs are employed,7 where Vinj is the injection
velocity, while VA and Vs are the Alfvén and sonic velocities,
respectively, which are listed in Table 1. For the case of
MA<Ms, it corresponds to the simulations of turbulent plasma
with thermal pressure smaller than the magnetic pressure, i.e.,
plasma with low confinement coefficient b = <V V2 1s

2
A
2 .

Table 1
Description of MHD Simulation Cubes, Some of Which Have Been Used in
the Series of Papers about VGT (Yuen & Lazarian 2017a, 2017b; Lazarian &

Yuen 2018a, 2018b)

Model MS MA b = M M2 SA
2 2 Resolution

huge-0 6.17 0.22 0.0025 7923

huge-1 5.65 0.42 0.011 7923

huge-2 5.81 0.61 0.022 7923

huge-3 5.66 0.82 0.042 7923

huge-4 5.62 1.01 0.065 7923

huge-5 5.63 1.19 0.089 7923

huge-6 5.70 1.38 0.12 7923

huge-7 5.56 1.55 0.16 7923

huge-8 5.50 1.67 0.18 7923

huge-9 5.39 1.71 0.20 7923

Note. Ms and MA are the rms values at each snapshot.

6 These simulations are the Fourier-space forced driving isothermal simula-
tions. The choice of force stirring over the other popular choice of decaying
turbulence is because only the former will exhibit the full characteristics of
turbulence statistics (e.g., power law, turbulence anisotropy) extended from
k=2 to a dissipation scale of 12 pixels in a simulation, which matches with
what we see in observations (e.g., Armstrong et al. 1995; Chepurnov &
Lazarian 2010).
7 For isothermal MHD simulation without gravity, the simulations are scale-
free. The two scale-free parameters MA, Ms determine all properties of the
numerical cubes, and the resultant simulation is universal in the inertial range.
That means that one can easily transform to whatever units as long as the
dimensionless parameters MA, Ms are not changed.

4
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In contrast, the case MA>Ms corresponds to the magnetic-
pressure-dominated plasma with high confinement coefficient
β/2>1.

From now on we refer to the simulations in Table 1 by their
model name. For example, the figures with model name
indicate which data cube was used to plot the corresponding
figure. Each simulation name follows the rule that is the name
is with respect to the varied Ms and MA in ascending order of
confinement coefficient β. The selected ranges of Ms, MA, and
β are determined by possible scenarios of astrophysical
turbulence from very subsonic to supersonic cases.

3.2. Synthetic Observations

The raw data from simulation cubes are converted to
synthetic maps for studies of curvature. Since we would
investigate both polarization and magnetic field probed by the
velocity gradient technique (VGT; Yuen & Lazarian 2017a;
Lazarian & Yuen 2018a, see Section 3.3), we shall deliver the
method of synthesizing the Stokes parameters, intensities,
centroids, and velocity channels here.

The Stokes parameters for synthetic observation are given by

( )

( )

( ) ( )

ò
ò

q g

q g

q

µ

µ

= -

Q dzn

U dzn

U Q

cos 2 sin

sin 2 sin

1
2
tan 2 , 11

2
inc

2
inc

pol
1

where n is the number density and θ and γinc are the 3D planer
angle and inclination angle of magnetic field vectors with
respect to the line of sight (LOS), respectively. The dispersion
of the polarization angle θpol is directly proportional to the
perpendicular Alfvénic Mach number MA,⊥.

The normalized velocity centroid C(R) in the simplest case8

is defined as

( ) ( )

( ) ( ) ( )
ò

ò

r

r

=

=

-R R

R R

C I v vdv

I v dv

, ,

, , 12

v

v

1

where ρv is density of the emitters in the position–position–
velocity (PPV) space, v is the velocity component along the
LOS, andR is the 2D vector in the pictorial plane. The
integration is assumed to be over the entire range of v.
Naturally, I(R) is the emission intensity. C(R) is also an integral
of the product of velocity and LOS density, which follows from
a simple transformation of variables (see Lazarian &
Esquivel 2003). For constant density, C(R) is just the LOS
velocity averaged over the LOS.

We also consider the velocity channel at v=0 here as a case
study. Mathematically, the density in PPV space of emitters
with local sonic speed ( ) g m=xc k Ts B MMW , where μMMW is
the mean molecular weight of the emitter, moving along the
LOS with stochastic turbulent velocity u(x) and regular
coherent velocity, e.g., the galactic shear velocity, vg(x), is

(Lazarian & Pogosyan 2004)
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where sky position is described by 2D vectorX=(x, y), z is
the LOS coordinate, γ is the adiabatic index, and S is the cloud
depth. Notice that cs would be a function of distance if the
emitter is not isothermal. Equation (13) is exact, including the
case when the temperature of emitters varies in space. The
observed velocity channel at velocity position v0 and channel
width Δv is then, assuming a constant velocity window
W(v)=1 and vg(x)=0,
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We shall deliver the method of computing the gradients of
velocity channel and use it as a probe of tracing magnetic
fields.

