2020

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO.9, SEPTEMBER 2019

Efficient Live Migration of Edge Services
Leveraging Container Layered Storage

Lele Ma™, Shanhe Yi

, Student Member, IEEE, Nancy Carter™, and Qun Li, Fellow, IEEE

Abstract—Mobile users across edge networks require seamless migration of offloading services. Edge computing platforms must
smoothly support these service transfers and keep pace with user movements around the network. However, live migration of
offloading services in the wide area network poses significant service handoff challenges in the edge computing environment. In this
paper, we propose an edge computing platform architecture which supports seamless migration of offloading services while also
keeping the moving mobile user “in service” with its nearest edge server. We identify a critical problem in the state-of-the-art tool for
Docker container migration. Based on our systematic study of the Docker container storage system, we propose to leverage the
layered nature of the storage system to reduce file system synchronization overhead, without dependence on the distributed file
system. In contrast to the state-of-the-art service handoff method in the edge environment, our system yields a 80 percent (56 percent)
reduction in handoff time under 5 Mbps (20 Mbps) network bandwidth conditions.

Index Terms—Docker container, container migration, service handoff, edge computing

1 INTRODUCTION

DGE computing has become a prominent concept in

many leading studies and technologies in recent
years [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11], [12]. Since
edge servers are in close proximity to the mobile end user,
higher quality of services (QoS) could be provided than was
possible with the traditional cloud platform [3], [11]. End
users benefit from edge services by offloading their heavy
duty computations to nearby edge servers [13], [14], [15],
[16]. Then the end user experience with cloud services will
achieve higher bandwidth, lower latency, as well as greater
computational power.

One of the key challenges for edge computing is keeping
quality of service guarantees better than traditional cloud
services while offloading services to the end user’s nearest
edge server. However, when the end user moves away from
the nearby edge server, the quality of service will significantly
decreases due to the deteriorating network connection. Ide-
ally, when the end user moves, the services on the edge server
should also be live migrated to a new nearby server. There-
fore, efficient live migration is vital to enable the mobility of
edge services in the edge computing environment.

Several approaches have been investigated to live
migrate offloading services on the edge. Virtual machine
(VM) handoff [17], [18] divides VM images into two stacked
overlays based on VM synthesis [1]. During migration, only
the overlay on the top is transferred from the source to the

o The authors are with the Department of Computer Science, College of
William and Mary, Williamsburg, VA 23185.
E-mail: {Ima03, njcarter j@email wm.edu, {syi, liqun j@cs.wm.edu.

Manuscript received 27 Dec. 2017; revised 4 Aug. 2018; accepted 12 Sept.
2018. Date of publication 24 Sept. 2018; date of current version 7 Aug. 2019.
(Corresponding author: Lele Ma.)

For information on obtaining reprints of this article, please send e-mail to:
reprints@ieee.org, and reference the Digital Object Identifier below.

Digital Object Identifier no. 10.1109/TMC.2018.2871842

target server instead of the whole VM image volume. This
significantly reduces data transfer size during migration.
However, a virtual machine overlay can be tens or hun-
dreds of megabytes in size, thus the total handoff time is
still relatively long for latency sensitive applications. For
example, OpenFace [15], a face recognition service, will cost
247 seconds to migrate on a 5 Mbps wide area network
(WAN), which barely meets the requirements of a respon-
sive user experience. Additionally, VM overlays are hard to
maintain, and are not widely available in the industrial or
academic world.

In contrast, the widely deployed Docker platform raises
the possibility of high speed service handoffs on the net-
work edge. Docker [19] has gained popularity in the indus-
trial cloud. It employs layered storage inside containers,
enabling fast packaging, sharing, and shipping of any
application as a container. Live migration of Docker con-
tainers is achievable. For example, P. Haul [20] supports live
migration containers on Docker 1.9.0 and 1.10.0. They are
developed based on a user level process checkpoint and
restore tool CRIU [21]. But CRIU will transfer the whole con-
tainer file system in a bundle during the migration, regard-
less of storage layers, which could induce errors as well as
high network overhead.

In exploring an efficient container migration strategy tai-
lored for edge computing, we focus on reducing the file sys-
tem transfer size by leveraging Docker’s layered storage
architecture. Docker’s storage allows only the top storage
layer to be changed during the whole life cycle of the con-
tainer. All layers underlying the top layer will not be
changed. Therefore, we propose to share the underlying
storage layers before container migration begins, and only
transfer the top layer during the migration itself.

In this paper, we build a system which allows efficient
live migration of offloading services on the edge. Offloading

1536-1233 © 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Authorized licensed use limited to: William & Mary. Downloaded on August 01,2020 at 20:01:20 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-7558-9479
https://orcid.org/0000-0001-7558-9479
https://orcid.org/0000-0001-7558-9479
https://orcid.org/0000-0001-7558-9479
https://orcid.org/0000-0001-7558-9479
https://orcid.org/0000-0003-1668-0613
https://orcid.org/0000-0003-1668-0613
https://orcid.org/0000-0003-1668-0613
https://orcid.org/0000-0003-1668-0613
https://orcid.org/0000-0003-1668-0613
https://orcid.org/0000-0002-9500-5554
https://orcid.org/0000-0002-9500-5554
https://orcid.org/0000-0002-9500-5554
https://orcid.org/0000-0002-9500-5554
https://orcid.org/0000-0002-9500-5554
mailto:
mailto:

MA ETAL.: EFFICIENT LIVE MIGRATION OF EDGE SERVICES LEVERAGING CONTAINER LAYERED STORAGE

services are running inside Docker containers. The system
will reduce the transferred file volumes by leveraging lay-
ered storage in the Docker platform. Our work addressed
following challenges during this project:

First, the internals of Docker storage management must
be carefully studied. Few studies have been published
regarding Docker storage. Reading the raw source code ena-
bles better understanding of the inner infrastructure.

Second, an efficient way to take advantage of Docker’s
layered storage must be carefully designed to avoid file sys-
tem redundancy. We found that Docker creates a random
number as local identification for each image layer down-
loaded from the cloud. As a result, if two Docker hosts
download the same image layer from the same storage
repository, these layers will have different reference identi-
fication numbers. Therefore, when we migrate a container
from one Docker host to another, we must recognize
whether there are any image layers with different local
identification numbers yet having the same content, thus
avoiding transfer of redundant image layers during the con-
tainer migration.

Third, besides the file system, we also need to optimize
transmission of the raw memory pages, used to restore
the live status of the offloading service. Binary data are
different in format then the file system, and thus must be
treated separately.

Last, in terms of end user experience, we need to reduce
the user-experienced connection interruption during service
migration. It is possible that user-experienced interruption
interval could be shorter than the actual migration time
through a well designed migration process strategy. Ideally,
our goal is seamless service handoff wherein users will not
notice that their offloading service has been migrated to a
new edge server.

We propose a framework that enables high speed off-
loading service migration across edge servers over WAN.
During migration, only the top storage layer and the incre-
mental runtime memory is transferred. The total migration
time and user perceived service interruption are signifi-
cantly reduced. The contributions of this paper are listed as
below (a preliminary version of this work appeared in [22]):

e We have investigated the current status of container
migration and identified performance problems.

e We have analyzed Docker storage management
based on the AUFS storage driver, and studied the
internal image stacking methodology.

e We have designed a framework that enables efficient
live migration of offloading services by sharing com-
mon storage layers across Docker hosts.

e A prototype of our system has been implemented.
Evaluation shows significant performance improve-
ment with our design, up tp 80 percent on 5 Mbps
networks.

We will briefly introduce the motivation of this work in
Section 2. Section 3 reports the systematic study of Docker
storage management, and the problems of previous Docker
migration tools. Section 4 discusses the design of our system
infrastructure. In Section 5, the prototype system is evalu-
ated. Section 6 discusses related work, and Section 7 con-
cludes this paper.

2021

2 MOTIVATION

In this section, we seek to answer the following questions:
Why do edge applications need offloading of computation?
Why is service migration needed in edge computing? Why do
we seek to perform service migration via Docker containers?

2.1 Offloading Service is Essential for Edge
Computing

With the rapid development of edge computing, many
applications have been created to take advantage of the
computation power available from the edge.

For example, edge computing provides powerful sup-
port for many emerging augmented reality (AR) applica-
tions with local object tracking, and local AR content
caching [1], [4]. It can be used to offer consumer or enter-
prise propositions, such as tourist information, sporting
event information, advertisements, etc. The Gabriel plat-
form [23] was proposed within the context of wearable cog-
nitive assistance applications using a Glass-like wearable
device, such as Lego Assistant, Drawing Assistant, or Ping-
pong Assistant. OpenFace [15] is a real-time mobile face rec-
ognition program based on a deep neural network. The
OpenFace client sends pictures captured by the camera to a
nearby edge server. The server runs a face recognition ser-
vice that analyzes the picture and sends symbolic feedback
to the user in real time. More edge applications can be found
in [5], [6], [8], [11], [12]. In brief, applications on the edge not
only demand intensive computations, or high bandwidth,
but also require real time response.

2.2 Effective Edge Offloading Needs Migration

for Service Handoff
As mentioned previously, highly responsive services rely
upon relatively short network distances between the end
user and the edge server. However, when the end user
moves farther away from its current edge server, offloading
performance benefits will be dramatically diminished.

In the centralized cloud infrastructure, mobility of end
users is well supported since end users are connected to the
centralized cloud server through WAN. However, in the
edge computing infrastructure, mobile devices connect to
nearby edge servers with high bandwidth and low latency
connections, usually via a LAN. Therefore, when the mobile
device moves farther away from its edge server, the connec-
tion will suffer from higher latency, or may even become
totally interrupted.

