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Abstract

Observations of synchrotron polarization at multiple frequencies in the presence of Faraday rotation can provide a
way to reconstruct the 3D magnetic field distribution. In this paper we compare the well known Faraday
Tomography (FT) technique to a new approach, Synchrotron Polarization Gradients (SPGs). We compare the
strengths and limitations of the two techniques, and describe their synergy. In particular, we show that in situations
when the FT technique fails, e.g., due to insufficient frequency coverage, the SPG can still trace the 3D structure of

a magnetic field.

Unified Astronomy Thesaurus concepts: Magnetohydrodynamics (1964); Interstellar medium (847); Interstellar
synchrotron emission (856); Interstellar magnetic fields (845); Computational methods (1965)

1. Introduction

Magnetic field structures are very important for key
astrophysical processes in interstellar media (ISM) such as
the formation of stars (see Mac Low & Klessen 2004; McKee
& Ostriker 2007), the propagation and acceleration of cosmic
rays (see Jokipii 1966; Yan & Lazarian 2008), the regulation of
heat, and mass transfer between different ISM phases (see
Draine 2009 for a list of the different ISM phases). Polarized
radiation arising from the presence of the magnetic field is also
important to explain the enigmatic cosmic microwave back-
ground B-modes (Zaldarriaga & Seljak 1997; Caldwell et al.
2017; Kandel et al. 2017).

Synchrotron polarization is widely used to study magnetic
fields structure in the sky. However, in the presence of the
Faraday rotation it is not trivial to compensate for the distortion
from the 2D polarization pattern within the volume-emitting
synchrotron radiation. Tracing the actual three-dimensional
(3D) magnetic field structure is both a big attraction and an
outstanding challenge. Potentially, by combining synchrotron
data at different frequencies, one can try to obtain the magnetic
field variation along the line of sight (LOS). Burn (1966) first
suggested that the Faraday Tomography (FT), i.e., a technique
proposed to recover the multi-layer magnetic field structures,
can be obtained through a proper Fourier transform from
the polarized synchrotron emissions (see Brentjens & de
Bruyn 2005, hereafter BB0OS5). A number of works are coming
out based on the depolarization of the synchrotron emissions
(Robitaille et al. 2017; Dickey et al. 2019; Farnes et al. 2018;
Haverkorn 2018; Jelic et al. 2018).

A recently suggested alternative technique of magnetic field
tracing employs the Synchrotron Polarization Gradients (SPGs,
Lazarian & Yuen 2018b). As discussed in the latter paper, the
foundations of the SPGs are routed in the properties of MHD
turbulence and turbulent reconnection (Goldreich & Sridhar
1995, Lazarian & Vishniac 1999). As a result, the SPGs trace
the local magnetic field through observationally resolved
eddies. The applicability of the SPGs to the ISM arises from
the fact that ISM is turbulent (Armstrong et al. 1995;
Chepurnov & Lazarian 2009, 2010; Burkhart et al. 2015). In
the presence of Faraday Rotation, only a certain deepness of the
synchrotron emission is effectively collected into the Stokes

parameters. That means the synchrotron polarization map for a
specific emitting frequency f corresponds to the plane-of-sky
magnetic field variation accumulated up to a certain depth
along the LOS. The theory of this effect in the presence of
magnetic turbulence is given in Lazarian & Pogosyan (2016).
As aresult, one can try to obtain the 3D magnetic field structure
by utilizing multi-frequency synchrotron emissions. Lazarian &
Yuen (2018b) pointed out that by considering the differences of
SPGs of polarized synchrotron maps obtained with multi-
frequency observations, one can reconstruct the 3D magnetic
field structure.

While the two methods for tracing 3D magnetic field both
rely on multi-frequency synchrotron emission in the presence
of Faraday Rotation, there are significant differences between
the foundations of the two methods. This raises a few
questions. (1) What are the limitations of the techniques? (2)
How precise can the 3D B-field distributions can be traced with
these techniques? (3) Are the methods self-consistent? This
paper is the first attempt to answer these important questions.

On one hand, the method of SPGs relies on the fact that
turbulence is ubiquitous while the FT provides self-consistent
3D mapping of the underlying regular magnetic field. On the
other hand, the method of FT has a much higher requirement
on the number of frequencies compared to the SPG (e.g., Li
et al. 2011). In addition, the LOS magnetic field strength
information® is not available for the FT but is possible to obtain
using SPG (see Lazarian & Yuen 2018b).

