Theoretical Computer Science 791 (2019) 28-35

Contents lists available at ScienceDirect & oorcteal

Theoretical Computer Science

www.elsevier.com/locate/tcs e

Fair redistricting is hard N
Check for

. a . . b % . c updates
Richard Kueng®, Dustin G. Mixon "-*, Soledad Villar
2 Institute for Quantum Information and Matter, California Institute of Technology, Pasadena, CA, United States of America
b Department of Mathematics, The Ohio State University, Columbus, OH, United States of America
¢ Courant Institute of Mathematical Sciences and Center for Data Science, New York University, New York, NY, United States of America
ARTICLE INFO ABSTRACT
Article history: Gerrymandering is a long-standing issue within the US. political system, and it has
Received 27 August 2018 received scrutiny recently by the U.S. Supreme Court. In this note, we prove that deciding

Received in revised form 6 February 2019
Accepted 15 April 2019

Available online 28 May 2019
Communicated by P. Krysta

whether there exists a fair redistricting among legal maps is NP-hard. To make this precise,
we use simplified notions of “legal” and “fair” that account for desirable traits such as
geographic compactness of districts and sufficient representation of voters. The proof of
our result is inspired by the work of Mahanjan, Minbhorkar and Varadarajan that proves
Keywords: that planar k-means is NP-hard.

NP-hard © 2019 Elsevier B.V. All rights reserved.
Computational complexity

Gerrymandering

1. Introduction

Gerrymandering is the manipulation of district boundaries in order to favor a party or class. It has been an issue in the
U.S. political system for centuries. Over this period, several legal constraints, such as the Voting Rights Act of 1965, have
been installed in order to avoid certain forms of gerrymandering. Even so, map makers with an agenda can optimize their
objective (e.g.,, maximize the number of seats for a certain party) subject to these legal constraints. Today, gerrymandered
maps are continually brought to court, where they are struck down as illegal under federal or state law with some regularity.

In the recent Supreme Court case Gill v. Whitford, it was argued that the Wisconsin State Assembly map exhibits partisan
gerrymandering. The plaintiffs offered evidence based on the efficiency gap metric [21,4] and partisan bias metrics [9,12].
The Supreme Court did not rule on whether these metrics must be part of a test for partisan gerrymandering, thereby
leaving open a fundamental question: What is an appropriate metric to detect partisan gerrymandering? The answer to this
question will undoubtedly require a robust theoretical framework for analyzing gerrymandering, and fortunately, gerryman-
dering is currently an active research area.

Implicit in the notion of gerrymandering is the notion of a fair map, which is subjective, and therefore hard to define.
One interesting approach along these lines is to consider a probability distribution on all legal maps, and then say that a
map is fair if it is a typical instance of such a distribution [3,8]. In order to decide whether a map is typical, researchers
consider relevant observables of the distribution and determine whether they land within typical values [13,14,5]. Observ-
ables of interest include the proportion of seats to votes and the difference between the mean and median votes in different
districts.

One pitfall of such an approach is that the set of legal maps appears to be computationally intractable. For instance, in
order to compute the set of legal maps that improve on the existing plan (Act 43, drawn in 2011) for the Wisconsin State
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Assembly, one must find all possible ways to assign 6895 precincts to 99 districts so that each of the following conditions
hold simultaneously [10]:

all districts have equal population,

at most 58 counties can be split in different districts,

at most 62 municipalities can be split,

the average Reock score! is at least 0.39,

the average Polsby-Popper score” is at least 0.28,

at least 6 districts satisfy that at least 40% of their citizens of voting age are black, and
districts 8 and 9 do not change (previously ordered by a federal court).

In order to work around this apparent intractability, Markov Chain Monte Carlo simulations have been developed to
generate a random ensemble of representative maps, which are then used to estimate the distribution of relevant observ-
ables [3,8,6]. Recent work [5] provides local statistical tests based on Markov Chains to prove that certain maps are unfair
(given that they are outliers) with no need to provide a definition nor characterization of fair redistricting.

