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Abstract

The recent development of the velocity gradient technique allows observers to map magnetic field orientations and
magnetization using the direction of velocity gradients. Aside from the directions, amplitudes of velocity gradients
also contain valuable information about the underlying properties of magnetohydrodynamic (MHD) turbulence. In
this paper, we explore what physical information is contained in the amplitudes of velocity gradients and discuss
how this information can be used to diagnose properties of turbulence in both diffuse and self-gravitating
interstellar media. We identify the relations between amplitudes of both intensity and velocity centroid gradients
and the sonic Mach number Ms, and they are consistent with the theory’s predictions. We test the robustness of the
method and discuss how to utilize the amplitudes of gradients into self-gravitating media. To extend the velocity
gradient technique, we also discuss the usage of amplitude method to position–position–velocity space as a
possible way to retrieve the velocity channel maps before the contamination of thermal broadening. We discuss
that the velocity gradient technique with these advancements could potentially give a significantly more accurate
statistical insight into the properties of magnetized turbulence.

Unified Astronomy Thesaurus concepts: Interstellar medium (847); Interstellar magnetic fields (845); Interstellar
dynamics (839)

1. Introduction

Turbulence is ubiquitous in astrophysical environments.
Magnetohydrodynamic (MHD) turbulence plays a very impor-
tant role in various astrophysical phenomena (see Larson 1981;
Armstrong et al. 1995; Biskamp 2003; Elmegreen & Scalo 2004;
Chepurnov & Lazarian 2010), including star formation (see Mac
Low & Klessen 2004; McKee & Ostriker 2007; Fissel et al.
2016), propagation and acceleration of cosmic rays (see
Jokipii 1966; Yan & Lazarian 2008), and regulating heat and
mass transport between different interstellar medium (ISM)
phases (Green 1993; Deshpande et al. 2000; Dickey et al. 2001;
Lazarian & Pogosyan 2004, 2006; Begum et al. 2006; Khalil
et al. 2006; Padoan et al. 2006 see Draine 2009 for the list of the
phases). Our understanding of MHD turbulence has been
significantly improved owing to the establishment of the
anisotropic scaling law (Goldreich & Sridhar 1995), the
quantitative description of turbulent reconnection that is part
and parcel of the MHD cascade (Lazarian & Vishniac 1999), and
numerical studies that tested the theoretical ideas (Cho &
Vishniac 2000; Maron & Goldreich 2001; Cho & Lazarian
2002, 2003; Kowal et al. 2009; Kowal & Lazarian 2010). A
detailed discussion of the present understanding of MHD
turbulence can be found in Beresnyak & Lazarian (2019).

Supported by the advancement of the MHD turbulence
theory, the idea of using spectroscopic velocity gradients to
trace magnetic field, namely, the velocity gradient technique
(VGT; González-Casanova & Lazarian 2017; Yuen &
Lazarian 2017a, 2017b; Lazarian & Yuen 2018a), was recently
proposed and applied to observation data including galactic H I
and self-gravitating molecular clouds. The recent development
of VGT allows the measurements of magnetic field orientations
by probing the peak of the velocity gradient orientation
histogram in a statistically well-sampled area (Yuen &
Lazarian 2017a). The orientations of velocity gradients are

taken into account for tracing the direction of magnetic field in
both diffuse (Yuen & Lazarian 2017a) and self-gravitating
media (Yuen & Lazarian 2017b; Lazarian & Yuen 2018a)
based on turbulence scaling with the concept of block
averaging (Yuen & Lazarian 2017a). The VGT has demon-
strated its capability to trace magnetic fields in different ISM
phases. Similar techniques based on the structures of turbulence
have also been developed previously (Esquivel & Lazarian
2005; Heyer et al. 2008, 2009), but the method of gradients was
shown to be better in comparison to them (Yuen et al. 2018). In
some regimes of turbulence (see Beresnyak et al. 2005; Kowal
et al. 2007), the turbulence velocity imprints its statistics on
density. In this situation, intensity gradients (IGs) can also be
used to trace magnetic field as shown in Lazarian & Yuen
(2018a). The combined used of VCG and IG can also provide
an extra physical gauge in both self-gravitating and shock
regions (Yuen & Lazarian 2017b) and has been applied
successfully to observational data (Hu et al. 2019b, 2019c).
We would like to note that the aforementioned IG technique,

which is an offshoot of velocity gradient research, should be
distinguished from the Histograms of Relative Orientation
(HRO) technique (Soler et al. 2013; Soler & Hennebelle 2017;
see also Hu et al. 2019a for a comparison between IG and
HRO). Unlike the IGs under the block-averaging approach in
Yuen & Lazarian (2017a), HRO is not a tool aimed at tracing
the directions of magnetic field but is used to study the relative
orientation of gradients and polarization statistically as a
function of the column density (see Hu et al. 2019a).
The previous works on gradient technique mostly focus on

the direction of the gradients of an observable (intensity,
centroid, velocity channel) within a statistical region of interest.
Recently, Lazarian et al. (2018) showed that the dispersion of
velocity gradients in a sampling block is related to the local
magnetization in the diffuse media. The statistics of gradient
amplitudes in the framework of VGT and IGs have been
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addressed in Yuen & Lazarian (2017b) when considering the
filtering of shocks in the statistical prediction of gradient
orientations. It was also suggested in Lazarian et al. (2018) that
amplitudes of gradients in a statistical region of interest could
possibly reflect the compressible nature of turbulence. How-
ever, a comprehensive discussion on the use of the gradient
amplitudes similar to that for gradient orientations (e.g.,
Lazarian & Yuen 2018a) and dispersions (Lazarian et al.
2018) does not exist.

This paper continues our study of the utility of the gradient
method in characterizing the physical properties of interstellar
turbulence. In particular, we focus on the statistical properties
of the gradient amplitudes of the observables. In this paper we
focus mostly on obtaining estimates of Ms using gradient
amplitudes, especially in the case of local interstellar media
where the isothermal condition holds. We first discuss the
theoretical expectations in Section 2, while our numerical setup
is described in Section 3. We analyze the gradient amplitudes
in Section 4 and discuss the robustness of the method in
Section 5. We discuss one of the very important applications of
the amplitude method that would allow removal of the thermal
contributions from the observed position–position–velocity
(PPV) cube in Section 7. We discuss our work in Section 8
and summarize our work in Section 9.

2. Statistics of Gradient Amplitudes Based on the Theory of
MHD Turbulence

In our previous works, we already discussed how the directions
(Lazarian & Yuen 2018a) and the dispersions (Lazarian et al.
2018) of gradients are related to the theoretical prediction of MHD
turbulence anisotropy (Goldreich & Sridhar 1995; Lazarian &
Vishniac 1999; Cho & Vishniac 2000; Maron & Goldreich 2001;
see Brandenburg & Lazarian 2013 for a review and Beresnyak &
Lazarian 2019 for a textbook). Readers can refer to our previous
works on how the statistically averaged parameters in MHD
turbulence are related to both gradient directions and dispersive
quantities. Since Goldreich & Sridhar (1995) is a statistical theory
describing the turbulence motion in the Eulerian frame, the
respective analysis in the framework of gradients should also be
performed statistically, either by obtaining averaged quantities
spatially, temporally, or over ensembles. One realization of this
statistical averaging is the sub-block averaging proposed in Yuen
& Lazarian (2017a). In this paper, we will mainly focus on the
prediction of the statistical properties of gradient amplitude based
on the MHD theory of Goldreich & Sridhar (1995). Note that in
the Goldreich & Sridhar (1995) framework Alfvén modes do not
contribute to density fluctuations, which we discuss in Section 2.3.

