IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 3, SEPTEMBER 2019 465

Enabling Non-Hebbian Learning in Recurrent
Spiking Neural Processors With Hardware-Friendly
On-Chip Intrinsic Plasticity

Yu Liu

Abstract— Intrinsic plasticity (IP) is a non-Hebbian learning
mechanism that self-adapts intrinsic parameters of each neu-
ron as opposed to synaptic weights, offering complimentary
opportunities for learning performance improvement. However,
integrating IP onchip to enable per-neuron self-adaptation can
lead to very large design overheads. This paper is the first work
exploring efficient on-chip non-Hebbian IP learning for neural
accelerators based on the recurrent spiking neural network model
of the liquid state machine (LSM). The proposed LSM neural
processor integrated with onchip IP is improved in terms of cost-
effectiveness from both algorithmic and hardware design points
of view. We optimize a baseline IP rule, which gives the state-
of-the-art learning performance, to enable a feasible hardware
onchip integration and further propose a new hardware-friendly
IP rule SpiKL-IFIP. The hardware LSM neural accelerator with
onchip IP is dramatically improved in area/power overhead
as well as training latency with the proposed new IP rule
and its optimized implementation. On the Xilinx ZC706 FPGA
board, the proposed co-optimization dramatically improves the
cost-effectiveness of on-chip IP. Self-adapting reservoir neurons
using IP boosts the classification accuracy by up to 10.33%
on the TI46 speech corpus and 8% on the TIMIT acoustic-
phonetic dataset. Moreover, the proposed techniques reduce
training energy by up to 49.6% and resource utilization by up
to 64.9% while gracefully trading off classification accuracy for
design efficiency.

Index Terms— Intrinsic plasticity, spiking neural networks,
liquid state machine, hardware acceleration, hardware
efficiency.

I. INTRODUCTION

ECENT years have witnessed significant research efforts
Rto develop biologically inspired computing models to
address the performance and energy crisis faced by current
computing systems. As a model that closely resemble exhibit-
ing behaviors and properties of biological brains, the spiking
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neural network (SNN) has gathered significant research inter-
ests because of its bio-plausibility. Moreover, the inherent
nature of SNNs processing information in an event driven
manner renders them ideal models for energy-efficient VLSI
neuromorphic computing systems [1]-[5], including IBM’s
TrueNorth chip [1] and Intel’s Loihi chip [2]. Despite the
progress made [1]-[5], they all hold their own limitations to
fully exploit the computational power of SNNs. The network
built on-chip in [3] is relatively small and not implemented
with any practical training algorithms; the TrueNorth chip can
only support inference on the hardware with no integrated on-
chip training capability; and there have not any competitive
on-chip training results on the complicated real-world appli-
cations demonstrated by the Loihi and other chips [4], [5] by
far. While SNNs hold a lot of promise due to their closer
resemblance to biological neurons than older generations of
artificial neural networks and potentially more computationally
powerful, it is commonly agreed that training them to achieve
the state-of-the-art performance for wide classes of real-life
applications remains challenging, so is enabling on-chip SNN
learning.

To this end, the liquid state machine (LSM) [6], a form
of reservoir computing operating on spiking neurons, can
serve as a good model of recurrent SNNs to tap the com-
putational power while maintaining engineering tractability.
Structurally speaking, the LSM consists of a reservoir, a set
of randomly and recurrently connected spiking neurons, and
a readout (output) layer. The standard LSM model employs
fixed synaptic weights in the reservoir to relax the training dif-
ficulty. Via its complex nonlinear dynamics, the reservoir maps
the input pattern to a higher-dimensional transient response,
which is processed by readout neurons for final classification.
The LSM is especially competent for spatiotemporal pattern
classification applications such as speech recognition and bio-
medical signal classification [7], [8]. Recently, hardware LSM
neural processors [9]-[12] with integrated spike-dependent
Hebbian-learning rules for training the reservoir [11] and the
readout layer [12] have emerged. Architectures with mini-
mized resource overhead and energy consumption have been
demonstrated on FPGAs as well [10], [12], [13].

While most works on the SNN focus on developing learning
rules based on synaptic plasticity of neural networks, neural
plasticity, which is a form of non-Hebbian self-adaptive mech-
anism, has received more and more interests in recent years
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Fig. 1. A model of the liquid state machine.

as it is important to the brain’s adaptability in response to
environment stimuli. As one of such self-adaptive mechanisms,
intrinsic plasticity (IP) plays an important role in temporal cod-
ing and maintenance of neuron’s homeostasis and has inspired
many research works in artificial neural networks to shape the
dynamics of neuron responses. Among them, [14] presents an
approach that empirically maps the IP rule designed for the
sigmoid neuron model [15] to the spiking neuron. However,
the property of this transplanted IP rule is elusive when
dealing with the firing activities of spiking neurons due to
the significant difference between spiking neurons and sigmoid
neurons. Reference [16] proposes an IP rule based on the inter-
spike-interval (ISI), but it only constraints the ISI into a certain
range and does not have a rigorous target for adapting the
output response. Recently, [17] proposes an intrinsic plasticity
rule SpiKL-IP targeted at the widely-adopted leaky integrate-
and-fire (LIF) spiking neuron model [1], [2]. The SpiKL-IP
rule is developed based on a rigorous information-theoretic
approach and demonstrates significant learning performance
improvements on the classification accuracy for real-world
speech/image classification tasks (i.e. by up to more than 16%
accuracy improvement). However, it is only experimented on
the software simulator with continuous values.