In order to be continuously served by a nearby edge
server, the offloading computation service should migrate
to a new edge server that is closer to the end user’s new
location than the current server. We regard this process as a
service handoff from the current edge server to the new edge
server. This is similar to the handover mechanism in cellular
networks, wherein a moving user connects to the nearest
available base station, maintaining connectivity to the cellu-
lar network with minimal interruption.

However, there exists one key difference between the cel-
lular network handover and the edge server handoff. In cel-
lular networks, changing a base station for the mobile client
is as simple as rebuilding a wireless connection. Most run-
time service states are not stored on the base station but are

Authorized licensed use limited to: William & Mary. Downloaded on August 01,2020 at 20:01:20 UTC from IEEE Xplore. Restrictions apply.

2022 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.18, NO.9, SEPTEMBER 2019
TABLE 1 TABLE 2
Docker Container Migration Time Docker Container Migration Time
(Bandwidth 600 Mbps, Latency 0.4 ms) (Bandwidth 15 Mbps, Latency 5.4 ms)
App Total time Downtime FSSize TotalSize App Total time Downtime FSSize Total Size
Busybox 7.54s 3495 140KB 290 KB Busybox 133.11s 9s 140KB 290KB
OpenFace 26.19 s 5.02s 20GB 217GB OpenFace ~ 3200 s 153.82's 20G 217G

saved either on mobile client, or on the cloud. Therefore,
after re-connection, the run-time state can be seamlessly
resumed through the new connection.

In the edge infrastructure, mobile devices use edge serv-
ers to offload resource-hungry or computation-intensive
computations. This means that the edge server needs to
hold all the states of the offloading workloads. During the
service handoff from one edge server to another, all the run-
time states of offloading workloads need to be transferred
to the new edge server. Therefore, fast live migration of off-
loading services across edge servers is a primary require-
ment for edge computing.

2.3 Lightweight and Faster Migration is Achievable
with Docker Containers

Since VM migration poses significant performance prob-

lems to the seamless handoff of edge services, container live

migration has gained recognition for being lightweight and

its ability to maintain a certain degree of isolation.

Docker containers also support layered storage. Each
container image references a list of read-only storage layers
that represent file system differences. Layers are stacked
hierarchically and union mounted as a container’s root file
system [24]. Layered storage enables fast packaging and
shipping of any application as a lightweight container based
upon sharing of common layers.

These layered images have the potential for fast con-
tainer migration by avoiding transfer of common image
layers between two migration nodes. With container images
located in cloud storage (such as DockerHub), all the
container images are available through the centralized
image server. Before migration starts, an edge server has
the opportunity to download the system and application
images as the container base image stack. Therefore, we can
avoid the transfer of the container’s base image during the
actual migration process.

Apparently, the migration of Docker containers can be
accomplished with smaller transfer file sizes than with VM
migration. However, as of this writing, no tools are avail-
able for container migration on the edge environment. Con-
tainer migration tools for data centers can not be directly
applied to the WAN network edge.

Tables 1 and 2 shows our experiment with previous
container migration solution under two different network
environments. Table 1 indicates that migration could be
done in 7.52 seconds for Busybox, and 26.19 seconds for
OpenFace. The network connection between the two hosts
had 600 Mbps bandwidth with latency of 0.4 milliseconds.

However, when the network bandwidth reduces to
15 Mbps and latency reduces to 5.4 ms, container migration
performance becomes unacceptable. Table 2 shows that
the migration of the Busybox container takes 133.11 seconds
with transferred size as small as 290 Kilobytes and

OpenFace takes about 3200 seconds with 2 Gigabytes
data transferred.

We found that one of the key factors causing this poor per-
formance is the large size of the container’s transmitted file
system. In this paper, we propose to reduce transmission
size by leveraging the layered storage provided in Docker.

3 CONTAINER STORAGE AND MIGRATION

In this section, we discuss the inner details of container stor-
age and the problems we found in the latest migration tools.
We take Docker as an example container engine and AUFS
as its storage system. Docker is becoming more popular and
widely adopted in the industrial world. However, as of this
writing, the technical details of Docker layered storage man-
agement are still not well-documented by research papers.
To the best of the authors” knowledge, this is the first paper
to investigate the inner details of the Docker layered storage
system, and leverage that layering to speed up Docker con-
tainer migration.

3.1 Container Engines and Storage Drivers

In general, Linux container engines support multiple kinds
of file storage systems. For example, the Docker container
supports AUFS, Btrfs, OverlayFS, etc. [24]. LXC could use
Btrfs, LVM, overlayFS, etc. [25]. OpenVZ containers can
directly run on native ext3 for high performance, or Virtu-
0zzo as networking distributed storage [26]. Some of them
inherently support layered storage for easy sharing of con-
tainer images, such as Docker and rkt. Others, such as
OpenVZ, solely support regular file systems to achieve fast
native performance. We leverage the layered storage of
Docker containers for efficient container migration. This
strategy is also applicable to other container engines sup-
porting layered image formats, such as rkt. However, the
details of layer management techniques can vary across dif-
ferent container engines, thus each engine requires customi-
zation to enable image layer sharing.

Different storage drivers can define their own container
image formats, thus making container migration with dif-
fering storage drivers a challenging task. It must be recog-
nized that with the efforts of the Open Container Inititive
(OCI), the format and structure of the container image is
evolving towards a common standard across multiple con-
tainer engines. For example, both rkt and Docker can sup-
port OCI images, and the container image could be
migrated between rkt and Docker hosts [27].

Docker leverages the copy-on-write (CoW) features of
underlying storage drivers, such as AUFS or overlay2. Rkt
supports Docker images consistent with OCI specifications
thus it can leverage the image layers for sharing. Since
Docker manages container image inherently and is one of
the most popular industrialized container engines, we

Authorized licensed use limited to: William & Mary. Downloaded on August 01,2020 at 20:01:20 UTC from IEEE Xplore. Restrictions apply.

MA ETAL.: EFFICIENT LIVE MIGRATION OF EDGE SERVICES LEVERAGING CONTAINER LAYERED STORAGE

R/W Lfebfb164Zebeb25857bf2a9C558bf695 :
RO |[fac86d61dfe33£821e8d0e7660473381
RO [984034c1bb9c62ac63£ff949a70d1c06
RO | 80db20d8e37dc3795b17e0e59930a408

Fig. 1. OpenFace container’s image layer stack. Container’s rootfs ID is
febfb1642ebeb25857bf2a9¢558bf695. On the top is the writable (R/W)
layer — container layer, and all the underlying layers are readonly (RO),
which are called base image layers.

adopt Docker as our experimental container engine to
migrate containers on the edge.

3.2 Layered Storage in Docker

A Docker container is created on top of a Docker image
which has multiple layers of storage. Each Docker image
references a list of read-only layers that represent file system
differences. Layers are stacked on top of each other and will
be union mounted to the container’s root file system [24].

3.2.1 Container Layer and Base Image Layers

When a new container is created, a new, thin, writable stor-
age layer is created on top of the underlying read-only stack
of image layers. The new layer on the top is called the con-
tainer layer. All changes made to the container—such as
creation, modification, or deletion of any file—are written to
this container layer [24].

For example, Fig. 1 shows the stacked image layers of
OpenFace. The dashed box on the top is the container layer
of OpenFace. All the underlying layers are base image layers.
To resolve the access request for a file name, the storage
driver will search the file name from the top layer towards
the bottom layer. The first copy of the file will be returned
for accessing, regardless of any other copies with the same
file name in the underlying layers.

3.2.2 Image Layer ID Mapping

Since Docker 1.10, all images and layers are addressed by
secure content SHA256 hash [24]. This content addressable
design enables better sharing of layers by allowing many
images to freely share their layers locally even if they don’t
come from the same build. It also improves security by
avoiding name collisions, and assuring data integrity across
Docker local hosts and cloud registries [28].

By investigating the source code of Docker and its storage
structure, we find that there is an image layer ID mapping
relationship which is not well documented. If the same
image is downloaded from the same build on the cloud,
Docker will map the original layer IDs to a randomly gener-
ated ID, called cache ID. Every image layer’s original ID will
be replaced with a unique cache ID. From then on, the Docker
daemon will address the image layer by this cache ID when it
creates, starts, stops, checkpoints, or restores a container.

As a result, if two Docker hosts download the same image
layer from the same repository, these layers will have differ-
ent cache IDs. Therefore, when we migrate a container from
one Docker host to another, we must find out whether those
image layers with different IDs are actually referencing the

2023

same content. This is necessary to avoid redundant transfers
of image layers during container migration.

3.2.3 Docker’s Graph Driver and Storage Driver

Note that the mismatching of image layer cache IDs seems to
be a flawed Docker design when it comes to container migra-
tion. However, this design is actually the image layer caching
mechanism designed for the graph driver in the Docker run-
time [29]. All image layers in Docker are managed via a
global graph driver, which maintains a union mounted root
file system tree for each container by caching all the image
layers from the storage driver. The graph driver will ran-
domly generate a cache ID for each image layer. The cache of
image layers is built while the docker pull or docker build com-
mands are executed. The Docker engine maintains the link
between the content addressable layer ID and its cache ID, so
that it knows where to locate the layer content on disk.

