
PHYSICAL REVIEW E 102, 022405 (2020)

Precise spatial memory in local random networks
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Self-sustained, elevated neuronal activity persisting on timescales of 10 s or longer is thought to be vital for
aspects of working memory, including brain representations of real space. Continuous-attractor neural networks,
one of the most well-known modeling frameworks for persistent activity, have been able to model crucial aspects
of such spatial memory. These models tend to require highly structured or regular synaptic architectures. In
contrast, we study numerical simulations of a geometrically embedded model with a local, but otherwise random,
connectivity profile; imposing a global regulation of our system’s mean firing rate produces localized, finely
spaced discrete attractors that effectively span a two-dimensional manifold. We demonstrate how the set of
attracting states can reliably encode a representation of the spatial locations at which the system receives external
input, thereby accomplishing spatial memory via attractor dynamics without synaptic fine-tuning or regular
structure. We then measure the network’s storage capacity numerically and find that the statistics of retrievable
positions are also equivalent to a full tiling of the plane, something hitherto achievable only with (approximately)
translationally invariant synapses, and which may be of interest in modeling such biological phenomena as
visuospatial working memory in two dimensions.

DOI: 10.1103/PhysRevE.102.022405

I. INTRODUCTION

Biological implementations of working memory bridge the
gap between two fundamentally disparate timescales: single
neurons process information in ∼10−3 s, whereas organisms
interact with their external environments over durations of
∼1 s or longer. For species from fruit flies to primates,
this extension of timescales is reflected at the neural level
by elevated spiking activity that persists while a particular
memory is being accessed [1].

These excitations tend to be highly localized: For various
types of working memory tasks across brain regions, firing
rates for only a subset of selectively receptive neurons appear
to become elevated [2–5]. Traditionally, these units are con-
sidered to be responsible for maintaining the memory, and
their so-called persistent activity, which can last anywhere
from tens of seconds to several minutes, is thought to under-
lie a multitude of well-studied neural computations [6] (see
Ref. [7] for an alternative viewpoint). While the mechanis-
tic drivers of persistent activity are not fully understood—
both single-cell and network-level explanations have been
proposed over the past several decades, but their relative
contributions remain under debate [8]—attractor neural net-
work models have provided phenomenological descriptions
of persistent firing states as fixed points or stable manifolds
of the neural dynamics [9–11].

Attractor neural networks were first developed within the
context of discrete, long-term associative memory, where each

attracting state in a multistable system represented a distinct,
stored memory [12]. Continuous-valued variants have since
been able to model transient memories, like the firing activity
responsible for maintaining an animal’s eye position between
saccades in one dimension [9] or its heading direction in a
two-dimensional (2D) environment [13]. An enduring critique
of these architectures is that they typically require highly
structured or precisely tuned connection topologies to sus-
tain the desired attractor behavior. For instance, the synaptic
connectivity matrices in Ref. [9] satisfy stringent spectral
tuning properties that allow certain firing patterns to persist
indefinitely. While the need for special structure—including
attempts to circumvent the need for recurrent connectivity
entirely [14,15]—has been challenged by realizations of per-
sistent activity in the context of (nearly) randomly connected
model neurons [16–20], it still seems that some balance
between excitation and inhibition is what endows recurrent
circuitry with memorylike properties [8].

Recently, a biological instance of continuous attractor
dynamics was traced to a circuit in Drosophila, consistent
with one version of these topological constraints [21]. It
has been established that this circuit plays a role in spatial
navigation and further suggested that the attractor compu-
tation therein derives from high-level network properties—
topological configuration, local excitation, and long-range
inhibition—rather than “fine-scale” details like the synaptic
weight distribution [22]. Although attractor dynamics have
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previously been achieved via locally connected network mod-
els [23–25], it is yet unclear that networks built from random
weights (i.e., unstructured connectivities) can reliably perform
spatial memory tasks like those of the fly’s internal navigation
system. Moreover, the reliability of a randomly weighted
network in encoding such memories in larger-dimensional
spaces (location on a 2D plane) has yet to be quantified.
These possibilities demands investigation, especially since
random excitatory-inhibitory networks have been shown to
be capable of various other complex computations, including
conjunctive encoding for input classification [26] and, with
appropriate regulation, emergent selectivity in the context of
certain evidence integration tasks [27].

In this article, we ask how well a minimally structured,
randomly connected network model [28] can perform a spatial
memory task, in which the system must maintain a persistent
representation of the geometrical location that corresponds
to its most recent stimulation site. To do this, we study the
firing-rate dynamics of a system with local, but otherwise
random, connections, whose overall activity is regulated by
global inhibition. Our network is spatially extended, and we
show through numerical simulations that it is able to encode
the locations of external stimuli as elevated firing activity in
the region proximal to the stimulation site. In other words, it
is capable of spatial memory.