In this paper, inspired by the SpiKL-IP rule [17], we present
the on-chip IP learning on the hardware LSM neural acceler-
ator. This is the first work to advance LSM spiking neural
processors by exploring the uncharted territory of efficient
on-chip non-Hebbian learning. Different from well-known
Hebbian learning mechanisms, e.g. spike-timing-dependent
plasticity (STDP), IP is a biologically-plausible non-Hebbian
mechanism that self-adapts intrinsic neural parameters of each
neuron such as membrane-potential time constant and leakage
as opposed to synaptic weights, and hence offers complimen-
tary opportunities for boosting the SNN learning performance.

However, integrating IP to enable per-neuron self-adaptation
on chip presents major challenges. For instance, high-
resolution multiplications, divisions, and exponentiations are
required to guarantee the accuracy of SpiKL-IP. Directly
mapping these operations onto hardware will blow up the area
overhead of each silicon neuron by several times, let along the
additional large training latency and power consumption.

In this work, we enable feasible on-chip integration
of IP through both algorithmic and hardware optimization
approaches and further improve our neural processor efficiency
with reduced area/power overhead. Our main contributions are:
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« Demonstrate the first work on performance boost of
SNNs via cost-effective integration of IP;

« Significantly optimize the performance gain vs. overhead
trade-off of onchip IP by developing a new hardware-
inspired IP rule, i.e. SpiKL-IFIP;

« Optimize the efficiency of on-chip IP hardware imple-
mentation with reduced area/power overhead by perform-
ing intelligent approximate computing, value lookup and
so on, leading to the multiplication-free integration of IP
for integrate-and-fire (IF) neurons.

On the Xilinx ZC706 FPGA board, the proposed hardware-
inspired IP rule and its optimized implementation dramatically
improve the cost-effectiveness of on-chip IP integration. LSMs
with self-adapting reservoir neurons using IP boost the clas-
sification accuracy by up to 10.33% on the TI46 speech cor-
pus [18] and 8% on the TIMIT acoustic-phonetic dataset [19]
with moderate extra costs. Moreover, the highly-optimized IP
implementation reduces training energy by up to up to 49.6%
and resource utilization by up to up to 64.9% while gracefully
trades off the classification accuracy for design efficiency.

II. Basic SPIKL-IP LEARNING RULE FOR LIF NEURONS

In this section, we introduce the optimization of SpiKL-IP
for feasible hardware implementation.

A. Theoretical SpiKL-IP Learning Rule

The (software) SpiKL-IP intrinsic plasticity rule [17] is
based on the widely used leaky integrate-and-fire (LIF) spiking
neural model [20]:

av

— = —V 4+ Rx, 1
Tm dt + 1)

where V is the membrane potential, 7, the membrane-
potential time constant, R the effective leaky resistance, and
x the input current. The neuron generates a spike once V
exceeds the firing threshold Vy;,. A refractory period of dura-
tion f, is applied after a spike during which V' is maintained
at its resting level.

The key idea of the SpiKL-IP rule is maximizing the
information transfer from the input firing rate distribution to
the output firing rate distribution, hence boosting the learning
performance of the network. From the information-theoretic
point of view, this means that a neuron adapts itself to maxi-
mize the mutual information 7 (X, ¥) between the output firing
rate distribution ¥ and the input firing rate distribution X.
The mutual information 7(X,Y) is defined as the mutual
dependence between X and Y. It can be expressed as:

I(Y,X) = H(Y) - H(Y|X), )

where H(Y) is the entropy of the output and H(Y|X) is
the conditional entropy defined as the amount of information
needed to describe the outcome of a random variable Y given
that the value of another random variable X is known. Thus,
H (Y|X) indicates the amount of entropy (uncertainty) of the
output not coming from the input. Assuming that the output
noise N is additive and there is no input noise, which means
the output y = f(x) + N where the function f is used to
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describe the network, the conditional entropy H (Y |X) can be
simplified to H(N) [17], [21] and it does not depend on the
neural parameters. Thus, maximizing /(Y, X) is equivalent
to maximizing H(Y). It is instrumental to note here that if
the mean of a distribution remains constant, the exponential
distribution corresponds to the largest entropy among all
probability distributions of a non-negative random variable.
As a result, the exponential distribution with a targeted mean
shall be the optimal distribution for the output firing rate.
In this work, all neurons are implemented using the noiseless
neuron model (i.e. LIF or IF) and no noise is added explic-
itly to the neuronal dynamics. Therefore, H(N) = 0 [20].
Then, in order to maximize the mutual information 7(X,Y)
under a fixed mean firing activity, we actually minimize the
difference between output firing rate distribution and target
exponential distribution. We use Kullback-Leibler divergence
(KL-divergence) to evaluate such difference defines the loss
function accordingly.