2.1. Incompressible Limit

Based on the theory of incompressible MHD turbulence
suggested by Goldreich & Sridhar (1995), the turbulent eddies
are elongated along the magnetic field direction. In the original
theory by Goldreich & Sridhar (1995) it is assumed that the
latter direction is to be mean field direction. However, in fact,
the turbulent eddies are aligned with the direction of local
magnetic field. This follows from the ability of turbulent eddies
to perform mixing motions that minimally bend magnetic
fields. This ability comes from turbulent reconnection (Lazarian
& Vishniac 1999) that allows magnetized turbulent eddies to
change the magnetic topology within one eddy turnover time.

This dynamics of magnetized eddies in the local reference frame
is proved numerically in Cho & Vishniac (2000) and Maron &
Goldreich (2001). The mixing motions of an eddy induce a
shearing force maximally perpendicular to the eddy’s rotational
axis. As this axis coincides with the local magnetic field
direction, the 90o-rotated gradient of the absolute value of the
eddy velocity aligns with the direction of magnetic field at the
location of the eddy.
The Goldreich & Sridhar (1995) theory was formulated

assuming that the turbulent injection velocity VL is equal to the
Alfvén velocity VA. This means that the Alfvénic Mach number
MA=VL/VA was assumed to be 1. Realistic astrophysical
settings present a variety of MA, and the theory covering
different magnetizations was formulated in Lazarian &
Vishniac (1999). Below we reproduce the expressions derived
there. For the case of sub-Alfvénic turbulence (Lazarian 2006),
we consider only the strong turbulence with the scale
= < =l k LM l1 A

2
tr since the weak turbulence usually

contains very limited spatial range unless MA=1. Then, the
velocity amplitude vl at scale l would be

⎛
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with Linj being the injection scale, while l̂ represents the
perpendicular (to magnetic field) length scale of the eddies.
Since eddies are anisotropic along the magnetic field directions,
we expect the gradients of velocities to be in the form of ^v ll
as � �l̂ l . As a result, we would have a prediction of the
velocity gradient amplitude of turbulence eddies of scale l:
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Similar expressions could be obtained in the case of super-
Alfvénic turbulence MA>1 in the incompressible limit. In the
case of super-Alfvénic turbulence, there is a transition scale

= -l LMA A
3. When the length scale l>lA, the eddy is isotropic

(i.e., &= =^l l l ), and the velocity gradient amplitude term
would simply be
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while in the case of < = -l l LMA A
3, the anisotropy of eddies

still exists and follows the magnetic field line. Hence, &<l̂ l
and

⎛
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In simulations, the parameters VL and Linj are given at the start
of the turbulence driving and stay constant under temporal
evolution. The three-dimensional velocity gradient amplitude is
the sum of velocity gradient amplitudes from eddies of
different scales, for which we would expect the smallest scale
permissible in the simulation to dominate. As a result, we
would have the simplified, easily memorable expression for the
amplitudes of velocity gradients that we would use throughout
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the whole paper:

( ) ( )� µ ^
-v l Mmin , 1 . 5l
2 3

A
1 3

In incompressible turbulence, there should have been no
density fluctuations δρ since Alfvén modes do not induce such
fluctuations. As a result, the density gradients are not
considered in the incompressible limit of MHD turbulence.

2.2. Compressible Turbulence

In the case of compressible turbulence, three MHD modes
arise, namely, the incompressible Alfvén mode and the two
compressible modes called fast and slow modes. For
magnetically dominated low-β media, fast modes arise from
the compression of magnetic field lines in its perpendicular
directions, while slow modes are compression along the
magnetic field lines. In the media dominated by gas pressure,
or high-β media, the fast modes are similar to sound waves and
slow modes are density perturbations propagating along
magnetic field directions. Cho & Lazarian (2002) showed that
the driving of compressible modes from Alfvén modes is
marginal, provided that either the external magnetic field or the
gas pressure is sufficiently high. Since the Alfvén mode
expressions are the same as what is derived above, below we
shall follow the framework of Cho & Lazarian (2003) in
deriving the relevant expressions of velocity and density
gradient amplitudes for the two compressible MHD modes.

The methodology in deriving the velocity gradient amplitude
∇vl for eddies of scale l here follows from two expressions:
(1) how the energy spectrum behaves, ( ) µ - -E k k p 1, or

( ) ~ µ ^E l v l lorl
p p2 for some p, and (2) whether the system is

anisotropic & µ ^l lq for some q. Then, the expected relation for
velocity gradient amplitude would be � ~ ^

-v ll
p 2 1 if q<1

and � ~ -v ll
p 2 1 otherwise. For instance, if we have the

Kolmogorov energy spectrum E(k)∼k−5/3, this would suggest
that ( )= ~v E l ll

2 2 3, thus having the same power law as in
Equation (1). Below we shall discuss the cases according to
the plasma beta b = M M2 SA

2 2, where MS=vL/cs is the sonic
Mach number and cs is the thermal speed.

If the turbulent flow is highly supersonic, a steeper velocity
spectral slope of −2 is consistently seen in the simulations
(Federrath et al. 2010; Kowal & Lazarian 2010) for all three
modes, suggesting that � µ -v ll,alf slow fast

1 2 in the highly
supersonic regime.

For slow modes in the high-β and mildly supersonic low-β
regime (MS<= 2.3 as defined in Cho & Lazarian 2003), the
velocity scaling relation follows completely from the Alfvén
mode case, as a result of the dependence of velocity gradient
amplitudes toward the length scale, and Mach numbers would
follow what we derived from the previous subsection, i.e.,
� µ -v ll,slow

2 3.
Fast modes do not have changes of the spectral behavior

with respect to β as long as Ms is mildly small. It follows a
spectrum of Ek∼k

−3/2 and isotropic in small scales k⊥=kP.
Therefore, we would expect the velocity gradient amplitude of
the fast mode eddies to follow � µ -v ll,fast

3 4.

2.3. Density Gradient Amplitudes for Slow and Fast Modes

The density of the eddies at Fourier scale k=1/l can also be
written as, following Cho & Lazarian (2003),

∣ ∣ ∣ ˆ · ˆ∣ ( )zr
r

= k
v

c
, 6k

k0

where ρ0 is the mean density, ẑ is the unit vector for the
respective mode as listed in the Appendix of Cho & Lazarian
(2003), and c is the respective sound speed for the MHD mode.
From here we can write the (three-dimensional) density
gradient amplitude as

F
⎛
⎝⎜

⎞
⎠⎟

∣ ∣ ( ∣ ˆ · ˆ∣) ( )z
r
r

r
r

� ~ ~ � - - k
l

v c , 7l l
l

0 0

1 1

where we still keep the dot product term in the Fourier space
with the inverse Fourier transform operator F-1 to remind the
reader that an inverse Fourier transform should be done after
the dot product (Cho & Lazarian 2003, 2006). One can observe
that the density gradient amplitude is simply the velocity
gradient amplitude multiplied by two extra terms: the dot
product term and the sound speed contribution. The dot product
term and the sound speed have been derived previously in Cho
& Lazarian (2003):
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2

The expectations of the dependence of mode gradient
amplitudes are summarized in Table 1. The exact relation of
how the velocity and density gradient amplitudes would be
related to different physical parameters are subject to the ratio
of the MHD modes in the environment. Cho & Lazarian (2002)
suggested that Alfvén modes are usually predominant in
interstellar media and fast modes are infinitesimal, suggesting
that we could possibly only look at the Alfvén mode and slow
mode dependence (Table 1) when considering the velocity and
density gradient amplitudes, respectively.