We would therefore like to compare the two techniques in
this paper through numerical simulations of the uniform and
isothermal turbulent medium. Instead of confronting the
techniques we search for their synergy. In what follows, we
briefly describe the numerical code and setup for simulations in
Section 2, the methodology related to FT and SPGs in Section 3,
and the performance of the two methods in Sections 4 and 5. A
discussion and exploration of the the synergy of the two methods

3 While the Faraday Measure is proportional to the product of cumulative

thermal electron density and LOS magnetic field strength, RM < f dzn, mB:, it
is impossible to obtain the true magnetic field strength along the LOS due to
two reasons. (1) The thermal electron distribution along the LOS is not given
and (2) the contribution of magnetic field strength to the RM would be canceled
out in the case of a sufficient field reversal along LOS. See Lazarian &
Pogosyan (2016) for more details.
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Table 1
Simulations Used in Our Current Work
_ Ma 2

Model M, M, B= (pﬂ
Ms0.2Ma0.02 0.2 0.02 0.02
Ms0.4Ma0.04 04 0.04 0.02
Ms0.8Ma0.08 0.8 0.08 0.02
Ms1.6Ma0.16 1.6 0.16 0.02
Ms3.2Ma0.32 3.2 0.32 0.02
Ms6.4Ma0.64 6.4 0.64 0.02
Ms0.2Ma0.07 0.2 0.07 0.22
Ms0.4Ma0.13 04 0.13 0.22
Ms0.8Ma0.26 0.8 0.26 0.22
Ms1.6Ma0.53 1.6 0.53 0.22
Ms0.2Ma0.2 0.2 0.2 2
Ms0.4Ma0.4 04 0.4 2
Ms0.8Ma0.8 0.8 0.8 2
Ms0.13Ma0.4 0.13 0.4 18
Ms0.20Ma0.66 0.20 0.66 18
Ms0.26Ma0.8 0.26 0.8 18
Ms0.04Ma0.4 0.04 0.4 200
Ms0.08Ma0.8 0.08 0.8 200
Ms0.2Ma2.0 0.2 2.0 200

Note. The magnetic criticality & = 227G/ 2pL/B is set as 2 for all simulation
data. Their resolution is 480°.

takes places in in Sections 6 and 7, and a summary is provided in
Section 8.

2. Numerical Simulations

Simulation setup. The numerical 3D MHD simulations were
used in Lazarian & Yuen (2018a, 2018b) by setting up a 3D,
uniform, isothermal turbulent medium. We use a range of
Alfvénic Mach number M, = V;/V, and sonic Mach number
M, = V[V, where V, is the injection velocity; and V, and V;
are the Alfvén and sonic velocities, respectively. The numerical
parameters are listed in Table 1 in sequence of ascending
values of media magnetization 3 = 2(M, /Ms)?.

Synthesis of position—position-frequency (PPF) cubes. We
synthesize the PPF cubes following the procedures in Lazarian
& Yuen (2018b), which we summarize as below. To
characterize the fluctuations of the synchrotron polarization,
one can use different combinations of the Stokes parameters
(see Lazarian & Pogosyan 2012). In this paper, we follow the
approach in Lazarian & Pogosyan (2016) and focus on the
measure of the linear polarization P, which is

P=0Q+iU, )

where Q and U are the Stokes parameters.

We consider an extended synchrotron region, where both
synchrotron emission and Faraday rotation are taking place
simultaneously. Special cases, e.g., where the regions of
synchrotron radiation are separated from those of Faraday
rotation (see the analytical description in Lazarian & Pogosyan
2016), can be analyzed easily following the same treatment
presented below. The polarization of the synchrotron emission at
the source is characterized by the polarized intensity density
P(X, z), where X is the two-dimensional plane-of-sky vector
and z is the distance along the LOS. The polarized intensity
detected by an observer in the direction X at the wavelength A is
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given by
L
P(X, X) = f dzPi(X, 7)e2¥ 00, 2
0

The region is extended up to the scale L and the Faraday
rotation measure (RM) @ (z) is given by (see BB0S)

B(2) x fo " ne(2)B.()de! 3)

where B, is the strength of the LOS component of the magnetic
field and z is the distance.

We use the definition of synchrotron polarization in Lazarian
& Pogosyan (2016), thus ignoring the wavelength dependences
of synchrotron polarization arising from the cosmic ray
spectrum. This means the polarization source term P (X, z)
will be wavelength-independent, while the observed polariza-
tion will be wavelength-dependent due to Faraday rotation
only. Similar to Lazarian & Yuen (2018b), we assume the
cosmic-ray index « = 2 since Lazarian & Pogosyan (2012)
showed the marginal effect of  on the spatial variations in the
Stokes parameters. That means we can express the Stokes Q
and U as

Q(X, 2) x pn,(B}(z) — B} (2))
U (X, 2) < pn,2B.(2)By(2), %)

where X is the two-dimensional plane-of-sky vector, p is the
polarization fraction, which is assumed to be constant, B,,B,
are the two directions of the plane-of-sky magnetic field, and n,
is the density of relativistic electrons. The definitions of
the Stokes parameters above correspond to the synchrotron
intensity at the source I(X, z) x sz(z) + Byz(z). In our
investigation, we cover the frequency range between 3 x 10’
and 3 x 10'! Hz. With regard to spectral resolution, since the
frequency selection rule is different for two methods (see
Section 3.3 for detailed discussion), the spectral resolution is
not fixed but dynamical with respect to the wavelength. For
SPG, we performed 20 synthetic observations of different
frequencies, with equal spacing in frequency square space
within the frequency range. For FT, we performed 500
synthetic observations of different frequency with equal
spacing in wavelength square space within the wavelength
range, which could resolve the Faraday dispersion function
F(¢) in a high resolution. Therefore, the resolving power can
reach up to ||¢_ || =~ 17 rad m~2, §¢ ~ 0.034 rad m~2, and

max

~ 6 -2
Omax—scale ~ 3 % 10°rad m~=.