In order to get more details about Docker’s content
addressable images, we investigated the source code along
with one of its most popular storage drivers, AUFS. Other
storage drivers such as Btrfs, Device Mapper, OverlayFs,
and ZFS, implement management of image layers and con-
tainer layers in unique ways. Our framework could be
extended to those drivers. Due to limited time and space, we
focused on experiments with AUFS. The following section
presents our findings about Docker’s AUFS storage driver.

3.3 AUFS Storage: A Case Study

We worked with Docker version 1.10 and the default AUFS
storage driver. Therefore, our case study demonstrates man-
agement of multiple image layers from an AUFS point of
view. For the latest Docker version (docker-18.03 as of this
writing), it is recommended to use overlay2 when possible.
Note that the actual directory tree structure described in
this section is no longer valid for overlay2. However, the
general principles of image layer organization and access
remain the same as introduced in Section 3.1. The scheme in
this paper provides a guideline to interact with the image
layer addressing operations of the Docker runtime graph
driver [29] which is not tightly bound to the underlying
storage drivers. Therefore, it could be extended to overlay2
with straightforward engineering efforts, consisting mostly
of updating directory names.

AUFS storage driver exposes Docker container storage as
a union mounted file system. Union mount is a way of com-
bining numerous directories into one directory in such a
way that it appears to contain the contents from all of them
[30]. AUFS uses union mount to merge all image layers
together and presents them as one single read-only view. If
there are duplicate identities (i.e., file names) in different
layers, only the one on the highest layer is accessible.

In Docker 1.10, the root directory of Docker storage is by
default defined as /var/lib/docker/0.0]. We will use *.” to repre-
sent this common directory in the following discussion. The
AUFS driver mainly uses three directories to manage image
layers:

1) Layer directory (./aufs/layers/), contains the metadata
describing how image layers are stacked together;

2) Diff directory (./aufs/diff/), stores the content data
for each layer;

Authorized licensed use limited to: William & Mary. Downloaded on August 01,2020 at 20:01:20 UTC from IEEE Xplore. Restrictions apply.

2024

3) Mount directory (./aufs/mnt/), contains the mount
point of the root file system for the container.

When the Docker daemon starts or restores a container, it
will query the IDs of all image layers stored at Layer directory
Then it will get the content of image layers by searching Diff
directory. Finally all image layers are union mounted
together to the Mount directory. After this, the container will
have a single view of its complete file system.

Note that the mount point for a container’s root file sys-
tem is only available when the container is running. If the
container stops, all the image layers will be unmounted
from this mount point and it will become an empty direc-
tory. Therefore, during migration, we cannot synchronize
the container’s root file system directly, or the container’s
layers will not be mounted or unmounted correctly on the
target node.

3.4 Docker Container Migration in Practice

There is no official migration tool for Docker containers as
of this writing, yet many enthusiastic developers have con-
structed tools for specific versions of Docker. These tools
have demonstrated the feasibility of Docker container
migration. For example, P.Haul [20] supports migration of
Docker-1.9.0-dev, and Boucher [31] extends P.Haul to sup-
port Docker 1.10-dev migration. However, both methods
simply transfer all the files located under the mount point
of a container’s root file system. At that point, the files are
actually a composition of all container image layers. Both
methods ignore the underlying storage layers. This aspect
of both methods causes the following problems:

1) It will corrupt the layered file system inside the con-
tainer after restoration on the target server. The tool
simply transfers the whole file system into one direc-
tory on the destination, ignoring all underlying layer
information. After restoration on the target host,
the container cannot be properly maintained by
the Docker daemon, which will try to mount, or
unmount the underlying image layers.

2) It substantially reduces the efficiency and robustness
of migration. The tool synchronizes the whole file
system using the Linux rsync command while the
container is still running. First, running rsync com-
mand on a whole file system is slow due to the
large amount of files, especially during the first
run. Second, file contention is possible when pro-
cess of container and the process of rsync attempt
to access the same file and one of them is write.
Contention causes synchronization errors which
result in migration errors.

To verify our claim, we have conducted experiments to
migrate containers over different network connections. Our
experiments use one simple container, Busybox, and one
application, OpenFace, to conduct edge server offloading.
Busybox is a stripped-down Unix tool in a single executable
file. It has a tiny file system inside the container. OpenFace
[15] is an application that dispatches images from mobile
devices to the edge server, which executes the face recogni-
tion task, and sends back a text string with the name of the
person. The OpenFace container has a huge file system,
approximately 2 Gigabytes.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18,

NO.9, SEPTEMBER 2019

1
1
Edge Edge 1 Edge Edge
Server Server ! Server Server
VM A VM B : VM A VM B
Offloading : Offloading
Container | Container
Docker | Docker | : | Docker | Docker
1
1 /
1
1
1
P 1 ey
|+ . | |+
moving . moving
- ! i
1
(a) Before Migration ' (b) After Migration

Fig. 2. Offloading serivce handoff: Before and after migration of
offloading container.

Table 1 indicates that migration could be done within 10
seconds for Busybox, and within 30 seconds for OpenFace.
The network between these two virtual hosts has a 1 Gbps
bandwidth and latency of 0.4 milliseconds, transferring 2.17
GB data within a short time. We further tested container
migration over a network with bandwidth of 15 Mbps and
latency of 5.4 ms. Table 2 shows that migration of the Busybox
container takes 133.11 seconds with transfer sizes as small as
290 Kilobytes. Migrating OpenFace required transfer of more
than 2 Gigabytes data and took about 3200 seconds.

As previously stated, poor performance is caused by tran-
ferring large files comprising the complete file system. This
is worse performance than the state-of-the-art VM migration
solution. Migration of VMs could avoid transferring a por-
tion of the file system by sharing the base VM images [17],
which will finish migration within several minutes.

Therefore, we require a new tool to efficiently migrate
Docker containers, avoiding unnecessary transmission of
common image layer stacks. This new tool should leverage
the layered file systems to transfer the container layer only
during service handoff.

4 OFFLOADING SERVICE MIGRATION ON EDGE

In this section, we introduce the design of our service hand-
off framework based on Docker container migration. First,
we provide a simple usage scenario, then we present an
overview of the system architecture in Section 4.1. Second,
we enumerate work-flow steps performed during service
handoff in Section 4.2. Third, in Sections 4.3 and 4.4, we dis-
cuss our methodology for storage synchronization based on
Docker image layer sharing between two edge servers.
Finally, in Sections 4.5, 4.6, and 4.7, we show how to further
speed up the migration process through memory difference
transfers, file compression, pipelined and parallel process-
ing during Docker container migration.

4.1 System Overview

Fig. 2 shows an exemplar usage scenario of offloading ser-
vice hand-off based on container migration. In this example,
the end user offloads workloads to an edge server to achieve
real-time face recognition (OpenFace [15]). The mobile client
continuously reads images from the camera and sends
them to the edge server. The edge server runs the facial

Authorized licensed use limited to: William & Mary. Downloaded on August 01,2020 at 20:01:20 UTC from IEEE Xplore. Restrictions apply.

MA ETAL.: EFFICIENT LIVE MIGRATION OF EDGE SERVICES LEVERAGING CONTAINER LAYERED STORAGE

Edge Controller (in Centralized Cloud)
. . Edge
Offloading Service Servers,/Clusters
Scheduler .
Monitor
Container/VM Authentication
Image Service Service
Edge Node
Offloading Offloading Service
Services Controller
Container Virtual Machine
Orchestration Orchestration
End User
Mobile Application WiFi/LTE

Fig. 3. Overview of edge computing platform.

recognition application in a container, processes the images
with a deep neural network algorithm, and sends each rec-
ognition result back to the client.

All containers are running inside VMs (see VM A, VM B
in Fig. 2). The combination of containers and VMs enables
applications scale up deployment more easily and control
the isolation between applications at different levels.

All offloaded computations are processed inside contain-
ers, which we call the offloading container. When the user
moves beyond the reach of server A and reaches the service
area of edge server B, its offloading computation shall be
migrated from server A to server B. This is done via migra-
tion of the offloading container, where all runtime memory
states as well as associated storage data should be synchro-
nized to the target server B.

In order to support both the mobility of end users and the
mobility of its corresponding offloading services on the
edge server, we designed a specialized edge computing
platform. Fig. 3 provides an overview of our edge platform
and its three-level computing architecture. The first level is
the traditional cloud platform architecture. The second level
consists of the edge nodes distributed over a WAN network
in close proximity to end users. The third level consists of
mobile clients from end users who request offloading serv-
ices from nearby edge servers.

4.1.1 Edge Controller

The first level contains four services running in the central-
ized edge controller that manage offloading services across
all edge servers and/or clusters on the WAN network.
These four services are:

Offloading Service Scheduler is responsible for scheduling
offloading services across edge servers or clusters. The
parameters of scheduling include but are not limited to 1)
physical locations of end users and edge servers; 2)

2025

workloads of edge servers; 3) end user perceived band-
width and latency, etc.

Edge Server/Clusters Monitor is responsible for communi-
cating with the distributed edge servers or clusters, and col-
lecting performance data, run time meta data for offloading
services and end user meta data. The collected data is used
to make scheduling decisions.

Container/VM Image Service is the storage service for edge
servers. It distributes container and VM images to the edge
server for fast deployment as well as for data backup.
Backup data can be saved as container volumes [32] to
enable faster deployment and sharing among distributed
edge servers.

Authentication Service is used to authenticate the identities
of both edge servers and end users.