The SpiKL-IP rule performs tuning of 7, and R of
each spiking reservoir neuron by minimizing the Kull-
backal."Leibler divergence (KIL-divergence) from a targeted
exponential distribution to the actual output firing rate distri-
bution. Besides, the SpiKL-IP rule is tuned online in a way
analogous to the stochastic gradient descent (SGD) method.

As a result, the update of z,, and R in each neuron can be
described as:

2ytm Vi — W — Vih — 5 tm Viny*

R A
R=Q1/Tm RW ; W
R +ay, W A
2ty —1— 2ty —y) %
e o P S 3)
T — a2, y=<A,

where y is the average output firing rate of the neuron at a
certain time point, u the desired mean output firing rate, #
and #; the learning rates, A a fixed low-firing rate threshold,
and W a function of y:

T S @)

e(#(%_t’)) -1

When y is low, i.e. y < A, R and 7,, are adapted steadily
to bring up the neuron’s firing activity at a fixed step of
a1 and ap, respectively, before IP tuning is activated. This
further improves the robustness of the IP tuning rule.

The simulation of the continuous-time LIF model and IP
tuning rule is actually running with a fixed discretization time
step, 1ms as a particular example, according to which all
neural activities are evaluated. To measure the average output
firing rate of each neuron as a continuous-value quantity over
time under a constant of varying input, we use the intracellular
calcium concentration C,4;(t) as an indicator, which is defined
by filtering output spikes over a given time scale:

dccaf(r) _ Ccaf (t) ;
R +;5(r—r,), ©)

where 7., is the time constant and #; is an output spike time.
Then, the average output firing rate y is measured by the

normalized calcium concentration:

Cca
y(®) = G0}

Teal

(6)

B. Optimized SpiKL-IP for Onchip Implementation

Implementing the original SpiKL-IP (Eqn. 3 and Eqn. 4)
straight forward on the hardware LSM accelerator is too
costly or even formidable as it involves complicated multi-
plication, divisions and the exponentiation. We optimize the
algorithm to enable a feasible implementation of the proposed
SpiKL-IP rule and maximize its hardware efficiency.

First, implementing the exponentiation in Eqn. 4 directly
on hardware is costly. Common exponentiation approxima-
tion practices include lookup tables (LUTSs), interpolation,
CORDIC-based approximation, and series expansion. In our
work, a statistics-driven approximation methodology for tar-
geted IP rules is proposed, which will be introduced in
more details in Section IV. As part of it, to implement the
exponentiation on the hardware LSM neural accelerator with
great efficiency, we first run software simulation to profile
numerical ranges of the arguments of the exponential function,
i.e. 7, and y, to decide which practice works best in our case.
The result indicates that both arguments change widely and
require relatively high bit resolutions. As a result, the inputs
to the LUT, which are the combination of these two arguments,
have many possible values thus the lookup mapping logic is
expected to be complicated. As for interpolation, we need
to first calculate %, % and their product, which increases
the design complexity. Besides, implementing the exponential
with CORDIC algorithm involves iterative computations at
each step, which increases the latency of the IP update hence

the energy consumption. On the other side, we recognize
1

that the exponent ﬁ = tr) is a small fractional number
based on the simulation result and expanding the exponential
function near 0 gives a simple polynomial representation.
Therefore, we decide to approximate W with the Taylor’s

expansion near the point O :

v,
W= 1 1 tlh 1 1
141+ L ()45 AP d -2+
Vin
= ©
w(y — i)

in which the higher order polynomial terms are ignored given
their small values.
Substituting y fm; W in Eqgn. 3 and dropping the small-
tr—ﬂn_j

valued term 5 S the original SpiKL-IP algorithm
(Eqn. 3) is discretized and simplified as:

L 1
r;."2[-\‘1] — 25 + ;)y[n] +1
R[H]-l—?}] " R[H] ]
Rin +1]= y[n]l> A
R[nl+ai,
yinl=A
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I 1
—Zy2[n] + Qtr + ;)y[n] —1
Tm[”]"”ﬂ = Tm[n] ]
tmln +1]= ylnl> A
tmln]—az,
ylnl<A,
8)
where n (n + 1) specifies the n-th ((n + 1)-th) emulation time
step.

The Eqn. 8 is the hardware-optimized SpiKL-IP rule for
efficient onchip implementation that is realized on our LSM
hardware neural processor. We also apply the hardware-based
optimization approaches summarized in Section IV for imple-
mentation and report the hardware overhead and energy results
of the on-chip SpiKL-IP in Section VI.

III. PROPOSED HARDWARE-INSPIRED IP RULE
FOR IF NEURONS (SPIKL-IFIP)

The optimized SpiKL-IP rule (i.e. Eqn. 8) still costs too
much when implemented on hardware LSM neural processors,
which we will demonstrate in Section VI. The complicated and
highly dependent computational steps in updating R and 7,
majorly contribute to the overhead. Besides, the multiplication
is executed by FPGA DSP slices in our design, the number of
which is limited to 900 on our targeted FPGA board.

In this section, we propose a novel hardware-inspired IP
rule, called SpiKL-IFIP, that explores optimization at the
neural computation level. The proposed SpiKL-IFIP is based
on integrate-and-fire (IF) neurons as opposed to more complex
LIF neurons, leading to a very favorable tradeoff between
design overhead and learning performance.