3. FT and SPGs
3.1. Faraday Tomography

The concept of FT was first suggested by Burn (1966). The
method utilizes the fact that the Faraday rotation integral of
synchrotron polarization along the LOS is effectively a Fourier
transform of the complex polarized brightness per unit Faraday
depth F(¢) :

POY =0 +iU= [~ Fo)eas, s)

where ) is the observed wavelength, P()\z) is the complex
polarized surface brightness in terms of Stoke parameters Q
and U, and ¢ x f dzny B, is the Faraday depth, with ng, being
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the number density of the thermal electrons and B, is the LOS
component of the magnetic field. Performing the inverse
Fourier transform, one can easily acquire F(¢):

F($) = f_ PO RN 6)

which provides the 3D Magnetic field information as a function of
. Since A\ only lies in the positive real space, the inverse Fourier
transform cannot be computed accurately unless the negative part
of \? is provided. BBO5 provided a solution to the problem by
introducing the window function W()?) to reconstruct F(¢). The
window function is non-zero in the range of observed A and is
otherwise zero. BBOS then defined the observed polarized surface
brightness as

P(X) = PORYW (N), (N

As a result, the complex polarized brightness that includes the
window F(¢) can be written as

F()=F(@) «R@) =K [ PO)e 20000, @)
where R(¢) is the rotation measure transfer function (RMTF;
see BB05):

fx W()\2)672i¢(/\27)\5)d/\2

R(¢p) = — . 9
(9) =i ©)

The function KX is
00 -1
K= (f W(/\z)d/\z) , (10)

and a parameter )\ is introduced to Equations (8) and (9) in
order to improve the the behavior of RMTF. The optimal A3 is
the mean of A\> sample values obtained by the telescope.
However, the term Ay would cause a further rotation effect,
which is similar to the Faraday rotation when tracing the plane-
of-sky magnetic field directions along the LOS using FT. So,
we would remove the term in this paper. (See Section 4.1.3 for
further discussions).

The technique introduced by BBOS is referred to as RM
synthesis. It shows promise for obtaining the 3D tomography
magnetic field structure. The requirement for the technique to
work is to have enough synchrotron polarization measurements
at different frequencies.

To calculate F(¢) in numerical simulations, we consider a
column of data along the LOS in a 3D MHD numerical data
cube and divide this column into n segments. Each segment
contains density, magnetic field (such as Q and U), and rotation
measurement ¢ information. In this setting the polarization can
be calculated as, according to BBOS, as

P(/\Z) — Z Pk672id>k)\2’ (11)
k=1

where P, = QO + iU, representing the P at different ¢,. The
Faraday dispersion function can then be expressed as

F@) =3 [ oo riovay. (12)
k=1Y"

Although we cannot determine P()\*) when X\ < 0, it is
still useful to assume Equation (12) holds by assuming
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P\ < 0) = 0:

F(9) = Y Pid (6 — ), (13)
k=1
which suggests that |F(¢)| can be decomposed into n delta
functions 6(¢ — ¢y), peaked at ¢,. Note that Equation (13) and
the reconstructed Faraday dispersion function F(¢) are not
equivalent but share many similarities.

3.2. Synchrotron Polarization Gradient

Effective measurable distance due to the Faraday screening
effect. In Lazarian & Pogosyan (2016) and Lazarian & Yuen
(2018Db) the effective measurable distance L arising from Faraday
depolarization is introduced, and refers to the LOS distance over
which the Faraday rotation phase of the synchrotron emission
source is less than unity. Mathematically,

L | 11
L XL¢

(14)

where L is the cloud thickness. Synchrotron polarization from
distances larger than L.y manifests as noise in the resultant
Stokes maps (see Lazarian & Yuen 2018b). In contrast to
measuring FT, which depends on the profile of By s and its
variations to ¢, L.z in SPG would provide a more robust
measure that does not depend on the sign on By os. As shown in
Lazarian & Pogosyan (2016), the measure can be introduced
for the random magnetic field. It preserves the relation between
the depth and measured parameters, while FT requires extra
information about the density and magnetic field along
the LOS.

Block averaging for gradient calculations. Gradients of
polarization are calculated by taking the values of polarization
in the neighboring points and dividing them over the
distances between the points following the recipe of Yuen &
Lazarian (2017). In this work, we focus on the smallest-scale
contribution, as we did in Lazarian & Yuen (2018a, 2018b),
which provides the criteria for the gradients to be perpendicular
to the magnetic field by investigating the indexes of the power
spectrum and correlation function anisotropy. As we are using
the same set of simulations used in Lazarian & Yuen (2018b),
the criteria in Lazarian & Yuen (2018b) are automatically
satisfied.

3.3. Frequency Sampling between the SPG and FT

As we discussed in Section 2, there is a crucial difference in
choosing the width of the frequency band for the two
techniques.