4.1.2 Edge Nodes

The second level in Fig. 3 consists of the distributed edge
nodes. An edge node could be a single edge server or a cluster
of edge servers. Each edge node runs four services which are:

Container Orchestration Service and Virtual Machine Orche-
stration Service are two virtualization resource orchestration
services. They are used to spawn and manage the life cycle
of containers and VMs. Each end user could be assigned
one or more VMs to build an isolated computing environ-
ment. Then by spawning containers inside the VM, the end
user creates offloading services.

Offloading Service is the container instance that computes
the end user’s offloading workloads.

Offloading Service Controller will be responsible for man-
aging the service inside the edge node. It could limit the
number of user-spawned containers, balance workloads
inside the cluster, etc. It also provides the latest performance
data to the Edge Controller in the cloud. Performance data
includes offloading service states inside the edge node, and
identification of the latest data volumes requiring backup to
the cloud.

4.1.3 End Users

The third level of our edge platform is comprised of the end
user population. End users are traditional mobile clients
running mobile applications on Android, iOS, Windows, or
Linux mobile devices. Our design will not modify the
mobile client applications. Offloading service handoff prog-
ress will be transparent to end users. The mobile device can
use WiFi or LTE to access the Edge Nodes or Edge Controller.

4.2 Workflow of Service Handoff

Fig. 4 shows the design details of our architecture broken
into individual migration steps. The source server is the
edge server currently providing end user computational
services. The target server is the gaining server. Computa-
tional services are transferring from the source to the target
server. Details of these steps are described below:

S1 Synchronize Base Image Layers. Offloading services are
started by creating a container on the source server.
Once the container is started on the source server,
the base image layers for that container will be also
be downloaded to additional nearby potential target

Authorized licensed use limited to: William & Mary. Downloaded on August 01,2020 at 20:01:20 UTC from IEEE Xplore. Restrictions apply.

2026

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO.9, SEPTEMBER 2019

Offloading
Container

$2.Pre-dump
S5. Checkpoint,
Memory Diff
S6. Stop Container
$10. Clean Up

$1. ID Remapping

Docker Daemon

VM (Linux)

Source Ts3. Migration Request

Fig. 4. Full workflow of offloading service handoff.

S2

S3

54

S5

S6

57

S8

S9

servers. This is to begin preparation for subsequent
end user movements.

Pre-dump Container. Before the migration request is
issued, one or more memory snapshots will be syn-
chronized to the all potential target servers without
interrupting the offloading service.

Migration Request Received on Source Server. Live
migration of the offloading is triggered by the migra-
tion request. The request is initiated by the cloud
control center.

Image Layer Synchronization. Images layers on the two
edge servers are compared with each other by
remapping the cachelDs back to the original IDs.
Only the different image layers are transferred.
Memory Difference Transmission. The container on the
source server will be checkpointed to get a snapshot
of memory. Multiple snapshots can be taken in dif-
ferent time slots. Two consecutive snapshots will be
compared to get dirty memory. The dirty memory is
then transmitted to the target server re-assembled at
the target server.

Stop Container. Once the dirty memory and file sys-
tem difference are small enough, such that they can
be transferred in a tolerable amount of time, the con-
tainer on the source server will be stopped and the
latest dirty memory and files will be sent to the target
edge server.

Container Layer Synchronization. After the container is
stopped, storage on the source server will not be
changed by the container. Thus we can send the lat-
est container layer to the target server. At the same
time, all meta data files, such as JSON files logging
the container’s runtime states and configurations,
are also transferred to the target server.

Docker Daemon Reload. On the target server, Docker
daemon will be reloaded after receiving container
configuration files from the source server. After
reloading, the target node will have source configu-
rations loaded into the runtime database.

Restore Container. After the target server receives the
latest runtime memory and files, the target container
can be restored with the most recent runtime states.

S2. Send Pre-Dump Memory

S5. Send Memory Difference

S1, S4. Image Layers Sync

————————— U
S7. Container Layer Sync
il

S1. ID Remapping
S8. Reload Daemon

e

S1. Pre-Download Images

Other Near
Edge Servers

Offloading
Container

S5. Apply Memory Difference
S9. Restore Container

Docker Daemon

VM (Linux)

Target

The migration is now finished at the target server
and the user begins receiving services from this new
edge server. At the same time, the target server will
go to step S1 to prepare the next iteration of service
migration in the future.

Clean Up Source Node. Finally, the source node will
clean up by removing the footprints of the offloading
container. Clean up time should be carefully chosen
based on user movement patterns. It could be more
efficient to retain and update the footprint containers
if the user moves back in the future.

Fig. 5 provides a simple overview of the major migration
procedures. We assume that before migration starts, both
the source and target edge servers have the application base
images downloaded. Once the migration request is received
on the source server, multiple iterations of transferring
image layers and memory images/differences will be pro-
ceeded until the migration is done. File system images and
memory snapshots are transferred in parallel to improve
efficiency. The number of iterations needed can be deter-
mined empirically based on the actual offloading environ-
ment and user tolerance for service delay.

510

4.3 Strategy to Synchronize Storage Layers
Storage layer matching can either be implemented within
the existing architecture of the container runtime, or pro-
vided as a third party tool without change to the underlying
container runtime. Changing the container architecture will
enable the built-in migration capabilities thus improve the
efficiency and usability. However, users must update
their container engine in order to benefit from the modi-
fied migration feature. Updating the software stack can
be destructive in a complex environment, where the
release of modified software packages usually takes a
long time due to extensive testing requirements. A third
party migration tool offers the advantage of faster migra-
tion feature implementation since no changes are made to
the existing container engine. This is also a good option
for a test environment.

In this paper, we implement our migration feature as a
third party tool. Of course, after the migration feature is
well established, it can subsequently be embedded into the

Authorized licensed use limited to: William & Mary. Downloaded on August 01,2020 at 20:01:20 UTC from IEEE Xplore. Restrictions apply.

MA ETAL.: EFFICIENT LIVE MIGRATION OF EDGE SERVICES LEVERAGING CONTAINER LAYERED STORAGE

[Service Running on Source Server (S1 SZ)]

/ Migration Request (S3) /

Ready to
Migrate ?
no no
yes
Container

Image Layers
Comparison (S4)

l

L Transfer Diff Transfer Dirty

Layers (S4) Memory (S5)

Snapshot Memory (S5)

Migrate (S5-S9)

y

[Service Running on Target Server]

Fig. 5. Major procedures of migration.

container architecture by changing the respective part of the
container. One example is the graph driver of Docker [29].
One solution is to patch the graph driver by simply replac-
ing the randomly generated cache ID with the actual content
addressable hash ID of the image layer, or generate a differ-
ent hash ID by hashing the same image layer content from a
different hash algorithm. We leave such tool extensions to
future work.

A running container’s layered storage is composed of
one writable container layer and several read only base image
layers. The container layer stores all the files created or modi-
fied by the newly created container. As long as the container
is running, this layer is subject to change. So we postpone
the synchronization of the container layer to the point after
the source container is stopped (in step S7).

All base image layers inside containers are read only,
and are synchronized as early as possible. There are two
kinds of base image layers. The first, and most common
type are base image layers downloaded by docker pull com-
mands from centralized image registries such as Docker
Hub. The second image layer type is created by the local
Docker host by saving the current container layer as one
read-only image layer.

Image layers from the centralized image registry should
be downloaded before migration starts, thus download
time is amortized (in step SI). This also reduces network
traffic between the source and target edge servers. For
locally created base image layers, we transfer each such
image layer as it is created (in step S4), regardless if the
migration has started or not.

4.4 Layer ID Remapping

As mentioned previously, an image downloaded from the
common registry to multiple edge servers will have differ-
ent cache IDs exposed at each edge server’s Docker runtime.

2027

In order to efficiently share these common images across
different edge servers, image layers need to be matched
based upon the original IDs instead of the cache IDs. To
remap image cache IDs without changing the Docker graph
driver, we designed a third party tool to match the ran-
domly generated cache IDs to original layer IDs. We first
remap the cache IDs to original IDs on two different edge
servers. Then the original IDs are compared via communi-
cation between the two edge servers. The image layers are
the same if they have identical original IDs.

After the common image layers are found, we map the
original IDs back to the local cache IDs on the target server.
Then we update the migrated container with the new cache
IDs on the target server. Thus, the common image layers on
the migrated container will be reset with the new cache IDs
that are addressable to the Docker daemon on the target
server. When we restore the container in the future, the file
system will be mounted correctly from the shared image
layers on the target server.

For the original IDs that don’t match between the two
hosts, we treat them as new image layers, and add them to a
waiting list for transfer in step 57.

4.5 Pre-Dump & Dirty Memory Synchronization

In order to reduce transferred memory image size during
hand-off, we first checkpoint the source container and then
dump a snapshot of container memory in step S2. This
could happen as soon as the container is created, or we
could dump memory when the most frequently used binary
programs of the application are loaded into memory. This
snapshot of memory will serve as the base memory image
for the migration.

After the base memory image is dumped, it is transferred
immediately to the target server. We assume that the transfer
will be finished before hand-off starts. This is reasonable since
we can send the base memory image as soon as the container
starts. After the container starts, and before the hand-off
begins, the nearby edge servers start to download the
application’s container images. We process those two steps in
parallel to reduce total transfer time. This is further discussed
in Section 4.7. Upon hand-off start, we have the base memory
image of the container already loaded on the target server.

4.6 Data Transfer

There are four types of data requiring transfer: layer stack
information, thin writable container layers, container meta
data files, and snapshots of container memory and memory
differences. Some of the data is in the form of string mes-
sages, such as layer stack information. Some data are in
plain text files, such as most contents and configuration
files. Memory snapshots, and memory differences are con-
tained in binary image files. Adapting to the file types, we
design different data transfer strategies.