3.3. Velocity Gradient Technique

The VGT (see González-Casanova & Lazarian 2017) is an
innovative method that uses the properties of turbulence
anisotropy in MHD turbulence to probe the direction of
magnetic field. The basic idea is to obtain the magnetic field
predictions by rotating the output of the sub-block averaging of
the gradients of observables by 90° (Yuen & Lazarian 2017a),
which is supported by a number of theoretical and numerical
works (Goldreich & Sridhar 1995; Lazarian & Vishniac 1999;
Maron & Goldreich 2001; Cho & Lazarian 2002; Jungyeon &
Lazarian 2003) The VGT is applicable to velocity centroids
(González-Casanova & Lazarian 2017; Yuen & Lazarian
2017a), intensities (Yuen & Lazarian 2017a; Hu et al. 2019),
and also velocity channel maps (Lazarian & Yuen 2018a). The
same method is also migrated to synchrotron studies and
applicable to both synchrotron intensities (Lazarian et al. 2017)
and multifrequency synchrotron polarization (Lazarian & Yuen
2018b).
The gradients of the three observables (intensity, centroid,

velocity channel) we introduced in Section 3.2 would be
computed as follows. We would first compute the Sobel kernel
of the observables, which we would call the raw gradients. The
distribution histogram peak of raw gradients would provide us
with the predicted direction of magnetic field directions probed
by the gradients of observables, provided that the Gaussian
fitting requirement stated in Yuen & Lazarian (2017a) is
satisfied, which is called sub-block averaging in Yuen &
Lazarian (2017a). The 90° rotated gradients are our predicted
magnetic field directions by the gradients of observables. We
would not apply further improvements of the technique (e.g.,
Hu et al. 2018; Lazarian & Yuen 2018a) since these techniques
tend to straighten the estimated magnetic field lines.

8 Higher-order centroids are considered in Yuen & Lazarian (2017b), and
they have v n, e.g., with n=2, in the expression of the centroid. Such centroids
may have their own advantages. However, for the sake of simplicity we employ
for the rest of the paper n=1.
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3.4. Self-consistent Curvature and Torsion Obtaining Method
through Enumerating Lagrangian Particles

Computing curvature by Equation (2) is difficult since the
computation ofB·∇B does not often yield a vector parallel to
n̂ numerically. The reason is that the spatial derivative of
magnetic field is not guaranteed to have(B·∇B)·B=0. In
view of that, Yang et al. (2019) use the expression k =
∣ ˆ ( ˆ · ˆ )∣´ �B B B to extract the curvature-only part of magnetic
field. Below we discuss an algorithm that could possibly
bypass the problem with the cost of interpolation accuracy: we
treat the magnetic field as the velocity field of an imaginary
particle (see Section 2) and find the path integral in a
sufficiently small area, so that one could have a representation
of the “magnetic field line functionLB(t)” that has

( )
( ) ( )

= = =

= -

L r
L

B r r

t
d
dt

0 Spatial position of the pixel

. 15

B

B

0

0

Readers should be reminded that if we put = vLd
dt

B , then we are
effectively converting the Eulerian hydrodynamic variables to
the Lagrangian one, which is simply the standard Lagrangian
particle-tracking algorithm (see Ouellette et al. 2006; Xu et al.
2007).

We perform an integrator method that integrates Equation
(15) by the Runge-Kutta method (order 2/4/4.5 depending
on the accuracy requirement). See the Appendix for the
convergence test. We first impose an interpolation field so that
the magnetic vector fieldB(r) is well defined in a local patch of
the 3D real space Î D Ì �r L3 3. The interpolation is usually
performed using the family of splines to estimate values
between the grid points. Cubic spline is a popular option. The
interpolation could be done very easily through Julia’s
Interpolation package.9 Then, one could obtain the tangent
vector:

( ) ( )
∣ ( )∣

( )
�
�=T
L
L

t
t
t
. 16B

B

Following Equation (3), one could obtain both κ and τ very
easily.

The number of steps required for the integrator method is
explicitly dependent on how one expresses the differential
operator d

dt
. For instance, if one uses the 1D five-point stencil in

estimating the differentiation on the position vectorr(t) at time
t0 with some custom step size dt,
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then the number of points required in obtaining κ(t=t0) and
τ(t=t0) (see Section 8.1) at position t0 is 2×(5− 1)+
1=9 and 3×(5−1)+1=13 points, respectively. The
advantage of the current method is that we are sticking to the
definition of the Frenet–Serret frame based on the tangent of
the (magnetic field) line. The small dt will guarantee that the
integrated line would only be locally defined. The method is
valid for both 2D and 3D. However, readers should be

reminded that torsion is nonzero only when we are tackling a
3D line.
This method is very versatile since one could also compute

curvature of scalar structures, say, intensity map I, by
replacingB in Equation (15) with the gradients of I rotated
by 90°. This application is especially useful for the studies
based on the VGT since curvature is an important quantity
aside from orientation and amplitudes of gradients that
characterize the underlying magnetic field properties.
Readers should be reminded that, to compute curvature, one

must make sure the respective circle that has radius 1/κ could
be represented by the grid resolution. One caveat here is that it
is impossible to obtain curvature values larger than 0.5 (in units
of 1 pixel−1) since the respective circle with radius smaller than
2 pixels would not be resolved in the numerical grid.