In the case of FT, since we are performing a Fourier
transform with the term ¢24¥ in )2 space, the dependencies of
the frequency width in FT are related to §A\? but 6% for SPG.
Additionally, they also have different meanings when changing
the frequency width. For FT, BBOS brings out the following
relation between ¢ and 6\ as

L3
6
The 6% term controls the maximum ¢ that is not affected by

the mm ambiguities problem. To maximize the usable range of
¢, the robust approach is to narrow the frequency width.

| Prmaxl (15)
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Sometimes it is necessary for the observer to narrow the width
of the synchrotron emission along which the LOS is lined on a
large |¢|. Therefore, the FT requires more data points to retain
its accuracy.

For the SPG technique, we can get the relation from
Equation (14) and bring out the result

1
6Leff X 5; (16)

The width of the frequency band controls how thick the layer is
along the LOS. Increasing the number of data points within the
frequency band can provide a more detailed morphology within
the region. One of the advantages of this method is that the
result will not be affected by the mm ambiguities problem.
Observers have the flexibility to choose the frequency
bandwidth.

3.4. Testing Method

Alignment measure (AM). To quantify how good two vector
fields are aligned, we employ the AM that is introduced in
analogy with the grain alignment studies (see Lazarian 2007):

AM = 2(cos?6,) — 1, (17)

(see Gonzdilez-Casanova & Lazarian 2017; Yuen & Lazarian
2017) with a range of [—1, 1] measuring the relative alignment
between the 90°-rotated gradients and magnetic fields, where 6,
is the relative angle between the two vectors. A perfect
alignment gives AM = 1, whereas random orientations gen-
erate AM = 0. In what follows we use AM to quantify the
alignments of polarization gradients in respect to magn-
etic field.

4. Results
4.1. FT
4.1.1. The Reconstructed Faraday Dispersion Function of ISM

To use the Faraday tomography method, we use the
reconstructed Faraday dispersion function F(¢) instead of the
Faraday dispersion function F(¢) because (i) as explained above,
it is only possible to obtain F(¢) from observational data, (ii) both
functions share similar spiky features with respect to the Faraday
RM, and (iii) the corresponding ¢-values of those peaks are
similar for both functions. To demonstrate the points, Figure 1
shows F(¢) from a simulation sample and compare with F(¢).
They match the properties that Equation (13) describes. The
function F(¢) still contains the spiky feature we observed in F(¢).
Moreover, the positions of the spikes in F(¢) are consistent to
those in F(¢). Therefore, we can use Equation (13) and describe
the features we calculated using the F(¢).

The reconstruction of the Faraday dispersion function in
simulations is rather trivial since the number of segments n in
Equation (13) corresponds to the number of frequency
measurements in observations. It should be possible to obtain
the magnetic field distributions exactly, provided that one has
sufficiently large n in Equation (13). However, increasing the
number of measurements is very costly, as the Nyquist
condition for the reconstruction of Faraday dispersion function
grows with the square root of n; that means to increase the
signal-to-noise by a factor of 2 one has to increase the number
of measurements four times.
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Figure 1. Comparison plot of between the actual P and F. The samples are
randomly chosen from a column of pixels along the line of sight in a 3D MHD
simulation Ms3.2Ma0.32.
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Figure 2. Illustration of the difference between simulation data and
observation.

In Figure 1 we observed a lot of é-like structures sparsely
spaced across ¢. The spaces between the 6-like structures are
referred to as gaps, while the é-like structures themselves are
referred to as peaks. However, we do not expect to see any
peaks in observation due to observational constraints such as
the limited resolving power. The pink shaded area of Figure 2
shows what would be seen in observations if the FT were
distributed as in Figure 1. While in simulations the recon-
structed F(¢) along ¢ are segmented, the observed F(¢) is
continuous with respect to F(¢). It is still possible to resolve the
peaks from the observed F(¢) through mapping the peaks of
the observed F(¢) as shown in Figure 2, provided that the
resolution of the instrument is high enough.

4.1.2. Determining the Magnetic Field Orientation Using FT

The advantage of the FT over other methods is the high
precision of determining the plane-of-sky component of the
magnetic field as long as there are enough frequency channels
that satisfy the Nyquist criterion. With a correct selection of
frequency band in observation, one can determine the peaks in
the Faraday dispersion function without difficulties. We would
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Table 2
Accuracy of the FT Method for Different Frequency Bands and LOS B-fields
LOS B-field type: Ordered Chaotic Chaotic

Frequency (Hz): 3 x 1083 x 10"

3 x 10%-3 x 10" 3 x 10°-3 x 10"

Model AM AM AM
Ms0.4Ma0.04 0.92 0.24 0.70
Ms0.8Ma0.08 0.90 0.26 0.81
Ms1.6Ma0.16 0.88 0.28 0.81
Ms3.2Ma0.32 0.87 0.26 0.74
Ms6.4Ma0.64 0.86 0.23 0.60
Ms0.4Ma0.32 0.82 0.99 0.27
Ms0.8Ma0.264 0.81 0.95 0.28
Ms1.6Ma0.528 0.76 0.70 0.23
Ms0.4Ma0.4 0.83 0.95 0.87
Ms0.8,Ma0.8 0.65 0.73 0.40
Ms0.132Ma0.4 0.78 0.94 0.94
Ms0.264Ma0.8 0.63 0.55 0.73
Ms0.04,Ma0.4 0.74 0.92 0.94
Ms0.08,Ma0.8 0.75 0.72 0.64

Note. The bold font is used to emphasize the values of AM corresponding to high alignment.

like to illustrate the power of FT using the numerical
simulations listed in Table 1.

