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ABSTRACT

In this short note we derive a novel belief propagation algo-
rithm for graph matching and we numerically evaluate it in the
context of matching random graphs. The derived algorithm
has a lower asymptotic time-complexity without significantly
compromising the accuracy compared to leading available al-
gorithms in the literature. An extended version of this article,
with further theory and numerical simulations is in prepara-
tion.

Index Terms— Belief propagation, graph matching.

1. INTRODUCTION

Graph matching is a fundamental problem in theoretical com-
puter science, and it is useful to model problems arising in
different scientific applications. Given two graphs with n ver-
tices and adjacency matrices A and B, the graph matching
problem asks for an n X n permutation matrix P that best
aligns both graphs by optimizing the objective

min ||[A — PBPT|| )
Pell,

where the norm can be the Frobenius or element-wise L
norm, and I, is the set of all n X n permutation matrices.

The graph matching problem has especially been of inter-
est in computer vision [1], protein interaction modelling [2],
and in social network privacy [3], among many scientific ap-
plications. In practice there exist several heuristic efficient
algorithms, tailored to different domains, mostly without the-
oretical guarantees [4].

In this work we derive a belief propagation algorithm
for graph matching. And we numerically evaluate its perfor-
mance on Erdds-Rényi random graphs. An extended version
of this work will further study this algorithm in different data
models, compare it with other algorithms in the literature,
and analyze linearizations of the BP algorithm with reduced
computational complexity.
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2. SETTING AND PRIOR WORK

Let A be an Erdds-Rényi graph on n vertices (A ~ ER(n, p)).
Namely, we construct the graph A by drawing an i.i.d.
Bernoulli random variable with probability p for each pair
of vertices to decide whether there is an edge between them.
To simplify the notation we will use the same name for the
graph and its adjacency matrix, that is the entry at the 7’th
row and j’th column of the symmetric, hollow matrix A is 1
iff there is an edge between the ¢’th and j’th vertices of the
graph A.

We define A as a graph that is a small perturbation of A,
the result of flipping some edges to non-edges and non-edges
to edges independently with small probabilities:

pijo =P[A;; = 1|4;; =0 = (1 - \)p 2
pojn = P[Ai; = 0]4;; = 1] = (1= A)(1 —p) (3)
Pojo = P[A;; =0]4;; =0/ =1—(1—A)p 4)
pip=PA;; =1|A; =1]=1-1-N)(1-p). &)

For simplicity we assume 0 < A\ < 1 (negative correlation
is also possible but we don’t consider it here). Note that pyo,
po1 are the respective probabilities of flipping an edge to a
non-edge, and flipping a non-edge to an edge, whereas p;|;
and po|o are the probabilities of not flipping them. Therefore
note that if A = 1 both graphs coincide, whereas if A = 0
then A is independent of A.

We consider the graph B defined as a random permutation
of A. Namely, B = PT AP for some uniformly random n x
n permutation matrix P. We denote this model as A B ~
GM(n,p, \).

A natural question that arises from this setting is: for what
values of n,p and A is it possible to recover P from A and
B? Information theoretical thresholds for exact recovery were
investigated in [5], [6], [7]. They show thatif p(1—p) = ©(1)
exact recovery is possible for

1
&m=®<vf?>. ©

On the other hand if p(1 — p) = o(1) and also p(1 — p) =
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o(A) then

P(1 = p)Aiar = 210& "‘w(nil) =6 <1OTgLn> @)

Although information theoretic bounds have been well
studied for random graph matching, no polynomial-time
algorithm is known to achieve or approximate the statisti-
cal bound. In the recent work [8] the authors consider the
regime where p = o(1) and constant A, and provide a quasi-
polynomial time algorithm that they show achieves exact
recovery of P when

(log log n)2

Py = Q(n Veem ). ®)

The statistical threshold for exact recovery in their regime is

loglogn

PGy = O(logn) = O(n Tesn) ©

Authors of [8] also provide a poly-time detection algo-
rithm to work with probability at least 0.9 when

5
npgr=mn

where 0 > 0 is arbitrarily small.