In this work, we prove that computational intractability is inherent to the redistricting problem. In particular, we show
that even for simple definitions of “fair” and “legal,” deciding whether there exists a fair redistricting among legal maps is
NP-hard. While this result is mostly relevant from a theoretical point of view (i.e., worst-case complexity says very little
about real-world maps), it should help researchers gauge what sort of performance guarantees are provable with their
redistricting algorithms. In words, our definition of fair requires that a party of interest receives at least some prescribed
level of representation, while our definition of legal only requires that

e all districts have approximately the same population, and
e all districts satisfy a mild notion of geographic compactness.

While our fairness criterion is not currently a legal standard, it has been used in court to argue that a given map is the result
of a partisan gerrymander (for instance, in terms of efficiency gap). Our result identifies a fundamental tension between
judging a partisan gerrymander by the shape of voting districts (i.e., violating some notion of geographic compactness) and
judging it by the impact of the gerrymander (i.e., violating a desired level of proportionality or efficiency gap); see [1,2] for
additional results along these lines.

2. Main result

Throughout, we denote [n] := {1,...,n}. The goal of redistricting is to partition a state into districts that satisfy various
criteria. Let 2y U --- U % = R? denote a partition of the plane into k districts. Suppose there are n voters labeled by
members of [n], and suppose loc: [n] — Q2 reports the location of each voter. Then the voters that reside in district Z;
make up the set D; :=loc~1(Z;) C [n]. Intuitively, we want each D; to have about the same size, since this will ensure that
voters from different districts receive equal representation:

(F1) A=) <IDil <1+ y)} for every [ € [k].

(Here, y € (0,1) is a rational number that is chosen to be appropriately small.) Assuming equal voter turnout, then this
is equivalent to one person, one vote, which requires that districts contain roughly equal size populations. A series of U.S.
Supreme Court decisions in the 1960s ruled that one person, one vote must hold for all levels of redistricting [20].

Next, we consider geographic compactness, which is a geometric requirement on the shape of the districts Z;. Indeed,
gerrymandering is historically detected by districts exhibiting bizarre shape (even the etymology of “gerrymander” comes
from likening the shape of a Massachusetts voting district to the profile of a salamander [11]). To enforce geographic
compactness, one may force all of the districts to have a large Reock score [19] or Polsby-Popper score [18]. Another
popular score is the convex hull score, which is the ratio |Z|/| hull(2)| of the area of a given district £ to the area of its
convex hull [17]. Of course, a district receives the maximum possible convex hull score (i.e., 1) precisely when it is convex.
Notice that a partition D1 U--- U D, = [n] can be realized from convex districts in the plane if and only if

(F2) hull({loc(i)}iep,) N hull({loc(i)}iep, ) =@ for every L,I" € [k] with [ #£1'.
Note that (F2) can be checked in polynomial time by linear programming. While the convex hull score is mathematically

convenient to work with, it can lead to undesirable districts. For example, if we partition a state into k horizontal strips,
then we achieve the best possible convex hull scores for each district, and yet every district will contain voters from the

1 The Reock score [19] is the ratio of the area of the district to the area of the smallest circle containing the district.
2 The Polsby-Popper score [18] is 477 times the area of the district divided by the square of its perimeter.



30 R. Kueng et al. / Theoretical Computer Science 791 (2019) 28-35

far-east and west sides of the state. This lack of compactness would be indicated by a large Reock score or Polsby-Popper
score. Alternatively, we can enforce a bound on the distance between any two voters in a given district:

(F3) Jlloc(i) — loc(j)|l2 < d whenever i, j € D; for some [ € [k].

Here, d > 0 is a rational number.

Amazingly, it is possible to concoct an extremely partisan gerrymander, even when constrained to geographically compact
districts that satisfy one person, one vote. For example, Figure 1 in [2] illustrates two different partitions of Wisconsin into
eight equally populated districts that use straight line segment boundaries; the first partition makes all eight districts
majority-Republican, whereas the second makes all but one district majority-Democrat (this is the most possible since
Wisconsin is majority-Republican). To defeat partisan gerrymandering in court, one might compare voter preferences to
election outcomes. Indeed, if the proportion of seats won by a party in a state is significantly different from the proportion
of votes cast for that party in that state, then one might blame partisan gerrymandering for the discrepancy. Along these
lines, arguments in the U.S. Supreme Court have leveraged the notion of proportionality (in Davis v. Bandemer) and of
efficiency gap (in Gill v. Whitford).