2.4. Observational Diagnostics for Gradient Amplitudes

Since we do not observe the three-dimensional velocity and
density gradient amplitudes in observation, it is necessary to
discuss how the observables, namely, the column density
(intensity) ò r=I dz, velocity centroid ò r=C v dz Iz , and
velocity channel maps, are expected to behave based on the
discussion in the previous subsections. In the following we
shall discuss first the intensity and centroid maps and postpone
the discussion of channel map gradients to later sections.

3
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2.4.1. Relationship between the Two-dimensional and Three-
dimensional Gradient Amplitude Quantities

We first assume that the mean magnetic field is on the plane
of sky and take the intensity gradient amplitude as an example.
The quantity ò r� = �I dz2D 2D suggests that (1) the semiminor
axis ł⊥ lines on the plane of sky suggest that r r� = �2D and
(2) the sign of the density gradient amplitudes along the line of
sight follows a random walk. Assuming we have N=Llos/Linj
eddies along the line of sight in the stage of the injection, we
would then have an estimation of intensity gradient amplitudes

( )r� µ �I L N , 92D inj

which suggests that the intensity gradient amplitude is
proportional to the density gradient amplitudes with extra
factors that would be a constant in time in simulations. If the
mean magnetic field makes an angle of θ to the line-of-sight
magnetic field, then there would be an extra qcos factor in
Equation (9) owing to the conversion of ∇2D to ∇3D, i.e.,

r q� µ �I cos2D . However, as shown in Yuen & Lazarian
(2020), the insertion of the qcos in compensating the effect
of line-of-sight angle is not correct. We can understand
the argument by considering a magnetic field line with an
inclination angle θ. Conceptually, the magnetic field contains
both the mean and the turbulent components, for which we can
assume that the latter is perpendicular to the mean field. In the
case when the mean field component is almost aligned with the
line of sight, the observed magnetic field would be contributed
mostly by the turbulent component of the magnetic field plus a
small contribution from the mean field. If it happens that the
Alfvénic Mach number is large enough, i.e., the turbulent-to-
mean magnetic field strength ratio is large, then the observed
magnetic field on the plane of sky is larger than the expected
strength computed by qB cos . The same argument applies to all
vector quantities, in particular, the intensity gradient amplitude
as in Equation (9). From a similar argument in, we see that such
an approximation formula in Equation (9) is correct only
when ( )q > - M4 tan 31

A .
The situation in velocity centroid is more complicated since

there are two terms upon differentiation. Esquivel & Lazarian
(2005) showed that the velocity centroid is a proper measure of
velocities. However, upon planar differentiation how the
density and velocity gradient terms would contribute relatively
is unknown and requires more substantial research. From
previous numerical work on VGT (Lazarian & Yuen 2018a), it
is apparent that the velocity weighting in the calculation of
velocity centroids increases the velocity nature in terms of the
structures, regardless of the normalization constant. Therefore,

we would expect the velocity centroid to be “more velocity
like” (see Kandel et al. 2017).
Velocity channels (Lazarian & Pogosyan 2000, 2004) are

even more complicated than velocity centroids because (1) the
decreased velocity channel width would then increase the
velocity weighting in the channel map and (2) the increase of
thermal broadening washes away the velocity nature in the
channel map. Both factors depend on the spectra of densities
and velocities, as well as the sonic Mach number of the
interstellar medium. It is expected that in the case of high sonic
Mach number, the shocks, together with the velocity ambient
map, would be more apparent in the velocity channel map
(Yuen & Lazarian 2017a; Lazarian & Yuen 2018a). A suitable
thermal deconvolution algorithm is required if sonic Mach
number is too low (see Section 7).

2.4.2. Proper Statistical Averaging in Observations

As discussed above, some sort of statistical averaging is
required to make the prediction of MHD theory (Table 1)
applicable. A straightforward statistical measure would be to
compute the mean and dispersion of the gradient amplitudes
within a large enough statistical sampling area. We take the case
of velocity gradient amplitude as an example since the respective
observables are directly proportional to the velocity gradient
amplitudes as shown in previous subsections. From Table 1 we
can safely assume � µv l Ma b

A for some number a, b. Given an
averaging volume V, the sonic and Alfvénic Mach numbers are
computed already. The mean and dispersion of velocity gradient
amplitude are simply the mean and the dispersion of the
respective length scale mean and dispersion times the relevant
Mach numbers, i.e.,

( )s sá� ñ µ á ñ ~�v l M M ; 10l l
a
l

b
v l

b
A Al

a

therefore, using these simple statistical quantities would allow
observers to trace the sonic and Alfvénic pre-factor, respectively.
As a summary of the current section, we derive the

incompressible three-dimensional velocity gradient amplitude
relation based on the MHD theory (Section 2.1). Based on that,
we further proceed in deriving the velocity gradient amplitude
relation for different modes in compressible turbulence
(Section 2.2), for which we found that the Alfvén mode would
be the dominant term in the gradient amplitudes of velocities.
The respective density gradient amplitude relations for slow
and fast modes are derived in Section 2.3, and we predict that
the slow modes would then dominate the fluctuation of density
gradient amplitudes. In Section 2.4 we connect the gradient
amplitudes of two-dimensional observables to the three-
dimensional counterparts and further show that the simple
statistical measures of intensity and velocity gradient ampli-
tudes would allow observers to measure the Mach numbers as
listed in Table 1. From our deviation in Table 1, it is apparently

Table 1
Predictions on the Dependence of Gradient Amplitudes as a Function of Length Scale l, Sonic Mach Number Ms, and Alfvénic Mach Number MA for Different

Regimes

�b <M1, 1s �b <M1, 1s Ms ? 1
Alfvén Mode Slow Mode Fast Mode Alfvén Mode Slow Mode Fast Mode All MHD Modes

∇vl ( )µ -l Mmin , 12 3
A
1 3 ∝l−2/3 ∝l−3/4 ( )µ -l Mmin , 12 3

A
1 3 ∝l−2/3 ∝l−3/4 ∝l−1/2

( )∣ ∣� r
r
l

0

N/A ∝l−2/3 Ms ∝l−3/4MA N/A µ -l M Ms
2 3 2

A µ -l Ms3 4 2 Follow Equation (8)
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easier to explore the relation between the gradient amplitude of
the observables and Ms since the dependence of the gradient
amplitude of the observables on MA is highly nonlinear and
mode dependent.

3. Method

The numerical data cubes are obtained by 3D MHD
simulations that are from a single-fluid, operator-split,
staggered-grid MHD Eulerian code ZEUS-MP/3D to set up a
three-dimensional, uniform turbulent medium. Most of our
simulations are isothermal with T=10 K, but some of them
are adiabatic by assuming P∝ρ5/3 to mimic the properties of
the warm neutral media (Kritsuk et al. 2017; see also the
Appendix). To simulate part of the interstellar cloud, periodic
boundary conditions are applied. We inject turbulence
solenoidally.3

For our controlling simulation parameters, various Alfvénic
Mach numbers =M V VA inj A and sonic Mach numbers
Ms=Vinj/Vs are employed,4 where Vinj is the injection
velocity, while VA and Vs are the Alfvén and sonic velocities,
respectively, which are listed in Table 2. For the case of
MA<Ms, it corresponds to the simulations of turbulent plasma
with thermal pressure smaller than the magnetic pressure, i.e.,
plasma with low confinement coefficient b = <V V2 1s

2
A
2 .

In contrast, the case MA>Ms corresponds to the magnetic-
pressure-dominated plasma with high confinement coefficient
β/2>1.

Further, we refer to the simulations in Table 2 by their model
name. For example, the figures with model name indicate
which data cube was used to plot the corresponding figure. The
selected ranges of Ms, MA, and β are determined by possible
scenarios of astrophysical turbulence from very subsonic to
supersonic cases.