The recent work [9] proposes a poly-time algorithm for
the seeded case (where correspondences of certain nodes are
given a priori). In order to extend the seeded case to the gen-
eral case one may need to search for the seeds by brute force,
which may take sub-exponential time. Remarkably this sub-
exponential time algorithm achieves the perfect recovery in-
formation theoretic bound

nppg; = O(logn). (10)

An extension of a canonical labeling algorithm originally pro-
posed for graph isomorphism in [10] which uses the node de-
grees was recently analyzed in [11] for random graph match-
ing in the sparse regime, p = o(1), where the threshold for
perfect recovery was shown to be

i =1—o(log ®n). (1D

In [12], power of 1/logn in (11) was improved to a smaller
constant by using degree profiles, degrees of neighbors, to
match the nodes. In addition, some weak results on the spec-
tral algorithms have recently been derived in [13] and [14].

A belief propagation approach to graph matching similar
to the one we introduce in this note was proposed in [15]. The
main difference between our algorithm and the one from [15]
is that the latter relies on a given non-uniform prior distribu-
tion over assignments for each node. The lack of such pre-
assignment would increase the number of variable nodes in
their algorithm to O(n*) which would make it not suitable
for large graphs.

Moreover, two related belief propagation schemes for
graph matching were introduced in [16] where either the per-
mutation constraint was enforced pairwise or it was softened
to a potential on the Hamiltonian leading to different updates
from ours.
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3. BELIEF PROPAGATION ALGORITHM

We rephrase graph matching as quadratic assignment accord-
ing to [17]:

min Z Z Z Z Eiyjs Pir P
mell, i€CAjeArcBseB
subject to ZT: P,=1 ViecA 1)

Za,:l VreB
Py € {0,1}

The goal is to find the permutation between two sets of
objects, A and B, that minimize the sum of individual costs,
each of which depends on pairs of nodes that are matched
under the permutation. There are different choices for the
cost Ej,js. In the case of graph matching we typically have
Eirjs = |aij—bys|, where a;; and b,.; are the weights of edges
in A and B respectively. We will not make this assumption
and write the algorithm for general . A and B are both
assumed to have n elements.

The setting is illustrated below, where ¢, j and k are nodes
in Aandr,s,tin B. A candidate permutation illustrated with
red dashed curves.

We start with writing the posterior probability of a permu-
tation P.

+(P|E) =

Hﬂ{an = 1}]—[1{2% .
H H e BFirPisEirjs

(13)

We illustrate our proposed belief propagation (BP) scheme
based on the posterior (13) in Figure 1.

We consider the variable node 7 to keep track of the es-
timates of P[P, = 1] (probability of 7 being matched to r
under P) The factor node * enforces the hard constraints that
> P, =1, ZkPkT =1land P, € {0,1} foralli € A
and r € B. The factor node irjs is for the soft constraint for
the cost E;,.j,. We write the sum-product message updates as
follows.
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Fig. 1. Factor graph representation of our BP algorithm

e From check to variable nodes:

Poirrir(1) = vy (Ve P 10 770(0) (14

js
Djsirﬁir(o) Vj('Iil)(l) + V;fﬁl) (O) =1 (15)

1%

1

e From variable to the permutation-check node(*):

virn(1) 2 v VO T Fsivrsir (1) (16)
js

Virse(0) 2 070 (0) [ Zjsirsin (0) (7)
js

e From the permutation-check(*) to variable nodes:

V*—n’r(l) = Vir—>*(]-) H er—)*(o) H Vis—>*(0)

J#i s#T
(18)
V*%ir(o) = Vir%*(o) Z Vis%*(]-)l/jrﬁ*(l)
SHET,jFL
H Vit%*(o) H Vkra*(o)
t#s,r k#7,1
(19)
e From variable back to check nodes:
VE(0) 2 viyir (0) i1 (0) 1)
The algorithm has two cycles at each iteration. First cy-

cle is exchanging messages through soft constraint factor
nodes and second cycle exchanges messages through the
hard constraint factor node(*). vZ.(1) denotes the probability
of 7 in A being matched to r in B at iteration Z whereas
v (0) denotes the probability of i not being matched to 7.

ir

Enforcing v;-(0) + v4-(1) = 1, combining two cycles of
the algorithm (soft constraint and hard constraint message
exchanges) and changing messages to log-likelihood ratio,
L, = —log(vir(0)/vir(1)), we simplify each iteration of
the algorithm to one update rule as follows.

1 Ljs—fBEjsir
L <2 | L;r + Z log —|—6—

- 1+ elis
78
1+ eLis—BEjskr
_1og§:eXp Lkr+-§:log4—ir;;;;:4f
ki 4s
1+ elis=PEjsit
—log} expq Ly + Z log ————7-—
t#£r j,s

(22)

Note presented above is the Sum-Product BP update. For
Max-Product, simply maximization replaces summation.