In our formulation, we let pref: [n] — {0, 1} denote the function that reports the preference of each voter. In practice, this
function can be estimated with the help of past election data. Then for some integer m > 0, one can ask for the following:

(F4) the number of I € [k] such that |D; Npref~1(1)| > %lD,\ is at least m.

As an extreme example, if half of the voters have preference 1 and k is large, then it is reasonable to ask for at least m =1
of the districts to be majority-1. (We note that the lack of symmetry between preference 1 and preference 0 in (F4) will not
be important to our formulation; for example, one may replace 1 with 0 in (F4) in order to ensure that preference-0 voters
also receive sufficient representation.)

Definition 1.

(a) Given y € (0,1) and d > 0, we say a partition Dy - --L Dy = [n] is (v, d)-legal for loc: [n] — Q?Z if it satisfies (F1)-(F3).

(b) Given m > 0, we say a partition D{ U --- U Dy = [n] is m-fair for pref: [n] — {0, 1} if it satisfies (F4).

(c) For each y € (0,1) and d > 0, the (y,d)-legal redistricting decision problem takes as input (n,k,loc) and returns
whether there exists a partition Dq U --- L Dy = [n] that is (y, d)-legal for loc.

(d) For each y € (0,1) and d > 0, the fair (y, d)-legal redistricting decision problem takes as input (n, k, loc, m, pref) and
returns whether there exists a partition Dq U --- U Dy = [n] that is both (y, d)-legal for loc and m-fair for pref.

In words, (y, d)-legal redistricting asks whether there exists a legal map (satisfying (F1)-(F3)), whereas fair (y, d)-legal
redistricting asks whether there exists a fair map (satisfying (F4)) among legal maps. Note that (y,d)-legal redistricting
amounts to a planar clustering problem that is likely NP-hard (given its resemblance to problems in [16,22]), but this will
not play a role in our result. What follows is our main result:

Theorem 2. For every rational y € (0, 1) and d > 0, fair (y, d)-legal redistricting is NP-complete. Furthermore, there exists a promise
of instances over which fair (v, d)-legal redistricting remains NP-hard even though the corresponding instances of (y, d)-legal redis-
tricting can be decided in polynomial time.

In words, it is sometimes hard to find a legal redistricting that is fair, even when it is easy to find a legal redistricting.
Our proof follows by reduction from planar 3-SAT, taking inspiration from Mahanjan, Minbhorkar and Varadarajan’s proof
that planar k-means is NP-hard [15]. Interestingly, our reduction takes |pref~!(1)| > 1_Tyn and m = o(k), meaning that in
the worst case, it is hard to decide whether there exists a redistricting satisfying (F1)-(F3) that ensures that preference-1
voters win at least a vanishing fraction of the districts, even if they make up nearly half of the popular vote. In what
follows, we first describe the reduction, then we prove that the resulting instance of fair redistricting is satisfiable if and
only if the original planar 3-SAT instance is satisfiable, and finally, we describe the technical details of how the reduction
can be performed in polynomial time.

3. Proof of main result
3.1. Reduction from planar 3-SAT

Given any instance of planar 3-SAT (illustrated in Fig. 1), we prescribe a corresponding instance of fair (y,d)-legal
redistricting (illustrated in Fig. 2). We are given a planar bipartite graph of clause vertices and variable vertices, where each
clause vertex has degree 3. Construct a planar embedding of this graph with integer vertex coordinates. At each clause

vertex, locally deform the incident edges so that they approach the clause vertex at 0, ZT” and %” radians. Next, we place
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«— “variable vertex”
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Fig. 1. A planar 3-SAT instance is a special type of 3-SAT instance that corresponds to a planar graph. The graph has one “variable vertex” per variable, and
one “clause vertex” per clause, and two vertices share an edge precisely when one vertex is a variable vertex assigned to variable x;, the other is a clause
vertex assigned to clause c¢, and either xj or —x; appear in c;. Here, we illustrate a planar embedding of the planar 3-SAT instance (—X; V X2 V —=X4) A
(=X V —Xq V —X3).

Fig. 2. Our reduction converts any planar 3-SAT instance into an instance of fair (y, d)-legal redistricting. The 3-SAT instance in this example is (—x; vV xz v
—X4) A (—X2 V —Xx4 V —x3). The districts correspond to the solution (x1, X2, x3,X4) = (0, 0,0, 1) to the original planar 3-SAT instance. Notice that the number
of edge towns between the two clauses that correspond to the variable x; (x4) is odd (even) because the variable appears with opposite (equal) sign in
these clauses.