We revisit the LIF model (Eqn. 1) and recognize that by
ignoring the leaky terms —V and z,,, we can derive a much-
simplified IP learning rule with only one intrinsic variable.
With this consideration in mind, we propose the novel IP rule,
SpiKL-IFIP for IF neurons as follows.

The IF model and its firing-rate transfer function under the
constant input can be described as:

ﬁ o5 )
dt
and
y=— Kx>Va, (10)
it

where K is the reciprocal of effective leaky resistance, and
all other variables are defined in the same way as in the LIF
model.

As in Figure 2, the key idea in deriving this new
SpiKL-IFIP rule is to self-tune K to maximize the information
transfer from the input to the output firing rate distribu-
tion [17]. Importantly, the exponential distribution of the out-
put firing rate attains the maximum entropy under a fixed mean
firing rate among all probability distributions of a non-negative
random variable. In Figure 2, the Y-axis of the exponential
distribution plot is the firing rate while the X-axis is the

Maximize Information Transfer

e —— Exponential
Input =~ 77> output Distrouton:
Maximum
9 1 I 1 | Entropy
. 'l. ‘E} o “:
: Intrinsic Plasticity:
+ 1 Self-tune infrinsic
N cmmmm=e  parameters

Fig. 2. Instrinsic plasticity.
possibility or the times that the neuron has the corresponding
firing rate. The exponential distribution is given by

ferp@) = pexp(—px),  x>=0, (1n

where g is the mean of the distribution.

Thus, SpiKL-IFIP minimizes the Kullback-Leibler (KL)
divergence D from the output firing rate distribution f(y)
to the exponential distribution f,, with a mean firing rate u:

D=d (fy(y)erxp)

= / fy(y)log(il £0)

Texp()

s 1%

= [ novosronay + [ £ (;) dy
+ / Fy(Mlogudy

£
=E I:log(fy(Y)) + ;] +logp.

Then, minimizing the KL-Divergence D reduces to mini-
mize the Expected value of log(fy(Y)) + % in Eqn. 12. The
integration in D is over all occurrences of y during the time.
In analog to stochastic gradient descent (SGD) with a batch
size of one, we can make SpiKL-IFIP amenable for online
training by discretizing the entire training process into multiple
small time intervals properly. The input to the spiking neuron
at each time point is considered as an individual observa-
tion or training example. In this way, the parameters can be
adjusted as the neuron experiences a given input example at
each time point in an online manner, which is similar to the
SpiKL-IP rule. Then, we can obtain the following online loss
function L from D at each time point f:

L(t) = log(f, 6 (0))) + % (13)

Based on Eqn. 9 and Eqn. 10 and the fact that the input
firing rate distribution is unrelated to K, the partial derivatives
of L with respect to K at each time point is given by:

oL @ @Y,y
= a (=(%)+3)
0 B oy y
—ﬁ( "’g(a)T)

v
2y + X2 —1
K
@t + )y — 1
~———

dy

(12)

(14)
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Fig. 3. Hardware architecture of the LSM neural processor integrated with
onchip IP unsupervised learning algorithm.

In Eqn. 14, we drop the term yzrr given that yzrr < .
Similar to LIF neurons, K adapts steadily to bring up the
firing activity when y < A. This finally gives rise to:

1
1 — (2t + —)yln]

K[n+1]= Knl

K[nl+mns
K[n]+ as,

, yInl> A

ylnl < A.
(15)

The proposed SpiKL-IFIP rule follows the rigorous
information-theoretic perspective while addressing the high
computational complexity of the reference SpiKL-IP rule.
Compared to the LIF-based SpiKL-IP rule, SpiKL-IFIP rule
significantly improves the efficiency of corresponding hard-
ware implementation while still performs a decent learning
performance.

IV. HARDWARE IMPLEMENTATION OF THE ONCHIP IP

In this section, we introduce the integration of pro-
posed IP rules on chip on our LSM FPGA accelerators,
including the architecture and optimization approaches of IP
implementation.

A. Proposed LSM Architecture With IP

Figure 3 depicts the architecture of the proposed hardware
LSM neural processor with on-chip intrinsic plasticity on
FPGAs. The reservoir and the readout layer in Figure I
are implemented by a reservoir unit (RU) and a training
unit (TU), respectively. Each spiking neuron in RU and TU
are implemented by a digital neuron module named reservoir
element (RE) and output element (OE), respectively. The
synaptic connectivity from the external input to the RU is
specified by a pre-defined crossbar interface. The spiking
responses generated from REs are registered and sent to OEs
through fully connected readout synapses. Meanwhile, these
spikes are also fed back to some reservoir neurons through
reservoir synapses, the connectivity of which is specified by
another pre-defined crossbar. Neurons in the reservoir/readout
layer operate in parallel to exploit the inherent parallelism
of the LSM architecture controlled by a global finite state
machine (FSM) at that layer. The readout neurons are trained
by a supervised biologically plausible spike-dependent algo-
rithm [22] for final classification. The above components
constitute the baseline architecture [9].