Layer stack information consists of a list of SHA256 1D
strings. This is sent as a socket message via UNIX RPC API
implementation in [20]. To must be noted that data com-
pression is not efficient for this information because the
overhead of compression outweighs the transmission effi-
ciency benefits for those short strings.

For other data types, including the container writable
layer, meta data files, dump memory images, and image

Authorized licensed use limited to: William & Mary. Downloaded on August 01,2020 at 20:01:20 UTC from IEEE Xplore. Restrictions apply.

2028

differences, we use bzip2 for compression before sending
out via authorized ssh connection.

4.7 Parallel & Pipelined Processing

With the help of parallel and pipelined processing, we
could further improve our process efficiency in four ways,
and further reduce total migration time.

First, starting a container will trigger two events to run in
parallel: a) on the edge servers near the end user, downloading
images from centralized registry, and b) on the source node,
pre-dumping/sending base memory images to the potential
target servers. Those two processes could be run at the same
time in order to reduce the total time of step 51 and S2.

Second, daemon reload in step S8 is required on the
target host. It could be triggered immediately after S7
and be paralleled with step S5, when the source server is
sending the memory difference to the target host. Step S7
cannot be paralleled with S8, because daemon reload on
the target host requires the configuration data files sent in
step S7.

Third, in step S7, we use compression to send all files in
the container layer over an authorized ssh connection between
the source and target host. The compression and transfer of
the container layer can be pipelined using Linux pipes.

Lastly, in step S5, we need to obtain memory differences
by comparing the base memory images with the images in
the new snapshot, then we send the differences to the target
and patch the differences to the base memory image on the
target host. This whole process could also be piplined using
Linux pipes.

4.8 Multi-Mode Migration with Flexible Trade-Offs
Service handoff efficiency is affected by many system envi-
ronment factors. They include: 1) the network conditions
between two edge servers; 2) the network conditions
between end user and edge server; 3) the available resour-
ces on the edge servers, such as available CPU power.
Taking these factors into consideration, we use different
strategies to improve the efficiency of service handoff. We
combine different metrics to dynamically adapt to various
system environments.

The metrics we use to determine our strategies include:

1) Realtime Bandwidth and Latency. This includes the real
time bandwidth and latency between the source and
target edge servers, as well as between the end user
and two edge servers.

2) Compression Options. We have a set of compression
algorithms and options available for use. Different
algorithms with different options require different
CPU power and take differing amounts of computa-
tion time.

3) Number of Iterations. This defines the maximum num-
ber of iterations invoked for memory/storage pre-
dumping or checkpointing before handoff starts.

The end user’s high quality of service is the ultimate opti-
mization goal. Instead of providing a concrete goal for opti-
mization under different environments and requirements,
we provide multiple possible settings to enable users or
developers to customize their own strategies performing
tradeoffs between differing environmental factors and user

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO.9, SEPTEMBER 2019

requirements. The optimization goals we define for service
handoff are:

1) Interruption Time. Interruption time is the time from
user disconnection from their service on the source
server to the time when the user is reconnected to
their service on the target server.

2) Service Downtime. This is the time duration of the last
iteration of the container migration. During this time
interval, the service instance on the source node is
stopped.

3) Total Migration Time. We use total migration time to
represent the total time of all iterations of container
migration.

Number of Iterations needs to be carefully determined to
optimize the quality of services for end users. If bandwidth
is low, the time each iteration takes will be longer. So our
system tends to use fewer iterations to checkpoint storage
and memory. Fewer iterations mean each batch of dirty
storage and memory transfers will occur in large volume.
Therefore, during the last iteration for service handoff, it
will migrate the container in a relatively longer time, while
the total handoff time at the last iteration might be less.

If bandwidth is high, more iterations could be done in a
relatively short time. Then our system tends to use more
iterations to send storage and memory differences. Gener-
ally the first iteration takes the longest time, say 7;. The sec-
ond iteration will take a shorter time, because it only
transfers the dirty memory generated since 77, say it takes
T5, thus T, < T). Then the third iteration will usually cost
less time, because the dirty memory generated since 75, is
smaller than the dirty memory generated since 7. There-
fore, each iteration will usually take less and less time. The
last iteration’s time can be minimized by increasing the total
iteration number. This is how the live migration is done
inside traditional data centers.

However, for live migration in an edge network, we need
to consider user mobility. If we set too many iterations, it
will add up to the total migration time. During this time, if
the user is moving far away from its original edge server,
the quality of service will also degrade despite the minimi-
zation of service downtime. Therefore we need to control
the total iterations performed commensurate with user
mobility and network bandwidth. Similarly, Compression
options also need to be carefully choosen in order to opti-
mize the service handoff process.

4.9 Two-Layer System-Wide Isolation for
Better Security

It is critical to minimize security risks posed to offloading
services running on the edge servers. Isolation between
different services could provide a certain level of security.
Our framework provides an isolated running environment
for the offloading service via two layers of the system virtu-
alization hierarchy. Different services can be isolated by
running inside different Linux containers, and different con-
tainers are allowed to be further isolated by running in
different virtual machines.

More thorough security solutions need to be designed
before this framework can be deployed in a real world envi-
ronment. These solutions include, but are not limited to effi-
cient run-time monitoring, secure system updating, etc. We

Authorized licensed use limited to: William & Mary. Downloaded on August 01,2020 at 20:01:20 UTC from IEEE Xplore. Restrictions apply.

MA ET AL.: EFFICIENT LIVE MIGRATION OF EDGE SERVICES LEVERAGING CONTAINER LAYERED STORAGE

4.00 -
3.50

other 3.00

restoreSre
memApply 250
imgSend
imgDiff
daemonReload
finalFS
finalDump

2.00

Time (seconds)

1.50

EEORERDOO

1.00

0.50

0.00

pipe
pipe
pipe
pipe
pipe
pipe
pipe
pipe
pipe

2

£
I
5
2

no—pipe
no—pipe
no—pipe
no—pipe
no—pipe
no—pipe
no—pipe
no-pipe

SMbps 10Mbps 15Mbps 20Mbps 25Mbps 30Mbps 35Mbps 40Mbps 45Mbps

Fig. 6. Busybox: Time duration of container migration stages with and
without pipelined processing.

leave security enhancements for future work and focus on
performance evaluation of our services.

4.10 Discussion

In this section, we discuss the benefits of overall system and
its extended application, and then clarify the limitations of
the scope of this paper.

4.10.1 Benefits and Applications

In this paper, we propose an efficient service migration
scheme based on sharing layers of the container storage,
and explore several key metrics that can be used to tune
migration performance. Metrics on the edge server, such as
bandwidth, latency, host environment, etc. are provided to
the cloud center to support decisions towards optimal per-
formance. Cloud centers could utilize those metrics to
make migration go/no-go decisions, schedule the timing of
migrations, decide which target servers to choose as migra-
tion destinations in order to minimize service interruptions.

4.10.2 Limitations of Scope

Note that the theoretical proof of our performance optimiza-
tion scheme is out of scope of this paper. In the architecture
of our edge platform, we divided the optimization problem
into two tasks, one for distributed edge, and one for central-
ized cloud. The first one is to collect performance data from
edge servers; second, we evaluate the performance and
make optimization decisions at the cloud center. This paper
focuses on the edge nodes, where metrics of performance
are collected. The decision process of the cloud center is out
of the scope of this paper.

5 EVALUATION

In this section, we introduce our evaluation experiments and
report the results from the following investigations: 1) How
can container migration performance be affected by pipeline
processing? 2) How can customized metrics such as network
bandwidth, latency, file compression options, and total itera-
tion numbers, affect the migration performance? 3) Will our
system perform better than state-of-the-art solutions?

5.1 Set Up and Benchmark Workloads

Migration scenarios are set up by using two VMs, each run-
ning a Docker instance. Docker containers are migrated from
the Docker host on the source VM to the Docker host on the
target VM.

2029

50.00
] other
45.00 [restoreSrc
H memApply
40.00 Bl imgSend
—~ 35.00 B imgDiff
3 [0 daemonReload
§ 3000 B finalFS
é 25.00 B finalDump
2 2000
=
15.00
10.00
5.00
0‘00 L O L O L O L Y v Y Vv U LV D LV D L O
Ss && && S& & S& &6 &t &
&& && && && &A& &A &AE EAE &'
° ° o)))) o °
] < =] < =) =]]]]

5Mbps 10Mbps 15Mbps 20Mbps 25Mbps 30Mbps 35Mbps 40Mbps 45Mbps

Fig. 7. OpenFace: Time duration of container migration stages with and
without pipelined processing.

Linux Traffic Control (tc [33]) is used to control network
traffic. In order to test our system running across WANSs,
we emulated low network bandwidths ranging from 5 to
45 Mbps. Consistent with the average bandwidth observed
on the Internet [34], we fixed latency at 50 ms to emulate the
WAN environment for edge computing. Since edge com-
puting environments can also be adapted to LAN networks,
we also tested several higher bandwidths, ranging from 50
to 500 Mpbs. Latency during these tests was set to 6 ms, the
average observed latency on the author’s university LAN.

For the offloading workloads, we chose Busybox as a
simple workload to show the functionality of the system,
and demonstrate non-avoidable system overhead when per-
forming container migration. In order to show offloading
service handoff comparable to real world applications, we
chose OpenFace as a sample workload.