“towns” at various points in the plane relative to this graph embedding before placing voters at each town. Pick n > 0 and
€ > 0 to be sufficiently small rational numbers (we will have € « 1, and both will be polynomially small in the number of
vertices). Place a “big clause town” at each clause vertex and a “small clause town” € away at 0 radians. About each clause

vertex, place six “clause-adjacent towns” at distances between 0.99n7 and n away and at angles approximately equal to %

for je{1,5,7,11,13,17}. For each variable vertex x, consider the set Cy C R2 of points that are between 1 and %n away
from the edges incident to x. Place “edge towns” throughout Cx so that (1) each edge town has exactly two towns that are
between 0.997 and n away (one of which might be clause-adjacent) and none closer, and (2) the number of edge towns
between consecutive clause-adjacent towns is even (odd) when the signs of x in these clauses are equal (opposite).

As we verify later, all of these town locations can be selected to have coordinates with a logarithmically small number of
digits of precision. Before placing voters at the various towns, we first multiply all of the towns’ coordinates by the rational
number d/(n + €). After this multiplication, the description lengths of these coordinates with remain logarithmically small.
For simplicity of exposition, we assume d =1 + € without loss of generality so that no multiplication is necessary.

We now place voters at the various towns. Take L > 1/y2 to be a multiple of 4. Each big and small clause town receives

L and LZTVLJ voters, respectively, all of which have preference 1. Each clause-adjacent town receives %—{- L%LJ voters, %
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with preference 1 and % + L%LJ with preference 0. In each edge town, we place % voters, % — L%LJ with preference 1 and

% + L%LJ with preference 0. Take k to be the number of clauses plus half the number of non-clause towns, and set m to be
twice the number of clauses.

Lemma 3. Given any instance of planar 3-SAT, the corresponding instance of fair (y, d)-legal redistricting is satisfiable if and only if
the original instance of planar 3-SAT is satisfiable.

Proof. In order to satisfy (F2), all voters in a given town belong to the same district. Next, (F1) and (F3) together force
every edge town to be matched with one of the two towns that are approximately n away. Each clause-adjacent town
is either matched with the edge town approximately 1 away, or the nearest clause-adjacent town. In the latter case, the
corresponding small clause town may also join the district, but it may not join any other clause-adjacent town in order to
maintain (F3). The big clause towns may be matched with the corresponding small clause town when it is not matched
with clause-adjacent towns; otherwise, these big clause towns are so big that they form their own districts in order to
satisfy (F1).

Overall, for each variable x, the corresponding edge towns and clause-adjacent towns are perfectly matched in one of
two ways (namely, one of two perfect matchings in an even cyclic graph). For a clause that includes x (the negation of x),
we may interpret the corresponding clause-adjacent towns as sharing a district precisely when x is true (false). As such, the
underlying instance of planar 3-SAT is satisfiable precisely when there exist districts satisfying (F1)-(F3) such that, for every
clause, there exists a corresponding pair of clause-adjacent towns that share a district (in which case, the small clause town
may join their district).

The majority-1 districts are precisely the ones that contain a big or small clause town, and so there are at most m
such districts. Equality occurs, namely (F4), precisely when each of the small clause towns is matched with some pair of
clause-adjacent towns, which is feasible precisely when the underlying instance of planar 3-SAT is satisfiable. See Fig. 2 for
an example of a matching (represented by rectangles). O

Next, we quickly verify that given any instance of planar 3-SAT, the corresponding instance of (y,d)-legal redistricting
can be solved in polynomial time. (Then the promise of instances in Theorem 2 can be taken to be the image of our
reduction from planar 3-SAT.) First, assign each town that contains L voters to its own district, and then add as many voters
to these districts as possible while satisfying (F1) and (F3). After doing so, there will be m/2 districts, each containing a big
clause town and the corresponding small clause town. Next, define a graph such that the vertices are the remaining towns,
with two towns being adjacent if their distance is at most 7. This graph is a disjoint union of cycles, and one may partition
the remaining towns into districts by selecting any perfect matching of towns. The result is a (y, d)-legal redistricting that
can be computed in polynomial time.