We introduce this system in Sec. II and computationally
measure its capacity for distinguishing different stimulation
locations in Sec. III. We conclude by discussing how the
model relates to previous work, and how it might be ex-
tended, in Sec. IV. Our intent is not to model any specific
biological system, but to demonstrate through simulations
how computations similar to those of persistent, continuous
attractors are theoretically possible in random networks whose
overall firing is controlled globally, rather than through local
excitation-inhibition balance [29,30]).

II. MODEL AND METHODS

The network G = ({i}, {Ji j}) consists of excitatory rate
neurons i = 1 · · · N [9,31], embedded on a two-dimensional
manifold [32,33]. Specifically, we consider a square plane of
side length L, with connections {Ji j} pointing from neuron j to
neighbor i (i, j = 1 · · · N). We choose a set of spatial point co-
ordinates X = {(x1, y1), . . . , (xN , yN )}, where each pair �xi =
(xi, yi ) is an independent random sample from the bivariate
uniform distribution on the interval [0, L]. This system has
uniform spatial density η = N

L2 , which is equivalent to L√
N

≡ λ

as the average separation between neurons.
With matrix elements {di j} representing the Euclidean

distances between neurons i and j, we assign a nonzero
value to the synapse strength Ji j if di j < ξ , where ξ � L. We
prohibit autapses, or self-loops, and invoke periodic boundary
conditions in the calculation of di j . For convenience and
uniformity, we present all results using the reference plane
[0, L] × [0, L]. In all that follows, L = 1 and ξ = 0.06L un-
less otherwise specified. We also choose N = 212, which fixes
λ ≈ 0.016(L) ≈ 0.26ξ .

Choosing a value for ξ which is small relative to L ensures
that connections remain short ranged and that the resulting

network is sparse. We argue later that choosing a set of con-
nections {Ji j} that is too short or too long ranged diminishes
the ability of the network to support multiple nontrivial mem-
ory states. Quantitatively, since each neuron i interacts with
∼πξ 2η downstream neighbors, a typical network realization
G encompasses ∼πN2(ξ/L)2 synapses, or about 1% of all
possible connections.

The connection strengths, or synaptic efficiacies, are

Ji j =
{∼ P(μ, σ ), di j < ξ and j �= i,

0, di j � ξ or j = i,
(1)

where each Ji j is an independent draw from P(μ, σ ), repre-
senting a lognormal distribution (as argued for in Ref. [34]
and elsewhere; we explored other distributions but found
no qualitative differences in the results). Since by defini-
tion lognormal random variables are positive definite, Ji j > 0
for all outgoing connections: all neurons are excitatory. In
what follows, μ = −0.702 and σ = 0.8752 (by convention,
these parameters refer to the associated normal distribution).
These values were taken from fits done during experimental
investigations of neural circuit properties in the rat visual
cortex [34].

As emphasized above, persistent activity traditionally de-
mands a balance between excitation and inhibition, while our
connectivities encompass no explicit inhibition. Therefore,
we choose to model inhibition indirectly, imposing its main
effect—which we assume is to stabilize the system’s total
firing activity to a constant value [35,36]—directly. In par-
ticular, we insert a term into the usual nonlinear firing-rate
equations [9,31] to represent nonlocal inhibitory interactions.
In summary, in the absence of synaptic or external inputs,
the firing-rate activity ri(t ) decays exponentially over the
intrinsic timescale τ . Otherwise, ri(t + dt ) is determined by
integrating a nonlinear function of combined input currents∑

j Ji jr j (t ) the from upstream neighbors j and external drive
Ii(t ) over the short interval dt � τ . Thus, for constant a > 0,

τ
dri

dt
= −ri + aN

(
hi∑
j h j

)
, (2)

hi = f

⎡
⎣∑

j

Ji jr j + Ii(t )

⎤
⎦. (3)

This system will ultimately approach a steady state for
which

∑
i ri(t 	 τ ) = aN : Global inhibitory interactions, im-

plemented by the second, “activation,” term in Eq. (2), create
the desired balance. This can be verified by solving for the
steady-state conditions dri

dt = 0. The parameter a in Eq. (2) can
be thought of as the system’s baseline firing level (the rate at
which all neurons would fire if they were to fire at equal rates
in the steady state). A complementary interpretation, related to
the fraction of active cells in the steady state, will be addressed
in detail later. We set a = 0.02 and, without loss of generality,
choose τ = 1 so that time is measured in unit of τ .

Finally, we adopt for the nonlinearity a version of the
firing-rate function introduced by Ref. [13],

f (x) = α(ln {1 + ln [1 + eβ(x−γ )]})δ, (4)
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with α = 18, β = 0.5, γ = 16, and δ = 1.5. We selected
these values to place activations {hi} in a biological range
(tens or less if measured in Hz) for arguments x > 0 spanning
two orders of magnitude, with f (0) ∼ 10−4 ≈ 0. The reason
for the choice given by Eq. (4) is that the gain of this curve
increases at a value away from zero and that its behavior
in the limit of large inputs is nonsaturating over two orders
of magnitude in x. These attributes are intended to better
approximate the biological reality [37], as compared with the
sigmoidal thresholding functions commonly used in artificial
networks (which tend to feature inflection points near values
corresponding to zero net input). We note that both of these
properties are also satisfied by the rectified linear unit (ReLu)
activation function [38], also commonly used in machine
learning.