4. Statistical Properties of Magnetic Field Curvature and
Torsion in 3D MHD Compressible Turbulence

The very first thing to start with would be to examine the
statistical properties of the curvature field. We shall discuss the
statistics through the simple tools like mean, standard
deviations, and histograms in both 3D and projected 2D spaces
and both along and perpendicular to the field lines. Previous
works that discuss curvatures are mainly focused on the
curvature of velocity fields (Braun et al. 2006; Ouellette &
Gollub 2007, 2008; Kadoch et al. 2011). The study of statistics
on magnetic field curvature is only recently done by Yang
(2019) by an incompressible equipartitioned magnetized
turbulence simulation. As commented in Section 2, we expect
that the statistical parameters would give us a dependence of
κ∝ gMA for some positive values of γ. For the reader’s
reference, we are expressing the values of κ as the function of
numerical pixels since there is an explicit upper bound for κ in
numerical simulations (see Section 3.4).

4.1. Curvature of 3D Magnetic Field

In 3D we do not need to employ the algorithm as listed in
Section 3.4 since it is straightforward to show ∣ ˆk = ´B
( ˆ · ˆ )∣�B B . Figure 1 shows how the 3D statistics would behave
as a function of the Alfvénic Mach number. Here we use the
mean and standard deviation as ways to extract simple statistics
(top panel and middle panel of Figure 1). From our theoretical
discussion (Section 2), we expect that statistically the magnetic
field curvature should be proportional to gMA for some constant
γ. From the top panel of Figure 1, we see a two-section power
law for ká ñ (in 1 pixel−1):

⎪

⎪

⎧
⎨
⎩ ( )ká ñ µ

<

.
M M

M M

1

1
, 18A

1.67
A

A
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A

with a turning point k ~ -0.15 pixel 1, while for standard
deviation of curvature, σκ (middle panel of Figure 1, in 1
pixel−1),

⎪
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⎧
⎨
⎩ ( )s µ
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k .
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M M

1

1
, 19A

1.67
A

A
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A

with a turning point k ~ -0.25 pixel 1. The fitting lines in
Equations (18) and (19) look surprisingly similar, with a9 https://github.com/JuliaMath/Interpolations.jl
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relatively high coefficient of determination of 0.9 or above.
These measurements are consistent with the theoretical
prediction in Section 2.2, with the coefficient α defined in

Section 2.2 to be

⎧
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which are fairly similar for these four cases. The split of the
power laws between MA�1 and MA<1 is also expected and
consistent with our findings in one of our previous works using
velocity gradients in probing magnetization (Lazarian et al.
2018) since there are different scaling laws below and above
MA.
We also employ the method of histogram tails since it was

suggested that f (κ)∼κ−2.5 in Yang et al. (2019). The bottom
panel of Figure 1 shows the power-law tail slope as a function
of MA. One could see that the slope power-law tail is actually a
function of MA. Our result (see Figure 2) should not be directly
compared to that in Yang et al. (2019), who have a general
slope of −2.5 since we are performing simulations for different
settings: (1) We are performing full 3D, compressible, driven
simulations, while Yang et al. perform 3D, incompressible,
decaying simulations. The compressible simulation allows one
to store energy in the two other compressible modes,
effectively reducing the curvature of magnetic field lines
driven by turbulence driving. (2) We are testing our theory
using the turbulence statistics, while the work of Yang et al. is
based on the formulation of the magnetic force term in the
Cauchy momentum equation (3). We tested the dependencies
of the histogram tail as a function of global Alfvénic Mach
number with multiple simulations, while Yang et al. (2019)
characterize the curvature as a distribution of local magnetic
field strength. Moreover, it is expected that the pdf of the
curvature should be a function of Alfvénic Mach number since
in a strongly magnetized medium we do not expect a large
variation of curvature values owing to the constraints of a
strong field, resulting in a relatively steep power-law tail in the
low MA limit. In the case of weak magnetic field, the allowed
values of curvature are less bounded by the magnetic field itself
compared to the strong-field cases, which would lead to an
extended pdf tail and a shallower slope.