3.2. Polynomial-time construction

To prove Theorem 2, it remains to show that our reduction from planar 3-SAT can be accomplished in polynomial time.
To this end, there are three nontrivial subroutines to analyze:

(i) Given an instance of planar 3-SAT, find a corresponding planar embedding.
(ii) Given a planar 3-SAT embedding, locally deform the edges incident to each clause vertex.
(iii) Place towns throughout the plane with the appropriate geometry and parity.

3.2.1. Creating a planar embedding
For (i), we appeal to the following:

Proposition 4 (Chrobrak-Payne [7]). There exists a linear-time algorithm that, given an N-vertex planar graph as input, outputs a
planar embedding of that graph such that

(a) the embedded vertices lie in a 2N x 2N integer grid, and
(b) the embedded edges are line segments.

We will exploit the form of this embedding in our analysis of (ii) and (iii). To accomplish (ii), we first identify a suitably
small neighborhood of each clause vertex v, specifically, the set of points B(v, §1) in the plane that are within some §; > 0
of v in co-norm. Provided §; is small enough, then the portion of the Chrobrak-Payne embedding that resides in B(v, 81)
amounts to three segments emanating from v, and the angle between any two of these segments is at least &, radians (for
some appropriately small §; > 0).

For simplicity, we may assume that the angles of these segments are at least §, away from T := {0, ZT”, 4T”} U

{Z,3Z, 3% 1T} indeed, if this fails to hold, we can redefine §; < 8;/4, and if there is still a segment of angle 6 within &;
of T, then we can modify that segment to be a polygonal curve so that the portion in B(v, §1/2) is a segment with angle
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/

Fig. 3. Deformation of the Chrobrak-Payne embedding of a planar 3-SAT instance in an oo-norm ball centered at a clause vertex with radius §;. In each

case, the clause vertex has three edges (dotted) that are redirected along the boundary of the co-norm balls of radius 53—1 and/or %

6 + 287, and then redefine &; < §1/2. Since the angles avoid {0, 27” 4?”}, they each reside in one of three sections: (0, 2?”),
(27”, 47”), (47”, 27). As such, there are three cases to consider: (1) each angle resides in a different section, (2) one section
contains exactly two angles, and (3) one section contains all three angles. By rotating and reflecting as necessary, one can
ensure that (0, 2Z) receives at least as many angles as (47”, 27), which receives at least as many angles as (ZT”, 47”).

With this standardized form, Fig. 3 illustrates how to modify the segments into polygonal curves in each case so that the
portions in B(v, §1/3) are segments with angles {0, ZT”, 4T”}. Since the original segment angles were at least §; from T, the
segments of the new polygonal curves are not too small. In particular, this modification to the Chrobrak-Payne embedding

has the property that each edge is embedded as a polygonal curve of segments such that

(D1) every segment has length at least § := fm min{81, &>}, and
(D2) every pair of disjoint segments in the graph embedding has distance at least §.

Importantly, §; and 8, (and therefore §) are polynomially small, which follows from Proposition 4 and the following lemma:

Lemma 5. Let A, B and C be distinct points in an £ x £ integer grid. Then

(a) either sin(L.ABC) =0 orsin(LABC) > 217 and

(b) either dist(A, BC) = 0 or dist(A, BC) > 5.

Proof. Put A, B, C € [¢]? and denote (a,b) = A — B, (c,d) = C — B. Then
Idet(‘C‘Z)l =@ bz - ll(c,d|l2 - sin(LABC).

Assuming sin(LABC) # 0, then by integrality, the left-hand side is at least 1, whereas the right-hand side is at most
2¢2 sin(£ ABC). Rearranging then gives (a).