For a realization G with dynamics given by Eqs. (2) and (3),
we quantify how this system performs as a spatial memory
architecture. In particular, if a group of neurons local to an
arbitrary region of the plane is stimulated externally, will the
system be capable of sustaining a persistent representation
of the stimulated coordinates? How many distinct stimulation
sites can the system reliably encode?

To measure the number of resolvable sites, we perform
ntrials “external stimulation” computational experiments, se-
quentially, in Matlab. First, we initialize the system, creating
a network realization G by selecting values for the neuron
positions X and connection strengths {Ji j}. We then set the
firing rates of all neurons i = 1 · · · N to ri(0) = a and evolve
Eqs. (2) and (3) from t = 0 to t = 100τ , well beyond the point
at which the individual firing rates stabilize, using the built-in
Runge-Kutta (4,5) solver with Ii(t ) = 0. The result can be a
strong excitation, confined to a local region of the plane, or a
fully delocalized firing state in which all neurons participate
with rates near a. In either case, the rates do not change in
time (this holds even if the system is initialized randomly,
with rates that sum to the steady-state value aN , instead of
uniformly).

To ensure that the system can switch out of this state, we
perform a single external stimulation, abitrarily targeting the
visual center of the plane, according to the following protocol.
With the aformentioned state serving as our initial condition,
we locate all neurons contained within an “input” patch of
area πρ2 (for now, we choose ρ = ξ = 0.06L) centered at
�xstim = (0.5, 0.5). For this subset of system elements only, we
set

Ii(t ) = A[1 − 
(t − �t )] =
{

A, t < �t,
0, t � �t,

(5)

where 
(t ) denotes the Heaviside step function and �t = 5τ .
We again solve Eqs. (2) and (3), integrating until T = 40τ ,
sufficient time for the network to reach a persistent state.

We then repeat this protocol for ntrials iterations, each
time sampling a random position �xstim = (xstim, ystim ) from a
uniform grid of 104 finely spaced points superimposed on
the plane (that is, separated by dL = 10−2L), to serve as
the set of stimulation centers. The resulting state {ri(t = T )}
then becomes the new initial condition for the following
trial, representing restimulation and new memory formation.
We set ntrials = k · (L/dL)2, partitioning stimulations into k
successive groups of (L/dL)2 trials that are each composed of

FIG. 1. Sample bump state in a system with N = 212. The scale
bar indicates the synaptic cutoff distance ξ , below which G appears
fully connected. Inset: All the neural activities through time. Most
of the trajectories remain near zero and cannot be visually distin-
guished. Stimulation is shown as a gray block of width �t = 5τ .

independent random permutations of the full list of available
grid points {xstim}.

III. RESULTS

A. Network supports multiple stable attractors

On stimulation, the system initialized as above tends to
develop a localized excitation in the vicinity of �xstim, which
quickly coalesces into a roughly circular “bump” of activity
[11,39,40]. Figure 1 depicts a representative bump in a sys-
tem of size N = 212 at T = 40τ . The inset reproduces the
firing-rate trajectories for t � T , showing that all rates have
stabilized to their final values by T .

While it is free to migrate or spread about �xstim during and
after stimulation, this activity bump typically assumes a stable
shape and location on the plane by the same time T . Anal-
ogous behaviors are observed when the system is stimulated
from within a previously activated stable state. Then, activities
associated with any preexisting bump are rapidly attenuated
due to the global inhibition, typically returning to baseline
activity values by �t . Generally, given a sufficiently strong
input current amplitude A and adequately long stimulation
time �t , an activity bump will form in any general region of
the plane and remain thereafter in the vicinity of �xstim.

In simulation, our model seems to support only one spa-
tially localized excitation under steady-state conditions, even
if stimulated briefly at two locations simultaneously. At least
qualitatively, this might be understood by analogy with a
simpler system consisting of just two units, representing
distant regions of strong firing. If each unit acts according
to Eqs. (2) and (3)—loosely, as a self-excitatory, positive-
feedback system, with a global inhibition that enters via
the normalization hi/

∑
j h j—then it is easy to imagine that

their mutual feedback will lead to a single unit dominating
(we ignore oscillations, since the feedback would need to
be precisely tuned in order for these to appear). While it is
not immediately clear from these equations that simultaneous

022405-3

The Trial Version



NATALE, HENTSCHEL, AND NEMENMAN PHYSICAL REVIEW E 102, 022405 (2020)

0 0.5 1
0

0.2

0.4

0.6

0.8

1
(a)

0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1
(b)

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1
(c)

0

0.2

0.4

0.6

0.8

1

0 0.5 1
0

0.2

0.4

0.6

0.8

1
(d)