Figure 1. Set of figures showing the mean value of curvature ká ñ (top), the standard
deviation of curvature σκ (middle), and the pdf power-law tail slope of the magnetic
field curvature κ (bottom)with respect to the Alfvénic Mach numberMA. Notice that
the power-law tail slope is expected to be negative; we are plotting its absolute value.

Figure 2. The pdf of curvature for the cube huge-0. We see a power-law tail
slope of 2.28 for this particular cube, which has a slightly smaller value than
the value recently seen in Yang et al. (2019) (2.5).
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4.2. 2D Magnetic Field Curvature Obtained in Synthetic
Observations

We would like to see whether the dependencies would be
seen in observation when we view the cloud parallel or
perpendicular to the LOS. Figure 3 shows how ká ñ, σκ, and the
slope of the pdf tail would respond as a function of MA when
we project the Stokes parameter perpendicular and parallel to
the mean magnetic field using the procedure laid out in
Section 3.

We immediately recognize that there are different behaviors
for the relation of ká ñ to MA in 2D and 3D. In 3D we have a
two-section power law that has a cutoff of MA=1. However,
such a power law is not seen in both cases of B⊥ LOS and
BPLOS. In fact, in the case of B⊥LOS we see that a uniform
power law describes the data better, which has ká ñ µ MA

1.17.
Nevertheless, it is shallower than the section of the power law
that we have in MA<1 in Section 4.1 yet steeper than the
other section of the power law that we have in MA>1. A very
similar effect also happens to σκ, that only a single power law
would be sufficient to describe the data here (s µk MA

1.39).
We also see that the previously seen power law disappears

when we project the magnetic field data along its mean field
direction, i.e., BPLOS. In this scenario both ká ñ and σκ are
more or less a constant of MA. This is expected since we should
only see the hydrodynamic nature of the magnetized turbulence
if we are observing it along its mean field direction. We see that
the value of ká ñ arrives at the maximum value allowed in the
curvature algorithm (see Section 3.4). This suggests that the
measured Alfvénic Mach number is actually the perpendicular
Mach number MA,perp=MA cos θ, where θ is the angle
between the mean magnetic field and the LOS.

In the case of the power-law tail slope of the pdf, we see that
there still exists a power law between the pdf slope and MA.
One interesting thing to note here is that the values of the
power-law tail slope actually become more disperse when the
synthetic maps are obtained by being projected perpendicular
to the mean magnetic field directions than those in 3D. When
we view the numerical cube with its mean field parallel to the
LOS, we also see that the pdf tail slope has different responses
as a function of MA compared to that when B⊥LOS. By using
these tools together, it is possible to extract the Alfvénic Mach
number in the range of MAä(0.2, 1.7).

5. Relation of Gradient Curvature, Magnetic Field Line
Curvature, and Magnetization

Aside from the curvature of magnetic field lines, we could
also apply the curvature technique to a method that could
potentially trace magnetic field lines. The VGT (Yuen &
Lazarian 2017a, 2017b; Lazarian & Yuen 2018a) is a very
powerful technique in probing magnetic field using gradient
statistics of turbulence observables. Theoretically for a local
magnetic fieldB we expect the term B·∇v to be statistically
zero as long as the area of sampling is large enough, which is
shown in the series of VGT literature. Under the framework of
curvature, we expect to see that the curvature of velocity
gradients would be statistically comparable to that of magnetic
field curvature. Since we are down-sampling the data with the
sub-block averaging (Yuen & Lazarian 2017a), the pdf would
not have enough sample to plot even with the smallest block
size allowed. As a result, we omit discussion on the pdf tail
slope in the sections that involve the block averaging. Here we

select a block size of 72 pixels as a case study of how well
gradient curvature could represent magnetization.
We show the curvature of magnetic field as probed by the

VGT in Figure 4. Notice that the gradient method in the recipe
of Yuen & Lazarian (2017a) would introduce natural disper-
sion, which has been discussed also in Lazarian et al. (2018). In
the concept of curvature, that means that the minimum
curvature attained by gradients of these observables is not
zero, which has been reflected as the “base” of the top-base
method in Lazarian et al. (2018). With enough resolution in
simulation and statistically sufficient block-sampling, this
minimum curvature would eventually go to zero.
While there are different dependencies of the statistical

measures, there are few interesting properties in Figure 4 that
are consistent with previous sections or works on VGT. For
instance, there is a generally growing trend for both ká ñ and σκ
when MA increases, which suggests that the gradients of these
observables are indeed correlated to the magnetic field
curvature. Counting the factor of nonzero minimum curvature
for gradients, it is possible to correlate the curvature of
gradients of observables to the curvature of magnetic field.
Second, it is very apparent that the curvature of intensity
gradients is significantly larger than that of the velocity
centroid and channel gradients, especially in the case of
MA<1. This is consistent with the previous VGT finding that
centroids are generally better than intensity gradients (Yuen &
Lazarian 2017a, 2017b), channels are even better in represent-
ing the magnetic field structure compared to centroids and
intensity gradients (Lazarian et al. 2018; Hu et al. 2018), and
also intensity gradients are affected by shocks and self-gravity
(Yuen & Lazarian 2017b; Hu et al. 2019). Third, there is a
significant flattening of both ká ñ and σκ of all three observables
as MA�1. This is because the turbulent scalings are different
in the case of MA<1 and MA>1 (see Lazarian 2006 for a
summary of them).