3.1. Stopping condition

We set the norm difference of beliefs, v;,.(1) = 1/(1+e~Lir)
which will also be denoted as Vj,., between two consecutive
iterations as our stopping condition. That is, iterations stop
when

DV < (23)
where typically ¢ = 102, After the algorithm stops, the be-

liefs are projected onto a permutation by a greedy assignment
algorithm which approximately solves

arg max Tr(PTV). (24)
PeTL,

It is described in Algorithm 2 below.

3.2. Computational complexity and faster implementa-
tion for binary graphs

Complexity of one iteration is O(n*) and the bottleneck step
is the computation of the matrix M. If a special structure
on the cost matrix E' is assumed though, complexity can be
reduced. If all entries of /' are assumed to be 0 or 1, which
is the case for graph matching, update of matrix M, can be
rewritten as

Mir = Lir + ) Jlog (1= (1= e ")Vj.) Bjuir (25)
7,8
Note for graph matching costs further satisfy (27), which lets
us succinctly write the M update as (28).

Eirjs = ]l{l # .7} ]l{’l“ 7& S}|A1j - Brs| (26)
=1{i # j} 1{r # s}(Ai; + Bys — 24i;Brs) (27)
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Algorithm 1: Belief Propagation for min-QAP

Input: cost matrix £

Initialize Beliefs (V°);

Compute initial LLRs: L;. = log (ﬁ — 1);
I=0;c=10""1;

while |[VZ — VI7L||p > cdo

I=7T+1;

Ljs—BEjsir
Mir = Lip + 3 log e
Sum-Product:
L, = 2M;, —log Y eMit —log 3 eMrr;
t#r k#i
Max-Product:
Liy =2M;r — max My — max My
1.
1+eLir>

Compute Beliefs: VI =

end
Output: greedyAssign(V)

Algorithm 2: greedyAssign

Input: V
P = zeros(V .shape) ;
V =sort(V) ;

while max(V') > —oo do
row_arg, col_arg = arg max(V);
Plrow_arg, col_arg] = 1;

Virow_arg, :] = —c0 ;
V[, col_arg] = —oo
end
Output: P

M=ATVP(J-T1-B)+(J-1-ATYWPB+L (28)
where entries of the matrix V7 are given as
V)i =log (1= (1—e?)Vj,) (29)

and J and I are the n x n all-one and identity matrices, re-
spectively.

Complexity of the approximate greedy assignment algo-
rithm used at the end is O(n?logn) which keeps the overall
complexity of the algorithm at that of computing M, which
is just the complexity of multiplication of n-by-n matrices.
Multiplication of n-by-n matrices can be done more effi-
ciently than O(n?) with off-the-shelf packages, e.g. BLAS
[18]. Another option for the rounding step is to use the exact
O(n?) Hungarian Algorithm instead [19] which would be
the bottleneck in efficiency and increase the overall com-
plexity to O(n?) as a result. Run-times with Hungarian and
greedy roundings did not differ much in the GM experiments
discussed below.

4. NUMERICAL PERFORMANCE

We evaluate the performance of our belief propagation algo-
rithm on the graph matching model GM (n, p, A) described in
Section 2. We compare the performance of our algorithm with
leading algorithms in the literature. Due to space constraints
we report a limited set of experiments, a more extensive report
is in preparation.

Figure 2 shows the normalized overlap Tr(PT P)/n be-
tween the output of our algorithm(P) and the true planted
permutation(ﬁ) averaged over 30 i.i.d experiments of
GM(n, 0.5, \) for varying n and X values.

1.0
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Fig. 2. Normalized overlap with planted permutation for BP
in GM(n, 0.5, \).

Figure 3 illustrates the performance of the convex-concave
relaxation algorithm, PATH [20] for the GM(n, 0.5, ) model.
Although PATH seems to outperform belief propagation in
terms of accuracy, it’s less efficient. PATH needs more iter-
ations to converge and since every step takes O(n?) opera-
tions, we could not go beyond n = 90 in our experiments in
a reasonable time.

We observe a worse recovery performance by Frank-
Wolfe & Gradient-Descent type algorithms for graph match-
ing [21] and an earlier eigendecomposition approach [22]
(both have O(n?) scaling). An extensive set of experiments
will be reported at an extended version of this work.

Correlation with truth for GM ER(n, 0.5)
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Fig. 3. PATH algorithm[20] in GM(n, 0.5, \)
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