The raw data from simulation cubes are converted to
synthetic maps for our gradient studies. The normalized
velocity centroid ( )RC in the simplest case5 is defined as

( ) ( )
( ) ( ) ( )

ò
ò

r

r

=

=

-R R

R R

C I v vdv

I v dv

, ,

, , 11

v

v

1

where ρv is density of the emitters in the PPV space, v is the
velocity component along the line of sight, and R is the 2D
vector in the pictorial plane. The integration is assumed to be
over the entire range of v. Naturally, I(R) is the emission
intensity. The C(R) is also an integral of the product of velocity
and line-of-sight density, which follows from a simple
transformation of variables (see Lazarian & Esquivel 2003).

For constant density, C(R) is just a velocity averaged over the
line of sight.

4. Gradient Amplitude Statistics in Numerical Simulations

Driven by the theoretical derivation from Section 2.3, it is
very natural to consider the quantity ( )� ¢ = � á ñI I I since the
corresponding density gradient amplitude is in the form

( )r r� á ñ , which is obtained by the Sobel kernel. The mean

Table 2
Description of MHD Simulation Cubes, Some of Which Have Been Used in
the Series of Papers about VGT (Yuen & Lazarian 2017a, 2017b; Lazarian &

Yuen 2018a, 2018b)

Model MS MA b = M M2 SA
2 2 Resolution

m0 5.73 0.22 0.0029 3603

m1 5.79 0.42 0.011 3603

m2 5.69 0.61 0.023 3603

m3 5.46 0.82 0.045 3603

m4 5.50 1.01 0.067 3603

m5 5.51 1.19 0.093 3603

m6 5.45 1.38 0.13 3603

m7 5.41 1.55 0.16 3603

m8 5.41 1.67 0.19 3603

m9 5.40 1.71 0.20 3603

Ms0.4Ma0.04 0.41 0.04 0.02 4803

Ms0.8Ma0.08 0.92 0.09 0.02 4803

Ms1.6Ma0.16 1.95 0.18 0.02 4803

Ms3.2Ma0.32 3.88 0.35 0.02 4803

Ms6.4Ma0.64 7.14 0.66 0.02 4803

Ms0.4Ma0.132 0.47 0.15 0.22 4803

Ms0.8Ma0.264 0.98 0.32 0.22 4803

Ms1.6Ma0.528 1.92 0.59 0.22 4803

Ms0.4Ma0.4 0.48 0.48 2.0 4803

Ms0.8Ma0.8 0.93 0.94 2.0 4803

Ms0.132Ma0.4 0.16 0.49 18 4803

Ms0.264Ma0.8 0.34 1.11 18 4803

Ms0.04Ma0.4 0.05 0.52 200 4803

Ms0.08Ma0.8 0.10 1.08 200 4803

huge-0 6.17 0.22 0.0025 7923

huge-1 5.65 0.42 0.011 7923

huge-2 5.81 0.61 0.022 7923

huge-3 5.66 0.82 0.042 7923

huge-4 5.62 1.01 0.065 7923

huge-5 5.63 1.19 0.089 7923

huge-6 5.70 1.38 0.12 7923

huge-7 5.56 1.55 0.16 7923

huge-8 5.50 1.67 0.18 7923

huge-9 5.39 1.71 0.20 7923

h0-1200 6.36 0.22 0.00049 12003

h9-1200 10.79 1.26 0.0068 12003

e5r2 0.13 1.57 292 12003

e5r3 0.61 0.52 1.45 12003

e6r3 5.45 0.24 0.0039 12003

e7r3 0.53 1.31 12.22 12003

h0-1600 5.56 0.20 0.0026 16003

Ms0.2Ma0.2 0.2 0.2 2 4803

Ms0.4Ma0.2 0.4 0.2 0.5 4803

Ms4.0Ma0.2 4.0 0.2 0.005 4803

Ms20.0Ma0.2 20.0 0.2 0.0002 4803

Note. Ms and MA are the rms values at each snapshot.3 These simulations are the Fourier-space forced driving isothermal simula-
tions. The choice of force stirring over the other popular choice of decaying
turbulence is because only the former will exhibit the full characteristics of
turbulence statistics (e.g., power law, turbulence anisotropy) extended from
k=2 to a dissipation scale of 12 pixels in a simulation, and it matches with
what we see in observations (e.g., Armstrong et al. 1995; Chepurnov &
Lazarian 2010).
4 For isothermal MHD simulation without gravity, the simulations are scale-
free. The two scale-free parameters MA, Ms determine all properties of the
numerical cubes, and the resultant simulation is universal in the inertial range.
That means that one can easily transform to whatever units as long as the
dimensionless parameters MA, Ms are not changed.
5 Higher-order centroids are considered in Yuen & Lazarian (2017b), and
they have v n, e.g., with n=2, in the expression of the centroid. Such centroids
may have their own advantages. However, for the sake of simplicity we employ
for the rest of the paper n=1.
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μ and dispersion σ are then defined as

∣ ∣
∣ ∣ ( )

m
s m
=á � ¢ ñ

= á � ¢ ñ -

I

I , 122 2

for which we would compute the average over the whole
intensity map. Notice that the gradient amplitudes have an
inverse dependence on the length, for which in our code unit
each ∇ operator is multiplied by a factor of nx/10 pc, where nx
is the resolution of the cubes.

We will first illustrate visually how the structures of gradient
amplitudes are correlated with the dimensionless physical
parameters. Figure 1 shows how ∣ ∣� ¢I and ∣ ∣�C behave when
Ms (left column) and MA (right column) change by keeping the
other parameter approximately constant. The color scale in
Figure 1 is set so that the darkest color always corresponds to
μ−σ and the lightest color always corresponds to μ+σ. One
could see that the structure of both gradient amplitudes
becomes spatially thinner as Ms increases. We would then
expect there to exist some correlation between ∣ ∣� ¢I and ∣ ∣�C
with respect to the sonic Mach number Ms. Comparatively, the
gradient amplitude maps for both intensity and centroid maps
do not vary much in terms of the spatial width of the structures
with respect to MA.

Following the deviations from Section 2.3, we would expect
the slow mode to dominate the intensity gradient amplitudes.

As a result, � ¢ µI Ms for β<1 andµMs
2 for β>1, where we

temporarily suppress the relation to MA and the mode weights
here. The left panel of Figure 2 shows the intensity gradient
amplitude ( )� ¢ = � á ñI I I as a function of the sonic Mach
number Ms using the 45 isothermal simulations with different
resolutions as we listed in Table 2. These data are prepared so
that they contain variations of Ms and MA. The variations are
introduced since we would like to see how strongly the one
parameter would interfere with the power-law behavior that we
are seeking when we are comparing the s� ¢I to the other
parameter. We draw two auxiliary lines showing our predicted
power laws from Table 1; one corresponds to the regime where
� ¢ µI Ms when �b 1, while the other one corresponds to the
regime with � ¢ µI Ms

2 when b l ¥. We could visually see
that the theoretical expectation fairly fits the simulation data.
Statistically both the part withµMs and the part withµMs

2 have
coefficients of determination of ∼0.89 and 0.96, respectively.
Readers should keep in mind that the deviations listed in

Table 1 correspond to the extreme cases of β only. It is natural
to have a different transitional power law when β∼1, as
readers might be able to spot that already in the left panel of
Figure 2. In fact, the intermediate regime has not been
theoretically studied either in the framework of MHD
turbulence, but it has very important astrophysical importance
since observationally clouds with, e.g., Ms∼MA∼1 are not
rare in lukewarm neutral media (despite that they have different

Figure 1. Visual illustrations of howMs (left column) andMA (right column) change gradients of intensities and gradients of centroids, i.e., ∣ ∣�I , ∣ ∣�C , which we study
here. The color bar scales are the same for all plots, that the darkest color corresponds to the mean value minus the standard variation of the respective map, while the
lightest color corresponds to the mean value plus the standard variation.
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thermal properties) or in the case of collapsing core (despite
that gravity enhances the generation of growing slow and fast
modes). Studies of gradient amplitudes in the intermediate
regimes should be combined with the more popular tools like
the N-PDF method (Burkhart & Lazarian 2012; Konstandin
et al. 2012) for better accuracy.