Table 2 shows the AM of the FT reconstructed plane-of-sky
component magnetic field compared to the true magnetic field in
numerical simulations. To get these results, we first convert the
numerical cube to a PPF cube using the approach in Section 2 and
then we compute the F. After that, we locate the most significant
three peaks for which the real and imaginary parts represent the
Stokes parameters Q and U. The three peaks we located in ¢
space are converted to the magnetic field measurements that we
compare with the real magnetic field using the AM (see
Section 2). When we are computing the AM we randomly select
300 columns.* We also use the ¢ value found from those three
peaks and compare to the exact values of the polarization
angle available from the simulations. Finally, we compare
both angles and get the AM values for each of them. There are
subtle differences between the cases whether the mean field or
the turbulent field dominates along the LOS (Lazarian &
Pogosyan 2016) and careful studies have to be done these
cases. To test this, we perform tests in both cases with ordered
and chaotic LOS B-fields. For the ordered B-field case, we
rotate the simulation cube such that the mean field direction is
pointing to the observer. For the chaotic field case, we further
rotate the cube so that the mean field direction is parallel to the
plane-of-sky. One can see that for both cases of ordered and
chaotic LOS B-fields the AM is pretty high, with an average
value of ~0.7-0.8, if we pick the correct frequency band.

4.1.3. The Improvement of FT and Its Impact

Note that we do not apply the technique involving a
multiplicative factor of €293 in the calculation of F as suggested

4 The whole process for FT is expensive, since a two-step process is required

to convert the simulation cubes to the Faraday dispersion function, namely
from the position—position—position (PPP) cubes to the PPF cubes and ﬁnally to
PP¢ cubes Both processes have the computational complexity of O(N° x Ny
and O(N X Ng), where N, Nj and Ny are the resolutions of simulations,
number of frequency bands, and number of RM channels, respectively. We
assume the Ny = Ny in this study. Apart from that, computing AM also requ1res
the computatlonal complexity of O(N° x Ny) to trace back the local maximum.
So, checking pixels randomly provides a more efficient approach in checking
the accuracy of FT.

in BB0S. BBO05 thought that this factor could influence the phase
rotation of F in both real and imaginary space, thus affecting the
tracing power of FT. However, we have shown that FT performs
well even without this factor. Also, with the extra factor,
Equation (18) will become

n oo . .y
F(¢)= Z f Pre2itX g 20 =) g \2

~ Z Pe?0256(¢ — ¢,) (18)

Compared to Equations (13), (18) contains an extra term
%9\, This term will not affect the features of |F(¢)| at ¢
space since %% will be canceled during the calculation by its
conjugate term. So, the peak value and the location of the 6
function will not be changed. However, if we use the same
treatment as we did on |F (¢)| for O and Uy, then the extra term
€295 will not be canceled but induce extra Faraday rotation.
In fact, there is a similar mathematical origin for the
expressions from Faraday rotation ¢ 29" and the term in
Equation (18) that is 20N, As a result, the inclusion of the
%95 term will introduce an additional rotation of — g, A2

degree for the polarization angle ¢;. The removal of the 2N
term would make the polarization angle more physically
justified.

4.2. The Performance of SPG in Tracing the 3D Magnetic
Field

To compare the performance of the SPG tomography
proposed in Lazarian & Yuen (2018b) with the FT, we divide
the axis along the LOS into 20 slices, which corresponds to
Lege/L from 0.05 to 1.0 with a separation of 0.05. This allows
us to trace the 2D magnetic field structure at different depths.
The frequencies required are computed from Equation (14).

After a correct selection of frequency bands, which
corresponds to a set of effective LOS thicknesses, we can then
get the synchrotron polarization derivative map from calculating
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Table 3
Accuracy of the SPG Method in Different LOS B-fields, (Columns without
AM Values Correspond to the Case in which the Required Frequency to
Calculate the SPG is Less then 10’ MHz)

LOS B-field Type: Ordered Chaotic
Model AM AM
Ms0.4Ma0.04 0.21 0.50
Ms0.8Ma0.08 0.25 0.63
Ms1.6Ma0.16 0.39 0.70
Ms3.2Ma0.32 0.23 0.68
Ms6.4Ma0.64 0.25 0.50
Ms0.4Ma0.32 0.17 /
Ms0.8Ma0.264 0.19 0.48
Ms1.6Ma0.528 0.26 0.50
Ms0.4Ma0.4 / /
Ms0.8Ma0.8 / /
Ms0.132Ma0.4 / /
Ms0.264Ma0.8 / /
Ms0.04Ma0.4 / /
Ms0.08Ma0.8 / /

the difference of polarized intensity ® = \AQ? + AU? by

AQ =0(fir) — Q)
AU =U(fir) — U, 19)

where f;, | and f; are two neighboring frequencies. The two maps
contain information on the cumulative magnetic morphology in
the corresponding depth and computing the differences of
gradient orientation can determine the 3D magnetic morphology
between the two LOS depths 6Lefr = Letr (fi ) — Ler (f;). We
use the block averaging technique (see YL17) to obtain the
statistical measurement of gradient orientation within a sampling
region. In our calculations we choose the block size to be
30 x 30 pixels. Table 3 shows the AM from different numerical
cubes following our treatment.