5.2 Evaluation of Pipeline Performance

In order to demonstrate the effectiveness of pipelined proc-
essing, we incorporated pipeline processing into two time
consuming processes: imgDiff and imgSend, where imgDiff
receives memory difference files, and imgSend sends mem-
ory difference files to the target server during migration.
Figs. 6 and 7 report the timing benefits we achieved by
incorporating pipelined processing. From the figure, we can
see that, without pipelined processing, most time costs are
incurred by receiving and sending the memory difference
files. After applying pipelined processing, we save 5 ~ 8
seconds during OpenFace migration. Busybox also saves a
certain amount of time with pipelined processing.

5.3 Evaluation on Different Metrics

In this section, we will evaluate the service handoff times
achieved under different configurations of our pre-defined
four metrics: 1) network bandwidth; 2) network latency;
3) compression options; 4) number of iterations. In order to
evaluate the implication of different configurations, we
designed contrast experiments for each metric. For example,
to evaluate network bandwidth effects, we keep other met-
rics constant in each experiment.

5.3.1 Evaluation of Changing Network Bandwidth

Table 3 and Fig. 7 show an overview of the performance of
our system under different network bandwidth conditions.

Authorized licensed use limited to: William & Mary. Downloaded on August 01,2020 at 20:01:20 UTC from IEEE Xplore. Restrictions apply.

2030

TABLE 3
Overall System Performance

Band-width Handoff Down Pre-Transfer Final-Transfer
(Mbps) Time(s) Time(s) Size (MB) Size (MB)
5 3.2 (7.3%) 2.8 (7.9%) 0.01 (0.2%) 0.03 (0.3%)
10 3.1 (1.8%) 2.7 (1.6%) 0.01 (0.2%) 0.03 (0.6%)
15 3.2 (1.4%) .8 (1.6%) 0.01 (0.5%) 0.03 (0.9%)
20 3 2 (1.6%) 8 (1.8%) 0.01 (0.3%) 0.03 (0.4%)
25 1 (1.6%) 2‘7 (1.8%) 0.01 (0.2%) 0.03 (0.9%)
Busybox 30 3 2 (1.4%) 2.8 (1.2%) 0.01 (0.3%) 0.03 (0.5%)
35 1 (3.5%) 2.7 (3.3%) 0.01 (0.3%) 0.03 (0.6%)
40 3 1 (3.4%) 2.7 (3.5%) 0.01 (0.2%) 0.03 (0.5%)
45 3.2 (1.9%) 7 (1.8%) 0.01 (0.2%) 0.03 (0.8%)
50 3.2 (1.7%) .7 (1.6%) 0.01 (0.2%) 0.03 (2.7%)
100 3.2(1.6%) 7 (1.4%) 0.01 (0.3%) 0.03 (0.4%)
200 3.1(1.8%) 7 (1.8%) 0.01 (0.1%) 0.03 (0.5%)
500 3.2 (2.0%) 2.8 (2.2%) 0.01 (0.2%) 0.03 (0.4%)
5 489 (12.6%) 48.1 (12.7%) 115.2(6.1%) 22.6 (13.0%)
10 285(6.9%) 279 (7.0%) 1194 (3.5%) 22.2(10.9%)
15 21.5(9.1%) 20.9(9.4%) 116.0 (7.3%) 22.1(11.1%)
20 17.8(8.6%) 17.3(8.9%) 116.0(6.9%) 21.2(12.0%)
25 174 (11.5%) 16.8 (12.0%) 114.3 (7.6%) 23.7 (14.8%)
30 15.8(7.5%) 151 (7.4%) 119.3 (2.5%) 22.7 (9.3%)
OpenFace

35 147 (13.6%)
40 140 (7.3%)
45 133 (8.6%)
50 13.4 (10.7%)

14.0 (14.3%)
13.4 (7.6%)
12.6 (9.1%)
12.8 (11.1%)

22.2 (15.6%)
23.0 (8.8%)
22.6 (11.7%)
232 (5.3%)

111.9 (9.1%

)
)
)
1125 (8.1%)
)
115.2 (5.3%)

(
(3.
(
(
(
(
1168 (5.9%
(
(
(
(
(
(

100 107 (9.6%) 10.1(10.1%) 117.2 (24%) 21.6 (10.8%)
200 102 (12.9%) 9.6 (13.5%) 116.8 (2.4%) 20.6 (17.6%)
500 109 (5.6%) 10.3 (5.9%) 1174 (1.5%) 23.0 (3.9%)

Average of 10 runs and relative standard deviations (RSDs, in parentheses) are
reported.

Latency is set to 50 ms, total number of iterations is set to 2,
and the compression option is set to level 6.

In Table 3, Handoff time is from the time the source server
receives a migration request until the offloading container is
successfully restored on the target server. Down time is from
the time when the container is stopped on the source server
to the time when the container is restored on the target
server. Pre-Transfer Size is the transferred size before handoff
starts, i.e., from stage SI until stage S3 . Final-Transfer Size is
the transferred size during handoff, i.e., from stage S3 until
the end of final stage S9.

From Table 3 and Fig. 7 we can conclude that in general the
higher bandwidth we have, the faster the handoff process.
However, when the bandwidths improves to a relatively high
value, the benefits of bandwidth expension diminish gradu-
ally. For example, when the bandwidth changes from 5 to 10
Mbps, handoff time changes from 50 seconds to less than 30
seconds, which yields more than 40 percent improvement.
However, when bandwidth exceeds 50 Mbps, it becomes
harder to reach higher throughput by simply increasing the
bandwidth. This effect can be caused by limited hardware
resources, such as CPU power or heavy disk workloads.
When the transfer data rate of the network becomes high, the
CPU power used for compression, and machine disk storage
become performance bottlenecks.

Note that migration time of Busybox seems to be unre-
lated to the bandwidths in Table 3. This is due to the very
small transferred file size, therefore transmission can be fin-
ished very quickly regardless of network bandwidth.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL.18, NO.9, SEPTEMBER 2019

350 -
3.00

other 2.50
restoreSrc
memApply
imgSend
imgDiff
daemonReload
finalFS
finalDump 1.00

2.00

1.50

EECOEEROO

Time (seconds)

0.50

0.00

Fig. 8. Busybox: Comparison of migration time. Under bandwidth from
5 to 500 Mbps, and latency of 50 and 6 ms. With two total iterations and
level 6 compression.

60.00

[other
[restoreSrc
50.00 Bl memApply
B imgSend
W imgDiff
- 40.00 - [daemonReload
] B finalFS
54 M finalDump
2 30.00
o
£
& 2000
10.00
0.00

Fig. 9. OpenFace: Comparison of migration time. Under bandwidth from
5 to 500 Mbps, and latency of 50 and 6 ms. With two total iterations and
level 6 compression.

5.3.2 Evaluation of Changing Latency

Figs. 8 and 9 illustrate migration performance under two
different network latencies of 50 ms and 6 ms for Busybox
and OpenFace. It shows a tiny difference when experiencing
different latencies. This implies our system is suitable for a
wide range of network latencies.

5.3.3 Evaluation of Changing Compression Algorithms
and Options

In Fig. 10, each curve shows an average of 5 runs with the
same experimental setup. Each run consists of the time of 10
iterations, where the first nine are memory difference trans-
fer time before the final handoff starts. The 10th iteration
equates to the final handoff time. Fig. 10a shows the time of
10 iterations at a bandwidth of 10 Mbps. We can see that
with level 9 compression, we get slightly better performance
than with no compression. However, for higher band-
widths, such as in Figs. 10b, 10c, and 10d, it is hard to con-
clude whether level 9 compression option is better than the
no compression option.

Apparently, the higher the bandwidth we have, there are
more chances that level 9 compression will induce more
performance overhead. This is because when bandwidth is
high, the CPU power we use to perform compression
becomes the bottleneck. This also explains why with
increasing iterations, level 9 compression imposes greater
workloads than the no compression option. When we do
more and more iterations for the same container, we have to

Authorized licensed use limited to: William & Mary. Downloaded on August 01,2020 at 20:01:20 UTC from IEEE Xplore. Restrictions apply.

MA ET AL.: EFFICIENT LIVE MIGRATION OF EDGE SERVICES LEVERAGING CONTAINER LAYERED STORAGE

1049

10+#

—— No compression —+— No compression
—&—level 9 compression —&—level 9 compression

Time (seconds)
Time (seconds)

2031

1.5
“+= No compression 10
—&- level 9 compression

109

—+— No compression
—&-level 9 compression

1014

Time (seconds)
Time (seconds)

1014 102

1012 1oLt

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Sequence Number of Each Iteration

(a) 10Mbps

Sequence Number of Each Iteration

(b) 30Mbps

1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Sequence Number of Each Iteration

(c) 45Mbps

Sequence Number of Each Iferation

(d) 65Mbps

Fig. 10. Time for each iteration during a 10 iteration memory image transfer under different bandwidths, with no compression and with level
9 compression. Each data point is an average of five runnings with the same experiment parameters.

checkpoint and restore the container again and again. These
activities consume many computing resources and create
high workloads for the host machine’s CPU.

Therefore, it is necessary to make the compression option
flexible and choose a appropriate compression level suitable
for the edge server’s available hardware resources.

5.3.4 Evaluation of Changing Total lterations

Fig. 11 shows the handoff time when we use differing num-
bers of total iterations to transfer the memory image differ-
ence before handoff starts. The experiment is done on
Openface application.

We make two key observations from the figure: a) With
total iteration numbers of three or more, it is rare to have a
better performance than the set up with only two total itera-
tions. b) With more total iterations, the final handoff time
proves to be longer in most cases.