0.2

0.4

0.6

0.8

1

FIG. 2. Spatial activity distributions for sample bumps. Above,
two-dimensional Gaussian envelopes were fit to firing-rate activity
profiles comprising the final, “bump” states. To do this, horizontal
and vertical coordinates of each neuron were binned into 100 × 100
separate pixels. In panel (a): Example bump, with activities depicted
as a percentage of the maximum firing rate. The center of the red
circle represents the center of excitation, and its radius is drawn
to encompass all units with firing rates observed to exceed some
multiple of the baseline firing rate; see Sec. III B for further details.
In panel (b): Fit of the (discretized) data depicted in panel (a), with
values reported relative to the peak. Panels (c) and (d): Same as top
row for a different bump state. Note that active regions for the fits
are encompassed by the same circles drawn for their respective firing
data. Whether or not the brightly colored pixels for a given bump
are, in fact, normally distributed, a main advantage of this Gaussian
approximation is that it provides a robust way to track each bump’s
width, as needed in later analyses.

activation at many locations will not lead inevitably to de-
localized excitations or multiple small bumps, we are not
focused on this here, precisely because we are interested in
situations for which there is exactly one driving input at any
given moment in time—and only one recent memory, as in the
experimental system of Ref. [21]. Thus, as a rule of thumb, we
say that the system supports a single bump at any given time
[21], in any general spatial region of the plane.

How large are these activity bumps? Although they are not
perfectly circular, we observe that excitations do take on a
typical size for a fixed cutoff distance ξ . We can therefore
speak about an effective bump radius Reff . A simple way to
measure Reff would be to choose a firing-rate threshold above
which neurons will be considered active and compute the
radius for the equivalent circular area πR2

eff occupied by this
subset of system elements on the plane. Ideally, we need a
criterion that is relatively insensitive to the cutoff distance. In
order to keep track of bump sizes without choosing such a
threshold in advance, we fit two-dimensional Gaussian curves
to the spatial firing-rate distributions associated with each
bump (see Fig. 2) and measure 2Reff by the full width at half
maximum, as done recently for the experimental system of
Ref. [21]. This yields Reff (ξ = 0.06L) ≈ 0.78ξ ≈ 0.05L. In

other words, the bump radius is on the order of the cutoff
distance; we expect this to be a generic result.

Taking the ratio Reff
λ

≈ 3, we see that typical activity
bumps are also large in comparison with the average neuron
separation λ, as well as the distance dL = 10−2L between
adjacent gridpoints. This has an important consequence. If the
system is stimulated at a point within (or too near) the area
associated with an active bump, it may respond by reverting
to the originally active bump state instead of evoking a new
memory. This is particularly true if either the input time �t or
amplitude A are insufficiently large but occurs more generally
due to the quenched disorder in the neuron positions and
connectivity. Certain bumps will emerge as preferred states,
which are more strongly favored than others (this limits the
network representational capacity, as we determine quantita-
tively later). Nevertheless, the system does appear to select
from a discrete, finite set of constant firing-rate states for the
parameter values (λ = N− 1

2 , ξ ≈ 3.84λ) defined above.
In summary, for sufficiently strong input, we observe:
(i) Local stimulation can cause the system to develop

stable bumps in essentially any region of the plane;
(ii) The system seems able to transition, smoothly and

repeatably, from sustaining one bump state to another (switch
between multistable firing patterns);

(iii) Independent stimulations centered at different grid-
points can result in nearly indistinguishable memory bumps.

We take these observations together as the earmarks of dy-
namical attracting behavior—in particular, the system acts as
a discrete approximation to a 2D plane attractor. We identify
each achievable bump state with a stored, retrievable memory.
By definition, an attracting state persists until stimulation
evokes a new bump, so we say that the system stores spatial
memories encoding the location at which it was most recently
stimulated.

If the basins of attraction (from within which stimulation
at different �xstim values consistently leads to the activation of
specific memories) are not infinitely small but of finite size,
the system cannot remember arbitrary positions on the plane.
It is then natural to ask how many unique spatial locations
can be distinguished by a given realization of the synaptic
matrix. That is, the resolution with which �xstim can be decoded
requires quantification.

B. Spatial memories effectively span the plane

How many distinct stimulation locations �xstim might we
anticipate a realization G to resolve? We expect this capacity
to depend largely on gross statistics like the average size of
the attracting basins rather than on details of the instantial
arrangement of neuron positions and synaptic connections
associated with a given system configuration.

Since the dynamical equations (2) and (3) are determinis-
tic, the attracting state evoked by stimulation at a given site
should be unique, apart from the aforementioned dependen-
cies on the initial state and input-current parameters. This
variation can even be minimized: The stronger the external
inputs, the more reliably we can anticipate that the system
will find an attractor in the vicinity of the stimulation location,
independent of where it is currently excited. Thus all that
remains to determine the exact set of attractors supported
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by a given configuration G are the the coupling strengths.
Accordingly, we expect that the bumps to which excitations
attract will be almost exclusively a function of the (quenched)
random variable Ji j .