The proposed architecture of this paper is based upon
adapting reservoir neurons using proposed onchip IP rules (i.e.
SpiKL-IP or SpiKL-IFIP) on top of the baseline architecture.
In each RE, first, the synaptic input processing module com-
putes the total input synaptic current x. Then, in the spike gen-
eration module, the IP update sub-module updates the intrinsic
neural parameters tuned by the corresponding IP rule, i.e. 7,,
and R for SpiKL-IP and K for SpiKL-IFIP, and generates
the membrane potential update AV of the current emulation
time step. Following that, the spike generation module updates
the membrane potential V and decides whether to generate a
spike or not accordingly. Finally, C.4; gets updated.

Realizing an IP rule on chip into our digital FPGA archi-
tecture requires discretization of the corresponding neural
model and the continuous-valued IP rule. For the LIF neuron,
discretizing Eqn. 1 leads to:

Vin+ 11 = Vi) - ~ok KA
Tm[n] Tm[n]
where n (n + 1) specifies the n-th ((n4-1)-th) emulation
time step. Similarly, the update of membrane voltage in the
hardware IF model is represented as:
Vin+ 1= Vinl - 3 4 K[n] - x[n.
K[n]
And the calcium concentration update in both models is
discretized from Eqn. 5:

(16)

a7

Ceatln + 11 = Ceafrl — E2 4 S5 1. 19)

Teal ;
B. Proposed Hardware Optimization Approaches
of Onchip IP Implementation

The proposed SpiKL-IFIP (Eqn. 15) is more hardware-
friendly compared to the SpiKL-IP rule (Eqn. 8). However,
it still possesses inherent computational density and complex-
ity of the intrinsic plasticity. A number of multiplications and
divisions are involved and require complicated logic circuits in
each digital reservoir neuron when implemented on the FPGA
LSM neural accelerator. Non-optimized implementations can
result in huge hardware resource and power overheads. To this
end, we further explore hardware optimization to enable cost-
effective IP implementation and graceful tradeoffs between the
design overhead and learning performance.

First, to reduce the overhead of onchip IP implementation in
the best way possible, we adopt a statistics-driven methodol-
ogy which performs offline profiling of the ranges of numerical
values of various operands, terms and functional values in
the targeted IP rule. The statistics collected over realistic
workloads in software simulation allows us to conduct the
following data-level approximations while minimizing their
impact on the classification performance:

« Representing neural parameters with minimized bit reso-
lution in the Fixed-Point (FXP) format while maintaining
a good classification accuracy;

s Dropping small-valued arithmetic terms in calculation
considering both workload-based simulation results and
resolutions of targeted variables;
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« Approximating all constant multipliers or divisors using
powers of 2 such that the corresponding calculations can
be realized by shifting operations on the hardware;

The above data-level approximation approaches are repeat-

edly applied in the implementation of SpiKL-IFIP.

Second, we notice that divisions involving variable divi-
sors are fairly expensive to implement on chip. This is
because variable divisors need to be accurate to achieve good
learning performances on the hardware and they cannot be
directly approximated to the nearest power of 2 like constant
divisors as mentioned before. Therefore, we propose to sig-
nificantly reduce the overhead by realizing efficient approx-
imate divisions inspired by the GoldSchmidt’s algorithm
[23], [24], which approximates the division by a series expan-
sion. According to the algorithm, the divisor, denoted as b,
is first normalized to b,,-m such that 0.5 < buorm < 1.0.
Then, let b,,rm equals 1 + X and

1 1
b 1+X
A1-X+X2 X3+ X - X5
~1-X+X% (19)
Most works on GoldSchmidt’s dividers implement

the expansion with iterative multiplications for accurate
results [25]. However, in our work (Eqn. 19), with afore-
mentioned statistics-driven data-level approximation adopted,
we drop the higher order terms considering the constrained
resolution of the quotient and the inherent small value of X7”
when p is large. Therefore, the proposed approximate divider
can be implemented with just one multiplication.

When implementing the approximate divider, the origi-
nal divisor K[n] is normalized by 2™K, in which mg is
chosen such that 0.5 < EX}”?] < 1. This can be realized
efficiently by shift registers on hardware and is inspired by
the aforementioned power of 2 data-level approximation idea.
A lookup table for mg is implemented with K[n] as its input,
and the size of the lookup table is decided based on the
numerical range of the corresponding K[n] from simulation
results. At last, we denormalize by shifting mg bit(s) again
towards the same direction to get the actual division result.
One thing to mention is that, the aforementioned optimization
techniques including the approximate divider design are also
adopted in the onchip SpiKL-IP implementation as a reference
to show the effectiveness of the proposed SpiKL-IFIP in
improving the learning performance vs. hardware overhead
tradeoff, and we show the hardware overhead and energy
results of both algorithms in Section VI.

C. Hardware Implementation of SpiKL-IFIP

As had been mentioned, based on the realistic numerical
range of neural variables, specific design decisions are made
to exploit the data-level approximation in the best way pos-
sible to optimize the implementation efficiency of SpiKL-
IFIP. First, the FXP resolution for each neural parameter is
determined based on the specific application. Then, we adopt
the proposed approximate divider design for calculating ﬁ.
The normalization on K is realized by shifting left or right
mg bit(s) depending on whether K is greater or less than 1.