The theory also expects variations due to the different
weighting of MHD modes as β changes. For instance, in the
case of �b 1 and small Ms, slow modes would contribute to
the 3D density gradient amplitude as µ -l Ms2 3 , while that of
fast modes as µ -l M3 4

A. Similarly in the case of �b 1 and
small Ms, the corresponding power law is µ -l M Ms

2 3 2
A and

µ -l Ms3 4 2, respectively, for slow and fast modes. When Ms is
large, we expect to have no spatial dependence l in the power
law. From Table 1 we see that (1) the Alfvén modes do not
introduce any density fluctuations, so we can neglect it for the
time being; (2) the contribution of slow modes to �I is∝Ms;
(3) the contribution of fast modes to ∇I is∝MA; and (4) the
relative slow-to-fast mode energy ratio in our simulations with
random driving at β<1 is roughly 3:1. With these factors
taken into account, we can see that MA is inevitably
contributing to both σ∇I and σ∇C depending on the weighting
of fast modes. Yet from the same argument, we see that the fast
modes are subdominant in all of our simulations. In this
scenario we expect that the slow-mode dependence (i.e., ∝Ms)
would dominate over that of fast modes. The nonlinear effect
that MA has in the power law might affect the prediction of Ms
using Table 1. In view of that, we prepared the two subsets of
data “m0-m9” and “huge-0-huge-9,” which carry fairly close
Ms but a wide range of MA, to see how MA would change the
predictions in Table 1. We divide standard variations of � ¢I of
these two sets of data and compare to the mean value of them,
and we find that the standard deviation accounts for 14% and
6% only for the sets “m0-m9” and “huge-0-huge-9,”
respectively. Thus, we believe that MA would be a less
important factor compared toMs as in the left panel of Figure 2.

We showed in Section 2.4 that the centroid gradient
amplitude is not the ideal variable in obtaining the sonic Mach
number owing to the composite product of density and
velocity, making it difficult to isolate the effect of density
from velocities in centroids. It would still be interesting to see

how the centroid gradient amplitude would behave as a
function of sonic Mach number. Here we would expect that the
velocity centroid would follow a power law to be an
undetermined mixture of density and velocity power law as
predicted from Table 1. As we see from Section 2.1, the three-
dimensional velocity gradient amplitude relation (see, e.g.,
Equation (2)) does not carry a factor of Ms, meaning that the
resultant centroid gradient amplitude term would solely come
from the density contribution.
In the computation of velocity centroid, we would simply

compute ( ( ) )s = á � ñ - á� ñ� C CC
2 2 1 2 instead of computing

the ⟨ ⟩/s�C C , since velocity terms do not require such a
normalization as shown in Section 2. In the right panel of
Figure 2 we show the variations of s�C as a function of Ms.
Due to the cumulative contribution of density and velocity
terms, it is expected to have some power law that deviates from
Ms or Ms

2. We can see that while the blue points are generally
following the µMs power law, the red data points exhibit a
more scattered pattern. Yet the centroid gradient amplitude is
shown to suffer from lesser influences from the line-of-sight
angle effects, which we will discuss in Section 5.1.

5. Robustness of the Methods

5.1. The Angle between Magnetic Field and Line of Sight

In Section 2.4 we expect that the angle between the mean
magnetic field and the line of sight would also be an important
factor in affecting the computed gradient amplitude. While the
turbulent eddies are anisotropic following the theoretical
prediction in Goldreich & Sridhar (1995), it is shown (Burkhart
et al. 2014; Yuen et al. 2018) that the correlation function
anisotropy of velocity centroids drops significantly from
anisotropic to merely isotropic as the relative angle θ between
the mean magnetic field á ñB and the line-of-sight directions
decreases. Readers should be careful that the study performed
in Section 4 has a mean magnetic field perpendicular to the line
of sight, i.e., q = n90 .
To characterize how the relative angle θ would change the

result in Figure 2, we consider the following quantity that

Figure 2. Intensity gradient amplitude ( )� ¢ = � á ñI I I (left) and centroid gradient amplitude ∇C (right) as a function of the sonic Mach number Ms. Due to the
prediction in Table 1, we show the data with β>1 in blue and those with β<1 in red. We also draw two auxiliary lines (green: ∝Ms; black: µMs

2) showing our
predicted power laws.
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records the fractional change when we vary the θ:

( ) ( )
( )

( )s q s q
s q

=
- = n

= n
X

90
90

, 13

which evaluates the relative changes of the dispersion
compared to the value we have in Figure 2. If the quantity X
is small for � ¢I and �C and is not a function of Ms (see
Section 2.4), then we expect that the shape of Figure 2 should
remain unchanged. The left and right panels of Figure 3 show
how the fractional change is correlated to the relative angle θ
for our simulations for intensity gradient amplitude dispersion
s� ¢I and centroid gradient amplitude dispersion s�C, respec-
tively. We can see that the fractional change is generally on the
order of 0.1 and has no visually recognizable trend as a
function of Ms. With these fluctuations we reported that the
power law that we see in Figure 2 with q = n90 is still seen for
other choices of θ. From the argument above, we therefore
conclude that the effect of θ on the power law that we discussed
in Figure 2 is not significant.

5.2. Test on the Noise Sensitivity

One of the biggest potential discrepancies of the gradient
amplitude method is the noise. In the previous development of
VGT, the noise is tackled by either a global Gaussian kernel or
a low-pass Fourier filter (see Lazarian et al. 2017). For the
purpose of tackling the orientation of gradients these methods
worked well and have been applied to observations (e.g., Hu
et al. 2019b, 2019c). We here would like to test whether the
same strategy works for the gradient amplitude method.

We pick the intensity map of the cube “h0-1600” as an
example. We gradually add a Gaussian-model white noise to
the intensity map with the strength set to be some factor relative
to the dispersion of the intensity map. The strength of the noise
compared to the dispersion of the intensity map is simply the
noise-to-signal ratio (N/S). Since a general practice in
observation is to exempt data that have <S N 3, we would
therefore only keep adding white noise up to <N S 1 3. We
would then smooth with Gaussian filters with different width

sG in units of pixels. Figure 4 shows how the s� ¢I responds to
the noise levels as we change the size of the Gaussian filter. We
could see that when sG arrives at 4 pixels, there are simply no
recognizable fluctuations for s� ¢I as N/S increases. We
therefore believe that noise would not be a concern for the
intensity gradient amplitude method.

6. Determining the Stage of Collapse Using the Gradient
Amplitude Statistics

It has been suggested that in the stage of gravitational
collapse gradients of intensities and centroids would turn from
being perpendicular to magnetic field to parallel gradually
(Yuen & Lazarian 2017b; Lazarian & Yuen 2018a), which was
termed “re-rotation.” The concept of re-rotation was applied to
recent analysis of observations by Hu et al. (2019b, 2019c).
However, the practical procedure of re-rotation still requires
further studies. Here we have to be cautious that we are not
discussing the statistics of gradient relative orientation to
magnetic field (Soler et al. 2013; see also Hu et al. 2019a for a
comparison) as a function of column density, but by measuring
the differences of the velocity gradient orientation in diffuse

Figure 3. Fractional change (see Equation (13)) of both intensity gradient amplitude dispersion s� ¢I (left) and the centroid gradient amplitude dispersion s�C (right) as
functions of the relative angle θ (in degrees) between the mean magnetic field á ñB and the line-of-sight directions (in the case of Figure 2, we have q = n90 ) for
different Ms.