A clear trend shown in the table is that SPG traces the
magnetic morphology with higher accuracy compared to that
for the chaotic LOS field. This follows from the differences in
the localization of L. for the cases of regular and chaotic fields
(Lazarian & Pogosyan 2016). For the ordered LOS magnetic
field case we get the AM around 0.2-0.3, which agrees well
with the results in Lazarian & Yuen (2018b). All gradient
techniques share the same foundation of anisotropic MHD
turbulence, i.e., the turbulent eddies are elongated along the
local magnetic field directions described in Goldreich &
Sridhar (1995) and Lazarian & Vishniac (1999). The aniso-
tropy properties will affect the structure of other observables,
e.g., integrated intensities, velocity centroids, velocity chan-
nels, and also synchrotron intensities. How the gradient
techniques perform is highly related to whether or not the
environment is dominated by turbulence, and how anisotropic
the system is. In our case of an ordered B-field, the mean
magnetic field direction is pointing along the LOS. Since the
turbulent eddies are all aligned to the local field and most of our
numerical cubes have strong magnetization, when observing
along the mean field only weak or even no anisotropy can be
detected. This also explains why the model with lower Mu
traces magnetic fields better.
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Figure 3. Illustration of two types of LOS B-field and how they affect the order
of the 6 function.

5. What Technique(s) Should We Select?
5.1. LOS Information along the ¢ Axis

In order to understand the magnetic field from different
depths of F(¢), we should first understand the relation between
the ¢ functions at ¢ and LOS axes. On the scale of the
resolution, the correct identification of the position of ¢
function is closely related to how ordered the LOS B-field is.
Depending on the strength of the mean and fluctuating
magnetic fields, we can classify the magnetic field conditions
into two cases. If the LOS B-field is highly ordered, e.g., when
the B-field direction is pointing either toward or away from the
LOS observer, each ¢, is unique and we can relate the order in
the location of the ¢ function in the reconstructed distribution
and the order in the location of emitters in the source. If the
LOS B-field is chaotic, i.e., it points both toward and away
from the observer, this relation fails. Figure 3 illustrates both
cases. In a magnetized environment, the LOS magnetic field
structure is usually determined by the orientation of the mean
field with respect to the observer. For the SPGs, problems arise
when the mean field is directed exactly toward or away form
the observer. To solve the problem of a complicated
dependence of ¢ on the LOS, a physical model of the local
interstellar medium should be built up to relate the two physical
quantities (Jelic et al. 2015; Van Eck et al. 2017). However,
such a model requires additional measurements.

5.2. Synergy of SPGs and FT

SPGs are a very new tool, therefore the corresponding
procedures of restoring the 3D structure require refinement and
improvements. We expect that the AM in Table 3 will improve
as the technique matures. Nevertheless, even at this point we
can clearly see the synergy between the SPGs and the FT.

As we showed in Section 4.1.1, the LOS B-field structure is
critical for determining the positions of synchrotron emission
sources in the F(¢). Since the LOS B-field is turbulent in the
ISM, tracing 3D B-field structure with FT is difficult in many
cases, especially if the mean field is close to perpendicular to
the LOS. This is exactly the case, however, when the SPGs can
be most useful. As we discussed above, the SPGs have trouble
tracing magnetic field structure when the mean field is nearly
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Figure 4. Illustration of how multiple emission sources with similar intensity
changes the results of the emission angle measurement.

parallel to the LOS. At the same time, SPG performs best when
the mean magnetic field is perpendicular to the LOS.

The traditional polarization method used widely in the
astronomical community provides one polarization angle vector
per pixel. It is usually interpreted as the 2D B-field direction at
that pixel. However, the polarization direction that we measured
is actually a sum of the Stokes parameters of that column and the
direction of polarization is affected by the Faraday rotation (see
Equation (11)). While the Faraday rotation effect can be
minimized by observing the polarization at high frequencies,
even in this case the angle that we measure is a mean angle of
synchrotron emission from multiple synchrotron sources along
the LOS. If the LOS emission is dominated by one bright
emission source, the measured polarization angle is close to the
polarization angle at the source. In an extreme case where we
have multiple sources with comparable brightness, the measured
polarization angle may be misleading. As a simple example,
consider two synchrotron polarization sources of similar bright-
ness having 0 and % polarization angles, which are illustrated by

Figure 4. The angle measured in this case is ~~ and this fails to
represent the underlying magnetic field information for either of
the sources. Multiple bright sources along the LOS is very
common. Unfortunately, it is impossible to tell how many
sources are along the LOS, and their respective weights, by
simply increasing the observing frequency.

On the contrary, the FT method (Burn 1966, BB0S5) has the
ability to detect the number of emission sources along the LOS.
The amplitude of 6(¢) functions at the Faraday dispersion
function represents the brightness of each source. By counting
the number of peaks of the Faraday dispersion function, not
only do we know the number of intensive sources along the
LOS, but also the 2D magnetic field structure within the source.