Fig. 4. Hardware implementation of the proposed SpiKL-IFIP learning rule.
The shaded blocks are registers for intermediate results that are needed for
the following computation steps.

Last, the product of —(2f, + i)Cm; is read from a pre-
calculated lookup table rather than an accurate DSP multiplier
to save the resource overhead. This is based on the observation
that both #, and x are constant coefficients and C., has a
relative small FXP bit resolution, therefore the corresponding
lookup table is easy to generate and small in size. Besides,
this lookup-based multiplication calculation only considers the
integer value of C.,; and the decimal part is ignored following
the data-level approximation principles.

Figure 4 shows the implementation of SpiKL-IFIP on our
LSM neural accelerator. The Mg LUT represents the lookup
table from which my is fetched. Based on whether K[n] is
greater or smaller than 1, it looks up either the integer or frac-
tional part of K [n] and generate the corresponding result. The
C LUT is the lookup table to calculate the term — (21, + i)Cm,-
and its depth depends on the bit resolution of Cgq. All
computational steps in the IP update submodule are controlled
and synchronized by the local finite state machine (FSM)
shown in the figure. Multiplications are executed by the DSP
slice on the FPGA, which is individually instantiated in each
reservoir neuron. After the synaptic current x[n] is updated,
the IP update module is enabled and the inputs to the multiplier
are selected by the multiplexer in order. Besides, intermediate
results of some multiplication steps are registered and sent
back to the input of the multiplier to be used for the following
steps. The IP update FSM also controls the communication
between the IP update submodule and the spike generation
module, the latter implements basic neuron model behaviours
such as updating the menbrane potential and generates the
output spike. A flag signal (i.e. finish in Figure 4) is generated
by the IP submodule when the update K is finished at the
current time step. When the spike generation module receives
this signal, it takes the membrane potential change AV =
K[n]- x[n] and updates the membrane potential V.

D. Multiplication-Free Implementation of SpiKL-IFIP

The implementation of SpiKL-IFIP shown in Figure 4
involves several arithmetic operations such as multiplications
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Fig. 5. Multiplication-free onchip SpiKL-IFIP implementation.

and additions, which makes its data path logic relatively
complex. Besides, the implementation of the SpiKL-IFIP rule
in this way is in general limited by the available DSP resources
on chip due to the requirement of multiplications. Therefore,
we present a multiplication-free SpiKL-IFIP implementation
to make the best effort on reducing the hardware overhead of
SpiKL-IFIP implementation. In the proposed multiplication-
free SpiKL-IFIP implementation, we apply the data-level
approximation in a more aggressive manner to completely get
rid of multiplications by approximating the variable operands
of all multiplications and divisions using powers of 2. The
resulting multiplication-free SpiKL-IFIP implementation is
depicted in Figure 5.

First, we follow the implementation in Figure 4 that the cal-
culation of product term involving C,; is realized by a lookup
table (i.e. C LUT in Figure 5). In the proposed multiplication-
free SpiKL-IFIP implementation, K[n] is approximated by
the power of 2, denoted by 2. We define that 2"k <
K[n] < 2mx+1 and m;‘ is read from a lookup table similar to
that in the implementation of the standard SpiKL-IFIP shown
in Figure 4. Then, dividing and multiplying K[n] in Eqn. 15
and Eqn. 17 are realized by shifting m’ bit(s), the direction
of which is controlled by the dir signal in Fig. 5 depending on
whether K [n] is greater or less than 1. This multiplication-free
implementation also reduces the update of K[n] to be finished
in a single clock cycle and benefits the training latency hence
training energy of the proposed SpiKL-IFIP, which further
improves its hardware efficiency. The m; and dir signals
are sent out to the spike generation module to update the
membrane voltage V, which is also implemented through the
shifting operation instead of applying multiplication directly.

V. EXPERIMENTAL SETTINGS AND BENCHMARKS

We measure the performance gain vs. hardware overhead
tradeoffs of the optimized on-chip IP as part of an LSM
neural processor. The readout layer of the LSM is trained by
a spike-dependent supervised algorithm [22]. The classifica-
tion performances of IP-based learning rules reported in this
paper are evaluated by software simulations with a one-to-one
mapping of digital computations with the corresponding FXP
bit resolutions. FPGA prototypes of LSM neural accelerators
are designed on the Xilinx Zynq ZC706 platform for hardware
overhead and power/energy results.

TABLE I
CONSTANT PARAMETERS SETTINGS

Parameter  Value | Parameter Value Approx. Value

Vin 20mV | Teal 64ms N/A

tr 2ms I 0.2KH=z 0.25KHz

] 0.562 m 5 4

g 0.5ms | n2 5 4

as & 73 = N/A
TABLE II

FXP RESOLUTIONS OF NEURAL PARAMETERS IN
THE LIF SPIKING NEURON MODEL

Variable | Integer Bits | Fractional Bits
4 5 8
Ceal 5 7
T 9 7
R 9 6

A. Training Benchmarks

In this work, LSM neural processors are trained and tested
on two real-world speech recognition tasks. The first bench-
mark is a subset of the TI46 speech corpus [18] which
contains spoken utterances of English letters from “A” to “Z”.
We adopt two subsets with 260 (from a single speaker) and
520 (from two speakers) speech examples respectively and use
5-fold cross-validation to measure the test accuracy. Original
time domain speech signals are preprocessed by Lyon’s ear
model [26] and then encoded into 78 spike trains using the
BSA algorithm [27] before applied to hardware LSMs. For
this benchmark, we build neural processors with 135 reservoir
neurons and 26 output neurons.