These observations can be explained by the special mem-
ory footprint pattern we shown for Openface/Busybox in
Fig. 12. It shows that no matter how many iterations we
checkpoint Openface or Busybox, the footprint size in main
memory changes little. Although their memory is continu-
ously changing, the changes reside in specific areas: a 4 KB
area for Busybox, and a 25 MB area for OpenFace.

Therefore, no matter how many iterations we perform to
synchronize memory difference before handoff, at the end we
will have to transfer a similar amount of dirty memory. Addi-
tionally, more iterations pose higher workload pressures for
the hardware. Therefore, in most cases for Openface, it usu-
ally does not help to increase iterations.

However, this does not mean we do not need more than
two iterations for all applications. If the memory footprint
size of the application increases linearly over time, we can

s 50Mbps

—&- 40Mbps

= 30Mbps ol
—=—20Mbps /436
- - 10Mbps / 34

Time (seconds)
Time (seconds)

Number of Total Iterations

Number of Total Iterations

(a) with level 9 compression (b) with no compression
Fig. 11. Time of service handoff under different total iterations. Fig. 11a
shows level 9 compression of the transferred data during handoff.
Fig. 11b shows the result when no compression is used during handoff.
Each point is an average of five runs with the same parameters.

get smaller memory differences with more iterations. Thus
we can save more time by using more iterations.

5.4 Overall Performance and Comparison
with State-of-the-Art VM Handoff

From Table 3 and Fig. 9, we can see the OpenFace offloading
container can be migrated within 49 seconds under the low-
est bandwidth 5 Mbps with 50 ms latency, where VM based
solution in [17] will take 247 seconds. The relative standard
deviations in Table 3 shows the robustness of our experimen-
tal result. In summary, our system could reduce the total
handoff time by 56% ~ 80% compared to the state-of-the-art
work of VM handoff [17] on edge computing platforms.

6 RELATED WORK

In this section, we discuss related work on edge computing,
service handoff on the edge from VM based solutions as
well as container based solutions.

350 0.12
300 0.1
g 250 £ 008
& 200 = 006
3 120 K 0‘04
N N .|
& 100 3
50 0.02
0 0
< <

(a) Memory Size, Openface

(b) Memory Size, Busybox
35 30

)
S

25

% 25 0
g 220
az?zo §15
i %1
1
S0 8
5 5
0 0
TYTYCePTEPRE Y TY7TTYYTFRTE ®
cCoocoocooc o | 0w — Nt N O~ o | ®
< (=)}
(c) Dirty Memory, Openface
45 4
4 35
%\3.5 %\ 3
%22 Z 25
2 % 2
_§1A5 _§1.5
2] 1 2] 1
0.5 0.5
0 0
T9T2TYTPTEe® TY9T2TTTYTEPTe ®
OOOOOOOOO\ —N("VU‘X\DI\DQ:\’\N

(d) Dirty Memory, Busybox

Fig. 12. Dirty memory size analysis for OpenFace and Busybox. (a) and
(b) show the memory size for total 11 dumps (0-10 at xz-axis) for Open-
Face and Busybox, respectively. (c) and (d) show dirty memory size
between each of dump 1 to dump 10 and the original dump 0, as well as
dirty memory size between two adjacent dumps.

Authorized licensed use limited to: William & Mary. Downloaded on August 01,2020 at 20:01:20 UTC from IEEE Xplore. Restrictions apply.

2032

6.1 Edge Computing and Service Mobility

Many leading studies and technologies in recent years have
discussed the benefits and challenges of edge computing.
Satyanarayanan [1] proposed cloudlet as one of the earliest
conceptions of edge nodes for offloading end-user computa-
tion. Fog computing [2] and Mobile Edge Computing [3], [4]
are proposed with similar ideas whereby resource-rich server
nodes are placed in close proximity to end users. The idea of
Edge computing has been found to offer more responsive
services as well as higher scalability than cloud platforms [3],
[11], thus improving quality of service significantly. Several
computation offloading schemes from mobile devices to edge
servers have been investigated [13], [14], [15], [16]. By offload-
ing to a nearby server, end users will experience services with
higher bandwidth, lower latency, as well as higher computa-
tion power, and also save energy on the mobile device.

6.2 VM Migration on the Edge

VM handoff solutions based on VM migration have been
proposed by Kiryong [17], [18] and Machen [35]. Satyanar-
ayanan et al. in [1] proposed VM synthesis to divide huge
VM images into a base VM image and a relatively small
overlay image for one specific application. Based on the
work of VM synthesis, Kiryong [17] proposed VM handoff
across Cloudlet servers (alias of edge servers). While it
reduces transfer size and migration time compared to the
traditional VM live migration solution, the total transfer
size is still relatively large for a WAN environment. Further-
more, the proposed system required changes to hypervisor
and VMs, which were hard to maintain, and not widely
available in the industrial or academic world.

A similar technique was proposed by Machen et al. in
[35]. VM images were organized into 2 or 3 layers by
pseudo-incremental layering, then layers were synchro-
nized by using the rsync incremental file synchronization
feature. However, it must duplicate the base layer to com-
pose an incremental layer, causing unnecessary perfor-
mance overhead.

6.3 Container Migration on the Edge

Containers provide lightweight virtualization by running a
group of processes in isolated environments. Container run-
time is a tool that provides an easy-to-use API for managing
containers by abstracting the low-level technical details of
namespaces and cgroups. Such tools include LXC [36],
runC [37], rkt [38], OpenVZ [39], Docker [19], etc. Different
container runtime has different scenerios of usage. For
example, LXC only cares about full system containers and
doesn’t care about the kind of application running inside
the container, while Docker aims to encapsulate a specific
application within the container.

Migration of containers becomes possible when CRIU [21]
supports the checkpoint/restore functionality for Linux.
Now CRIU supports the checkpoint and restore of containers
for OpenVZ, LXC, and Docker.

Based on CRIU, OpenVZ now supports migration of con-
tainers [20]. It is claimed that migration could be done within
5 seconds [40]. However, OpenVZ uses a distributed storage
system [26], where all files are shared across a high band-
width network. Due to the limited WAN bandwidth for
edge servers, it is not possible to deploy distributed storage.

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 18, NO.9, SEPTEMBER 2019

Qiu [41] proposed a basic solution for live migrating LXC
containers in data center environments. However, LXC
regards containers as a whole system container, and there is
no layered storage. As a result, during container migration,
all contents of the file system for that container must be
migrated together, along with all memory states.

Machen et al. in [35] proposed live migration of LXC con-
tainers with layer support based on the rsync incremental
feature. However, it only supports predefined 2 or 3 layers
of the whole system, while Docker inherently supports
more flexible amounts of storage layers. It is also possible to
encounter the rsync file contention problem when synchro-
nizing the file system while the container is running. Fur-
thermore, duplication of base layers in [35] could incur
more performance overhead.

For Docker containers, P.Haul has examples supporting
docker-1.9.0 [20] and docker-1.10 [31]. However, they both
transmit the root file system of the container, regardless of
the underlying layered storage. This makes the migration
unsatisfactorily slow across the edges of the WAN.

7 CONCLUSION

We propose a framework that enhances the mobility of edge
services in a three-layer edge computing environment.
Leveraging the Docker container layered file system, we
eliminate transfers of redundant sizable portions of the
application file system. By transferring the base memory
image ahead of the handoff, and transferring only the incre-
mental memory difference when migration starts, we fur-
ther reduce the transfer size during migration. Our
prototype system is implemented and thoroughly evaluated
under different system configurations. Finally, our system
demonstrated hand-off time reductions of 56% ~ 80% com-
pared to the state-of-the-art VM handoff for edge comput-
ing platforms.

ACKNOWLEDGMENTS

The authors would like to thank all of the reviewers for their
helpful comments. This project was supported in part by US
National Science Foundation grant CNS-1816399.

REFERENCES

[1] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case
for VM-based cloudlets in mobile computing,” IEEE Pervasive
Comput., vol. 8, no. 4, pp. 14-23, Oct.—Dec. 2009.

[2] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli, “Fog computing
and its role in the internet of things,” in Proc. 1st Edition MCC
Workshop Mobile Cloud Comput., 2012, pp. 13-16.

[3] M. Patel, B. Naughton, C. Chan, N. Sprecher, S. Abeta, A. Neal,
et al, “Mobile-edge computing introductory technical white
paper,” White Paper, Mobile-Edge Computing (MEC) Industry
Initiative, 2014.

[4] Y.C.Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile
edge computing-a key technology towards 5G,” ETSI White
Paper, vol. 11, 2015.

[5] S.Yi, Z. Hao, Z. Qin, and Q. Li, “Fog computing: Platform and
applications,” in Proc. 3rd IEEE Workshop Hot Topics Web Syst.
Technol., 2015, pp. 73-78.

[6] S.Yi, C. Li, and Q. Li, “A survey of fog computing: Concepts,
applications and issues,” in Proc. Workshop Mobile Big Data, 2015,
pp- 37-42.

[7] S.Yi, Z. Qin, and Q. Li, “Security and privacy issues of fog com-
puting: A survey,” in Proc. Int. Conf. Wireless Algorithms Syst.
Appl., 2015, pp. 685-695.

Authorized licensed use limited to: William & Mary. Downloaded on August 01,2020 at 20:01:20 UTC from IEEE Xplore. Restrictions apply.