We coarsely estimate the system’s capacity as follows.
Assuming homogeneous basins of attraction and one-to-one
retrieval within a basin, the number of reliably stored mem-
ories will be equal to the number of basins that fit on the
plane. Dividing the L × L space into equally sized square
sections of width 2R−2

eff implies, for our parameter values,
∼102 distinct, nonoverlapping basins that span the 2D space.
Thus our baseline will be ∼100 bumps, touching tangentially.

A preliminary step toward more accurately quantifying
the number of stimulation locations that the system can reli-
ably encode is simply enumerating all the unique attractors
activated during a given series of ntrials stimulations. This
allows us to conceptualize the capacity in terms of input
(stimulation site) to output (bump location) relations. For
each stimulation, we track the center of excitation �xCOE(t ) =∑

i′
ri′ (t )�xi′

aN among cells i′ which we identify as actively par-
ticipating. Instead of accommodating for the uncertainties
associated with our Gaussian fits, here we employ simple
thresholding to identify active units, for two principal rea-
sons. First, the fixed-threshold criterion ri > 10a predicts the
number of active neurons to within 10 units of the amount
given by the more sophisticated participation number pν =
(
∑N

i=1 rν
i )2/

∑N
i=1 r2ν

i , with similar qualitative behavior across
the surprisingly large range of cutoffs from roughly zero to
10λ. In addition, this fixed-threshold criterion was found to
predict centers for bump excitations that coincide well with
the measured Gaussian peaks.

For large cutoffs, it is possible that even a fairly nonrestric-
tive threshold can exclude relatively strongly firing neurons:
Our constraint

∑
i ri(t ) = a implies that firing activity within

a given bump decreases as bumps increase in size, which
is precisely what we observed to happen as we increase ξ .
Excitations encompassing zero active neurons were to be
assigned a special value of �xCOE(t ), allowing us to count them
separately toward the capacity, but this was not observed for
the ξ = 0.06L presented below. We enumerate all distinct
bumps by counting the unique values of �xCOE(T ) observed
to within a specific resolution (we discuss the importance of
this resolution below). For ntrials large, this number should
approach the cardinality of the set of possible memories.
The next step will be to quantify how many—or with what
fidelity—distinct values of the gridpoint coordinates �xstim can
be discriminated by these enumerated attractors.

We measure the capacity for a given realization G as fol-
lows. Although each site in the set of (LdL)−2 = 104 available
stimulation gridpoints is visited ntrials

L·dL−2 = k times each in each
series of stimulation events, averaging over all possible initial
conditions for each gridpoint would require too much time.
Here we choose k = 10 to further mitigate finite-sampling er-
rors due to the situation described above, in which stimulation
near a highly active bump simply reverts the system back to
that previous attractor after a transient. We also choose to
work with an information-theoretic capacity metric, to treat
the inherently nonuniform stochasticity associated with the
“stimulus-response” records in a natural framework.
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FIG. 3. Mutual information as a function of rounding precision
in the center-of-excitation values {�xCOE(T )}. Saturation occurs by
four decimal places, but in what follows we keep two places to ensure
the precision of �xCOE is not finer than the neuron separation scale λ.
This changes the capacity by less than a factor of 2.

Specifically, we measure the mutual information [41] be-
tween random variables �xstim and �xCOE(T ) for a realization
G. To do this, we obtain the frequencies of occurrence for
all observed stimulation locations {�xstim} and bump centers
{�xCOE(T )}, over a set of ntrials stimulation events. We then
use these frequencies as the maximum-likelihood estimates of
the corresponding probabilities to form the “plug-in” or naïve
estimators for the relevant entropies [42–44], from which we
can calculate the mutual information MI({�xstim}, {�xCOE)(T )}.
Since asking how many different attractors were observed
for each stimulation position is equivalent to asking how
many different stimulation positions lead to the same attractor
(i.e., the mutual information is symmetric), we choose the
latter. Finally, from the mutual information, we define the
capacity

C = 2MI({�xstim},{�xCOE(T )}). (6)

Since the information is measured over discrete states,
we must discretize the values of �xCOE(T ) by rounding them
to an appropriate resolution. As seen in Fig. 3, truncat-
ing �xCOE(T ) to two decimal places still represents 87.5%
of the maximum information or ≈6.25 bits. Assuming that
the system cannot track bump centers to a precision bet-
ter than these two decimal places—roughly the theoretical
separation between neurons—we arrive at C ≈ 76 distinct
stimulation regions for the values of L, λ, ξ , and ρ used
throughout.