The second benchmark is the widely-studied TIMIT
acoustic-phonetic dataset [19] and we also adopt two subsets
of it. In the first subset, there are in total 600 training and
200 testing examples [28] and the LSM neural processor is
trained to classify four “vowel” phonemes, i.e. “iy”, “eh”, “ah”
and “axr”, with 50 reservoir and 4 output neurons. In the
preprocessing which is carried out offline in the software
simulator, the phoneme WAV files are first converted into 13
Mel frequency cepstral coefficients (mfccs) following [28] and
then converted to firing rates according to:

o M) oy

where M;(f) is the ith mfcc value at time t, f;(f) the
corresponding firing rate for input neuron i, e; the minimum
value of the ith mfcc, and €; the maximum value of the ith
mfcc. fiqx i8 a constant value which is set to 200H z in our
simulation. Then, input spike trains are generated from the
firing rates following the Poisson distribution.

The second subset of the TIMIT benchmark contains 8, 157
training and 2, 884 testing examples for three different “vowel”
phonemes: “aa”, “ih” and “ow”. For this subset, we follow the

network settings and data preprocessing methods introduced

(20)
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TABLE III

FXP RESOLUTIONS OF NEURAL PARAMETERS IN
THE IF SPIKING NEURON MODEL

Variable | Integer Bits | Fractional Bits
Vv 5 0

Ceat 5 7

K 3 10

in [29] for a fair comparison. The LSM with 27 reservoir
neurons and 3 readout neurons is trained for this subset.

B. Parameter Settings in LSM Neural Processors

As mentioned in Sec. IV, we perform statistics-driven data-
level approximation in which all constant multipliers or divi-
sors are approximated to powers of 2. Table I lists the constant
values adopted in the proposed IP learning rules in which we
report both the original continuous-valued parameters using in
the software simulation and the approximated values after opti-
mization that are implemented on the hardware if applicable.
In order to maximize the cost-effectiveness of the on-chip IP
implementation, we also carefully determine the resolution of
each neural parameter for its fixed-point (FXP) representation
on hardware neural processors based on its numerical data
distribution from the realistic simulation results. Table II and
Table III report the chosen resolutions of neural parameters in
the LIF and the IF neuron respectively, which maximize the
cost-effectiveness of on-chip IP training on targeted architec-
tures and applications. Note that the optimal resolutions for the
same neural parameter could be different in different models.
In these two tables, all variables except for V are unsigned
numbers, and an extra 1-bit sign bit is applied to V in both
neuron models.

VI. EXPERIMENTAL RESULTS

With the experimental settings introduced in Section V,
in this section, we report the speech recognition performance
and hardware overhead of LSM neural accelerators with
proposed onchip IP learning rules.

A. Testing Performances

We test LSM neural processors integrated with IP on two
real-world speech recognition tasks and report the accuracies
in Table IV and Table V for TI46 and TIMIT benchmarks
respectively. We also compare the proposed on-chip IP training
with some existing works on the same dataset and network
size [13], [28], [29]. In the table, the dataset size considers
both training and testing samples. The baseline represents an
LSM with a fixed LIF-based reservoir and MF SpiKL-IFIP
refers to the LSM neural processors integrated with the pro-
posed multiplication-free SpiKL-IFIP implementation. Notice
that we do not implement the SpiKL-IP rule in a
multiplication-free manner since the resulting performance
degrade is too much due to the aggressive approximation.
The testing accuracies shown in both tables demonstrate that

TABLE IV

IEEE JOURNAL ON EMERGING AND SELECTED TOPICS IN CIRCUITS AND SYSTEMS, VOL. 9, NO. 3, SEPTEMBER 2019

THE PERFORMANCES OF SNNS TRAINED WITH DIFFERENT LEARNING
ALGORITHMS ON TI46 SPEECH CORPUS DATASET

Dataset size: 260, | Dataset size: 520,
Network size: Network size:
135 RES, 26 OES | 135 RES, 26 OES
Baseline 91.54% 81.59%
STDP LSM [13] 92.40% N/A
SpiKL-IP 97.31% 91.92%
SpiKL-IFIP 96.54% 91.15%
MF SpiKL-IFIP 95.38% 89.23%
TABLE V