6. Contribution of Different Modes toward Curvature of
Gradients

The concept of MHD modes is crucial in understanding the
geometry of magnetic field lines in interstellar media. In
compressible turbulence it is found numerically that Alfvén
modes dominate. In the case of 3D MHD compressible
turbulence with the mean field being a straight line, the Alfvén
mode is believed to be divergence free (Cho & Lazarian 2002;
Jungyeon & Lazarian 2003; Lazarian 2006; see also
Sections 8.2 and 8.3 for an alternative discussion). The two
compressible modes could then be represented by linear
combinations of the so-called parallel (to the local magnetic
field; see Section 2.1) and perpendicular components of a
wavevector. Under this assumption, Jungyeon & Lazarian
(2003) developed a technique in obtaining the unit vectors of
the three MHD modes and tested the expected dependence
theoretically derived in Goldreich & Sridhar (1995) that
& µ ^k k2 3. One of the very important discoveries from
Jungyeon & Lazarian (2003) is that there is little interference
between the incompressible Alfvén modes and the compres-
sible slow and fast modes during the whole simulations,
suggesting that the coupling between Alfvén and other modes
is weak. The incompressibility of Alfvén mode also suggests
that the only way to store energy into Alfvén mode is to bend it,
i.e., introduce curvature to it. While it is also possible to bend
the other two modes, the compressibility of these modes acts as
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Figure 3. Plot of ká ñ (top row), σκ (middle row), and (absolute value of) the slope of the pdf tail (bottom row) as functions of MA when we project the numerical cube
perpendicular to the magnetic field (left column) and parallel to the magnetic field (right column). We provide the slope of the fitting line for each panel.
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a spring that can absorb energy when bending them. Therefore,
it is obvious that Alfvén mode would store much more energy
due to curvature than the other two modes. Combined with the
fact that Alfvén modes dominate over the two other modes, we
expect that the curvature would be mostly contributed by the
Alfvén modes. Below we shall examine the velocity gradient
curvature induced by different modes as a function of Alfvénic
Mach number.

The mode decomposition method for single-fluid polytropic
MHD turbulence is described in Cho & Lazarian (2002) and
further elaborated in Jungyeon & Lazarian (2003). The three
MHD modes, namely, the Alfvén, slow, and fast modes, can be
decomposed in Fourier space with respect to the local mean
magnetic fieldB0 by
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These unit vectors are mutually orthogonal and span over R3.
The decomposition is valid when the physical scale is larger
than the first decoupling scale kdecl.,ni as neutrals and ions can
be considered to be one comoving species instead of two (see
Xu et al. 2015, 2016). The decomposition starts to become
physically unjustified as between the two decoupling scales
kdecl.,ni=γdρi<γdρn=kdecl.,in there are three more damping
modes for the two velocitiesvi,n that characterize the two-fluid
partially coupling MHD equations. In our case we are mostly in
the diffuse ISM regime; therefore, we could stick with the
single-fluid mode decomposition for the rest of the current
section.
The LOS component of the three modes is projected

perpendicularly, so that we would not be interfered by the
LOS effect (see Section 4). The projection is effectively
computing the velocity centroid of these three modes assuming
the density as a constant. The assumption is necessary since the
density fluctuation corresponding to Alfvén mode is zero, but
this is not the case for the slow and fast modes. For a fair
comparison we only consider their velocity fluctuations and see

Figure 4. Four panels showing how the curvature of intensity gradients (red), velocity centroid gradients (orange), and velocity channel with v=0 (blue) are related
to MS under three statistical parameters ká ñ (left column) and σκ (right column) for both B⊥LOS (top row) and BPLOS (bottom row). See Section 3.2 for the
definition of the observables.
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how the three modes would behave. In this scenario we find
that a block size of 18 pixels would fulfill the block-averaging
condition (Yuen & Lazarian 2017a).