In other words, on average, G is able to store and reliably
retrieve a number of memories approximately equal to our
naïve, baseline estimate. Unlike in that coarse estimation, we
did not require bumps to be nonoverlapping in measuring
the capacity—yet the system’s recall ability turns out to
be nearly as accurate as a fully deterministic discriminator
that simply decides in which Reff × Reff -sized, homogeneous
division of the plane the last stimulation occurred. Thus the
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FIG. 4. Spatial distribution of the distinct bumps. Here the differ-
ent attracting bumps observed over the kntrials computational experi-
ments are distributed in such a way that they span the majority of the
2D plane. Bump centers are shown as blue dots; the radii for their
surrounding gray circles are ≈Reff . Dotted lines represent periodic
boundaries, included here for clarity.

information-theoretic capacity, measured to two decimal dig-
its precision in �xCOE(T ), is also consistent with a typical size
for the attracting basins which matches Reff for stable bumps.
Furthermore, we observe that the retrievable memories span
more or less the entire spatial extent of the L × L plane.
This can be readily observed in Fig. 4, which depicts the set
{�xCOE} of unique bumps accounted for over a course of ntrials

stimulations for one network realization.

C. Mutual information is near optimal for a broad
range of parameter values

The cutoff distance is an important length scale in the
system. The structure of the network depends crucially on
ξ , allowing us to go from completely unconnected neurons
in the extreme of ξ = 0 to the fully connected network for
ξ = L. It is important to understand how ξ affects our main
findings—in particular, the existence of localized excitations
and the number of memories G can support.

For the unconnected case ξ = 0, we have {Ji j} = 0. In the
absence of recurrent connections (besides the implicit inhi-
bition), all neurons respond independently to their respective
external inputs Ii(t ): That is, the {ri} obey a simplified version
of Eqs. (2) and (3). In order to write down the dynamics in
this case, we first note that neurons outside the stimulation
patch have activations hi = f (0) ≈ 0 for both t < �t and
t � �t . These units at first experience an exponential decay in
their firing activities and then approach the steady-state value
ri(t 	 �t ) = a. The ∼πN (ρ/L)2 neurons encompassed by
the stimulation patch also approach a constant value. To show
this, we note that each of the units in this latter subset sees
the same input hi = f {A[1 − 
(t − �t )]}, so that the ratio
hi(t )/

∑
j h j (t ) stays constant. Therefore we can remove the
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FIG. 5. Information is high for a broad range of cutoffs. That is,
varying ξ reveals a broad plateau over which the mutual information
remains within a single bit of its maximum. At either extreme
of ξ , the information falls to zero as connectivities become too
sparse or too dense to support the type of spatial memory discussed
throughout. The black curve represents the information log2

L2

πReff
corresponding to our original, naïve estimate of C, with Reff (ξ )
adjusted to match the typical values given by Gaussian fits to ∼1000
bumps. Note that the black curve, representing ξ < λ, exists only
outside the shaded gray box, because bumps that did localize for
small ξ were too few to quantify accurately. Note also that we could
have studied the variation of C with the number of neurons; yet since
ξ ∝ λ and λ = √

η = √
N for this system, this measurement would

be redundant.

nonlinearities entirely and write

dri

dt
= −ri + I ′

i (t ), (7)

I ′
i (t ) =

{ a
πρ2 , t < �t,
a, t � �t .

(8)

Then, in the long-time limit, the unconnected system relaxes
to the trivial stable state {ri(t 	 τ )} = a, in which all neurons
fire at the same, baseline rate. It cannot sustain any excitations
that can be decoded as memories. In the other extreme, ξ →
L, it seems unlikely that a fully connected network can support
any localized excitations.

We quantify the precise dependence of our findings on
the value of the cutoff distance in Fig. 5. We generated
this plot by progressively decreasing ξ for an initial, fully
connected realization G. Here we chose k = 1, stimulating
at the first 104 of the 105 sites used to generate Fig. 3, and
rounded the measured information values to a precision of
two decimal places in �xCOE as decided above. Clearly, the
mutual information quickly drops to zero below the average
neuron separation λ. This means that the system attains only
states that are delocalized—effectively all neurons contribute
to the excitation, but none exceed the threshold ri > 10a to be
considered “active”—which we identify as the single, trivial
state.
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At the other extreme, the mutual information returns to
zero for large values of ξ . This can be explained in terms of
the circumstances discussed in Sec. III A, in which it becomes
difficult for the network to switch out of its preferred states.
As the cutoff distance increases above ξ ≈ 7λ (or ≈5λ for
the stricter threshold of ri = 50a), more neurons are directly
involved in sustaining a given excitation, and the structure of
the basins of attractions changes so as to accommodate fewer
feasible memories. As in the case of insufficient stimulation
time or amplitude, the success or failure of a given stimulation
in evoking a nearby bump is somewhat history dependent
(in the sense that some memories may be retrievable from
some initial states, but not from certain preferred states),
yet invariably the system comes to favor a single state in
the limit that the network becomes fully connected. For the
10a threshold, the network cannot reliably store any spatial
memories for roughly ξ > 0.16L ≈ 10λ.