THE PERFORMANCES OF SNNS TRAINED WITH DIFFERENT LEARNING
ALGORITHMS ON TIMIT SPEECH CORPUS DATASET

Dataset size: 800, | Dataset size: 11041,
Network size: Network size:
50 REs, 4 OEs 27 REs, 3 OEs
SDSM LSM [28] 49% N/A
SpikeProp [29] N/A 45.39%
Baseline 67% 77.80%
SpiKL-IP 75% 83.44%
SpiKL-IFIP 72.5% 82.52%
MF SpiKL-IFIP 71.5% 81.22%

self-adapting reservoir neurons using IP can robustly boost
the recognition performance and be a powerful complimentary
of the Hebbian-based readout training algorithms. Compared
to the baseline LSM with a fixed reservoir, up to 10.33%
and 8% performance gain can be achieved for TI46 [18] and
TIMIT [19] dataset, respectively. Compared to the LSM neural
processor with reservoir tuned by the STDP based learning
mechanism, the reservoir tuned by IP outperforms by up to
4.91% performance boost for the TI46 benchmark. Moreover,
for the TIMIT benchmark, we outperform up to 38.05% than
reference works [29].

B. Hardware Overheads

In Table VI, we compare the resource utilization and
training energy consumption of different onchip IP rules. For
each benchmark studied in this work, we take a representative
network size and implementing all proposed hardware IP
rules on the corresponding FPGA LSM accelerator to see
the tradeoffs between the performance gain and hardware
overhead. The resource overhead is reported in terms of slice
flip flops (FFs) and LUTSs as well as the percentages of usage
with respect to the overall available resources on the targeted
Xilinx ZC706 FPGA. The power numbers are estimated by
the Xilinx Power Analyzer given the application-specific post-
implementation simulation results. The training latency and
training energy are for training a representative input sample
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TABLE VI
HARDWARE OVERHEAD OF LSM ACCELERATORS INTEGRATED WITH DIFFERENT ON-CHIP LEARNING ALGORITHMS

Networks Iﬁfﬁ‘;‘;;‘;’;l Training | Training | Training | Normalized | Normalized
& Power Latency Energy Resource Energy
Dataset (mW) (ms) u))
LUTs FFs
A 35072 12527
Baseline (16.04%) | (2.86%) 97 4.85 47045 1.00 1.00
’ 92432 33452
135 REs, SpiKL-IP 42.86%) | (7.63%) 170 498 846.60 2.65 1.80
26 OEs,
TI 46
p 52939 22787
SpiKL-IFIP 24.22%) | (5.21%) 128 4.92 629.76 1.64 1.34
MF SpiKL- 37108 14417
IFIP (16.93%) | (3.30%) 107 4.86 520.02 1.10 1.10
. 9514 3706
Baseline (4.35%) 0.85%) 24 1.96 47.04 1.00 1.00
. 31092 11457
50 REs, SpiKL-IP (14.22%) | (2.62%) 58 2.09 121.22 3.19 2.58
4 OEs,
TIMIT
. 16184 7507
SpiKL-IFIP (7.40%) (1.72%) 37 2.03 75.11 1.84 1.60
MF SpiKL- 10186 4406
IFIP (4.66%) (1.01%) 31 1.97 61.07 1.12 1.30

of the corresponding dataset for one iteration. The clock
frequency in all considered cases is 100M H z. We also report
the normalized resource utilization by comparing FF count +
2xLUT count of different designs as suggested by Xilinx, and
the normalized energy result.

From Table VI, we see that the proposed SpiKL-IFIP algo-
rithm and its optimized implementation dramatically reduces
the cost of onchip implementation of intrinsic plasticity.
The LSM neural accelerator with the multiplication-free
SpiKL-IFIP implementation can save up to 49.6% training
energy and up to 64.9% resource utilization compared to that
with SpiKL-IP, which is the case of LSMs with 50 reservoir
neurons and 4 readout neurons. Meanwhile, based on results
given in Table IV and Table V, the tradeoff on performance
gain of the multiplication-free SpiKL-IFIP can be as graceful
as 2.69%. Moreover, when comparing the LSM neural accel-
erator implemented with the multiplication-free SpiKL-IFIP
with the baseline, we can see that the proposed implementation
of on-chip IP largely boosts the testing performance with a
decent extra hardware cost. The extra overhead and energy cost
of multiplication-free SpiKL-IFIP is as small as 10% while the
performance boost reaches up to 7.64% for TI46 and 4.5% for
TIMIT. The proposed hardware-friendly SpiKL-IFIP and its
optimized implementation provides a solution to achieve good
performance gain vs. overhead tradeoffs to advance spiking
neural accelerators by enabing per-neuron self-adaption on
chip.

VII. CONCLUSION
In this paper, we present the efficient on-chip non-
Hebbian intrinsic plasticity (IP) learning for recurrent spiking
neural processors. Optimization approaches on the complex

IP learning mechanisms are proposed from both algorith-
mic and hardware design points of view. Among them,
a new hardware-inspired IP rule is proposed for the integrate-
and-fire (IF) neuron and leads to an extreme efficient
multiplication-free on-chip implementation. Using two dif-
ferent types of real-world speech recognition applications
to benchmark, we have shown that the proposed hardware-
friendly on-chip IP gives a decent classification performance
vs. hardware overhead trade-off. The work demonstrates dra-
matic performance boosts of recurrent SNNs with integration
of IP and provides solutions for enabling on-chip IP-based
learning on hardware spiking neural processors with great
efficiency.
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