Figure 5 shows how ká ñ and σκ of the gradients of Alfvén
(blue), slow (orange), and fast (green) modes behave as a
function of MA. We also provide the fitting line for the Alfvén
mode, which is a more apparent power-law relation in these
two figures. We can immediately see a few things from these
figures. First, the result from Figure 5 shows that Alfvén mode
indeed has a higher curvature value compared to the other two
modes, with the only exception being the MA=0.2 case
(huge-0). The reason for the latter is that in the case of very low
β the compression perpendicular to the LOS is simply much
stronger. As a result, one could see dominance of fast modes
that would be almost Pk⊥ in the case of MA=0.2 since the
respective β value is=1 (see Table 1 and also the Appendix of
Jungyeon & Lazarian 2003). Another thing that we see from
Figure 5 is that, while there is no apparent power-law fit that
could be found between both ká ñ and σκ to MA for the two
compressible modes, there exists a nicely fit power law for
Alfvén mode to MA but with a much flatter slope, contrary to
the absence of power law in what we see from Section 5. The
filtering of slow and fast modes is well known to improve
hunting of anisotropy (Kowal & Lazarian 2010) and also
performance of the VGT (Lazarian et al. 2017, 2018). The
existence of the power law on Alfvén modes to MA would
indicate that the magnetization could be estimated if the
compressible modes are filtered.

7. Application to Observational Data

We test our method in Section 4 in the recently available
Planck data (Planck Collaboration et al. 2018). We use the
353 GHz full-sky map (R3.01) and obtain the polarization
angle f=0.5atan2(U/Q) from the data. We then compute the
circular dispersion of polarization angles δf and the curvature
quantities ká ñ and σκ as proposed in Section 4. They are all
computed in a block size of 4.17 deg2. Since these three
parameters all increase with MA, we could see whether the
approach employing curvature is useful. We do this by
comparing the spatial correlation of the curvature statistics to
that of the dispersion of angles.

Figure 6 shows how these parameters are distributed in the
full sky. One could see visually that these three methods are
spatially correlated. In the following we employ the normalized
cross-correlation function (NCC) NCC(a, b)=Cov(a, b)/σaσb,

Figure 5. Two panels showing how ká ñ and σκ of the gradients of Alfvén (blue), slow (orange), and fast (green) modes behave as a function of MA. We also provide
the fitting line for the Alfvén mode, which is a more apparent power-law relation in these two panels.

Figure 6. Three panels showing the dispersion of angles δf (Chandrasekhar &
Fermi 1953; top panel) and the mean ká ñ and dispersion of curvature σκ method
(middle and bottom panels; Section 4) with a block size of 4.17 deg2. The color
scale is set such that a lighter color indicates a larger value of that quantity and
scales up within one standard deviation.
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where Cov is the covariance function, as a tool to compare the
similarity of the two 2D maps. The NCC has a range of [−1, 1],
with NCC>0 meaning that the two maps have positive
correlation and vice versa. We compute the NCC function
between the dispersion of angles to both mean ká ñ and dispersion
of curvature σκ and see that

( )
( ) ( )
df k
df s

á ñ ~
~k

NCC
NCC

, 0.63
, 0.76. 22

We would also compare the two measurements locally. We
know that δf∝MA, and from Section 4.2 we know that
ká ñ µ MA

1.17 and s µk MA
1.39. Therefore, we expect k dfá ñ µ 1.17

and σκ∝δf1.39. Figure 7 shows how the scatter plot of ká ñ
(left) and σκ (right) behaves with respect to δf. We added the
trends as predicted in Section 4.2 and see that the trend lines in
both figures predict the shape of both scatter plots when
δf<0.2, which is consistent with the numerical exploration in
Section 4.2. For δf>0.2 rad∼11°.4, both figures have a
significant deviation from the curvature statistics. However,
generally both ká ñ and σκ have a positive relation to δf. This
shows that the statistical measure of κ is a valid measurement
of magnetization.

8. Discussion

8.1. The Use of Torsion in Studying Magnetic Field

Aside from curvature, torsion is also a very important
geometric quantity for the magnetic field. While the use of
torsion is less popular in literature, we should not underestimate
the importance of torsion since it records how sharply the
magnetic field lines twist out of the plane of curvature. The
concept of torsion is especially useful when we are dealing with
the natural oscillation modes in magnetized turbulence, namely,
the fast, slow, and Alfvénic modes (see Biskamp 2003; Jungyeon
& Lazarian 2003). In fact, when a magnetic field mode is

propagating along some directions, the speed of rotation of the
eddy that is along the azimuthal direction of the propagating
directions records the torsion of the mode. The signature of
magnetic field rotates when propagating is especially important
when we are studying modes in MHD turbulence.
Curvature and torsion could be easily visualized when the

magnetic field lines have some special geometry. For instance,
if the magnetic field line could be parameterized by a circular
helix ( ) ( ( ) ( ) )=L t a t a t btcos , sin ,B , then the curvature and
torsion of this magnetic field line are simply k = +a a b2 2

and t = +b a b2 2 , respectively. From Equation (2) we
could have a formula for the signed torsion:

ˆ · ˆ ( )t = b
dn
ds
. 23

The estimation of curvature and torsion would also be very
important in advancing the VGT since essentially Equation (2)
describes the behavior of first three derivatives of the
orientation of magnetic fields. In the VGT we approximated
t̂ by block averaging (Yuen & Lazarian 2017a). The curvature
could be possibly approximated by the magnetization techni-
que by Lazarian et al. (2018) with Figure 1 in 3D or Figure 3 in
2D. Numerically if we know both the tangent and curvature, we
could then solve the magnetic field line equation by
Equation (2) and Equation (15). By studying the properties
of the torsion field, we would know what the second derivative
of the orientation of magnetic field would look like, and that
would provide us with a geometrically more plausible way of
reconstructing the magnetic field directions.