The mathematical nature of the FT method allows resolution
of the magnetic field structure with respect to the LOS distance
from synchrotron emissions with different frequencies. We can
even know the intensity distribution along the LOS from this
method. It also gives a high AM that allows us to trace the
magnetic field orientation in whatever direction the mean
magnetic field points to. However, we lose the positional
information during the move from A space to ¢ space. Due to
the nature of the Faraday rotation, the magnetic field information
stored in a certain ¢; but in different positions F(X;, ¢;) and
F(Xj, ¢;) could represent the different depths along the LOS. In
order to construct the 3D POS magnetic field morphology of the
FT method, we require extra information on the magnetic field
and density profile along the LOS.
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On the other hand, SPG depicts the magnetic field structure
quite well. It can map the 2D magnetic morphology at different
depths and even the 3D structure shown in Lazarian & Yuen
(2018b). Unlike FT, which is applied to all the environments,
this method comes with requirements for the environment.
In theory, the method of SPG requires the system to
have anisotropic turbulence satisfying the spectral conditions
suggested by Lazarian & Yuen (2018b), namely the spectral
slope has to be steeper than —1 and the local anisotropy has to
be along the local magnetic field direction. In fact, the electron
spectrum studies from Armstrong et al. (1995), later extended
by Chepurnov & Lazarian (2010), showed that the turbulence
spectrum is —5/3 for 15 orders of magnitudes, including the
scale where synchrotron emissions are significant. Moreover,
the anisotropy of the statistical measures available through
observations is a well established fact proven with both
synthetic observations and actual observational data (see
Lazarian et al. 2002; Esguivel & Lazarian 2005; Heyer et al.
2008; Yuen et al. 2018).”

Although both techniques advertise that they can provide
magnetic field information tomographically, their products are
different and it is difficult to directly compare them. For
instance, one can identify the bright sources using FT while
constructing the 3D field morphology using SPG. The
information acquired by both methods is complementary but
a side-by-side comparison requires further conversion between
the two methods.

6. Discussion
6.1. Requirements for the Instruments

It has been shown in Section 5.2 that SPG and FT techniques
are actually complementary. The SPG method requires far less
data points compared to FT, and it can be used to scan though
the whole region. The method can then provide a 2D magnetic
field structure of the whole environment with good accuracy
(AM 0.6-0.7). Apart from tracing the direction of the magnetic
field, the SPG can be used to test the magnetization information.
The corresponding technique of obtaining a distribution of
Alfvénic Mach numbers M, was demonstrated in Lazarian &
Yuen (2018a).

The FT technique (Burn 1966, BB0S, see also Farnes et al.
2018; Haverkorn 2018; Jelic et al. 2018; Dickey et al. 2019)
provides a high-accuracy restoration of the magnetic field
(AM 0.8-0.9) in the case when the Faraday depth is a
straightforward and monotonic function of distance. However,
it requires more frequency measurements to maintain high
resolution. In BBOS, the resolution of the Faraday dispersion
function is calculated as

23
bp = NG (20)

5 The anisotropy of MHD turbulence has been has been known for a while
(see Higdon 1984). It is also a part of Goldreich & Sridhar’s (1995) picture. It
is essential for the SPGs, however, that the anisotropy is present not in terms of
mean magnetic field, but in terms of local magnetic field, i.e., the magnetic field
at the location of turbulent eddies. This concept is not a part of the original
Goldreich & Sridhar (1995) model, but it was introduced in later publications.
It follows from turbulent reconnection theory (Lazarian & Vishniac 1999) and
is supported by numerical simulations by Cho & Vishniac (2000), Maron &
Goldreich (2001), and Cho et al. (2002).
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Figure 5. Plot of the AM (y-axis) and frequency density (x-axis) in different numerical simulations listed in Section 2. Every color line represents a numerical

simulation. The left panel is the FT plots and the right panel is the SPG plots.

The resolution of the Faraday dispersion function is very sensitive
to the frequency density upon combining Equations (15) and (20):

s 260 2
¢max N AAZ N N. (21)

Here N = AX*/6X is the frequency density in a certain
frequency band for FT (the definition would change to
N = Af?/éf* for SPG), meaning the total number of N
measurements observed in a particular frequency band AN
with frequency width 8\ The resolution then affects the
accuracy of the FT technique probing the direction of the
magnetic field. To test how the frequency density affects
the accuracy, we perform a test for both techniques with
different frequency densities in Figure 5.

There is a clear trend in which the accuracy of the FT
technique drops with respect to the frequency density in all of
our simulations. For instance, when the frequency density
drops to 250, the accuracy of the FT drops to the range of
0.5-0.7. Note that the SPG technique can achieve the same
accuracy with only 20 frequency points. The performance of
FT becomes worse when one further decreases the frequency
density to 125 frequency points. On the other hand, SPG
provides a very stable result, with only small fluctuations even
for very low-frequency density measurements like 5 and 10
frequency points.

Also note that FT is sensitive to the frequency range covered
by the instrument when tracing emission with different physical
conditions. As shown in this paper and previous literature,
changing the observational frequency range can improve the
performance for emission with different types of LOS B-fields
(see Table 2) and trace the emission region with different
typical distances along the LOS (see Dickey et al. 2019).