Figure 4. Response of s� ¢I with respect to the N/S under different Gaussian
smoothing kernels (in pixels).
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media and self-gravitating cores as a means of determining the
direction of magnetic field without using polarimetry.

Aside from the change of orientations, we should also expect
changes of the amplitude of gradients in different stages of
gravitational collapse. It is natural that the amplitude of
gradients for both densities and velocities would increase
owing to the acceleration of gravitational field. Yet such a
signature could be possibly confused by strong compressions
from shocks. MHD theory tells us that the maximal density
enhancement for shock is bounded by either the sonic or the
Alfvénic Mach number, depending on the plasma β (Xu et al.
2019). Comparatively, the density enhancement from gravita-
tional collapse is unbounded. When we compute the amplitude
of gradient with respect to the ambient mean value, one could
possibly see an exponential growth of the gradient amplitude of
observables in the self-gravitating region but not the case for
shocks. By using numerical simulations to enumerate the
collapse of interstellar media, we could test how gradient
amplitude would aid in determining the stage of collapse. To
investigate the effects of gravity, we evolve the numerical cube
h0 to the stage until the high-density structure is not resolvable,
which is named the Truelove-Jeans criterion (Truelove et al.
1997).

We use two frequently used physical parameters to
characterize the stage of the collapse. The first one is the
average gravitational energy density r= á- Fñ�ge , which is a
simple estimate of how clumpy the density structure is when
responding to the gravitational field. Notice that in our periodic
simulations áFñ = 0 and rá ñ = const guaranteed in all times.
The other parameter that is related to the stage of collapse is the
relative freefall time trff, which is a measure of how long the
system has been collapsed since gravity is switched on in our
numerical simulation (See Section 3). We compute the freefall
time for those pixels having a negative gravitational potential
and compare to the freefall time assuming that the whole
system is going to collapse, i.e., ( )r~ á ñ -t Gff,0

1 2:

( ) ( ) ( )r r
= -

~ á ñ - á ñ-
F<

-

t t t

G G . 14
rff ff,0 ff

1 2
0

1 2

The difference between them indicates the time that the
collapse has taken. From our discussion, we expect that the part

of the region that has gravitational collapse will have a higher
density value, while the ambient environment would have a
lower one, which apparently suggests that we should use the
dispersion of gradient amplitudes to measure the effect of
gravity. However, that could not be used directly because the
enhancement of density by gravity is also a function of density.
We therefore would compute the parameter s m, which would
normalize the dispersion quantity, hopefully reducing the
density contribution from the growth of gradient amplitude.
Figure 5 shows the response of s m with respect to �ge and

trff for both intensity and centroid gradient amplitudes. We see
that there is a linear relationship between s m and � ¢I . We fit
the linear relation and see that

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟ ( )

s
m

s
m

»- +

»- +

�

t

0.62 0.09

2.89 4.35 15

I

I

ge

rff

with >R 0.92 , which gives some insight into the stage of the
gravitational collapse when one investigates the gradient
amplitude statistics in self-gravitating media. For instance, Hu
et al. (2019c) provide a number of clouds with a strong
signature of gravitational collapse as indicated by VGT. With
our technique we can investigate quantitatively how strong the
gravitational collapse is in terms of freefall timescales or
gravitational energy density, which can possibly provide the
probability of star formation in a given region.

7. Deconvolution of Velocity Channel Map

The sonic number not only could possibly help observers
characterize the physical conditions of turbulence in molecular
clouds but also allows observers to extract the statistics of
turbulence in velocity channel maps (see Section 8.1 for the
discussions of the strength and caveats of our method). In fact,
velocity channels are one of the main observables in the series
of VGT papers (Yuen & Lazarian 2017b; Lazarian &
Yuen 2018a; Lazarian et al. 2018), and their gradients have
been shown to be better in tracing magnetic field directions

Figure 5. Response of s m with two commonly used physical parameters measuring the stage of collapse: s m as a function of the gravitational energy density (left)
and relative freefall time (right), for both intensity and centroid.
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compared to the gradients of intensity and centroid maps both
numerically (e.g., Lazarian & Yuen 2018a) and observationally
(e.g., Hu et al. 2019b, 2019c). Aside from magnetic field
tracing, techniques such as velocity channel analysis (VCA)
and velocity coordinate spectrum (VCS; Lazarian & Pogosyan
2000; see also their work in Lazarian & Pogosyan 2004,
2006, 2008) also use the statistics of velocity channel maps to
predict the three-dimensional velocity and density spectrum
from observation.

Lazarian & Pogosyan (2000) suggest that, in the absence of
thermal broadening, when the velocity channel is thin, i.e., the
velocity window width of the velocity channel is smaller than
the characteristic velocity in the velocity channel, the
fluctuation of velocity channels is dominated by velocity
fluctuations if the 3D density spectrum is steep ( < -rn 3). In
finite temperature T, the effect of velocity dominance in the
velocity channel map is called “velocity crowding.” The
velocity crowding effect modifies intensity enhancements in
channel maps and also flattens the power spectrum of velocity
channels.

Since we have shown in Section 4 that intensity and centroid
gradient amplitude maps have similar power-law dependencies
to Ms as predicted under the Goldreich & Sridhar (1995)
framework, it is very natural to imagine that the same argument
as in Section 2 would apply also to the velocity channel map.
However, in the presence of strong thermal broadening
( �M 1s ), the channel map is effectively a weighted integral
of the intensity map, and thus the velocity channel map
gradient amplitude in such a limit would have the same Ms
dependence as their integrated intensity counterpart even
through Lazarian & Pogosyan (2000) already formulated
analytically how thermal broadening would alter the channel
map. The thermal broadening is important for light species,
especially for H I and Hα lines. For them the corresponding
masking of the velocity crowding effect via thermal broadening
prevents the proper use of VCA and VCS techniques.

A workaround for such a problem would be to remove the
thermal broadening effect from the velocity channel maps.
Such a method is possible since thermal broadening is simply a
Gaussian convolution with cs as the broadening width. The
estimation of cs is not easy. However, since the thin channels
and the thermally broadened thin channels follow statistics
derived by Lazarian & Pogosyan (2000), it is possible for us to
recognize such a transition by performing the Wiener
deconvolution algorithm through a list of trial cs even in the
presence of noise. We shall see in Section 7.1 how such
mathematical constructions would allow us to retrieve cs. In the
isothermal limit, if we have an estimation of Ms as listed in
Section 4, with the measured spectral line width one could
possibly acquire also the injection velocity =v M cL s s, which is
one of the central physical quantities determining the properties
of turbulence. In Section 7.1 we would discuss the necessarily
mathematical foundations of PPV thermal broadening and the
method of deconvolution. In Section 7.2 we discuss how to
obtain cs by a self-consistent algorithm, and in Section 7.3 we
illustrate how the measured cs could allow one to reverse
engineer the PPV cube without thermal contributions.