For (b), let D denote the closest point in BC to A. If D = A, then the distance is zero. If D = B or C, then the distance
is at least 1 since in this case, A and D are distinct points in an integer grid. Otherwise, D # A is an interior point of BC,
and by the Hilbert projection theorem, ZADB is a right angle. Since A and B are distinct, we have dist(A, B) > 1, and so

. — . dist(A, D) . . 1
dlSt(A, BC) = dlSt(A, D) > m = Sln(LABD) = Sln(LABC) > ﬁ’

where the last step is by (a). This gives (b). O

3.2.2. Placing towns

Finally, we analyze (iii). Let N denote the number of vertices in the original planar 3-SAT instance, compute an embed-
ding of the corresponding planar graph in a 2N x 2N grid (this is possible by Proposition 4), and locally deform the edges
incident to each clause vertex so as to satisfy (D1) and (D2) with § = 1/(10*N?) (this is possible by Lemma 5). For each of
the (polynomially many) segments of this new embedding, store the coordinates of each endpoint with p := [2log;q N1+ 10
digits of precision.

We now describe where to place the various towns in our instance of fair redistricting. Select n € (0, §/200) and € €
(0, /200), each with p digits of precision. It is helpful to define a sequence {z;}jc[sj of t = 1800 points; take z; to have
coordinates (1 cos(2m j/t), nsin(27w j/t)), but rounded to p 420 digits of precision so as to have norm between 0.99n and 7.
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[N

e
=

Fig. 4. Detailed illustration of towns near a clause vertex. At this scale, edges incident to the clause vertex amount to segments at angles 0, 27” and 47”. Let

x denote the variable vertex (not depicted) that is incident to the edge at angle 0. Big and small clause towns are plotted in magenta and blue, whereas
clause-adjacent towns are distributed about the big clause town in green. Two different components of Sy are found on both sides of an edge at distance
n away. Edge towns (depicted in light blue) are placed inside each of these components. (For interpretation of the colors in the figure(s), the reader is
referred to the web version of this article.)

Now for each clause vertex v € Z?, place a big clause town at v, a small clause town at v + (¢, 0), and place clause-adjacent
towns at v + z; for j e {100, 500, 700, 1100, 1300, 1700}. Next, we will define edge town locations by iteratively adding
different choices of z; to existing town locations; see Fig. 4 for an illustration.

Recall that for each variable vertex x, Cx denotes the set of points that are between 1 and %n away from the edges
incident to x. Let Sy denote the subset obtained by removing any points from Cy whose nearest point in the edges incident
to x is within 1.35n of a clause vertex. In words, Sy is a “broken” version of Cyx; while Cy is connected, the number of
connected components of Sy equals the number of clause vertices adjacent to x in the original graph. Furthermore, since

1.35<cos%+m,

for each clause-adjacent vertex u associated with an edge e incident to x, there exists j € [t] such that u + z lies in Sy and
has distance about %n from e, and we place an edge town at u + z; € Sx. To clarify, each component of S, can be thought
of as an %—thickened curve, and we currently have edge towns at both ends of this curve (modulo precision). Furthermore,
it is straightforward to show that every pair of edge towns currently has a distance greater than 1.08n > 1 + €. It remains
to place edge towns throughout the remainder of each component.

Fix a component of some Sy, and let w and w’ denote the locations of the two edge towns that have been placed in
this component. Put wo = w, and given w;, find j such that w; + z; € Sy is more than n + ¢ away from all towns other
than w; while being as close as possible to %r) away from the edge set of the embedded graph, and put an edge town at
Wit1 = Wi +zj. (This computation is feasible since the embedded graph is comprised of polynomially many segments, and
there are always polynomially many towns.) We terminate this iteration once w; satisfies ||[w; — w’||2 < 100% and i has the
appropriate parity (after this iteration, we will add an odd number of edge towns to this component of Sy).

At this point, 7 < §/200 and (D1) together imply that the portion of Sy between w; and w’ corresponds to a straight line
segment of the edge set of the graph embedding. For simplicity of exposition, we will assume w; = (0,0) and that w’' =
(%, 0) lies on the positive x-axis, with the understanding that we may rotate and translate as necessary before rounding to
p + 20 digits of precision. With this orientation, we have [0, x'] x [—g, %] C Sy. Taking r := |x'/1.95], one may use the fact
that ¥’ > 987 to verify that q :=x'/r € [1.957, 1.99n]. Then we place an edge town at (jq,0) for every j e [r — 1] and at

(0.995n)2 — (q/2)?) for every j € [r] (the second coordinate lies in [0, g] since q € [1.95n, 1.997]). Overall, for
each component of each Sy, we have identified locations for edge towns in polynomial time, completing the construction of
a fair (y, d)-legal redistricting instance.
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