We demonstrated in Section 4.2 that SPG is flexible when
applied to data with different frequency resolutions and it can
plausibly construct 3D magnetic field morphology with high
precision. To better resolve the Faraday depth structure, FT
requires high-precision instruments like the Low-Frequency
Array. Therefore, outlining the synergy between SPG and FT
can be beneficial for mapping the magnetic field structure on
the sky.
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Figure 6. Change of the fraction function in Saha equilibrium with different
temperatures under constant density.

6.2. Limitation of the Current Work

While we concisely compare the two magnetic field mapping
techniques in this work, our work is limited to the isothermal
environment. We aware that our study may not hold in the
multi-phase environment, especially in cold gas. However, we
believe our our results are relevant to more general situations
including multi-phase media, and below we explain why. For
instance, considering that multi-phase media are under Saha
equilibrium locally, the thermal electron fraction is closely
related to the temperature of the local environment, which is

)G 1(27rmekT)3/zem
1-X ny

5 i, (22)

When X is the fraction between ionized hydrogen and natural
hydrogen, T is the temperature, n, is the density of the
hydrogen, Iy is the ionized energy of the hydrogen, m, is the
electron mass, k is Boltzmann’s constant, and / is the Planck
constant. By calculating the ionized hydrogen fraction, we can
also determine the density of the thermal electron. Figure 6
shows the change of T3/2~m/kT" in different T with the
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Table 4
Summary of the Differences between the SPG and FT Methods

Synchrotron Polarization Gradients FT
2D/3D Structure Yes No
Order Info Yes Generally No
Dependence of the obtained magnetic field As a function of line of sight distance As a function of Faraday depth ¢
Intensity profile along LOS No Yes
Data Point Requirement Two frequency measurements are required A vast number of measurements are required
Accuracy Relatively Low Depends on the frequency density and range

assumption of constant density. We see that the relation is
dominated by the exponential term and drops rapidly when 7 is
small (about 10? K). This result does not change much even
though the cold gas may be 4-5 orders denser than the hot gas.
Therefore, we expect the hot and warm phases to dominate
over the emission of the the cold phases, as discussed in
Lazarian & Pogosyan (2016) and references therein for external
ionization sources.

In particular, Kritsuk et al. (2007) showed that the volume
fraction of cold gas fills up a small fraction of the space (from
7% to 8%) in 512° numerical simulations. Most of the space in
the environment is suffused with warm and hot gas. This also
indicates that the principal emission source in the multi-phase
gas that we observed is coming from hot and warm gas. In
addition, the fraction of cold gas decreases substantially for
high latitudes (see Kalberla & Haud 2018).

We believe that synchrotron emissions are mainly aroused
from hot and warm gas phases, which indicates the sonic Mach
number is sufficiently low and the density variation is negligible.
Moreover, the Faraday rotation term RM f dzng B, can be
approximated with cumulative sum of magnetic field strength
along the LOS. Therefore, the synchrotron emission P ~ Piexp
(IRM) is independent of density variation, and also the variation
from the equation of state. A case in which an arbitrary equation
of state and in which the media have fluctuations of density and
magnetic field was performed analytically in Lazarian &
Pogosyan (2016). Comparatively, our study shows that using
isothermal simulations does not omit the essential physics. More
complicated cases discussed in Lazarian & Pogosyan (2016) will
be considered elsewhere.

7. Synergy of the Two Approaches

The multi-frequency measurements of synchrotron polariza-
tion allow a synergistic use of the two techniques. The physical
processes of inversion upon which the two techniques are
different. This allows greater insights. The SPG uses the
depolarization of the signal to trace the magnetic field.
Therefore, the SPG results do not depend on the variations of
the magnetic field direction along the LOS. As a consequence,
one can combine the SPG with the FT and use the SPG to
resolve the FT problems illustrated in Figure 3, by placing the
sources in the right sequence along the LOS. The FT can
improve the accuracy of the detailed tracing of the magnetic
field, provided that the frequency coverage is sufficiently high.
We summarize the difference of key features between two
methods in Table 4. Combining these approaches could be a
fruitful direction for future research.

8. Summary

This paper compares the FT and SPGs techniques, which can
both plausibly trace the 3D magnetic field using polarized
synchrotron emission. We have explored numerically the
performance of these techniques and analyzed their strengths
and limitations in the special cases of uniform and isothermal
turbulent media. The FT method can provide high-accuracy
magnetic field tracing, provided there is wide frequency band
coverage, high frequency resolution is available, and the mean
magnetic field is not too close to being perpendicular to the
LOS. It is advantageous that the SPGs, on the other hand,
provide a better accuracy for tracing the 3D magnetic field
when the magnetic field is nearly perpendicular to the LOS.
Moreover, we demonstrated that the SPGs require less
frequencies when restoring the magnetic field structure. As a
result, we claim that combining the two techniques is
advantageous, especially as the SPG technique matures and
becomes more accurate.

A.L. acknowledges the support of NSF grants DMS
1622353, AST 1715754, and 1816234.
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