7.1. Mathematical Formulation on Thermal Broadening and
Deconvolution

Mathematically, the density in PPV space of emitters with
local sonic speed ( ) g m=xc k Ts B MMW , where mMMW is the

mean molecular weight of the emitter, moving along the line of
sight with stochastic turbulent velocity ( )xu and regular
coherent velocity, e.g., the galactic shear velocity, ( )xvg , is
(Lazarian & Pogosyan 2004)

⎡
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where sky position is described by 2D vector ( )=X x y, , z is
the line-of-sight coordinate, and γ is the adiabatic index. Notice
that cs would be a function of distance if the emitter is not
isothermal. Equation (16) is exact, including the case when the
temperature of emitters varies in space. The observed velocity
channel at velocity position v0 and channel width Dv is then,
assuming a constant velocity window ( ) =W v 1,
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Equation (16) represents the effect of the velocity-dependent
mapping from the three-dimensional position–position–posi-
tion (PPP) space to PPV space. Due to this mapping, the PPV
density ( )r X v,s at a given velocity v is determined by both the
spatial density of the emitters ( )r x y z, , and their respective
line-of-sight velocities. Note that formal caustics, understood as
singularities of a differentiable map from PPP to PPV space,
arise only in the limit of lc 0s .
Equation (16) can be inverted if cs is known. We can then

connect the thermally broadened PPV cube density ( )r X v,s to
that of the underlying PPV density ( )r X v,v :

( ) ( ) ( )
( )

òr r= ¢ ¢ - - ¢

X Xv dv v e, , , 18s v

v v

cs

2

2 2

which is a convolution of the raw PPV density ( )r X v,v
with respect to the thermal Gaussian kernel ( ) =G v

( )( )-
p
exp

Xc

v
c

1

2 2
s s2

2

2 , a function of the sonic speed.

7.2. Mapping cs by Constructing Exponential Reduced
Centroids

We consider the following integral:

( )
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which integrates the observed PPV density ( )r ¢X v,s with an
exponential factor that looks like the inverse convolution of the
Gaussian kernel G(v), which we term the exponential reduced
centroid (ERC). However, we must remind the reader that the
expression in Equation (19) is not a deconvolution of the
thermal function.
To perform the study numerically, we prepared a series of

synthetic PPV densities by using the PPV cube of h0-1200 and
convolved the simulations with different values cs in the range
of -c c0.25 10.0s s,actual ,actual, where cs,actual is the actual value
we put into the simulation. We then compute the ERC function
following Equation (19). We show pictorially how the ERC
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behaves in the left panel of Figure 6 as we vary our guess of ¢cs .
When ¢cs is small, the ERC is actually intensity-like (readers
could compare the results from Figure 6 to those in Figure 7),
meaning that the cross-correlation between the ERC and
intensity map is high. When ¢cs is large, the ERC becomes
velocity like and has obvious striations that are not from the
density structures. The right panel of Figure 6 shows how the
mean amplitude of the ERC ( )r ¢X v,e behaves as a function of
¢c cs s. We see that the mean amplitude of the ERC follows the
special property that it peaks at around ¢ ~c c 1s s (exact value:
0.9). We see this property around different settings on ¢cs and cs,
and we believe that this provides a unique way to probe the
sonic speed.

7.3. Wiener Deconvolution Algorithm

Since we already obtained an estimate of cs from the
previous subsection, we can thus deconvolve the raw PPV
density ( )r X v,v from the observed PPV cube ( )r X v,s .
Assuming that we have a prediction of sonic speed ¢cs (which
might be different from true sonic speed cs), we see that the
Wiener deconvolution algorithm would allow us to estimate the
underlying PPV density r ¢v if the N/S is provided:

{ } { ( )} · { }
∣ { ( )}∣ ( )

( )r
r

¢ =
¢

¢ +
�

� �
�

G c

G c N S
, 20v

s s

s
2 2

where � is the Fourier transform operator and N/S is the
noise-to-signal ratio. In other words, the actual primitive PPV
density rv and the estimated PPV density rv would be related by
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Figure 8 shows how the algorithm deconvolves the PPV
cube in the presence of noise and the variation of cs. One could

see that when ¢ <c cs s, the map is basically noise-like and has a
power spectrum with positive slope. When ¢ >c cs s, the
structure of the velocity channel map would be similar to that
we show in the left panel of Figure 7. Only when we choose an
appropriate ¢ ~c cs s, which could be recognized by spectral
slopes, could one see velocity-like structures like those we
displayed in the right panel of Figure 7.

8. Discussions

8.1. Importance, Possible Future Studies, and Caveats of
Our Work

Our work here focuses on obtaining two of the most
important astrophysical quantities based on the amplitude
statistics of the observables, namely, the sonic Mach number
(Sections 2, 4) and the sonic speed (Section 7). We start from
theory that there should be an expected correlation between the
observed intensity gradient amplitude and the underlying sonic
Mach number, which we also confirm numerically. As a
separate development, the sonic speed is obtained by probing

Figure 6. Left: set of illustrative figures showing how the ERC would behave as a function of prior ¢cs . The color bar scale is relative for all maps and set similarly to
Figure 1. Right: mean amplitude of the ERC as a function of ¢c cs s.

Figure 7. Intensity and velocity channel of the cube h0-1200 when we
set =c c10s s,actual.
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the mean amplitude of the exponential reduced centroid, which
allows us to estimate not only the injection velocity =v M cL s s
but also the true, thermally unbroadened PPV cube
(Section 7.3). The power of amplitude statistics with the
support of the theory of MHD turbulence (Goldreich &
Sridhar 1995; Lazarian & Vishniac 1999; Cho & Lazarian
2003) and observational diagnostics (Lazarian & Pogosyan
2000, 2004, 2006) provides a unique way to probe the physical
conditions and extract turbulence statistics in observed spectro-
scopic data. Moreover, with the PPV cube without thermal
broadening, we can safely use the tools developed from
Lazarian & Pogosyan (2000, 2004) about the statistics of
turbulence both parallel and perpendicular to the line of sight.
This shows that the amplitude statistics has its unique position

in predicting the turbulence statistics, and could possibly be
used in situations that have more physics involved, e.g.,
multiphase media and gravito-magnetohydrodynamics.
One of the small but very important aspects is the constant

dependence of velocity gradient amplitudes on both sonic and
Alfvénic Mach number as when �M 1s . This constancy is
expected from theory, but currently we cannot possibly apply it
to observations since we do not observe the pure velocity map
from spectroscopic data. This should be further studied both
theoretically and numerically. The theory that we derived in
Section 2 depends also on the mode composition in the
astrophysical turbulence, which is also a quantity that has no
easy option to obtain. While there are attempts (Zhang et al.
2020; Makwana & Yan 2019; Chepurnov & Lazarian 2010) in

Figure 8. Deconvolved PPV cube at v=0, i.e., ( )r =R v, 0v as a function of ¢c cs s, with the label including the spectral slopes.
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acquiring them both numerically and based on the observed
synchrotron data, such a method is not extended to the regime
that we are tackling now. Due to the differences of the
dependence of theMs andMA for the three different modes, it is
possible to use gradient amplitude as a quantifier to estimate the
relative weights of the modes, or at least the ratio between
compressible and incompressible modes. We could see from
Table 1 that, in the case of sub-Alfvénic systems, there is a
dependence on MA for Alfvén modes but not for the two
compressible modes. Measuring the value of MA could
probably allow us to estimate the ratio of the modes since
the variance of the gradient amplitudes from different modes is
contributed by the squared sum of their respective dispersions.
By modeling this, we should be able to obtain the ratio of
modes.

One of the very important caveats here that requires further
study is the existence of the rotation curve. In our discussion in
Section 7 we do not take the effect of galactic shear into
account since we would like to simplify our deviation.
However, for applications to large-scale data like the H I maps,
it is necessary to also consider the effect of galactic rotation.
Fortunately, this could be possibly studied both numerically
and observationally by introducing a proper rotation curve
model that corresponds to our Galaxy. The quality of the wing
channel is also a concern in the method of Section 7, since if
there is only a limited number of the channels provided, the
deconvolution algorithm might not have enough data in
acquiring the PPV cube. Another caveat in the gradient
amplitude is that there does exist a variation of intensity
gradient amplitude statistics due to the different weighting of
modes and the line-of-sight effects, which are both hard to
estimate in observations. Comparatively, the centroid gradient
amplitude would be more robust in terms of real application
if one could accept s ~ a

� MC s with a< <1 2 as acquired in
Figure 2.