8.2. Divergence of Alfvén Mode

One of the very important applications of the Frenet–Serret
frame derived from the magnetic field line is to recognize how
the three MHD modes are related to the curvature and torsion

Figure 7. Two panels showing the scatter plot of ká ñ−δf (left) and σκ−δf (right) using the 353 Ghz Planck Polarization data at a block size of 4.17 deg2. The two
trend lines are added according to the prediction in Section 4.2.
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of magnetic lines. Below we shall discuss how the three MHD
modes would be related to the local Frenet–Serret frame of
magnetic field by the theory of MHD turbulence (Goldreich &
Sridhar 1995; Lazarian & Vishniac 1999). In the case of
Jungyeon & Lazarian (2003) decomposition the mean field has
to be locally a straight line.10 In this scenario there is an
ambiguity in defining the directions of both n̂ and b̂. One could
simply assign the Alfvén wave unit vector to be along one of
these directions. However, in the case of a mean magnetic field
with nonzero curvature, the effect of frame changes in the local
regions has to be taken into account, and we have to drop some
assumptions that were valid in usual compressible 3D
magnetized turbulence. For instance, the assumption that
Alfvén mode is divergence free is not correct when the local
mean field has nonzero curvature. Southwood & Saunders
(1985) propose that the Alfvén mode has a nonzero divergence
related to the curvature of the mean magnetic field:

· ˆ ˆ · ˆ ( )z kz� ~ n, 24A A

where ẑA is the Alfvén mode unit displacement vector.
Following Southwood & Saunders (1985), there is a source
term for the slow wave equation to be proportional to ˆ · ˆkz nA ,
while the Alfvén mode wave equation has a similar term that is

ˆkµ n. Physically the bent magnetic field would induce a change
of fluid element volume toward the center of curvature, whose
size is proportional to κ. As a result, the plasma pressure due to
the compression of volume is changed under this magnetic field
geometry, which would drive the slow mode to oscillate along
with the azimuthal direction of Alfvén mode. However, the
Alfvén mode in this situation is no longer solenoidal (see
Equation (23) or Figure 3 of Southwood & Saunders 1985),
which is different from the case when we perform mode
decomposition with a mean field with κ=0 (see Jungyeon &
Lazarian 2003 for a discussion of MHD modes). Unlike
Jungyeon & Lazarian (2003), where the mean magnetic field
was approximated by a straight line, the study in Southwood &
Saunders (1985) points out that in the presence of uniform
nonzero curvature magnetic field the transfer of energy
between Alfvén and slow modes increases. This effect is,
however, reduced by the Alfvénic cascade happening in one
eddy turnover time, which makes the effect important only
when the curvature is comparable to the wavenumber of the
perturbations under consideration.

8.3. The Picture of MHD Modes under Strongly Curved
Magnetic Field

Equation (24) suggests that the Alfvén mode wavevector,
which lies on the plane spanned by the normal and the
binormal vector, would rotate as a function of curvature with
its rotation axis aligned with the tangent vectort=B0.
Equation (24) suggests that if λ⊥ is the perpendicular

wavelength and ( ˆ · ˆ)f = - k bcosk
1 , then the angle of rotation

fA of the Alfvén mode with respect to the tangent vector is
given by

( )f
f

l k
~

^
cos

cos
. 25k

A

Therefore, for a magnetized turbulent system with a nonzero
mean magnetic field curvature, one could (1) compute the
components of wavevector with respect to the Frenet–Serret
frame, (2) compute the orientation of MHD modes according to
Jungyeon & Lazarian (2003) and represent these eigenvectors
by the Frenet–Serret frame, and (3) rotate the three MHD mode
vectors with the rotation matrix (ˆ )fR t , A , where t̂ is the rotation
axis. This method allows one to use the formulation of
Jungyeon & Lazarian (2003) to compute the MHD modes.