Between these two extremes, there is an optimal value
ξ ∗ ≈ 0.02L, for which the greatest number of stimulation
gridpoints can be distinguished. Moreover, starting at this
value, there is a plateau in the system’s accuracy from roughly
ξ = 0.02L · · · 0.11L ≈ λ · · · 7λ, across which the mutual in-
formation varies by only ∼1 bit. More precisely, the gap
between the highest and lowest points on the 10a-threshold
curve of Fig. 5 corresponds to the difference between re-
solving C ≈ 156 and C ≈ 72 distinct stimulation sites. These
values are of the same rough order of magnitude, and their
average is nearly equal to our very first baseline estimate
of 100 distinct, homogeneous basins. We note in particular
that the cutoff distance ξ = 0.06L used throughout the rest
of the paper is nominally three times larger than ξ ∗, but
different by less than the aforementioned bit in terms of the
information.

In principle, the capacity should also depend on how reli-
ably the system accesses its attractors for (or indeed, whether
the set of accessible attractors changes with) different values
of the size of the input patch, ρ. Figure 6 records the de-
pendence of the mutual information on ρ. Outside this range,
the system will attract to (possibly different) preferred states,
but between roughly 2λ and 6λ we observe that the system
attracts to the same bump state regardless of the specific
value of ρ (not explicitly depicted). This gives the appearance
that the system really is tracking the stimulation centers in
computing its final states, at least for input patch sizes in this
range.

To the extent that different proxies for �xCOE agree, this
suggests that the system does in fact encode a coarse rep-
resentation of the stimulation location—the bump centers of
excitations—rather than tracking high-dimensional quantities
like the real-valued firing rates. That is, although an exper-
imental system wired according to our prescription for {Ji j}
could indeed store information in individual firing rates for
other purposes, we are not merely imposing but discovering
that the low-dimensional summary variable �xCOE is sufficient
to predict the stimulation region to a considerable accuracy.
Another step toward testing this hypothesis would be to
systematically map the basins of attraction for a given re-
alization G, and check whether the steep decrease shown in
Fig. 6 occurs when the stimulation patch grows large enough
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FIG. 6. Mutual information peaks for a range of small input
patch sizes. In particular, in the neighborhood of ρ = ξ = 0.06L,
mutual information values do not vary significantly. We verified that
the system tends to fall into the same attractor regardless of the
specific value of ρ until a large percentage of neurons are stimulated,
thereby activating the aforementioned “preferred,” or global, states.
At roughly the same value after which comes a decrease in infor-
mation with ξ , we observe a similar decrease in information with ρ.
This continues monotonically, until ρ > 50λ, after which stimulation
leads only to excitations below the activity threshold.

to extend into multiple basins besides that of the targeted
memory.

Together, the above results suggest that our randomly
weighted network can sustain local excitations for a range
of parameter values. In general, these excitations can serve
reliably as spatial memories encoding the system’s most
recent stimulation location if the number of neurons ac-
tivated via stimulation and local synaptic input is small
relative to the system size N . This can be achieved by
choosing ξ less than approximately O(10λ), which ensures
that a given neuron synapses with anywhere from roughly
π (λ)2η · · · π (10λ)2η ≈ 100 · · · 102 neighbors.

IV. DISCUSSION

We have showed through numerical simulations that short-
range, but otherwise unstructured, connectivities can support
spatial memory via persistent firing if the overall activity
of the network is constrained by global regulation of fir-
ing activies. The spatial regions that can be remembered
(discriminated) with fidelity effectively tile an L × L planar
section, with a resolution of O(λ−1) distinct sites. Essentially
equivalent to our naïve count of nonoverlapping memories
spanning the manifold, this performance corresponds to an
information-theoretic capacity that scales as C ∝ √

N/L, or
C ∝ √

η in terms of the neuron density. Although this depen-
dence can be verified by testing larger system sizes N and
L, the capacity measure studied here is ultimately determined
by the typical bump size Reff , which comes in turn from the
chosen cutoff distance ξ . Given that we can always write
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the cutoff as a multiple of the neuron separation scale, ξ =
ξ (λ) = ξ (L/

√
N ), we expect that N and L enter only as the

ratio λ, and that varying the cutoff distance is equivalent to
varying the number of neurons up to statistical fluctuations
that are larger at smaller N .

Since the average neuron separation sets the scale of the
problem at the outset, it is not necessarily surprising that
the optimal cutoff distance ξ ∗ ≈ λ. What is unexpected in
our results is the fact that a spatial memory spanning a two-
dimensional manifold can be achieved without explicit tuning
of synaptic connections. This is reinforced by the fact that we
observe not just an isolated peak at ξ ∗, but a broad plateau of
near-optimal cutoff distances.

While it was originally maintained [8] that only tuned con-
nectivity profiles can produce continuous attractors, the idea
that random networks support memory on short timescales is
not entirely new [16,19,28,45]. Indeed, recent work argues
that quasi-random topologies, refined via some non-linear
Hebbian learning rule, can give rise to attractor dynamics
in the specific context of persistent neural activity as a sub-
strate for working memory [46]. Here, we are interested in
using such random networks to store spatial memories that
effectively span a continuous manifold [33]. Crucially, we
accomplish this using a network structure which emphatically
requires no learning.