8.2. Importance to the Development of MHD Turbulence
Theory and Interactions between Theory and Observations

We discussed in Section 2 that the whole idea of applying
GS95 to real-life astrophysical observations is to have some
sort of statistical averaging on some MHD variables, with
proper estimations on the observational effects. For example,
one should consider the effect of projections if the observable is
obtained by some other variables collected along line of sight.
If a velocity axis exists along the line of sight, then it is
important to understand how the velocity effect contributes to
the observable. The statistical averaging, though implicitly
applied, could actually be found in a vast number of literature,
for instance, the use of spectra (Maron & Goldreich 2001),
velocity–distance relation (Larson 1981), correlation and
structure functions (Esquivel & Lazarian 2005), histogram of
orientations (Soler et al. 2013), and block averaging (Yuen &
Lazarian 2017a). The current work uses the same principle as
the same author did 3 yr ago in Yuen & Lazarian (2017a). The
same idea has been brought to here by simply using the mean
(Section 7.1) and the dispersion (Section 2.4) of the
observables. It is expected that the theory could predict with
observations better by testing which statistical quantifier would
be the best in extracting the statistical behavior from the
observables based on the GS95 scaling.

8.3. Implications to the Development of the Velocity Gradient
Technique

The VGT in its current form provides a reliable way of
tracing magnetic field directions. Our work here is the first
attempt to connect the gradient amplitudes to Ms and quantify
their relation through the same principle that formulates VGT.
We note that the visual correspondence that we demonstrated is
also handy for observers to approximate the physical conditions
in the parts of the ISM. The prospect of using gradients to
probe physical conditions further increases the value of the
VGT by helping to further constrain the physical conditions in
different ISM phases. We expect that this should help in
choosing between different models of star formation (see
Crutcher et al. 2010; Crutcher 2012; Lazarian et al. 2012).
This work provides the values of Ms in a cost-effective way

and complementary to other papers on VGT targeting Mach
numbers, e.g., Lazarian et al. (2018) use dispersion of velocity
gradients to estimate MA. Synergistic use of these methods
provides a way to cross-check the measurements. Moreover, in
cases when polarimetry data are unavailable, the gradient
technique provides an alternative way to study the physical
conditions of interstellar media.

8.4. Role of Thermal Broadening

The VGT has become a sophisticated technique applicable to
studying both subsonic and supersonic environments. For
probing VGT for subsonic turbulence in practice, one can use
different approaches. First of all, the velocity centroids are not
contaminated by thermal broadening (see Esquivel & Lazarian
2005; Kandel et al. 2016), and therefore the centroid gradients
can be used if the thermal broadening exceeds the turbulent
one. Reduced centroids (Lazarian & Yuen 2018a) can be
applied to the spectral line data broadened by galactic rotation.
Channel maps provide a valuable way of analyzing the data.

In the case of H I, it was noted in Lazarian & Pogsyan (2000)
that while the warm H I may dominate at high galactic latitudes
in terms of total emissivity, the contribution from cold H I is
expected still to dominate in thin channels. Therefore, if the
current view of the two-phase turbulent H I, namely, clumps of
cold H I moved together and by the warm H I, is true, the
statistics of thin channels represents the statistics of velocity
with cold H I serving as a tracer of the warm H I dynamics. This
is explained in more detail in Yuen et al. (2019).
This paper, however, discusses a way to deal with the

thermal broadening through the deconvolution. This approach
can be useful for, e.g., Hα emission lines. While Lazarian &
Pogosyan (2000) showed that the thermal line widths act as
broad channels, the effect of thermal broadening is pretty
simple in terms of its statistics. This allows the procedure of
deconvolution that we demonstrated in this paper.

8.5. Applying the Results to Various Spectral Lines

Our study follows the empirical approach to obtaining the
sonic Mach number that was explored in earlier papers (see
Burkhart & Lazarian 2012). The difference is that we use
amplitudes of the gradients of velocity centroids. Our technique
does not depend on the interpretation of 21 cm intensity
enhancements in thin channel maps that has been debated
recently (see Clark et al. 2019; Yuen et al. 2019). Moreover,
H I is only one type of media to which the application of the
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technique is sought. Other optically thin lines, e.g., C18O, can
be used. In analogy with the earlier studies exploring the effects
of optical depth on the gradient technique (González-Casanova
et al. 2019; Hsieh et al. 2019; Hu et al. 2019b), we expect that
our present results can be applicable to CO lines with a
moderate amount of self-absorption, e.g., 13CO lines. The
corresponding study of different lines will be provided
elsewhere.

The additional information obtained by the gradient ampl-
itude method is handy within the gradient technique. The
accuracy of the gradient technique in tracing magnetic field
depends on the sonic Alfvén Mach number Ms. In particular,
the density enhancements associated with shocks can affect the
intensity gradients. The increase of the amplitude of the
gradients can help identify shocks. The marginal dependence of
the gradient amplitudes on the media magnetization and angle
between the magnetic field and line of sight makes the present
technique of studying MS rather robust. This testifies to the
importance of our suggested technique of identifying Ms.

9. Conclusions

In this work, we explore how the amplitude statistics would
help explore the properties of interstellar turbulence through
two aspects: the gradient amplitudes and the removal of
thermal broadening. To summarize:

1. Based on the theory of MHD turbulence (Section 2), we
derive a set of formulae for the amplitudes of three-
dimensional velocities (Sections 2.1, 2.2) and densities
(Section 2.3) for their dependencies on sonic and
Alfvénic mach number, as well as the dependencies on
modes (Table 1).

2. We also derive similar predictions in gradient amplitudes
of observables and discuss how to use them in
observations (Section 2.4).

3. We tested our prediction in MHD simulations with
simple statistical parameters (Section 4).

4. We show that our prediction is robust to noise as long as
a suitable Gaussian kernel is used (Section 5).

5. We discuss the potential use of the amplitude method in a
self-gravitating system (Section 6).

6. We discuss how the adoption of the amplitude method
can help in deconvolving the observed velocity channel
with strong thermal contamination (Section 7).
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Appendix
Extending to Nonisothermal Systems

The aforementioned analysis focuses on the relation of the
gradient amplitude to the sonic Mach number in the case of
isothermal environments. For the isothermal simulations we
employed in the main text, since the computation does not
involve a definite length scale (e.g., involvement of gravitational

length scale), therefore the only parameters that determine the
saturated simulations are M M,s A and the box length scale L.
These simulations are scale-free and can be rescaled to other
units to compare with observations.
However, in the case of diffuse interstellar media, where a

distinct equation of state plus gas heating and cooling become
important in understanding the dynamics and structure formations
within the ISM, we should expect the amplitude of gradients to
behave differently from the isothermal counterpart, for instance,
in the case of adiabatic conditions for H I, where rµP 5 3 (See
Kritsuk et al. 2017, 2018). In the case of phase equilibrium, the
warm and cold neutral media can both be modeled by an
adiabatic equation of state (see also Wolfire et al. 1995 and
references therein); the pressure exerted due to the crowding of
density is larger than its counterpart in the isothermal system. As
a result, the gas tends to have a smaller density (or intensity, in
observation) gradient amplitude. While it is true that the
isothermal condition is generally true for giant molecular clouds,
such an assumption is not correct for H I. Therefore, there is a
need for us to understand how the theory of gradient amplitude
changes in the case of nonisothermal environments.
We test the result of gradient amplitude using the adiabatic

numerical simulations in Table A1 and plot the s m against
polytropic index γ in Figure A1. We see that when γ increases,
s m drops significantly.
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