MA ETAL.: EFFICIENT LIVE MIGRATION OF EDGE SERVICES LEVERAGING CONTAINER LAYERED STORAGE

(8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[171

[18]

[19]
[20]
[21]

[22]

[23]

[24]

[25]

[26]

[271

[28]

[29]

[30]
[31]

[32]

[33]

[34]

Z. Hao and Q. Li, “EdgeStore: Integrating edge computing into
cloud-based storage systems,” in Proc. IEEEJACM Symp. Edge
Comput., 2016, pp. 115-116.

W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing:
Vision and challenges,” IEEE Internet Things]., vol. 3, no. 5,
pp. 637-646, Oct. 2016.

M. Chiang and T. Zhang, “Fog and IoT: An overview of research
opportunities,” IEEE Internet Things]., vol. 3, no. 6, pp. 854-864,
Dec. 2016.

M. Satyanarayanan, “The emergence of edge computing,” Com-
put., vol. 50, no. 1, pp. 30-39, 2017.

Z.Hao, E. Novak, S. Yi, and Q. Li, “Challenges and software archi-
tecture for fog computing,” IEEE Internet Comput., vol. 21, no. 2,
pp- 44-53, Mar./Apr. 2017.

E. Cuervo, A. Balasubramanian, D.-K. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “MAUI: Making smartphones last longer
with code offload,” in Proc. 8th Int. Conf. Mobile Syst. Appl. Serv.,
2010, pp. 49-62.

N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, L. Jiao,
L. Qendro, and F. Kawsar, “DeepX: A software accelerator for
low-power deep learning inference on mobile devices,” in Proc.
15th ACM/IEEE Int. Conf. Inf. Process. Sensor Netw., 2016, pp. 1-12.
B. Amos, B. Ludwiczuk, and M. Satyanarayanan, “OpenFace:
A general-purpose face recognition library with mobile applica-
tions,” School Comput. Sci., Carnegie Mellon Univ., Pittsburgh,
PA, USA, Tech. Rep. CMU-CS-16-118, 2016.

P. Liu, D. Willis, and S. Banerjee, “ParaDrop: Enabling lightweight
multi-tenancy at the network’s extreme edge,” in Proc. IEEEJ/ACM
Symp. Edge Comput., 2016, pp. 1-13.

K. Ha, Y. Abe, Z. Chen, W. Hu, B. Amos, P. Pillai, and
M. Satyanarayanan, “Adaptive VM handoff across cloudlets,”
School Comput. Sci.,, Carnegie Mellon Univ., Pittsburgh, PA,
USA, Tech. Rep. CMU-CS-15-113, 2015.

K.Ha, Y. Abe, T. Eiszler, Z. Chen, W. Hu, B. Amos, R. Upadhyaya,
P. Pillai, and M. Satyanarayanan, “You can teach elephants to
dance: Agile VM handoff for edge computing,” in Proc. 2nd ACM/
IEEE Symp. Edge Comput., 2017, Art. no. 12.

D. Inc. “What is docker?” 2017. [Online]. Available: https://www.
docker.com/what-docker

P. Emelyanov, “Live migration using CRIU,” 2017. [Online].
Available: https://github.com/xemul/p.haul

CRIU, “Criu,” 2017. [Online]. Available: https://criu.org/
Main_Page

L.Ma, S. Yi, and Q. Li, “Efficient service handoff across edge serv-
ers via docker container migration,” in Proc. 2nd ACM/IEEE Symp.
Edge Comput., 2017, pp. 11:1-11:13.

K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and
M. Satyanarayanan, “Towards wearable cognitive assistance,” in
Proc. 12th Annu. Int. Conf. Mobile Syst. Appl. Serv., 2014, pp. 68-81.
D. Inc. “Docker images and containers,” 2017. [Online]. Available:
https:/ /docs.docker.com/storage/storagedriver/

S. Graber, “LXC 1.0: Container storage [5/10],” 2013. [Online].
Available: https:/ /stgraber.org/2013/12 /27 /1xc-1-0-container-
storage/

OpenVZ, “Virtuozzo storage,” 2017. [Online]. Available: https://
openvz.org/Virtuozzo_Storage

CoreOS, “Running docker images with rkt,” 2018. [Online]. Avail-
able: https://coreos.com/rkt/docs/latest/running-docker-images.
html

A. Lehmann, “1.10 distribution changes design doc,” 2015.
[Online]. Available: https://gist.github.com/aaronlehmann/
b42a2eaf633fc949f93b

ESTESP, “Storage drivers in docker: A deep dive,” 2016.
[Online]. Available: https://integratedcode.us/2016/08/30/
storage-drivers-in-docker-a-deep-dive/

J. Okajima, “Aufs,” 2017. [Online]. Available: http://aufs.
sourceforge. net/aufs3/man.html

R. Boucher, “Live migration using CRIU,” 2017. [Online]. Avail-
able: https://github.com/boucher/p.haul

Docker, “Docker documentation—use volumes,” 2017. [Online].
Available: https://docs.docker.com/engine/admin/volumes/
volumes/

M. A. Brown, “Traffic control howto,” 2017. [Online]. Available:
http://www.tldp.org/HOWTO/Traffic-Control-HOWTO/

A. R. S. Quarter, “State of the internet report,” Akamai, 2014.
[Online]. Available: http://www.akamai.com/html/about/
press/releases/2014/press-093014.html

[35]

[36]
[37]
[38]
[39]

[40]

[41]

2033

A. Machen, S. Wang, K. K. Leung, B. J. Ko, and T. Salonidis, “Live
service migration in mobile edge clouds,” IEEE Wireless Commun.,
vol. 25, no. 1, pp. 140-147, Feb. 2018.

D. Lezcano. “Lxc - Linux containers,” 2017. [Online]. Available:
https:/ /github.com/Ixc/Ixc

L. Foundation, “RUNC,” 2017. [Online]. Available: https://
runc.io/

CoreOS, “A security-minded, standards-based container engine,”
2017. [Online]. Available: https:/ /coreos.com/rkt

OpenVZ, “OpenVZ virtuozzo containers Wiki,” 2017. [Online].
Available: https://openvz.org/Main_Page

A. Vagin, “FOSDEM 2015 - live migration for containers is around
the corner,” 2017. Online. Available: https://archive.fosdem.org/
2015/schedule/event/livemigration/

Y. Qiu, “Evaluating and improving LXC container migration
between cloudlets using multipath TCP,” Ph.D. dissertation,
Electrical and Computer Engineering, Carleton Univ., Ottawa,
ON, Canada, 2016.

Lele Ma received the BS degree from Shandong
University, Jinan, China, and the MS degree from
the University of Chinese Academy of Sciences,
Beijing, China. He is working toward the PhD
degree in the College of William and Mary. He
has a broad interest in computer system and
security. He is currently exploring the challenges
and security problems of virtualization technolo-
gies on edge computing platform.

Shanhe Yi received the BEng and MS degrees in
electrical engineering both from the Huazhong
University of Science and Technology, China, in
2010 and 2013, respectively. His research inter-
ests focus on the design and implementation of
systems in the broad area of mobile/wearable
computing and edge computing, with the empha-
sis on techniques that improve the usability, secu-
rity, and privacy of the applications and systems.
He is a student member of the IEEE.

Nancy Carter is working toward the PhD degree
interested in exploring human-computer interac-
tion and wireless sensors, focusing on impr-
oving security and efficiency. Additional interests
include ubiquitous computing, pervasive comput-
ing, and cyber-physical systems.

Qun Li received the PhD degree from Dartmouth
College. His recent research focuses on wireless,
mobile, and embedded systems, including perva-
sive computing, smart phones, energy efficiency,
smart grid, smart health, cognitive radio, wireless
LANSs, mobile ad-hoc networks, sensor networks,
and RFID systems. He is a fellow of the IEEE.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

Authorized licensed use limited to: William & Mary. Downloaded on August 01,2020 at 20:01:20 UTC from IEEE Xplore. Restrictions apply.

https://www.docker.com/what-docker
https://www.docker.com/what-docker
https://github.com/xemul/p.haul
https://criu.org/Main_Page
https://criu.org/Main_Page
https://docs.docker.com/storage/storagedriver/
https://stgraber.org/2013/12/27/lxc-1--0-container-storage/
https://stgraber.org/2013/12/27/lxc-1--0-container-storage/
https://openvz.org/Virtuozzo_Storage
https://openvz.org/Virtuozzo_Storage
https://coreos.com/rkt/docs/latest/running-docker-images.html
https://coreos.com/rkt/docs/latest/running-docker-images.html
https://gist.github.com/aaronlehmann/b42a2eaf633fc949f93b
https://gist.github.com/aaronlehmann/b42a2eaf633fc949f93b
https://integratedcode.us/2016/08/30/storage-drivers-in-docker-a-deep-dive/
https://integratedcode.us/2016/08/30/storage-drivers-in-docker-a-deep-dive/
http://aufs.sourceforge. net/aufs3/man.html
http://aufs.sourceforge. net/aufs3/man.html
https://github.com/boucher/p.haul
https://docs.docker.com/engine/admin/volumes/volumes/
https://docs.docker.com/engine/admin/volumes/volumes/
http://www.tldp.org/HOWTO/Traffic-Control-HOWTO/
http://www.akamai.com/html/about/press/releases/2014/press-093014.html
http://www.akamai.com/html/about/press/releases/2014/press-093014.html
https://github.com/lxc/lxc
https://runc.io/
https://runc.io/
https://coreos.com/rkt
https://openvz.org/Main_Page
https://archive.fosdem.org/2015/schedule/event/livemigration/
https://archive.fosdem.org/2015/schedule/event/livemigration/