Similarly, distance-dependent topologies [47] have been
implemented in previous models, including the seminal work
on continuous neural attractors [39]. While other studies have
realized attractor dynamics with connectivities that are rela-
tively unstructured (i.e., except for local profiles) [23–25], we
are aware of only two related studies that attempt to quantify
the contribution of sparse, short-range (1D nearest-neighbor)
connections formally to the localization of firing-rate excita-
tions [48,49]. As we do, both of these respect Dale’s Principle
[50] for the signs of synaptic connections only indirectly [51]
and explore random weights. While it may be interesting to
explore the spectra of our {Ji j} in the context of Anderson
localization, or the notion of “spatially structured” disorder
developed in Ref. [49], a more obvious generalization of our
model would be to relax the hard-threshold cutoff condition
to a connection probability. For example, we could set Ji j ∝
e−|�xi−�x j |/ξ , or another function of di j = ‖�xi − �x j‖ (as in, for
example, Refs. [23–25,52]).

A drawback to our model, in the form presented here,
is that the system of Eqs. (1)–(5) incorporates no explicit
noise terms. Fundamental to our results is the firing-rate
constraint

∑
i ri(t ) = aN , an imposition which corresponds

only approximately to the biological reality for real circuits
(as in Ref. [21]). In our future work, we propose to replace the
constant parameter a by a Gaussian process α(t ) = a + η(t ).
We expect that, for small amounts of noise, the system will
retain its qualitative behavior but with a reduced capacity. On
the other hand, for η(t ) with large variance, it is possible that
the system will fail to store memories with high fidelity due to
longer bump “excursions” or full delocalization, as in Figs. 5
and 6.

If these assumptions regarding the inclusion of noise are
found to hold, it would be interesting to explore noise param-

eters that place the firing-rate variability in a regime consistent
with previous experiments [8,37] while respecting our sparsity
constraints. Yet we reiterate that our goal is not to model
any known experimental system. Indeed, whether or not our
model relates to specific, observable experimental systems
remains to be seen. In anticipation of such in vivo analogs, we
offer the following predictions regarding which features of our
model might be used to infer whether short-range, randomly
weighted connections drive a given instance of persistent
activity.

First, in the best case scenario, novel technologies may
allow researchers to probe structural properties directly. This
promises a trivial way of checking whether synaptic matrices
are untuned, as in Eq. (1), and is already underway for the
fly [53–55]. While the emerging picture for Drosophila is one
of decidedly nonrandom connectivity, this may not hold for
significantly larger organisms. Indeed, the number of possible
synapses in a neural system scales as O(N2). Thus genetic
encoding of precise values for some billions of pairwise
connections even in modestly sized vertebrates is simply not
feasible. On the other hand, it is plausible that regularity
appears at the level of local rules superimposed on essentially
random connectivities, as in canonical microcircuit models
[56], which would be consistent with our setup.

In the absence of structural information, the firing-rate
activities themselves can also help support or reject our model.
Since most classic continuous-attractor architectures have
translationally invariant connections, they are able to host
bumps at virtually any location [57]. Our {Ji j}, on the other
hand, lack such a symmetry. This leads to discrete attractors
[58] with variable spacing and portions of the plane that
cannot be reliably encoded. Such “discrete approximations”
to attracting manifolds have even been touted as more robust
than their continuous counterparts, for example, to pertur-
bations in the synaptic weights [59]. It would be interest-
ing to quantify the fraction or extent of the plane that the
system can remember in the presence of the aforementioned
noise.

In addition, while continuous attractor models accommo-
date a degree of drift or diffusion for activity bumps following
their settlement on the manifold [60], tracking �xCOE(t ) reveals
that excursions in our random networks occur predominantly
before t = T ; see the inset of Fig. 1. Thus, comparing the ob-
served distribution of displacements, between the tested �xstim

values and the corresponding �xCOE(t ) could also distinguish
our model.

Finally, the raw activity measurements {ri(t )} are also
subject to what is known as network reverse-engineering, or
automated inference methods that operate directly on data
to reconstruct network interaction structures [61]. Although
we do not advocate applying out-of-the-box algorithms to
glean structural information in general, there do exist certain
signatures and gross statistics which can be used to differ-
entiate truly random graphs from more complex or subtle
architectures at a coarse level [62].

Our model is one of many that attempt to capture the
ability of different neural systems to support localized exci-
tations that encode real-valued quantities. Here, we eschew
structured topographic mappings [21] in favor of a random
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connectivity that we find to be capable of storing similar
neural representations. Whether or not in vivo circuits con-
forming to the specifications of our model are found ex-
perimentally to underlie one of these interesting systems, in
our view such random, activity-constrained networks should
still be taken seriously as null models for recurrent neural
computation [27].
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