8.4. Importance of Gravity to Magnetic Field

The important insight of increasing coherent coupling
between Alfvén and slow modes in the presence of nonzero
curvature mean field suggests that using the concept of modes
in systems that have nonzero mean magnetic field curvature
should be done with caution. In Section 2, we see that the
curvature naturally introduces a length scale related to the
radius of curvature rc=κ−1. Above the aforementioned length
scale Alfvén and slow modes are coupled, while below that
they act independently. In the case that there are no external
forces holding the magnetic field, the magnetic field curvature
would restore to infinity, so that the magnetic field will become
a straight line when the magnetic energy from the curvature is
all transferred to the dissipation of Alfvén and slow modes.
However, in real astrophysical scenarios, there are external

forces that can keep magnetic fields bent. One of the best
examples would be self-gravity. It is shown observationally by
Li et al. (2015) that the curvature of magnetic field could be
used in estimating the magnetic field strength on a self-similar
molecular cloud, suggesting that the curvature of magnetic field
does not dissipate to Alfvén and slow mode driving in a self-
gravitating system. In fact, it is easy to imagine that the
gravitational field provides support for the curvature of
magnetic field. Following Li et al. (2015), for a spherical
self-gravitating object of constant density ρ, radius R, and mean
magnetic field strength B, along the normal direction of
magnetic field,

( )p
r~

B
R

G R
4
3

, 26
2

2

for which one would have κ (vAtff)∼1, where tff∼(Gρ)−1/2

is the freefall time. When rc=κ−1?vAtff, magnetic field
dominates over gravity, and vice versa. This suggests that
curvature could be supported by gravity if Equation (26) is
satisfied.
Under the scenario that κ(vAtff)∼1, the gravitational energy

would become the primary energy source in driving both (non-
incompressible) Alfvén and slow waves. When the density of
the self-gravitating object increases, it is expected to have a
runoff effect by having a larger curvature and a much stronger
coupling between the Alfvén and slow modes. Moreover, the
dependence of curvature on magnetic field changes from
κ∝B−2 in nongravitating systems to κ∝ρB−1 in self-
gravitating systems.

10 The “locality” issue in Jungyeon & Lazarian (2003) is hard to implement in
numerical simulations. In theory, if one could sample a small enough space in
the turbulence cube provided that the space has enough resolution for the
Fourier transform, the locality could be obtained within that small enough
space, which is the essence of the Jungyeon & Lazarian (2003) decomposition.
However, due to the restrictions of resolutions, the statistics of a very small
region in numerical simulations are dominated by dissipations. Kowal &
Lazarian (2010) later use the method of wavelets to localize the Jungyeon &
Lazarian (2003) formalism.
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9. Conclusions

The use of geometrical properties of magnetic field lines and
interaction with magnetized turbulence would help us both
advance the theory of MHD turbulence and also introduce
ways to study magnetic fields in observation. In this work, we
explore the statistical properties of magnetic field line curvature
κ in compressible magnetized turbulence. To summarize:

1. We propose an algorithm in computing the curvature of
both gradients of a scalar field and a vector field
(Section 3.4).

2. We study the mean value and the standard deviation of
magnetic field line curvature and identify the power-law
relation of the two quantities with the magnetization
(Section 4.2).

3. We also obtain the power-law relation of the spectral
index of the histogram of curvature with the Alfvénic
Mach number (Section 4.2).

4. The power laws can also be seen in observation with the
exception of degenerate cases when mean magnetic field is
either parallel or perpendicular to the LOS (Section 4.2).

5. The curvature method can be used in advancing the VGT
and predicts the magnetization based on the gradients of
observables (Section 5).

6. The MHD mode analysis shows that Alfvén mode is the
dominant curvature contribution toward the magnetic
field lines traced by velocity gradients (Section 6).

7. We test our prediction of power law in Section 4.2 in
observation and see the same relation of κ to δf when the
latter is small (Section 7).

8. We discuss the modifications of the physics of Alfvén
modes when the background magnetic field has sig-
nificant curvature (Section 8.2).

K.H.Y. acknowledges Korea Astronomy and Space Science
Institute on 2018 November for hospitality in inspiring the
curvature algorithm. We acknowledge the support of NSF AST
1816234 and NASA TCAN 144AAG1967. A.L. thanks the
Center for Computational Astrophysics (CCA) for its hospi-
tality. This research used resources of both the Center for High
Throughput Computing (CHTC) at the University of Wiscon-
sin and the National Energy Research Scientific Computing
Center (NERSC), a U.S. Department of Energy Office of
Science User Facility operated under contract No. DE-AC02-
05CH11231, as allocated by TCAN 144AAG1967.

Appendix
The Convergence Test for the Curvature Algorithm

In this section we perform a convergence test and see
whether the algorithm that we developed in Section 3.4 would
converge as we change the only parameter dt in the algorithm.
We test a wide range of the step size, and Figure A1 shows the
value of curvature in four randomly drawn pixels in our
simulations as a function of step size. We can see that the
estimated curvature value is basically constant within the range
of the dt that we selected. We therefore believe that our method
of obtaining curvature is robust when an appropriate dt is
selected.

Figure A1. Plot showing how the curvature value for four randomly drawn pixels in the simulation huge-0 depends on the step size dt.
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